Home | History | Annotate | Download | only in strconv
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package strconv
      6 
      7 // An extFloat represents an extended floating-point number, with more
      8 // precision than a float64. It does not try to save bits: the
      9 // number represented by the structure is mant*(2^exp), with a negative
     10 // sign if neg is true.
     11 type extFloat struct {
     12 	mant uint64
     13 	exp  int
     14 	neg  bool
     15 }
     16 
     17 // Powers of ten taken from double-conversion library.
     18 // http://code.google.com/p/double-conversion/
     19 const (
     20 	firstPowerOfTen = -348
     21 	stepPowerOfTen  = 8
     22 )
     23 
     24 var smallPowersOfTen = [...]extFloat{
     25 	{1 << 63, -63, false},        // 1
     26 	{0xa << 60, -60, false},      // 1e1
     27 	{0x64 << 57, -57, false},     // 1e2
     28 	{0x3e8 << 54, -54, false},    // 1e3
     29 	{0x2710 << 50, -50, false},   // 1e4
     30 	{0x186a0 << 47, -47, false},  // 1e5
     31 	{0xf4240 << 44, -44, false},  // 1e6
     32 	{0x989680 << 40, -40, false}, // 1e7
     33 }
     34 
     35 var powersOfTen = [...]extFloat{
     36 	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
     37 	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
     38 	{0x8b16fb203055ac76, -1166, false}, // 10^-332
     39 	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
     40 	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
     41 	{0xe61acf033d1a45df, -1087, false}, // 10^-308
     42 	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
     43 	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
     44 	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
     45 	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
     46 	{0xd3515c2831559a83, -954, false},  // 10^-268
     47 	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
     48 	{0xea9c227723ee8bcb, -901, false},  // 10^-252
     49 	{0xaecc49914078536d, -874, false},  // 10^-244
     50 	{0x823c12795db6ce57, -847, false},  // 10^-236
     51 	{0xc21094364dfb5637, -821, false},  // 10^-228
     52 	{0x9096ea6f3848984f, -794, false},  // 10^-220
     53 	{0xd77485cb25823ac7, -768, false},  // 10^-212
     54 	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
     55 	{0xef340a98172aace5, -715, false},  // 10^-196
     56 	{0xb23867fb2a35b28e, -688, false},  // 10^-188
     57 	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
     58 	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
     59 	{0x936b9fcebb25c996, -608, false},  // 10^-164
     60 	{0xdbac6c247d62a584, -582, false},  // 10^-156
     61 	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
     62 	{0xf3e2f893dec3f126, -529, false},  // 10^-140
     63 	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
     64 	{0x87625f056c7c4a8b, -475, false},  // 10^-124
     65 	{0xc9bcff6034c13053, -449, false},  // 10^-116
     66 	{0x964e858c91ba2655, -422, false},  // 10^-108
     67 	{0xdff9772470297ebd, -396, false},  // 10^-100
     68 	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
     69 	{0xf8a95fcf88747d94, -343, false},  // 10^-84
     70 	{0xb94470938fa89bcf, -316, false},  // 10^-76
     71 	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
     72 	{0xcdb02555653131b6, -263, false},  // 10^-60
     73 	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
     74 	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
     75 	{0xaa242499697392d3, -183, false},  // 10^-36
     76 	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
     77 	{0xbce5086492111aeb, -130, false},  // 10^-20
     78 	{0x8cbccc096f5088cc, -103, false},  // 10^-12
     79 	{0xd1b71758e219652c, -77, false},   // 10^-4
     80 	{0x9c40000000000000, -50, false},   // 10^4
     81 	{0xe8d4a51000000000, -24, false},   // 10^12
     82 	{0xad78ebc5ac620000, 3, false},     // 10^20
     83 	{0x813f3978f8940984, 30, false},    // 10^28
     84 	{0xc097ce7bc90715b3, 56, false},    // 10^36
     85 	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
     86 	{0xd5d238a4abe98068, 109, false},   // 10^52
     87 	{0x9f4f2726179a2245, 136, false},   // 10^60
     88 	{0xed63a231d4c4fb27, 162, false},   // 10^68
     89 	{0xb0de65388cc8ada8, 189, false},   // 10^76
     90 	{0x83c7088e1aab65db, 216, false},   // 10^84
     91 	{0xc45d1df942711d9a, 242, false},   // 10^92
     92 	{0x924d692ca61be758, 269, false},   // 10^100
     93 	{0xda01ee641a708dea, 295, false},   // 10^108
     94 	{0xa26da3999aef774a, 322, false},   // 10^116
     95 	{0xf209787bb47d6b85, 348, false},   // 10^124
     96 	{0xb454e4a179dd1877, 375, false},   // 10^132
     97 	{0x865b86925b9bc5c2, 402, false},   // 10^140
     98 	{0xc83553c5c8965d3d, 428, false},   // 10^148
     99 	{0x952ab45cfa97a0b3, 455, false},   // 10^156
    100 	{0xde469fbd99a05fe3, 481, false},   // 10^164
    101 	{0xa59bc234db398c25, 508, false},   // 10^172
    102 	{0xf6c69a72a3989f5c, 534, false},   // 10^180
    103 	{0xb7dcbf5354e9bece, 561, false},   // 10^188
    104 	{0x88fcf317f22241e2, 588, false},   // 10^196
    105 	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
    106 	{0x98165af37b2153df, 641, false},   // 10^212
    107 	{0xe2a0b5dc971f303a, 667, false},   // 10^220
    108 	{0xa8d9d1535ce3b396, 694, false},   // 10^228
    109 	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
    110 	{0xbb764c4ca7a44410, 747, false},   // 10^244
    111 	{0x8bab8eefb6409c1a, 774, false},   // 10^252
    112 	{0xd01fef10a657842c, 800, false},   // 10^260
    113 	{0x9b10a4e5e9913129, 827, false},   // 10^268
    114 	{0xe7109bfba19c0c9d, 853, false},   // 10^276
    115 	{0xac2820d9623bf429, 880, false},   // 10^284
    116 	{0x80444b5e7aa7cf85, 907, false},   // 10^292
    117 	{0xbf21e44003acdd2d, 933, false},   // 10^300
    118 	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
    119 	{0xd433179d9c8cb841, 986, false},   // 10^316
    120 	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
    121 	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
    122 	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
    123 }
    124 
    125 // floatBits returns the bits of the float64 that best approximates
    126 // the extFloat passed as receiver. Overflow is set to true if
    127 // the resulting float64 is Inf.
    128 func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
    129 	f.Normalize()
    130 
    131 	exp := f.exp + 63
    132 
    133 	// Exponent too small.
    134 	if exp < flt.bias+1 {
    135 		n := flt.bias + 1 - exp
    136 		f.mant >>= uint(n)
    137 		exp += n
    138 	}
    139 
    140 	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
    141 	mant := f.mant >> (63 - flt.mantbits)
    142 	if f.mant&(1<<(62-flt.mantbits)) != 0 {
    143 		// Round up.
    144 		mant += 1
    145 	}
    146 
    147 	// Rounding might have added a bit; shift down.
    148 	if mant == 2<<flt.mantbits {
    149 		mant >>= 1
    150 		exp++
    151 	}
    152 
    153 	// Infinities.
    154 	if exp-flt.bias >= 1<<flt.expbits-1 {
    155 		// Inf
    156 		mant = 0
    157 		exp = 1<<flt.expbits - 1 + flt.bias
    158 		overflow = true
    159 	} else if mant&(1<<flt.mantbits) == 0 {
    160 		// Denormalized?
    161 		exp = flt.bias
    162 	}
    163 	// Assemble bits.
    164 	bits = mant & (uint64(1)<<flt.mantbits - 1)
    165 	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
    166 	if f.neg {
    167 		bits |= 1 << (flt.mantbits + flt.expbits)
    168 	}
    169 	return
    170 }
    171 
    172 // AssignComputeBounds sets f to the floating point value
    173 // defined by mant, exp and precision given by flt. It returns
    174 // lower, upper such that any number in the closed interval
    175 // [lower, upper] is converted back to the same floating point number.
    176 func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
    177 	f.mant = mant
    178 	f.exp = exp - int(flt.mantbits)
    179 	f.neg = neg
    180 	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
    181 		// An exact integer
    182 		f.mant >>= uint(-f.exp)
    183 		f.exp = 0
    184 		return *f, *f
    185 	}
    186 	expBiased := exp - flt.bias
    187 
    188 	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
    189 	if mant != 1<<flt.mantbits || expBiased == 1 {
    190 		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
    191 	} else {
    192 		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
    193 	}
    194 	return
    195 }
    196 
    197 // Normalize normalizes f so that the highest bit of the mantissa is
    198 // set, and returns the number by which the mantissa was left-shifted.
    199 func (f *extFloat) Normalize() (shift uint) {
    200 	mant, exp := f.mant, f.exp
    201 	if mant == 0 {
    202 		return 0
    203 	}
    204 	if mant>>(64-32) == 0 {
    205 		mant <<= 32
    206 		exp -= 32
    207 	}
    208 	if mant>>(64-16) == 0 {
    209 		mant <<= 16
    210 		exp -= 16
    211 	}
    212 	if mant>>(64-8) == 0 {
    213 		mant <<= 8
    214 		exp -= 8
    215 	}
    216 	if mant>>(64-4) == 0 {
    217 		mant <<= 4
    218 		exp -= 4
    219 	}
    220 	if mant>>(64-2) == 0 {
    221 		mant <<= 2
    222 		exp -= 2
    223 	}
    224 	if mant>>(64-1) == 0 {
    225 		mant <<= 1
    226 		exp -= 1
    227 	}
    228 	shift = uint(f.exp - exp)
    229 	f.mant, f.exp = mant, exp
    230 	return
    231 }
    232 
    233 // Multiply sets f to the product f*g: the result is correctly rounded,
    234 // but not normalized.
    235 func (f *extFloat) Multiply(g extFloat) {
    236 	fhi, flo := f.mant>>32, uint64(uint32(f.mant))
    237 	ghi, glo := g.mant>>32, uint64(uint32(g.mant))
    238 
    239 	// Cross products.
    240 	cross1 := fhi * glo
    241 	cross2 := flo * ghi
    242 
    243 	// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
    244 	f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
    245 	rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
    246 	// Round up.
    247 	rem += (1 << 31)
    248 
    249 	f.mant += (rem >> 32)
    250 	f.exp = f.exp + g.exp + 64
    251 }
    252 
    253 var uint64pow10 = [...]uint64{
    254 	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
    255 	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
    256 }
    257 
    258 // AssignDecimal sets f to an approximate value mantissa*10^exp. It
    259 // reports whether the value represented by f is guaranteed to be the
    260 // best approximation of d after being rounded to a float64 or
    261 // float32 depending on flt.
    262 func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
    263 	const uint64digits = 19
    264 	const errorscale = 8
    265 	errors := 0 // An upper bound for error, computed in errorscale*ulp.
    266 	if trunc {
    267 		// the decimal number was truncated.
    268 		errors += errorscale / 2
    269 	}
    270 
    271 	f.mant = mantissa
    272 	f.exp = 0
    273 	f.neg = neg
    274 
    275 	// Multiply by powers of ten.
    276 	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
    277 	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
    278 		return false
    279 	}
    280 	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
    281 
    282 	// We multiply by exp%step
    283 	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
    284 		// We can multiply the mantissa exactly.
    285 		f.mant *= uint64pow10[adjExp]
    286 		f.Normalize()
    287 	} else {
    288 		f.Normalize()
    289 		f.Multiply(smallPowersOfTen[adjExp])
    290 		errors += errorscale / 2
    291 	}
    292 
    293 	// We multiply by 10 to the exp - exp%step.
    294 	f.Multiply(powersOfTen[i])
    295 	if errors > 0 {
    296 		errors += 1
    297 	}
    298 	errors += errorscale / 2
    299 
    300 	// Normalize
    301 	shift := f.Normalize()
    302 	errors <<= shift
    303 
    304 	// Now f is a good approximation of the decimal.
    305 	// Check whether the error is too large: that is, if the mantissa
    306 	// is perturbated by the error, the resulting float64 will change.
    307 	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
    308 	//
    309 	// In many cases the approximation will be good enough.
    310 	denormalExp := flt.bias - 63
    311 	var extrabits uint
    312 	if f.exp <= denormalExp {
    313 		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
    314 		extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
    315 	} else {
    316 		extrabits = uint(63 - flt.mantbits)
    317 	}
    318 
    319 	halfway := uint64(1) << (extrabits - 1)
    320 	mant_extra := f.mant & (1<<extrabits - 1)
    321 
    322 	// Do a signed comparison here! If the error estimate could make
    323 	// the mantissa round differently for the conversion to double,
    324 	// then we can't give a definite answer.
    325 	if int64(halfway)-int64(errors) < int64(mant_extra) &&
    326 		int64(mant_extra) < int64(halfway)+int64(errors) {
    327 		return false
    328 	}
    329 	return true
    330 }
    331 
    332 // Frexp10 is an analogue of math.Frexp for decimal powers. It scales
    333 // f by an approximate power of ten 10^-exp, and returns exp10, so
    334 // that f*10^exp10 has the same value as the old f, up to an ulp,
    335 // as well as the index of 10^-exp in the powersOfTen table.
    336 func (f *extFloat) frexp10() (exp10, index int) {
    337 	// The constants expMin and expMax constrain the final value of the
    338 	// binary exponent of f. We want a small integral part in the result
    339 	// because finding digits of an integer requires divisions, whereas
    340 	// digits of the fractional part can be found by repeatedly multiplying
    341 	// by 10.
    342 	const expMin = -60
    343 	const expMax = -32
    344 	// Find power of ten such that x * 10^n has a binary exponent
    345 	// between expMin and expMax.
    346 	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
    347 	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
    348 Loop:
    349 	for {
    350 		exp := f.exp + powersOfTen[i].exp + 64
    351 		switch {
    352 		case exp < expMin:
    353 			i++
    354 		case exp > expMax:
    355 			i--
    356 		default:
    357 			break Loop
    358 		}
    359 	}
    360 	// Apply the desired decimal shift on f. It will have exponent
    361 	// in the desired range. This is multiplication by 10^-exp10.
    362 	f.Multiply(powersOfTen[i])
    363 
    364 	return -(firstPowerOfTen + i*stepPowerOfTen), i
    365 }
    366 
    367 // frexp10Many applies a common shift by a power of ten to a, b, c.
    368 func frexp10Many(a, b, c *extFloat) (exp10 int) {
    369 	exp10, i := c.frexp10()
    370 	a.Multiply(powersOfTen[i])
    371 	b.Multiply(powersOfTen[i])
    372 	return
    373 }
    374 
    375 // FixedDecimal stores in d the first n significant digits
    376 // of the decimal representation of f. It returns false
    377 // if it cannot be sure of the answer.
    378 func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
    379 	if f.mant == 0 {
    380 		d.nd = 0
    381 		d.dp = 0
    382 		d.neg = f.neg
    383 		return true
    384 	}
    385 	if n == 0 {
    386 		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
    387 	}
    388 	// Multiply by an appropriate power of ten to have a reasonable
    389 	// number to process.
    390 	f.Normalize()
    391 	exp10, _ := f.frexp10()
    392 
    393 	shift := uint(-f.exp)
    394 	integer := uint32(f.mant >> shift)
    395 	fraction := f.mant - (uint64(integer) << shift)
    396 	 := uint64(1) //  is the uncertainty we have on the mantissa of f.
    397 
    398 	// Write exactly n digits to d.
    399 	needed := n        // how many digits are left to write.
    400 	integerDigits := 0 // the number of decimal digits of integer.
    401 	pow10 := uint64(1) // the power of ten by which f was scaled.
    402 	for i, pow := 0, uint64(1); i < 20; i++ {
    403 		if pow > uint64(integer) {
    404 			integerDigits = i
    405 			break
    406 		}
    407 		pow *= 10
    408 	}
    409 	rest := integer
    410 	if integerDigits > needed {
    411 		// the integral part is already large, trim the last digits.
    412 		pow10 = uint64pow10[integerDigits-needed]
    413 		integer /= uint32(pow10)
    414 		rest -= integer * uint32(pow10)
    415 	} else {
    416 		rest = 0
    417 	}
    418 
    419 	// Write the digits of integer: the digits of rest are omitted.
    420 	var buf [32]byte
    421 	pos := len(buf)
    422 	for v := integer; v > 0; {
    423 		v1 := v / 10
    424 		v -= 10 * v1
    425 		pos--
    426 		buf[pos] = byte(v + '0')
    427 		v = v1
    428 	}
    429 	for i := pos; i < len(buf); i++ {
    430 		d.d[i-pos] = buf[i]
    431 	}
    432 	nd := len(buf) - pos
    433 	d.nd = nd
    434 	d.dp = integerDigits + exp10
    435 	needed -= nd
    436 
    437 	if needed > 0 {
    438 		if rest != 0 || pow10 != 1 {
    439 			panic("strconv: internal error, rest != 0 but needed > 0")
    440 		}
    441 		// Emit digits for the fractional part. Each time, 10*fraction
    442 		// fits in a uint64 without overflow.
    443 		for needed > 0 {
    444 			fraction *= 10
    445 			 *= 10 // the uncertainty scales as we multiply by ten.
    446 			if 2* > 1<<shift {
    447 				// the error is so large it could modify which digit to write, abort.
    448 				return false
    449 			}
    450 			digit := fraction >> shift
    451 			d.d[nd] = byte(digit + '0')
    452 			fraction -= digit << shift
    453 			nd++
    454 			needed--
    455 		}
    456 		d.nd = nd
    457 	}
    458 
    459 	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
    460 	// can be interpreted as a small number (< 1) to be added to the last digit of the
    461 	// numerator.
    462 	//
    463 	// If rest > 0, the amount is:
    464 	//    (rest<<shift | fraction) / (pow10 << shift)
    465 	//    fraction being known with a  uncertainty.
    466 	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
    467 	//
    468 	// If rest = 0, pow10 == 1 and the amount is
    469 	//    fraction / (1 << shift)
    470 	//    fraction being known with a  uncertainty.
    471 	//
    472 	// We pass this information to the rounding routine for adjustment.
    473 
    474 	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, )
    475 	if !ok {
    476 		return false
    477 	}
    478 	// Trim trailing zeros.
    479 	for i := d.nd - 1; i >= 0; i-- {
    480 		if d.d[i] != '0' {
    481 			d.nd = i + 1
    482 			break
    483 		}
    484 	}
    485 	return true
    486 }
    487 
    488 // adjustLastDigitFixed assumes d contains the representation of the integral part
    489 // of some number, whose fractional part is num / (den << shift). The numerator
    490 // num is only known up to an uncertainty of size , assumed to be less than
    491 // (den << shift)/2.
    492 //
    493 // It will increase the last digit by one to account for correct rounding, typically
    494 // when the fractional part is greater than 1/2, and will return false if  is such
    495 // that no correct answer can be given.
    496 func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint,  uint64) bool {
    497 	if num > den<<shift {
    498 		panic("strconv: num > den<<shift in adjustLastDigitFixed")
    499 	}
    500 	if 2* > den<<shift {
    501 		panic("strconv:  > (den<<shift)/2")
    502 	}
    503 	if 2*(num+) < den<<shift {
    504 		return true
    505 	}
    506 	if 2*(num-) > den<<shift {
    507 		// increment d by 1.
    508 		i := d.nd - 1
    509 		for ; i >= 0; i-- {
    510 			if d.d[i] == '9' {
    511 				d.nd--
    512 			} else {
    513 				break
    514 			}
    515 		}
    516 		if i < 0 {
    517 			d.d[0] = '1'
    518 			d.nd = 1
    519 			d.dp++
    520 		} else {
    521 			d.d[i]++
    522 		}
    523 		return true
    524 	}
    525 	return false
    526 }
    527 
    528 // ShortestDecimal stores in d the shortest decimal representation of f
    529 // which belongs to the open interval (lower, upper), where f is supposed
    530 // to lie. It returns false whenever the result is unsure. The implementation
    531 // uses the Grisu3 algorithm.
    532 func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
    533 	if f.mant == 0 {
    534 		d.nd = 0
    535 		d.dp = 0
    536 		d.neg = f.neg
    537 		return true
    538 	}
    539 	if f.exp == 0 && *lower == *f && *lower == *upper {
    540 		// an exact integer.
    541 		var buf [24]byte
    542 		n := len(buf) - 1
    543 		for v := f.mant; v > 0; {
    544 			v1 := v / 10
    545 			v -= 10 * v1
    546 			buf[n] = byte(v + '0')
    547 			n--
    548 			v = v1
    549 		}
    550 		nd := len(buf) - n - 1
    551 		for i := 0; i < nd; i++ {
    552 			d.d[i] = buf[n+1+i]
    553 		}
    554 		d.nd, d.dp = nd, nd
    555 		for d.nd > 0 && d.d[d.nd-1] == '0' {
    556 			d.nd--
    557 		}
    558 		if d.nd == 0 {
    559 			d.dp = 0
    560 		}
    561 		d.neg = f.neg
    562 		return true
    563 	}
    564 	upper.Normalize()
    565 	// Uniformize exponents.
    566 	if f.exp > upper.exp {
    567 		f.mant <<= uint(f.exp - upper.exp)
    568 		f.exp = upper.exp
    569 	}
    570 	if lower.exp > upper.exp {
    571 		lower.mant <<= uint(lower.exp - upper.exp)
    572 		lower.exp = upper.exp
    573 	}
    574 
    575 	exp10 := frexp10Many(lower, f, upper)
    576 	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
    577 	upper.mant++
    578 	lower.mant--
    579 
    580 	// The shortest representation of f is either rounded up or down, but
    581 	// in any case, it is a truncation of upper.
    582 	shift := uint(-upper.exp)
    583 	integer := uint32(upper.mant >> shift)
    584 	fraction := upper.mant - (uint64(integer) << shift)
    585 
    586 	// How far we can go down from upper until the result is wrong.
    587 	allowance := upper.mant - lower.mant
    588 	// How far we should go to get a very precise result.
    589 	targetDiff := upper.mant - f.mant
    590 
    591 	// Count integral digits: there are at most 10.
    592 	var integerDigits int
    593 	for i, pow := 0, uint64(1); i < 20; i++ {
    594 		if pow > uint64(integer) {
    595 			integerDigits = i
    596 			break
    597 		}
    598 		pow *= 10
    599 	}
    600 	for i := 0; i < integerDigits; i++ {
    601 		pow := uint64pow10[integerDigits-i-1]
    602 		digit := integer / uint32(pow)
    603 		d.d[i] = byte(digit + '0')
    604 		integer -= digit * uint32(pow)
    605 		// evaluate whether we should stop.
    606 		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
    607 			d.nd = i + 1
    608 			d.dp = integerDigits + exp10
    609 			d.neg = f.neg
    610 			// Sometimes allowance is so large the last digit might need to be
    611 			// decremented to get closer to f.
    612 			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
    613 		}
    614 	}
    615 	d.nd = integerDigits
    616 	d.dp = d.nd + exp10
    617 	d.neg = f.neg
    618 
    619 	// Compute digits of the fractional part. At each step fraction does not
    620 	// overflow. The choice of minExp implies that fraction is less than 2^60.
    621 	var digit int
    622 	multiplier := uint64(1)
    623 	for {
    624 		fraction *= 10
    625 		multiplier *= 10
    626 		digit = int(fraction >> shift)
    627 		d.d[d.nd] = byte(digit + '0')
    628 		d.nd++
    629 		fraction -= uint64(digit) << shift
    630 		if fraction < allowance*multiplier {
    631 			// We are in the admissible range. Note that if allowance is about to
    632 			// overflow, that is, allowance > 2^64/10, the condition is automatically
    633 			// true due to the limited range of fraction.
    634 			return adjustLastDigit(d,
    635 				fraction, targetDiff*multiplier, allowance*multiplier,
    636 				1<<shift, multiplier*2)
    637 		}
    638 	}
    639 }
    640 
    641 // adjustLastDigit modifies d = x-currentDiff*, to get closest to
    642 // d = x-targetDiff*, without becoming smaller than x-maxDiff*.
    643 // It assumes that a decimal digit is worth ulpDecimal*, and that
    644 // all data is known with a error estimate of ulpBinary*.
    645 func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
    646 	if ulpDecimal < 2*ulpBinary {
    647 		// Approximation is too wide.
    648 		return false
    649 	}
    650 	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
    651 		d.d[d.nd-1]--
    652 		currentDiff += ulpDecimal
    653 	}
    654 	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
    655 		// we have two choices, and don't know what to do.
    656 		return false
    657 	}
    658 	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
    659 		// we went too far
    660 		return false
    661 	}
    662 	if d.nd == 1 && d.d[0] == '0' {
    663 		// the number has actually reached zero.
    664 		d.nd = 0
    665 		d.dp = 0
    666 	}
    667 	return true
    668 }
    669