Home | History | Annotate | Download | only in pprof
      1 // Copyright 2010 The Go Authors.  All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package pprof writes runtime profiling data in the format expected
      6 // by the pprof visualization tool.
      7 // For more information about pprof, see
      8 // http://code.google.com/p/google-perftools/.
      9 package pprof
     10 
     11 import (
     12 	"bufio"
     13 	"bytes"
     14 	"fmt"
     15 	"io"
     16 	"runtime"
     17 	"sort"
     18 	"strings"
     19 	"sync"
     20 	"text/tabwriter"
     21 )
     22 
     23 // BUG(rsc): Profiles are incomplete and inaccurate on NetBSD and OS X.
     24 // See https://golang.org/issue/6047 for details.
     25 
     26 // A Profile is a collection of stack traces showing the call sequences
     27 // that led to instances of a particular event, such as allocation.
     28 // Packages can create and maintain their own profiles; the most common
     29 // use is for tracking resources that must be explicitly closed, such as files
     30 // or network connections.
     31 //
     32 // A Profile's methods can be called from multiple goroutines simultaneously.
     33 //
     34 // Each Profile has a unique name.  A few profiles are predefined:
     35 //
     36 //	goroutine    - stack traces of all current goroutines
     37 //	heap         - a sampling of all heap allocations
     38 //	threadcreate - stack traces that led to the creation of new OS threads
     39 //	block        - stack traces that led to blocking on synchronization primitives
     40 //
     41 // These predefined profiles maintain themselves and panic on an explicit
     42 // Add or Remove method call.
     43 //
     44 // The heap profile reports statistics as of the most recently completed
     45 // garbage collection; it elides more recent allocation to avoid skewing
     46 // the profile away from live data and toward garbage.
     47 // If there has been no garbage collection at all, the heap profile reports
     48 // all known allocations. This exception helps mainly in programs running
     49 // without garbage collection enabled, usually for debugging purposes.
     50 //
     51 // The CPU profile is not available as a Profile.  It has a special API,
     52 // the StartCPUProfile and StopCPUProfile functions, because it streams
     53 // output to a writer during profiling.
     54 //
     55 type Profile struct {
     56 	name  string
     57 	mu    sync.Mutex
     58 	m     map[interface{}][]uintptr
     59 	count func() int
     60 	write func(io.Writer, int) error
     61 }
     62 
     63 // profiles records all registered profiles.
     64 var profiles struct {
     65 	mu sync.Mutex
     66 	m  map[string]*Profile
     67 }
     68 
     69 var goroutineProfile = &Profile{
     70 	name:  "goroutine",
     71 	count: countGoroutine,
     72 	write: writeGoroutine,
     73 }
     74 
     75 var threadcreateProfile = &Profile{
     76 	name:  "threadcreate",
     77 	count: countThreadCreate,
     78 	write: writeThreadCreate,
     79 }
     80 
     81 var heapProfile = &Profile{
     82 	name:  "heap",
     83 	count: countHeap,
     84 	write: writeHeap,
     85 }
     86 
     87 var blockProfile = &Profile{
     88 	name:  "block",
     89 	count: countBlock,
     90 	write: writeBlock,
     91 }
     92 
     93 func lockProfiles() {
     94 	profiles.mu.Lock()
     95 	if profiles.m == nil {
     96 		// Initial built-in profiles.
     97 		profiles.m = map[string]*Profile{
     98 			"goroutine":    goroutineProfile,
     99 			"threadcreate": threadcreateProfile,
    100 			"heap":         heapProfile,
    101 			"block":        blockProfile,
    102 		}
    103 	}
    104 }
    105 
    106 func unlockProfiles() {
    107 	profiles.mu.Unlock()
    108 }
    109 
    110 // NewProfile creates a new profile with the given name.
    111 // If a profile with that name already exists, NewProfile panics.
    112 // The convention is to use a 'import/path.' prefix to create
    113 // separate name spaces for each package.
    114 func NewProfile(name string) *Profile {
    115 	lockProfiles()
    116 	defer unlockProfiles()
    117 	if name == "" {
    118 		panic("pprof: NewProfile with empty name")
    119 	}
    120 	if profiles.m[name] != nil {
    121 		panic("pprof: NewProfile name already in use: " + name)
    122 	}
    123 	p := &Profile{
    124 		name: name,
    125 		m:    map[interface{}][]uintptr{},
    126 	}
    127 	profiles.m[name] = p
    128 	return p
    129 }
    130 
    131 // Lookup returns the profile with the given name, or nil if no such profile exists.
    132 func Lookup(name string) *Profile {
    133 	lockProfiles()
    134 	defer unlockProfiles()
    135 	return profiles.m[name]
    136 }
    137 
    138 // Profiles returns a slice of all the known profiles, sorted by name.
    139 func Profiles() []*Profile {
    140 	lockProfiles()
    141 	defer unlockProfiles()
    142 
    143 	var all []*Profile
    144 	for _, p := range profiles.m {
    145 		all = append(all, p)
    146 	}
    147 
    148 	sort.Sort(byName(all))
    149 	return all
    150 }
    151 
    152 type byName []*Profile
    153 
    154 func (x byName) Len() int           { return len(x) }
    155 func (x byName) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    156 func (x byName) Less(i, j int) bool { return x[i].name < x[j].name }
    157 
    158 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
    159 func (p *Profile) Name() string {
    160 	return p.name
    161 }
    162 
    163 // Count returns the number of execution stacks currently in the profile.
    164 func (p *Profile) Count() int {
    165 	p.mu.Lock()
    166 	defer p.mu.Unlock()
    167 	if p.count != nil {
    168 		return p.count()
    169 	}
    170 	return len(p.m)
    171 }
    172 
    173 // Add adds the current execution stack to the profile, associated with value.
    174 // Add stores value in an internal map, so value must be suitable for use as
    175 // a map key and will not be garbage collected until the corresponding
    176 // call to Remove.  Add panics if the profile already contains a stack for value.
    177 //
    178 // The skip parameter has the same meaning as runtime.Caller's skip
    179 // and controls where the stack trace begins.  Passing skip=0 begins the
    180 // trace in the function calling Add.  For example, given this
    181 // execution stack:
    182 //
    183 //	Add
    184 //	called from rpc.NewClient
    185 //	called from mypkg.Run
    186 //	called from main.main
    187 //
    188 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
    189 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
    190 //
    191 func (p *Profile) Add(value interface{}, skip int) {
    192 	if p.name == "" {
    193 		panic("pprof: use of uninitialized Profile")
    194 	}
    195 	if p.write != nil {
    196 		panic("pprof: Add called on built-in Profile " + p.name)
    197 	}
    198 
    199 	stk := make([]uintptr, 32)
    200 	n := runtime.Callers(skip+1, stk[:])
    201 
    202 	p.mu.Lock()
    203 	defer p.mu.Unlock()
    204 	if p.m[value] != nil {
    205 		panic("pprof: Profile.Add of duplicate value")
    206 	}
    207 	p.m[value] = stk[:n]
    208 }
    209 
    210 // Remove removes the execution stack associated with value from the profile.
    211 // It is a no-op if the value is not in the profile.
    212 func (p *Profile) Remove(value interface{}) {
    213 	p.mu.Lock()
    214 	defer p.mu.Unlock()
    215 	delete(p.m, value)
    216 }
    217 
    218 // WriteTo writes a pprof-formatted snapshot of the profile to w.
    219 // If a write to w returns an error, WriteTo returns that error.
    220 // Otherwise, WriteTo returns nil.
    221 //
    222 // The debug parameter enables additional output.
    223 // Passing debug=0 prints only the hexadecimal addresses that pprof needs.
    224 // Passing debug=1 adds comments translating addresses to function names
    225 // and line numbers, so that a programmer can read the profile without tools.
    226 //
    227 // The predefined profiles may assign meaning to other debug values;
    228 // for example, when printing the "goroutine" profile, debug=2 means to
    229 // print the goroutine stacks in the same form that a Go program uses
    230 // when dying due to an unrecovered panic.
    231 func (p *Profile) WriteTo(w io.Writer, debug int) error {
    232 	if p.name == "" {
    233 		panic("pprof: use of zero Profile")
    234 	}
    235 	if p.write != nil {
    236 		return p.write(w, debug)
    237 	}
    238 
    239 	// Obtain consistent snapshot under lock; then process without lock.
    240 	var all [][]uintptr
    241 	p.mu.Lock()
    242 	for _, stk := range p.m {
    243 		all = append(all, stk)
    244 	}
    245 	p.mu.Unlock()
    246 
    247 	// Map order is non-deterministic; make output deterministic.
    248 	sort.Sort(stackProfile(all))
    249 
    250 	return printCountProfile(w, debug, p.name, stackProfile(all))
    251 }
    252 
    253 type stackProfile [][]uintptr
    254 
    255 func (x stackProfile) Len() int              { return len(x) }
    256 func (x stackProfile) Stack(i int) []uintptr { return x[i] }
    257 func (x stackProfile) Swap(i, j int)         { x[i], x[j] = x[j], x[i] }
    258 func (x stackProfile) Less(i, j int) bool {
    259 	t, u := x[i], x[j]
    260 	for k := 0; k < len(t) && k < len(u); k++ {
    261 		if t[k] != u[k] {
    262 			return t[k] < u[k]
    263 		}
    264 	}
    265 	return len(t) < len(u)
    266 }
    267 
    268 // A countProfile is a set of stack traces to be printed as counts
    269 // grouped by stack trace.  There are multiple implementations:
    270 // all that matters is that we can find out how many traces there are
    271 // and obtain each trace in turn.
    272 type countProfile interface {
    273 	Len() int
    274 	Stack(i int) []uintptr
    275 }
    276 
    277 // printCountProfile prints a countProfile at the specified debug level.
    278 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
    279 	b := bufio.NewWriter(w)
    280 	var tw *tabwriter.Writer
    281 	w = b
    282 	if debug > 0 {
    283 		tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
    284 		w = tw
    285 	}
    286 
    287 	fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len())
    288 
    289 	// Build count of each stack.
    290 	var buf bytes.Buffer
    291 	key := func(stk []uintptr) string {
    292 		buf.Reset()
    293 		fmt.Fprintf(&buf, "@")
    294 		for _, pc := range stk {
    295 			fmt.Fprintf(&buf, " %#x", pc)
    296 		}
    297 		return buf.String()
    298 	}
    299 	m := map[string]int{}
    300 	n := p.Len()
    301 	for i := 0; i < n; i++ {
    302 		m[key(p.Stack(i))]++
    303 	}
    304 
    305 	// Print stacks, listing count on first occurrence of a unique stack.
    306 	for i := 0; i < n; i++ {
    307 		stk := p.Stack(i)
    308 		s := key(stk)
    309 		if count := m[s]; count != 0 {
    310 			fmt.Fprintf(w, "%d %s\n", count, s)
    311 			if debug > 0 {
    312 				printStackRecord(w, stk, false)
    313 			}
    314 			delete(m, s)
    315 		}
    316 	}
    317 
    318 	if tw != nil {
    319 		tw.Flush()
    320 	}
    321 	return b.Flush()
    322 }
    323 
    324 // printStackRecord prints the function + source line information
    325 // for a single stack trace.
    326 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
    327 	show := allFrames
    328 	wasPanic := false
    329 	for i, pc := range stk {
    330 		f := runtime.FuncForPC(pc)
    331 		if f == nil {
    332 			show = true
    333 			fmt.Fprintf(w, "#\t%#x\n", pc)
    334 			wasPanic = false
    335 		} else {
    336 			tracepc := pc
    337 			// Back up to call instruction.
    338 			if i > 0 && pc > f.Entry() && !wasPanic {
    339 				if runtime.GOARCH == "386" || runtime.GOARCH == "amd64" {
    340 					tracepc--
    341 				} else {
    342 					tracepc -= 4 // arm, etc
    343 				}
    344 			}
    345 			file, line := f.FileLine(tracepc)
    346 			name := f.Name()
    347 			// Hide runtime.goexit and any runtime functions at the beginning.
    348 			// This is useful mainly for allocation traces.
    349 			wasPanic = name == "runtime.panic"
    350 			if name == "runtime.goexit" || !show && strings.HasPrefix(name, "runtime.") {
    351 				continue
    352 			}
    353 			show = true
    354 			fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", pc, name, pc-f.Entry(), file, line)
    355 		}
    356 	}
    357 	if !show {
    358 		// We didn't print anything; do it again,
    359 		// and this time include runtime functions.
    360 		printStackRecord(w, stk, true)
    361 		return
    362 	}
    363 	fmt.Fprintf(w, "\n")
    364 }
    365 
    366 // Interface to system profiles.
    367 
    368 type byInUseBytes []runtime.MemProfileRecord
    369 
    370 func (x byInUseBytes) Len() int           { return len(x) }
    371 func (x byInUseBytes) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    372 func (x byInUseBytes) Less(i, j int) bool { return x[i].InUseBytes() > x[j].InUseBytes() }
    373 
    374 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
    375 // It is preserved for backwards compatibility.
    376 func WriteHeapProfile(w io.Writer) error {
    377 	return writeHeap(w, 0)
    378 }
    379 
    380 // countHeap returns the number of records in the heap profile.
    381 func countHeap() int {
    382 	n, _ := runtime.MemProfile(nil, true)
    383 	return n
    384 }
    385 
    386 // writeHeap writes the current runtime heap profile to w.
    387 func writeHeap(w io.Writer, debug int) error {
    388 	// Find out how many records there are (MemProfile(nil, true)),
    389 	// allocate that many records, and get the data.
    390 	// There's a racemore records might be added between
    391 	// the two callsso allocate a few extra records for safety
    392 	// and also try again if we're very unlucky.
    393 	// The loop should only execute one iteration in the common case.
    394 	var p []runtime.MemProfileRecord
    395 	n, ok := runtime.MemProfile(nil, true)
    396 	for {
    397 		// Allocate room for a slightly bigger profile,
    398 		// in case a few more entries have been added
    399 		// since the call to MemProfile.
    400 		p = make([]runtime.MemProfileRecord, n+50)
    401 		n, ok = runtime.MemProfile(p, true)
    402 		if ok {
    403 			p = p[0:n]
    404 			break
    405 		}
    406 		// Profile grew; try again.
    407 	}
    408 
    409 	sort.Sort(byInUseBytes(p))
    410 
    411 	b := bufio.NewWriter(w)
    412 	var tw *tabwriter.Writer
    413 	w = b
    414 	if debug > 0 {
    415 		tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
    416 		w = tw
    417 	}
    418 
    419 	var total runtime.MemProfileRecord
    420 	for i := range p {
    421 		r := &p[i]
    422 		total.AllocBytes += r.AllocBytes
    423 		total.AllocObjects += r.AllocObjects
    424 		total.FreeBytes += r.FreeBytes
    425 		total.FreeObjects += r.FreeObjects
    426 	}
    427 
    428 	// Technically the rate is MemProfileRate not 2*MemProfileRate,
    429 	// but early versions of the C++ heap profiler reported 2*MemProfileRate,
    430 	// so that's what pprof has come to expect.
    431 	fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
    432 		total.InUseObjects(), total.InUseBytes(),
    433 		total.AllocObjects, total.AllocBytes,
    434 		2*runtime.MemProfileRate)
    435 
    436 	for i := range p {
    437 		r := &p[i]
    438 		fmt.Fprintf(w, "%d: %d [%d: %d] @",
    439 			r.InUseObjects(), r.InUseBytes(),
    440 			r.AllocObjects, r.AllocBytes)
    441 		for _, pc := range r.Stack() {
    442 			fmt.Fprintf(w, " %#x", pc)
    443 		}
    444 		fmt.Fprintf(w, "\n")
    445 		if debug > 0 {
    446 			printStackRecord(w, r.Stack(), false)
    447 		}
    448 	}
    449 
    450 	// Print memstats information too.
    451 	// Pprof will ignore, but useful for people
    452 	s := new(runtime.MemStats)
    453 	runtime.ReadMemStats(s)
    454 	fmt.Fprintf(w, "\n# runtime.MemStats\n")
    455 	fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
    456 	fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
    457 	fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
    458 	fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
    459 	fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
    460 	fmt.Fprintf(w, "# Frees = %d\n", s.Frees)
    461 
    462 	fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
    463 	fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
    464 	fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
    465 	fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
    466 	fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
    467 	fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)
    468 
    469 	fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
    470 	fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
    471 	fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
    472 	fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
    473 
    474 	fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
    475 	fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
    476 	fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
    477 	fmt.Fprintf(w, "# EnableGC = %v\n", s.EnableGC)
    478 	fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
    479 
    480 	if tw != nil {
    481 		tw.Flush()
    482 	}
    483 	return b.Flush()
    484 }
    485 
    486 // countThreadCreate returns the size of the current ThreadCreateProfile.
    487 func countThreadCreate() int {
    488 	n, _ := runtime.ThreadCreateProfile(nil)
    489 	return n
    490 }
    491 
    492 // writeThreadCreate writes the current runtime ThreadCreateProfile to w.
    493 func writeThreadCreate(w io.Writer, debug int) error {
    494 	return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile)
    495 }
    496 
    497 // countGoroutine returns the number of goroutines.
    498 func countGoroutine() int {
    499 	return runtime.NumGoroutine()
    500 }
    501 
    502 // writeGoroutine writes the current runtime GoroutineProfile to w.
    503 func writeGoroutine(w io.Writer, debug int) error {
    504 	if debug >= 2 {
    505 		return writeGoroutineStacks(w)
    506 	}
    507 	return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile)
    508 }
    509 
    510 func writeGoroutineStacks(w io.Writer) error {
    511 	// We don't know how big the buffer needs to be to collect
    512 	// all the goroutines.  Start with 1 MB and try a few times, doubling each time.
    513 	// Give up and use a truncated trace if 64 MB is not enough.
    514 	buf := make([]byte, 1<<20)
    515 	for i := 0; ; i++ {
    516 		n := runtime.Stack(buf, true)
    517 		if n < len(buf) {
    518 			buf = buf[:n]
    519 			break
    520 		}
    521 		if len(buf) >= 64<<20 {
    522 			// Filled 64 MB - stop there.
    523 			break
    524 		}
    525 		buf = make([]byte, 2*len(buf))
    526 	}
    527 	_, err := w.Write(buf)
    528 	return err
    529 }
    530 
    531 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error {
    532 	// Find out how many records there are (fetch(nil)),
    533 	// allocate that many records, and get the data.
    534 	// There's a racemore records might be added between
    535 	// the two callsso allocate a few extra records for safety
    536 	// and also try again if we're very unlucky.
    537 	// The loop should only execute one iteration in the common case.
    538 	var p []runtime.StackRecord
    539 	n, ok := fetch(nil)
    540 	for {
    541 		// Allocate room for a slightly bigger profile,
    542 		// in case a few more entries have been added
    543 		// since the call to ThreadProfile.
    544 		p = make([]runtime.StackRecord, n+10)
    545 		n, ok = fetch(p)
    546 		if ok {
    547 			p = p[0:n]
    548 			break
    549 		}
    550 		// Profile grew; try again.
    551 	}
    552 
    553 	return printCountProfile(w, debug, name, runtimeProfile(p))
    554 }
    555 
    556 type runtimeProfile []runtime.StackRecord
    557 
    558 func (p runtimeProfile) Len() int              { return len(p) }
    559 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() }
    560 
    561 var cpu struct {
    562 	sync.Mutex
    563 	profiling bool
    564 	done      chan bool
    565 }
    566 
    567 // StartCPUProfile enables CPU profiling for the current process.
    568 // While profiling, the profile will be buffered and written to w.
    569 // StartCPUProfile returns an error if profiling is already enabled.
    570 func StartCPUProfile(w io.Writer) error {
    571 	// The runtime routines allow a variable profiling rate,
    572 	// but in practice operating systems cannot trigger signals
    573 	// at more than about 500 Hz, and our processing of the
    574 	// signal is not cheap (mostly getting the stack trace).
    575 	// 100 Hz is a reasonable choice: it is frequent enough to
    576 	// produce useful data, rare enough not to bog down the
    577 	// system, and a nice round number to make it easy to
    578 	// convert sample counts to seconds.  Instead of requiring
    579 	// each client to specify the frequency, we hard code it.
    580 	const hz = 100
    581 
    582 	cpu.Lock()
    583 	defer cpu.Unlock()
    584 	if cpu.done == nil {
    585 		cpu.done = make(chan bool)
    586 	}
    587 	// Double-check.
    588 	if cpu.profiling {
    589 		return fmt.Errorf("cpu profiling already in use")
    590 	}
    591 	cpu.profiling = true
    592 	runtime.SetCPUProfileRate(hz)
    593 	go profileWriter(w)
    594 	return nil
    595 }
    596 
    597 func profileWriter(w io.Writer) {
    598 	for {
    599 		data := runtime.CPUProfile()
    600 		if data == nil {
    601 			break
    602 		}
    603 		w.Write(data)
    604 	}
    605 	cpu.done <- true
    606 }
    607 
    608 // StopCPUProfile stops the current CPU profile, if any.
    609 // StopCPUProfile only returns after all the writes for the
    610 // profile have completed.
    611 func StopCPUProfile() {
    612 	cpu.Lock()
    613 	defer cpu.Unlock()
    614 
    615 	if !cpu.profiling {
    616 		return
    617 	}
    618 	cpu.profiling = false
    619 	runtime.SetCPUProfileRate(0)
    620 	<-cpu.done
    621 }
    622 
    623 type byCycles []runtime.BlockProfileRecord
    624 
    625 func (x byCycles) Len() int           { return len(x) }
    626 func (x byCycles) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    627 func (x byCycles) Less(i, j int) bool { return x[i].Cycles > x[j].Cycles }
    628 
    629 // countBlock returns the number of records in the blocking profile.
    630 func countBlock() int {
    631 	n, _ := runtime.BlockProfile(nil)
    632 	return n
    633 }
    634 
    635 // writeBlock writes the current blocking profile to w.
    636 func writeBlock(w io.Writer, debug int) error {
    637 	var p []runtime.BlockProfileRecord
    638 	n, ok := runtime.BlockProfile(nil)
    639 	for {
    640 		p = make([]runtime.BlockProfileRecord, n+50)
    641 		n, ok = runtime.BlockProfile(p)
    642 		if ok {
    643 			p = p[:n]
    644 			break
    645 		}
    646 	}
    647 
    648 	sort.Sort(byCycles(p))
    649 
    650 	b := bufio.NewWriter(w)
    651 	var tw *tabwriter.Writer
    652 	w = b
    653 	if debug > 0 {
    654 		tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
    655 		w = tw
    656 	}
    657 
    658 	fmt.Fprintf(w, "--- contention:\n")
    659 	fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
    660 	for i := range p {
    661 		r := &p[i]
    662 		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
    663 		for _, pc := range r.Stack() {
    664 			fmt.Fprintf(w, " %#x", pc)
    665 		}
    666 		fmt.Fprint(w, "\n")
    667 		if debug > 0 {
    668 			printStackRecord(w, r.Stack(), true)
    669 		}
    670 	}
    671 
    672 	if tw != nil {
    673 		tw.Flush()
    674 	}
    675 	return b.Flush()
    676 }
    677 
    678 func runtime_cyclesPerSecond() int64
    679