Home | History | Annotate | Download | only in parse
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package parse builds parse trees for templates as defined by text/template
      6 // and html/template. Clients should use those packages to construct templates
      7 // rather than this one, which provides shared internal data structures not
      8 // intended for general use.
      9 package parse
     10 
     11 import (
     12 	"bytes"
     13 	"fmt"
     14 	"runtime"
     15 	"strconv"
     16 	"strings"
     17 )
     18 
     19 // Tree is the representation of a single parsed template.
     20 type Tree struct {
     21 	Name      string    // name of the template represented by the tree.
     22 	ParseName string    // name of the top-level template during parsing, for error messages.
     23 	Root      *ListNode // top-level root of the tree.
     24 	text      string    // text parsed to create the template (or its parent)
     25 	// Parsing only; cleared after parse.
     26 	funcs     []map[string]interface{}
     27 	lex       *lexer
     28 	token     [3]item // three-token lookahead for parser.
     29 	peekCount int
     30 	vars      []string // variables defined at the moment.
     31 }
     32 
     33 // Copy returns a copy of the Tree. Any parsing state is discarded.
     34 func (t *Tree) Copy() *Tree {
     35 	if t == nil {
     36 		return nil
     37 	}
     38 	return &Tree{
     39 		Name:      t.Name,
     40 		ParseName: t.ParseName,
     41 		Root:      t.Root.CopyList(),
     42 		text:      t.text,
     43 	}
     44 }
     45 
     46 // Parse returns a map from template name to parse.Tree, created by parsing the
     47 // templates described in the argument string. The top-level template will be
     48 // given the specified name. If an error is encountered, parsing stops and an
     49 // empty map is returned with the error.
     50 func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) {
     51 	treeSet = make(map[string]*Tree)
     52 	t := New(name)
     53 	t.text = text
     54 	_, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
     55 	return
     56 }
     57 
     58 // next returns the next token.
     59 func (t *Tree) next() item {
     60 	if t.peekCount > 0 {
     61 		t.peekCount--
     62 	} else {
     63 		t.token[0] = t.lex.nextItem()
     64 	}
     65 	return t.token[t.peekCount]
     66 }
     67 
     68 // backup backs the input stream up one token.
     69 func (t *Tree) backup() {
     70 	t.peekCount++
     71 }
     72 
     73 // backup2 backs the input stream up two tokens.
     74 // The zeroth token is already there.
     75 func (t *Tree) backup2(t1 item) {
     76 	t.token[1] = t1
     77 	t.peekCount = 2
     78 }
     79 
     80 // backup3 backs the input stream up three tokens
     81 // The zeroth token is already there.
     82 func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
     83 	t.token[1] = t1
     84 	t.token[2] = t2
     85 	t.peekCount = 3
     86 }
     87 
     88 // peek returns but does not consume the next token.
     89 func (t *Tree) peek() item {
     90 	if t.peekCount > 0 {
     91 		return t.token[t.peekCount-1]
     92 	}
     93 	t.peekCount = 1
     94 	t.token[0] = t.lex.nextItem()
     95 	return t.token[0]
     96 }
     97 
     98 // nextNonSpace returns the next non-space token.
     99 func (t *Tree) nextNonSpace() (token item) {
    100 	for {
    101 		token = t.next()
    102 		if token.typ != itemSpace {
    103 			break
    104 		}
    105 	}
    106 	return token
    107 }
    108 
    109 // peekNonSpace returns but does not consume the next non-space token.
    110 func (t *Tree) peekNonSpace() (token item) {
    111 	for {
    112 		token = t.next()
    113 		if token.typ != itemSpace {
    114 			break
    115 		}
    116 	}
    117 	t.backup()
    118 	return token
    119 }
    120 
    121 // Parsing.
    122 
    123 // New allocates a new parse tree with the given name.
    124 func New(name string, funcs ...map[string]interface{}) *Tree {
    125 	return &Tree{
    126 		Name:  name,
    127 		funcs: funcs,
    128 	}
    129 }
    130 
    131 // ErrorContext returns a textual representation of the location of the node in the input text.
    132 // The receiver is only used when the node does not have a pointer to the tree inside,
    133 // which can occur in old code.
    134 func (t *Tree) ErrorContext(n Node) (location, context string) {
    135 	pos := int(n.Position())
    136 	tree := n.tree()
    137 	if tree == nil {
    138 		tree = t
    139 	}
    140 	text := tree.text[:pos]
    141 	byteNum := strings.LastIndex(text, "\n")
    142 	if byteNum == -1 {
    143 		byteNum = pos // On first line.
    144 	} else {
    145 		byteNum++ // After the newline.
    146 		byteNum = pos - byteNum
    147 	}
    148 	lineNum := 1 + strings.Count(text, "\n")
    149 	context = n.String()
    150 	if len(context) > 20 {
    151 		context = fmt.Sprintf("%.20s...", context)
    152 	}
    153 	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
    154 }
    155 
    156 // errorf formats the error and terminates processing.
    157 func (t *Tree) errorf(format string, args ...interface{}) {
    158 	t.Root = nil
    159 	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format)
    160 	panic(fmt.Errorf(format, args...))
    161 }
    162 
    163 // error terminates processing.
    164 func (t *Tree) error(err error) {
    165 	t.errorf("%s", err)
    166 }
    167 
    168 // expect consumes the next token and guarantees it has the required type.
    169 func (t *Tree) expect(expected itemType, context string) item {
    170 	token := t.nextNonSpace()
    171 	if token.typ != expected {
    172 		t.unexpected(token, context)
    173 	}
    174 	return token
    175 }
    176 
    177 // expectOneOf consumes the next token and guarantees it has one of the required types.
    178 func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
    179 	token := t.nextNonSpace()
    180 	if token.typ != expected1 && token.typ != expected2 {
    181 		t.unexpected(token, context)
    182 	}
    183 	return token
    184 }
    185 
    186 // unexpected complains about the token and terminates processing.
    187 func (t *Tree) unexpected(token item, context string) {
    188 	t.errorf("unexpected %s in %s", token, context)
    189 }
    190 
    191 // recover is the handler that turns panics into returns from the top level of Parse.
    192 func (t *Tree) recover(errp *error) {
    193 	e := recover()
    194 	if e != nil {
    195 		if _, ok := e.(runtime.Error); ok {
    196 			panic(e)
    197 		}
    198 		if t != nil {
    199 			t.lex.drain()
    200 			t.stopParse()
    201 		}
    202 		*errp = e.(error)
    203 	}
    204 	return
    205 }
    206 
    207 // startParse initializes the parser, using the lexer.
    208 func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) {
    209 	t.Root = nil
    210 	t.lex = lex
    211 	t.vars = []string{"$"}
    212 	t.funcs = funcs
    213 }
    214 
    215 // stopParse terminates parsing.
    216 func (t *Tree) stopParse() {
    217 	t.lex = nil
    218 	t.vars = nil
    219 	t.funcs = nil
    220 }
    221 
    222 // Parse parses the template definition string to construct a representation of
    223 // the template for execution. If either action delimiter string is empty, the
    224 // default ("{{" or "}}") is used. Embedded template definitions are added to
    225 // the treeSet map.
    226 func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
    227 	defer t.recover(&err)
    228 	t.ParseName = t.Name
    229 	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim))
    230 	t.text = text
    231 	t.parse(treeSet)
    232 	t.add(treeSet)
    233 	t.stopParse()
    234 	return t, nil
    235 }
    236 
    237 // add adds tree to the treeSet.
    238 func (t *Tree) add(treeSet map[string]*Tree) {
    239 	tree := treeSet[t.Name]
    240 	if tree == nil || IsEmptyTree(tree.Root) {
    241 		treeSet[t.Name] = t
    242 		return
    243 	}
    244 	if !IsEmptyTree(t.Root) {
    245 		t.errorf("template: multiple definition of template %q", t.Name)
    246 	}
    247 }
    248 
    249 // IsEmptyTree reports whether this tree (node) is empty of everything but space.
    250 func IsEmptyTree(n Node) bool {
    251 	switch n := n.(type) {
    252 	case nil:
    253 		return true
    254 	case *ActionNode:
    255 	case *IfNode:
    256 	case *ListNode:
    257 		for _, node := range n.Nodes {
    258 			if !IsEmptyTree(node) {
    259 				return false
    260 			}
    261 		}
    262 		return true
    263 	case *RangeNode:
    264 	case *TemplateNode:
    265 	case *TextNode:
    266 		return len(bytes.TrimSpace(n.Text)) == 0
    267 	case *WithNode:
    268 	default:
    269 		panic("unknown node: " + n.String())
    270 	}
    271 	return false
    272 }
    273 
    274 // parse is the top-level parser for a template, essentially the same
    275 // as itemList except it also parses {{define}} actions.
    276 // It runs to EOF.
    277 func (t *Tree) parse(treeSet map[string]*Tree) (next Node) {
    278 	t.Root = t.newList(t.peek().pos)
    279 	for t.peek().typ != itemEOF {
    280 		if t.peek().typ == itemLeftDelim {
    281 			delim := t.next()
    282 			if t.nextNonSpace().typ == itemDefine {
    283 				newT := New("definition") // name will be updated once we know it.
    284 				newT.text = t.text
    285 				newT.ParseName = t.ParseName
    286 				newT.startParse(t.funcs, t.lex)
    287 				newT.parseDefinition(treeSet)
    288 				continue
    289 			}
    290 			t.backup2(delim)
    291 		}
    292 		switch n := t.textOrAction(); n.Type() {
    293 		case nodeEnd, nodeElse:
    294 			t.errorf("unexpected %s", n)
    295 		default:
    296 			t.Root.append(n)
    297 		}
    298 	}
    299 	return nil
    300 }
    301 
    302 // parseDefinition parses a {{define}} ...  {{end}} template definition and
    303 // installs the definition in the treeSet map.  The "define" keyword has already
    304 // been scanned.
    305 func (t *Tree) parseDefinition(treeSet map[string]*Tree) {
    306 	const context = "define clause"
    307 	name := t.expectOneOf(itemString, itemRawString, context)
    308 	var err error
    309 	t.Name, err = strconv.Unquote(name.val)
    310 	if err != nil {
    311 		t.error(err)
    312 	}
    313 	t.expect(itemRightDelim, context)
    314 	var end Node
    315 	t.Root, end = t.itemList()
    316 	if end.Type() != nodeEnd {
    317 		t.errorf("unexpected %s in %s", end, context)
    318 	}
    319 	t.add(treeSet)
    320 	t.stopParse()
    321 }
    322 
    323 // itemList:
    324 //	textOrAction*
    325 // Terminates at {{end}} or {{else}}, returned separately.
    326 func (t *Tree) itemList() (list *ListNode, next Node) {
    327 	list = t.newList(t.peekNonSpace().pos)
    328 	for t.peekNonSpace().typ != itemEOF {
    329 		n := t.textOrAction()
    330 		switch n.Type() {
    331 		case nodeEnd, nodeElse:
    332 			return list, n
    333 		}
    334 		list.append(n)
    335 	}
    336 	t.errorf("unexpected EOF")
    337 	return
    338 }
    339 
    340 // textOrAction:
    341 //	text | action
    342 func (t *Tree) textOrAction() Node {
    343 	switch token := t.nextNonSpace(); token.typ {
    344 	case itemText:
    345 		return t.newText(token.pos, token.val)
    346 	case itemLeftDelim:
    347 		return t.action()
    348 	default:
    349 		t.unexpected(token, "input")
    350 	}
    351 	return nil
    352 }
    353 
    354 // Action:
    355 //	control
    356 //	command ("|" command)*
    357 // Left delim is past. Now get actions.
    358 // First word could be a keyword such as range.
    359 func (t *Tree) action() (n Node) {
    360 	switch token := t.nextNonSpace(); token.typ {
    361 	case itemElse:
    362 		return t.elseControl()
    363 	case itemEnd:
    364 		return t.endControl()
    365 	case itemIf:
    366 		return t.ifControl()
    367 	case itemRange:
    368 		return t.rangeControl()
    369 	case itemTemplate:
    370 		return t.templateControl()
    371 	case itemWith:
    372 		return t.withControl()
    373 	}
    374 	t.backup()
    375 	// Do not pop variables; they persist until "end".
    376 	return t.newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command"))
    377 }
    378 
    379 // Pipeline:
    380 //	declarations? command ('|' command)*
    381 func (t *Tree) pipeline(context string) (pipe *PipeNode) {
    382 	var decl []*VariableNode
    383 	pos := t.peekNonSpace().pos
    384 	// Are there declarations?
    385 	for {
    386 		if v := t.peekNonSpace(); v.typ == itemVariable {
    387 			t.next()
    388 			// Since space is a token, we need 3-token look-ahead here in the worst case:
    389 			// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
    390 			// argument variable rather than a declaration. So remember the token
    391 			// adjacent to the variable so we can push it back if necessary.
    392 			tokenAfterVariable := t.peek()
    393 			if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
    394 				t.nextNonSpace()
    395 				variable := t.newVariable(v.pos, v.val)
    396 				decl = append(decl, variable)
    397 				t.vars = append(t.vars, v.val)
    398 				if next.typ == itemChar && next.val == "," {
    399 					if context == "range" && len(decl) < 2 {
    400 						continue
    401 					}
    402 					t.errorf("too many declarations in %s", context)
    403 				}
    404 			} else if tokenAfterVariable.typ == itemSpace {
    405 				t.backup3(v, tokenAfterVariable)
    406 			} else {
    407 				t.backup2(v)
    408 			}
    409 		}
    410 		break
    411 	}
    412 	pipe = t.newPipeline(pos, t.lex.lineNumber(), decl)
    413 	for {
    414 		switch token := t.nextNonSpace(); token.typ {
    415 		case itemRightDelim, itemRightParen:
    416 			// At this point, the pipeline is complete
    417 			t.checkPipeline(pipe, context)
    418 			if token.typ == itemRightParen {
    419 				t.backup()
    420 			}
    421 			return
    422 		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
    423 			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
    424 			t.backup()
    425 			pipe.append(t.command())
    426 		default:
    427 			t.unexpected(token, context)
    428 		}
    429 	}
    430 }
    431 
    432 func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
    433 	// Reject empty pipelines
    434 	if len(pipe.Cmds) == 0 {
    435 		t.errorf("missing value for %s", context)
    436 	}
    437 	// Only the first command of a pipeline can start with a non executable operand
    438 	for i, c := range pipe.Cmds[1:] {
    439 		switch c.Args[0].Type() {
    440 		case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
    441 			// With A|B|C, pipeline stage 2 is B
    442 			t.errorf("non executable command in pipeline stage %d", i+2)
    443 		}
    444 	}
    445 }
    446 
    447 func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
    448 	defer t.popVars(len(t.vars))
    449 	line = t.lex.lineNumber()
    450 	pipe = t.pipeline(context)
    451 	var next Node
    452 	list, next = t.itemList()
    453 	switch next.Type() {
    454 	case nodeEnd: //done
    455 	case nodeElse:
    456 		if allowElseIf {
    457 			// Special case for "else if". If the "else" is followed immediately by an "if",
    458 			// the elseControl will have left the "if" token pending. Treat
    459 			//	{{if a}}_{{else if b}}_{{end}}
    460 			// as
    461 			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
    462 			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
    463 			// is assumed. This technique works even for long if-else-if chains.
    464 			// TODO: Should we allow else-if in with and range?
    465 			if t.peek().typ == itemIf {
    466 				t.next() // Consume the "if" token.
    467 				elseList = t.newList(next.Position())
    468 				elseList.append(t.ifControl())
    469 				// Do not consume the next item - only one {{end}} required.
    470 				break
    471 			}
    472 		}
    473 		elseList, next = t.itemList()
    474 		if next.Type() != nodeEnd {
    475 			t.errorf("expected end; found %s", next)
    476 		}
    477 	}
    478 	return pipe.Position(), line, pipe, list, elseList
    479 }
    480 
    481 // If:
    482 //	{{if pipeline}} itemList {{end}}
    483 //	{{if pipeline}} itemList {{else}} itemList {{end}}
    484 // If keyword is past.
    485 func (t *Tree) ifControl() Node {
    486 	return t.newIf(t.parseControl(true, "if"))
    487 }
    488 
    489 // Range:
    490 //	{{range pipeline}} itemList {{end}}
    491 //	{{range pipeline}} itemList {{else}} itemList {{end}}
    492 // Range keyword is past.
    493 func (t *Tree) rangeControl() Node {
    494 	return t.newRange(t.parseControl(false, "range"))
    495 }
    496 
    497 // With:
    498 //	{{with pipeline}} itemList {{end}}
    499 //	{{with pipeline}} itemList {{else}} itemList {{end}}
    500 // If keyword is past.
    501 func (t *Tree) withControl() Node {
    502 	return t.newWith(t.parseControl(false, "with"))
    503 }
    504 
    505 // End:
    506 //	{{end}}
    507 // End keyword is past.
    508 func (t *Tree) endControl() Node {
    509 	return t.newEnd(t.expect(itemRightDelim, "end").pos)
    510 }
    511 
    512 // Else:
    513 //	{{else}}
    514 // Else keyword is past.
    515 func (t *Tree) elseControl() Node {
    516 	// Special case for "else if".
    517 	peek := t.peekNonSpace()
    518 	if peek.typ == itemIf {
    519 		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
    520 		return t.newElse(peek.pos, t.lex.lineNumber())
    521 	}
    522 	return t.newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber())
    523 }
    524 
    525 // Template:
    526 //	{{template stringValue pipeline}}
    527 // Template keyword is past.  The name must be something that can evaluate
    528 // to a string.
    529 func (t *Tree) templateControl() Node {
    530 	var name string
    531 	token := t.nextNonSpace()
    532 	switch token.typ {
    533 	case itemString, itemRawString:
    534 		s, err := strconv.Unquote(token.val)
    535 		if err != nil {
    536 			t.error(err)
    537 		}
    538 		name = s
    539 	default:
    540 		t.unexpected(token, "template invocation")
    541 	}
    542 	var pipe *PipeNode
    543 	if t.nextNonSpace().typ != itemRightDelim {
    544 		t.backup()
    545 		// Do not pop variables; they persist until "end".
    546 		pipe = t.pipeline("template")
    547 	}
    548 	return t.newTemplate(token.pos, t.lex.lineNumber(), name, pipe)
    549 }
    550 
    551 // command:
    552 //	operand (space operand)*
    553 // space-separated arguments up to a pipeline character or right delimiter.
    554 // we consume the pipe character but leave the right delim to terminate the action.
    555 func (t *Tree) command() *CommandNode {
    556 	cmd := t.newCommand(t.peekNonSpace().pos)
    557 	for {
    558 		t.peekNonSpace() // skip leading spaces.
    559 		operand := t.operand()
    560 		if operand != nil {
    561 			cmd.append(operand)
    562 		}
    563 		switch token := t.next(); token.typ {
    564 		case itemSpace:
    565 			continue
    566 		case itemError:
    567 			t.errorf("%s", token.val)
    568 		case itemRightDelim, itemRightParen:
    569 			t.backup()
    570 		case itemPipe:
    571 		default:
    572 			t.errorf("unexpected %s in operand", token)
    573 		}
    574 		break
    575 	}
    576 	if len(cmd.Args) == 0 {
    577 		t.errorf("empty command")
    578 	}
    579 	return cmd
    580 }
    581 
    582 // operand:
    583 //	term .Field*
    584 // An operand is a space-separated component of a command,
    585 // a term possibly followed by field accesses.
    586 // A nil return means the next item is not an operand.
    587 func (t *Tree) operand() Node {
    588 	node := t.term()
    589 	if node == nil {
    590 		return nil
    591 	}
    592 	if t.peek().typ == itemField {
    593 		chain := t.newChain(t.peek().pos, node)
    594 		for t.peek().typ == itemField {
    595 			chain.Add(t.next().val)
    596 		}
    597 		// Compatibility with original API: If the term is of type NodeField
    598 		// or NodeVariable, just put more fields on the original.
    599 		// Otherwise, keep the Chain node.
    600 		// Obvious parsing errors involving literal values are detected here.
    601 		// More complex error cases will have to be handled at execution time.
    602 		switch node.Type() {
    603 		case NodeField:
    604 			node = t.newField(chain.Position(), chain.String())
    605 		case NodeVariable:
    606 			node = t.newVariable(chain.Position(), chain.String())
    607 		case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
    608 			t.errorf("unexpected . after term %q", node.String())
    609 		default:
    610 			node = chain
    611 		}
    612 	}
    613 	return node
    614 }
    615 
    616 // term:
    617 //	literal (number, string, nil, boolean)
    618 //	function (identifier)
    619 //	.
    620 //	.Field
    621 //	$
    622 //	'(' pipeline ')'
    623 // A term is a simple "expression".
    624 // A nil return means the next item is not a term.
    625 func (t *Tree) term() Node {
    626 	switch token := t.nextNonSpace(); token.typ {
    627 	case itemError:
    628 		t.errorf("%s", token.val)
    629 	case itemIdentifier:
    630 		if !t.hasFunction(token.val) {
    631 			t.errorf("function %q not defined", token.val)
    632 		}
    633 		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
    634 	case itemDot:
    635 		return t.newDot(token.pos)
    636 	case itemNil:
    637 		return t.newNil(token.pos)
    638 	case itemVariable:
    639 		return t.useVar(token.pos, token.val)
    640 	case itemField:
    641 		return t.newField(token.pos, token.val)
    642 	case itemBool:
    643 		return t.newBool(token.pos, token.val == "true")
    644 	case itemCharConstant, itemComplex, itemNumber:
    645 		number, err := t.newNumber(token.pos, token.val, token.typ)
    646 		if err != nil {
    647 			t.error(err)
    648 		}
    649 		return number
    650 	case itemLeftParen:
    651 		pipe := t.pipeline("parenthesized pipeline")
    652 		if token := t.next(); token.typ != itemRightParen {
    653 			t.errorf("unclosed right paren: unexpected %s", token)
    654 		}
    655 		return pipe
    656 	case itemString, itemRawString:
    657 		s, err := strconv.Unquote(token.val)
    658 		if err != nil {
    659 			t.error(err)
    660 		}
    661 		return t.newString(token.pos, token.val, s)
    662 	}
    663 	t.backup()
    664 	return nil
    665 }
    666 
    667 // hasFunction reports if a function name exists in the Tree's maps.
    668 func (t *Tree) hasFunction(name string) bool {
    669 	for _, funcMap := range t.funcs {
    670 		if funcMap == nil {
    671 			continue
    672 		}
    673 		if funcMap[name] != nil {
    674 			return true
    675 		}
    676 	}
    677 	return false
    678 }
    679 
    680 // popVars trims the variable list to the specified length
    681 func (t *Tree) popVars(n int) {
    682 	t.vars = t.vars[:n]
    683 }
    684 
    685 // useVar returns a node for a variable reference. It errors if the
    686 // variable is not defined.
    687 func (t *Tree) useVar(pos Pos, name string) Node {
    688 	v := t.newVariable(pos, name)
    689 	for _, varName := range t.vars {
    690 		if varName == v.Ident[0] {
    691 			return v
    692 		}
    693 	}
    694 	t.errorf("undefined variable %q", v.Ident[0])
    695 	return nil
    696 }
    697