1 @c Copyright (C) 1996-2014 Free Software Foundation, Inc. 2 @c This is part of the GAS manual. 3 @c For copying conditions, see the file as.texinfo. 4 5 @ifset GENERIC 6 @page 7 @node ARM-Dependent 8 @chapter ARM Dependent Features 9 @end ifset 10 11 @ifclear GENERIC 12 @node Machine Dependencies 13 @chapter ARM Dependent Features 14 @end ifclear 15 16 @cindex ARM support 17 @cindex Thumb support 18 @menu 19 * ARM Options:: Options 20 * ARM Syntax:: Syntax 21 * ARM Floating Point:: Floating Point 22 * ARM Directives:: ARM Machine Directives 23 * ARM Opcodes:: Opcodes 24 * ARM Mapping Symbols:: Mapping Symbols 25 * ARM Unwinding Tutorial:: Unwinding 26 @end menu 27 28 @node ARM Options 29 @section Options 30 @cindex ARM options (none) 31 @cindex options for ARM (none) 32 33 @table @code 34 35 @cindex @code{-mcpu=} command line option, ARM 36 @item -mcpu=@var{processor}[+@var{extension}@dots{}] 37 This option specifies the target processor. The assembler will issue an 38 error message if an attempt is made to assemble an instruction which 39 will not execute on the target processor. The following processor names are 40 recognized: 41 @code{arm1}, 42 @code{arm2}, 43 @code{arm250}, 44 @code{arm3}, 45 @code{arm6}, 46 @code{arm60}, 47 @code{arm600}, 48 @code{arm610}, 49 @code{arm620}, 50 @code{arm7}, 51 @code{arm7m}, 52 @code{arm7d}, 53 @code{arm7dm}, 54 @code{arm7di}, 55 @code{arm7dmi}, 56 @code{arm70}, 57 @code{arm700}, 58 @code{arm700i}, 59 @code{arm710}, 60 @code{arm710t}, 61 @code{arm720}, 62 @code{arm720t}, 63 @code{arm740t}, 64 @code{arm710c}, 65 @code{arm7100}, 66 @code{arm7500}, 67 @code{arm7500fe}, 68 @code{arm7t}, 69 @code{arm7tdmi}, 70 @code{arm7tdmi-s}, 71 @code{arm8}, 72 @code{arm810}, 73 @code{strongarm}, 74 @code{strongarm1}, 75 @code{strongarm110}, 76 @code{strongarm1100}, 77 @code{strongarm1110}, 78 @code{arm9}, 79 @code{arm920}, 80 @code{arm920t}, 81 @code{arm922t}, 82 @code{arm940t}, 83 @code{arm9tdmi}, 84 @code{fa526} (Faraday FA526 processor), 85 @code{fa626} (Faraday FA626 processor), 86 @code{arm9e}, 87 @code{arm926e}, 88 @code{arm926ej-s}, 89 @code{arm946e-r0}, 90 @code{arm946e}, 91 @code{arm946e-s}, 92 @code{arm966e-r0}, 93 @code{arm966e}, 94 @code{arm966e-s}, 95 @code{arm968e-s}, 96 @code{arm10t}, 97 @code{arm10tdmi}, 98 @code{arm10e}, 99 @code{arm1020}, 100 @code{arm1020t}, 101 @code{arm1020e}, 102 @code{arm1022e}, 103 @code{arm1026ej-s}, 104 @code{fa606te} (Faraday FA606TE processor), 105 @code{fa616te} (Faraday FA616TE processor), 106 @code{fa626te} (Faraday FA626TE processor), 107 @code{fmp626} (Faraday FMP626 processor), 108 @code{fa726te} (Faraday FA726TE processor), 109 @code{arm1136j-s}, 110 @code{arm1136jf-s}, 111 @code{arm1156t2-s}, 112 @code{arm1156t2f-s}, 113 @code{arm1176jz-s}, 114 @code{arm1176jzf-s}, 115 @code{mpcore}, 116 @code{mpcorenovfp}, 117 @code{cortex-a5}, 118 @code{cortex-a7}, 119 @code{cortex-a8}, 120 @code{cortex-a9}, 121 @code{cortex-a15}, 122 @code{cortex-r4}, 123 @code{cortex-r4f}, 124 @code{cortex-r5}, 125 @code{cortex-r7}, 126 @code{cortex-m4}, 127 @code{cortex-m3}, 128 @code{cortex-m1}, 129 @code{cortex-m0}, 130 @code{cortex-m0plus}, 131 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor), 132 @code{i80200} (Intel XScale processor) 133 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor) 134 and 135 @code{xscale}. 136 The special name @code{all} may be used to allow the 137 assembler to accept instructions valid for any ARM processor. 138 139 In addition to the basic instruction set, the assembler can be told to 140 accept various extension mnemonics that extend the processor using the 141 co-processor instruction space. For example, @code{-mcpu=arm920+maverick} 142 is equivalent to specifying @code{-mcpu=ep9312}. 143 144 Multiple extensions may be specified, separated by a @code{+}. The 145 extensions should be specified in ascending alphabetical order. 146 147 Some extensions may be restricted to particular architectures; this is 148 documented in the list of extensions below. 149 150 Extension mnemonics may also be removed from those the assembler accepts. 151 This is done be prepending @code{no} to the option that adds the extension. 152 Extensions that are removed should be listed after all extensions which have 153 been added, again in ascending alphabetical order. For example, 154 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}. 155 156 157 The following extensions are currently supported: 158 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}), 159 @code{fp} (Floating Point Extensions for v8-A architecture), 160 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures), 161 @code{iwmmxt}, 162 @code{iwmmxt2}, 163 @code{maverick}, 164 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures), 165 @code{os} (Operating System for v6M architecture), 166 @code{sec} (Security Extensions for v6K and v7-A architectures), 167 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}), 168 @code{virt} (Virtualization Extensions for v7-A architecture, implies 169 @code{idiv}), 170 and 171 @code{xscale}. 172 173 @cindex @code{-march=} command line option, ARM 174 @item -march=@var{architecture}[+@var{extension}@dots{}] 175 This option specifies the target architecture. The assembler will issue 176 an error message if an attempt is made to assemble an instruction which 177 will not execute on the target architecture. The following architecture 178 names are recognized: 179 @code{armv1}, 180 @code{armv2}, 181 @code{armv2a}, 182 @code{armv2s}, 183 @code{armv3}, 184 @code{armv3m}, 185 @code{armv4}, 186 @code{armv4xm}, 187 @code{armv4t}, 188 @code{armv4txm}, 189 @code{armv5}, 190 @code{armv5t}, 191 @code{armv5txm}, 192 @code{armv5te}, 193 @code{armv5texp}, 194 @code{armv6}, 195 @code{armv6j}, 196 @code{armv6k}, 197 @code{armv6z}, 198 @code{armv6zk}, 199 @code{armv6-m}, 200 @code{armv6s-m}, 201 @code{armv7}, 202 @code{armv7-a}, 203 @code{armv7ve}, 204 @code{armv7-r}, 205 @code{armv7-m}, 206 @code{armv7e-m}, 207 @code{armv8-a}, 208 @code{iwmmxt} 209 and 210 @code{xscale}. 211 If both @code{-mcpu} and 212 @code{-march} are specified, the assembler will use 213 the setting for @code{-mcpu}. 214 215 The architecture option can be extended with the same instruction set 216 extension options as the @code{-mcpu} option. 217 218 @cindex @code{-mfpu=} command line option, ARM 219 @item -mfpu=@var{floating-point-format} 220 221 This option specifies the floating point format to assemble for. The 222 assembler will issue an error message if an attempt is made to assemble 223 an instruction which will not execute on the target floating point unit. 224 The following format options are recognized: 225 @code{softfpa}, 226 @code{fpe}, 227 @code{fpe2}, 228 @code{fpe3}, 229 @code{fpa}, 230 @code{fpa10}, 231 @code{fpa11}, 232 @code{arm7500fe}, 233 @code{softvfp}, 234 @code{softvfp+vfp}, 235 @code{vfp}, 236 @code{vfp10}, 237 @code{vfp10-r0}, 238 @code{vfp9}, 239 @code{vfpxd}, 240 @code{vfpv2}, 241 @code{vfpv3}, 242 @code{vfpv3-fp16}, 243 @code{vfpv3-d16}, 244 @code{vfpv3-d16-fp16}, 245 @code{vfpv3xd}, 246 @code{vfpv3xd-d16}, 247 @code{vfpv4}, 248 @code{vfpv4-d16}, 249 @code{fpv4-sp-d16}, 250 @code{fp-armv8}, 251 @code{arm1020t}, 252 @code{arm1020e}, 253 @code{arm1136jf-s}, 254 @code{maverick}, 255 @code{neon}, 256 @code{neon-vfpv4}, 257 @code{neon-fp-armv8}, 258 and 259 @code{crypto-neon-fp-armv8}. 260 261 In addition to determining which instructions are assembled, this option 262 also affects the way in which the @code{.double} assembler directive behaves 263 when assembling little-endian code. 264 265 The default is dependent on the processor selected. For Architecture 5 or 266 later, the default is to assembler for VFP instructions; for earlier 267 architectures the default is to assemble for FPA instructions. 268 269 @cindex @code{-mthumb} command line option, ARM 270 @item -mthumb 271 This option specifies that the assembler should start assembling Thumb 272 instructions; that is, it should behave as though the file starts with a 273 @code{.code 16} directive. 274 275 @cindex @code{-mthumb-interwork} command line option, ARM 276 @item -mthumb-interwork 277 This option specifies that the output generated by the assembler should 278 be marked as supporting interworking. 279 280 @cindex @code{-mimplicit-it} command line option, ARM 281 @item -mimplicit-it=never 282 @itemx -mimplicit-it=always 283 @itemx -mimplicit-it=arm 284 @itemx -mimplicit-it=thumb 285 The @code{-mimplicit-it} option controls the behavior of the assembler when 286 conditional instructions are not enclosed in IT blocks. 287 There are four possible behaviors. 288 If @code{never} is specified, such constructs cause a warning in ARM 289 code and an error in Thumb-2 code. 290 If @code{always} is specified, such constructs are accepted in both 291 ARM and Thumb-2 code, where the IT instruction is added implicitly. 292 If @code{arm} is specified, such constructs are accepted in ARM code 293 and cause an error in Thumb-2 code. 294 If @code{thumb} is specified, such constructs cause a warning in ARM 295 code and are accepted in Thumb-2 code. If you omit this option, the 296 behavior is equivalent to @code{-mimplicit-it=arm}. 297 298 @cindex @code{-mapcs-26} command line option, ARM 299 @cindex @code{-mapcs-32} command line option, ARM 300 @item -mapcs-26 301 @itemx -mapcs-32 302 These options specify that the output generated by the assembler should 303 be marked as supporting the indicated version of the Arm Procedure. 304 Calling Standard. 305 306 @cindex @code{-matpcs} command line option, ARM 307 @item -matpcs 308 This option specifies that the output generated by the assembler should 309 be marked as supporting the Arm/Thumb Procedure Calling Standard. If 310 enabled this option will cause the assembler to create an empty 311 debugging section in the object file called .arm.atpcs. Debuggers can 312 use this to determine the ABI being used by. 313 314 @cindex @code{-mapcs-float} command line option, ARM 315 @item -mapcs-float 316 This indicates the floating point variant of the APCS should be 317 used. In this variant floating point arguments are passed in FP 318 registers rather than integer registers. 319 320 @cindex @code{-mapcs-reentrant} command line option, ARM 321 @item -mapcs-reentrant 322 This indicates that the reentrant variant of the APCS should be used. 323 This variant supports position independent code. 324 325 @cindex @code{-mfloat-abi=} command line option, ARM 326 @item -mfloat-abi=@var{abi} 327 This option specifies that the output generated by the assembler should be 328 marked as using specified floating point ABI. 329 The following values are recognized: 330 @code{soft}, 331 @code{softfp} 332 and 333 @code{hard}. 334 335 @cindex @code{-eabi=} command line option, ARM 336 @item -meabi=@var{ver} 337 This option specifies which EABI version the produced object files should 338 conform to. 339 The following values are recognized: 340 @code{gnu}, 341 @code{4} 342 and 343 @code{5}. 344 345 @cindex @code{-EB} command line option, ARM 346 @item -EB 347 This option specifies that the output generated by the assembler should 348 be marked as being encoded for a big-endian processor. 349 350 @cindex @code{-EL} command line option, ARM 351 @item -EL 352 This option specifies that the output generated by the assembler should 353 be marked as being encoded for a little-endian processor. 354 355 @cindex @code{-k} command line option, ARM 356 @cindex PIC code generation for ARM 357 @item -k 358 This option specifies that the output of the assembler should be marked 359 as position-independent code (PIC). 360 361 @cindex @code{--fix-v4bx} command line option, ARM 362 @item --fix-v4bx 363 Allow @code{BX} instructions in ARMv4 code. This is intended for use with 364 the linker option of the same name. 365 366 @cindex @code{-mwarn-deprecated} command line option, ARM 367 @item -mwarn-deprecated 368 @itemx -mno-warn-deprecated 369 Enable or disable warnings about using deprecated options or 370 features. The default is to warn. 371 372 @cindex @code{-mccs} command line option, ARM 373 @item -mccs 374 Turns on CodeComposer Studio assembly syntax compatibility mode. 375 376 @end table 377 378 379 @node ARM Syntax 380 @section Syntax 381 @menu 382 * ARM-Instruction-Set:: Instruction Set 383 * ARM-Chars:: Special Characters 384 * ARM-Regs:: Register Names 385 * ARM-Relocations:: Relocations 386 * ARM-Neon-Alignment:: NEON Alignment Specifiers 387 @end menu 388 389 @node ARM-Instruction-Set 390 @subsection Instruction Set Syntax 391 Two slightly different syntaxes are support for ARM and THUMB 392 instructions. The default, @code{divided}, uses the old style where 393 ARM and THUMB instructions had their own, separate syntaxes. The new, 394 @code{unified} syntax, which can be selected via the @code{.syntax} 395 directive, and has the following main features: 396 397 @itemize @bullet 398 @item 399 Immediate operands do not require a @code{#} prefix. 400 401 @item 402 The @code{IT} instruction may appear, and if it does it is validated 403 against subsequent conditional affixes. In ARM mode it does not 404 generate machine code, in THUMB mode it does. 405 406 @item 407 For ARM instructions the conditional affixes always appear at the end 408 of the instruction. For THUMB instructions conditional affixes can be 409 used, but only inside the scope of an @code{IT} instruction. 410 411 @item 412 All of the instructions new to the V6T2 architecture (and later) are 413 available. (Only a few such instructions can be written in the 414 @code{divided} syntax). 415 416 @item 417 The @code{.N} and @code{.W} suffixes are recognized and honored. 418 419 @item 420 All instructions set the flags if and only if they have an @code{s} 421 affix. 422 @end itemize 423 424 @node ARM-Chars 425 @subsection Special Characters 426 427 @cindex line comment character, ARM 428 @cindex ARM line comment character 429 The presence of a @samp{@@} anywhere on a line indicates the start of 430 a comment that extends to the end of that line. 431 432 If a @samp{#} appears as the first character of a line then the whole 433 line is treated as a comment, but in this case the line could also be 434 a logical line number directive (@pxref{Comments}) or a preprocessor 435 control command (@pxref{Preprocessing}). 436 437 @cindex line separator, ARM 438 @cindex statement separator, ARM 439 @cindex ARM line separator 440 The @samp{;} character can be used instead of a newline to separate 441 statements. 442 443 @cindex immediate character, ARM 444 @cindex ARM immediate character 445 Either @samp{#} or @samp{$} can be used to indicate immediate operands. 446 447 @cindex identifiers, ARM 448 @cindex ARM identifiers 449 *TODO* Explain about /data modifier on symbols. 450 451 @node ARM-Regs 452 @subsection Register Names 453 454 @cindex ARM register names 455 @cindex register names, ARM 456 *TODO* Explain about ARM register naming, and the predefined names. 457 458 @node ARM-Relocations 459 @subsection ARM relocation generation 460 461 @cindex data relocations, ARM 462 @cindex ARM data relocations 463 Specific data relocations can be generated by putting the relocation name 464 in parentheses after the symbol name. For example: 465 466 @smallexample 467 .word foo(TARGET1) 468 @end smallexample 469 470 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol 471 @var{foo}. 472 The following relocations are supported: 473 @code{GOT}, 474 @code{GOTOFF}, 475 @code{TARGET1}, 476 @code{TARGET2}, 477 @code{SBREL}, 478 @code{TLSGD}, 479 @code{TLSLDM}, 480 @code{TLSLDO}, 481 @code{TLSDESC}, 482 @code{TLSCALL}, 483 @code{GOTTPOFF}, 484 @code{GOT_PREL} 485 and 486 @code{TPOFF}. 487 488 For compatibility with older toolchains the assembler also accepts 489 @code{(PLT)} after branch targets. On legacy targets this will 490 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI 491 targets it will encode either the @samp{R_ARM_CALL} or 492 @samp{R_ARM_JUMP24} relocation, as appropriate. 493 494 @cindex MOVW and MOVT relocations, ARM 495 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated 496 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16} 497 respectively. For example to load the 32-bit address of foo into r0: 498 499 @smallexample 500 MOVW r0, #:lower16:foo 501 MOVT r0, #:upper16:foo 502 @end smallexample 503 504 @node ARM-Neon-Alignment 505 @subsection NEON Alignment Specifiers 506 507 @cindex alignment for NEON instructions 508 Some NEON load/store instructions allow an optional address 509 alignment qualifier. 510 The ARM documentation specifies that this is indicated by 511 @samp{@@ @var{align}}. However GAS already interprets 512 the @samp{@@} character as a "line comment" start, 513 so @samp{: @var{align}} is used instead. For example: 514 515 @smallexample 516 vld1.8 @{q0@}, [r0, :128] 517 @end smallexample 518 519 @node ARM Floating Point 520 @section Floating Point 521 522 @cindex floating point, ARM (@sc{ieee}) 523 @cindex ARM floating point (@sc{ieee}) 524 The ARM family uses @sc{ieee} floating-point numbers. 525 526 @node ARM Directives 527 @section ARM Machine Directives 528 529 @cindex machine directives, ARM 530 @cindex ARM machine directives 531 @table @code 532 533 @c AAAAAAAAAAAAAAAAAAAAAAAAA 534 535 @cindex @code{.2byte} directive, ARM 536 @cindex @code{.4byte} directive, ARM 537 @cindex @code{.8byte} directive, ARM 538 @item .2byte @var{expression} [, @var{expression}]* 539 @itemx .4byte @var{expression} [, @var{expression}]* 540 @itemx .8byte @var{expression} [, @var{expression}]* 541 These directives write 2, 4 or 8 byte values to the output section. 542 543 @cindex @code{.align} directive, ARM 544 @item .align @var{expression} [, @var{expression}] 545 This is the generic @var{.align} directive. For the ARM however if the 546 first argument is zero (ie no alignment is needed) the assembler will 547 behave as if the argument had been 2 (ie pad to the next four byte 548 boundary). This is for compatibility with ARM's own assembler. 549 550 @cindex @code{.arch} directive, ARM 551 @item .arch @var{name} 552 Select the target architecture. Valid values for @var{name} are the same as 553 for the @option{-march} commandline option. 554 555 Specifying @code{.arch} clears any previously selected architecture 556 extensions. 557 558 @cindex @code{.arch_extension} directive, ARM 559 @item .arch_extension @var{name} 560 Add or remove an architecture extension to the target architecture. Valid 561 values for @var{name} are the same as those accepted as architectural 562 extensions by the @option{-mcpu} commandline option. 563 564 @code{.arch_extension} may be used multiple times to add or remove extensions 565 incrementally to the architecture being compiled for. 566 567 @cindex @code{.arm} directive, ARM 568 @item .arm 569 This performs the same action as @var{.code 32}. 570 571 @c BBBBBBBBBBBBBBBBBBBBBBBBBB 572 573 @cindex @code{.bss} directive, ARM 574 @item .bss 575 This directive switches to the @code{.bss} section. 576 577 @c CCCCCCCCCCCCCCCCCCCCCCCCCC 578 579 @cindex @code{.cantunwind} directive, ARM 580 @item .cantunwind 581 Prevents unwinding through the current function. No personality routine 582 or exception table data is required or permitted. 583 584 @cindex @code{.code} directive, ARM 585 @item .code @code{[16|32]} 586 This directive selects the instruction set being generated. The value 16 587 selects Thumb, with the value 32 selecting ARM. 588 589 @cindex @code{.cpu} directive, ARM 590 @item .cpu @var{name} 591 Select the target processor. Valid values for @var{name} are the same as 592 for the @option{-mcpu} commandline option. 593 594 Specifying @code{.cpu} clears any previously selected architecture 595 extensions. 596 597 @c DDDDDDDDDDDDDDDDDDDDDDDDDD 598 599 @cindex @code{.dn} and @code{.qn} directives, ARM 600 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]] 601 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]] 602 603 The @code{dn} and @code{qn} directives are used to create typed 604 and/or indexed register aliases for use in Advanced SIMD Extension 605 (Neon) instructions. The former should be used to create aliases 606 of double-precision registers, and the latter to create aliases of 607 quad-precision registers. 608 609 If these directives are used to create typed aliases, those aliases can 610 be used in Neon instructions instead of writing types after the mnemonic 611 or after each operand. For example: 612 613 @smallexample 614 x .dn d2.f32 615 y .dn d3.f32 616 z .dn d4.f32[1] 617 vmul x,y,z 618 @end smallexample 619 620 This is equivalent to writing the following: 621 622 @smallexample 623 vmul.f32 d2,d3,d4[1] 624 @end smallexample 625 626 Aliases created using @code{dn} or @code{qn} can be destroyed using 627 @code{unreq}. 628 629 @c EEEEEEEEEEEEEEEEEEEEEEEEEE 630 631 @cindex @code{.eabi_attribute} directive, ARM 632 @item .eabi_attribute @var{tag}, @var{value} 633 Set the EABI object attribute @var{tag} to @var{value}. 634 635 The @var{tag} is either an attribute number, or one of the following: 636 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch}, 637 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use}, 638 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch}, 639 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config}, 640 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data}, 641 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use}, 642 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding}, 643 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions}, 644 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model}, 645 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved}, 646 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use}, 647 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args}, 648 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals}, 649 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access}, 650 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format}, 651 @code{Tag_MPextension_use}, @code{Tag_DIV_use}, 652 @code{Tag_nodefaults}, @code{Tag_also_compatible_with}, 653 @code{Tag_conformance}, @code{Tag_T2EE_use}, 654 @code{Tag_Virtualization_use} 655 656 The @var{value} is either a @code{number}, @code{"string"}, or 657 @code{number, "string"} depending on the tag. 658 659 Note - the following legacy values are also accepted by @var{tag}: 660 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed}, 661 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension}, 662 663 @cindex @code{.even} directive, ARM 664 @item .even 665 This directive aligns to an even-numbered address. 666 667 @cindex @code{.extend} directive, ARM 668 @cindex @code{.ldouble} directive, ARM 669 @item .extend @var{expression} [, @var{expression}]* 670 @itemx .ldouble @var{expression} [, @var{expression}]* 671 These directives write 12byte long double floating-point values to the 672 output section. These are not compatible with current ARM processors 673 or ABIs. 674 675 @c FFFFFFFFFFFFFFFFFFFFFFFFFF 676 677 @anchor{arm_fnend} 678 @cindex @code{.fnend} directive, ARM 679 @item .fnend 680 Marks the end of a function with an unwind table entry. The unwind index 681 table entry is created when this directive is processed. 682 683 If no personality routine has been specified then standard personality 684 routine 0 or 1 will be used, depending on the number of unwind opcodes 685 required. 686 687 @anchor{arm_fnstart} 688 @cindex @code{.fnstart} directive, ARM 689 @item .fnstart 690 Marks the start of a function with an unwind table entry. 691 692 @cindex @code{.force_thumb} directive, ARM 693 @item .force_thumb 694 This directive forces the selection of Thumb instructions, even if the 695 target processor does not support those instructions 696 697 @cindex @code{.fpu} directive, ARM 698 @item .fpu @var{name} 699 Select the floating-point unit to assemble for. Valid values for @var{name} 700 are the same as for the @option{-mfpu} commandline option. 701 702 @c GGGGGGGGGGGGGGGGGGGGGGGGGG 703 @c HHHHHHHHHHHHHHHHHHHHHHHHHH 704 705 @cindex @code{.handlerdata} directive, ARM 706 @item .handlerdata 707 Marks the end of the current function, and the start of the exception table 708 entry for that function. Anything between this directive and the 709 @code{.fnend} directive will be added to the exception table entry. 710 711 Must be preceded by a @code{.personality} or @code{.personalityindex} 712 directive. 713 714 @c IIIIIIIIIIIIIIIIIIIIIIIIII 715 716 @cindex @code{.inst} directive, ARM 717 @item .inst @var{opcode} [ , @dots{} ] 718 @itemx .inst.n @var{opcode} [ , @dots{} ] 719 @itemx .inst.w @var{opcode} [ , @dots{} ] 720 Generates the instruction corresponding to the numerical value @var{opcode}. 721 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be 722 specified explicitly, overriding the normal encoding rules. 723 724 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ 725 @c KKKKKKKKKKKKKKKKKKKKKKKKKK 726 @c LLLLLLLLLLLLLLLLLLLLLLLLLL 727 728 @item .ldouble @var{expression} [, @var{expression}]* 729 See @code{.extend}. 730 731 @cindex @code{.ltorg} directive, ARM 732 @item .ltorg 733 This directive causes the current contents of the literal pool to be 734 dumped into the current section (which is assumed to be the .text 735 section) at the current location (aligned to a word boundary). 736 @code{GAS} maintains a separate literal pool for each section and each 737 sub-section. The @code{.ltorg} directive will only affect the literal 738 pool of the current section and sub-section. At the end of assembly 739 all remaining, un-empty literal pools will automatically be dumped. 740 741 Note - older versions of @code{GAS} would dump the current literal 742 pool any time a section change occurred. This is no longer done, since 743 it prevents accurate control of the placement of literal pools. 744 745 @c MMMMMMMMMMMMMMMMMMMMMMMMMM 746 747 @cindex @code{.movsp} directive, ARM 748 @item .movsp @var{reg} [, #@var{offset}] 749 Tell the unwinder that @var{reg} contains an offset from the current 750 stack pointer. If @var{offset} is not specified then it is assumed to be 751 zero. 752 753 @c NNNNNNNNNNNNNNNNNNNNNNNNNN 754 @c OOOOOOOOOOOOOOOOOOOOOOOOOO 755 756 @cindex @code{.object_arch} directive, ARM 757 @item .object_arch @var{name} 758 Override the architecture recorded in the EABI object attribute section. 759 Valid values for @var{name} are the same as for the @code{.arch} directive. 760 Typically this is useful when code uses runtime detection of CPU features. 761 762 @c PPPPPPPPPPPPPPPPPPPPPPPPPP 763 764 @cindex @code{.packed} directive, ARM 765 @item .packed @var{expression} [, @var{expression}]* 766 This directive writes 12-byte packed floating-point values to the 767 output section. These are not compatible with current ARM processors 768 or ABIs. 769 770 @anchor{arm_pad} 771 @cindex @code{.pad} directive, ARM 772 @item .pad #@var{count} 773 Generate unwinder annotations for a stack adjustment of @var{count} bytes. 774 A positive value indicates the function prologue allocated stack space by 775 decrementing the stack pointer. 776 777 @cindex @code{.personality} directive, ARM 778 @item .personality @var{name} 779 Sets the personality routine for the current function to @var{name}. 780 781 @cindex @code{.personalityindex} directive, ARM 782 @item .personalityindex @var{index} 783 Sets the personality routine for the current function to the EABI standard 784 routine number @var{index} 785 786 @cindex @code{.pool} directive, ARM 787 @item .pool 788 This is a synonym for .ltorg. 789 790 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ 791 @c RRRRRRRRRRRRRRRRRRRRRRRRRR 792 793 @cindex @code{.req} directive, ARM 794 @item @var{name} .req @var{register name} 795 This creates an alias for @var{register name} called @var{name}. For 796 example: 797 798 @smallexample 799 foo .req r0 800 @end smallexample 801 802 @c SSSSSSSSSSSSSSSSSSSSSSSSSS 803 804 @anchor{arm_save} 805 @cindex @code{.save} directive, ARM 806 @item .save @var{reglist} 807 Generate unwinder annotations to restore the registers in @var{reglist}. 808 The format of @var{reglist} is the same as the corresponding store-multiple 809 instruction. 810 811 @smallexample 812 @exdent @emph{core registers} 813 .save @{r4, r5, r6, lr@} 814 stmfd sp!, @{r4, r5, r6, lr@} 815 @exdent @emph{FPA registers} 816 .save f4, 2 817 sfmfd f4, 2, [sp]! 818 @exdent @emph{VFP registers} 819 .save @{d8, d9, d10@} 820 fstmdx sp!, @{d8, d9, d10@} 821 @exdent @emph{iWMMXt registers} 822 .save @{wr10, wr11@} 823 wstrd wr11, [sp, #-8]! 824 wstrd wr10, [sp, #-8]! 825 or 826 .save wr11 827 wstrd wr11, [sp, #-8]! 828 .save wr10 829 wstrd wr10, [sp, #-8]! 830 @end smallexample 831 832 @anchor{arm_setfp} 833 @cindex @code{.setfp} directive, ARM 834 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}] 835 Make all unwinder annotations relative to a frame pointer. Without this 836 the unwinder will use offsets from the stack pointer. 837 838 The syntax of this directive is the same as the @code{add} or @code{mov} 839 instruction used to set the frame pointer. @var{spreg} must be either 840 @code{sp} or mentioned in a previous @code{.movsp} directive. 841 842 @smallexample 843 .movsp ip 844 mov ip, sp 845 @dots{} 846 .setfp fp, ip, #4 847 add fp, ip, #4 848 @end smallexample 849 850 @cindex @code{.secrel32} directive, ARM 851 @item .secrel32 @var{expression} [, @var{expression}]* 852 This directive emits relocations that evaluate to the section-relative 853 offset of each expression's symbol. This directive is only supported 854 for PE targets. 855 856 @cindex @code{.syntax} directive, ARM 857 @item .syntax [@code{unified} | @code{divided}] 858 This directive sets the Instruction Set Syntax as described in the 859 @ref{ARM-Instruction-Set} section. 860 861 @c TTTTTTTTTTTTTTTTTTTTTTTTTT 862 863 @cindex @code{.thumb} directive, ARM 864 @item .thumb 865 This performs the same action as @var{.code 16}. 866 867 @cindex @code{.thumb_func} directive, ARM 868 @item .thumb_func 869 This directive specifies that the following symbol is the name of a 870 Thumb encoded function. This information is necessary in order to allow 871 the assembler and linker to generate correct code for interworking 872 between Arm and Thumb instructions and should be used even if 873 interworking is not going to be performed. The presence of this 874 directive also implies @code{.thumb} 875 876 This directive is not neccessary when generating EABI objects. On these 877 targets the encoding is implicit when generating Thumb code. 878 879 @cindex @code{.thumb_set} directive, ARM 880 @item .thumb_set 881 This performs the equivalent of a @code{.set} directive in that it 882 creates a symbol which is an alias for another symbol (possibly not yet 883 defined). This directive also has the added property in that it marks 884 the aliased symbol as being a thumb function entry point, in the same 885 way that the @code{.thumb_func} directive does. 886 887 @cindex @code{.tlsdescseq} directive, ARM 888 @item .tlsdescseq @var{tls-variable} 889 This directive is used to annotate parts of an inlined TLS descriptor 890 trampoline. Normally the trampoline is provided by the linker, and 891 this directive is not needed. 892 893 @c UUUUUUUUUUUUUUUUUUUUUUUUUU 894 895 @cindex @code{.unreq} directive, ARM 896 @item .unreq @var{alias-name} 897 This undefines a register alias which was previously defined using the 898 @code{req}, @code{dn} or @code{qn} directives. For example: 899 900 @smallexample 901 foo .req r0 902 .unreq foo 903 @end smallexample 904 905 An error occurs if the name is undefined. Note - this pseudo op can 906 be used to delete builtin in register name aliases (eg 'r0'). This 907 should only be done if it is really necessary. 908 909 @cindex @code{.unwind_raw} directive, ARM 910 @item .unwind_raw @var{offset}, @var{byte1}, @dots{} 911 Insert one of more arbitary unwind opcode bytes, which are known to adjust 912 the stack pointer by @var{offset} bytes. 913 914 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to 915 @code{.save @{r0@}} 916 917 @c VVVVVVVVVVVVVVVVVVVVVVVVVV 918 919 @cindex @code{.vsave} directive, ARM 920 @item .vsave @var{vfp-reglist} 921 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist} 922 using FLDMD. Also works for VFPv3 registers 923 that are to be restored using VLDM. 924 The format of @var{vfp-reglist} is the same as the corresponding store-multiple 925 instruction. 926 927 @smallexample 928 @exdent @emph{VFP registers} 929 .vsave @{d8, d9, d10@} 930 fstmdd sp!, @{d8, d9, d10@} 931 @exdent @emph{VFPv3 registers} 932 .vsave @{d15, d16, d17@} 933 vstm sp!, @{d15, d16, d17@} 934 @end smallexample 935 936 Since FLDMX and FSTMX are now deprecated, this directive should be 937 used in favour of @code{.save} for saving VFP registers for ARMv6 and above. 938 939 @c WWWWWWWWWWWWWWWWWWWWWWWWWW 940 @c XXXXXXXXXXXXXXXXXXXXXXXXXX 941 @c YYYYYYYYYYYYYYYYYYYYYYYYYY 942 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ 943 944 @end table 945 946 @node ARM Opcodes 947 @section Opcodes 948 949 @cindex ARM opcodes 950 @cindex opcodes for ARM 951 @code{@value{AS}} implements all the standard ARM opcodes. It also 952 implements several pseudo opcodes, including several synthetic load 953 instructions. 954 955 @table @code 956 957 @cindex @code{NOP} pseudo op, ARM 958 @item NOP 959 @smallexample 960 nop 961 @end smallexample 962 963 This pseudo op will always evaluate to a legal ARM instruction that does 964 nothing. Currently it will evaluate to MOV r0, r0. 965 966 @cindex @code{LDR reg,=<label>} pseudo op, ARM 967 @item LDR 968 @smallexample 969 ldr <register> , = <expression> 970 @end smallexample 971 972 If expression evaluates to a numeric constant then a MOV or MVN 973 instruction will be used in place of the LDR instruction, if the 974 constant can be generated by either of these instructions. Otherwise 975 the constant will be placed into the nearest literal pool (if it not 976 already there) and a PC relative LDR instruction will be generated. 977 978 @cindex @code{ADR reg,<label>} pseudo op, ARM 979 @item ADR 980 @smallexample 981 adr <register> <label> 982 @end smallexample 983 984 This instruction will load the address of @var{label} into the indicated 985 register. The instruction will evaluate to a PC relative ADD or SUB 986 instruction depending upon where the label is located. If the label is 987 out of range, or if it is not defined in the same file (and section) as 988 the ADR instruction, then an error will be generated. This instruction 989 will not make use of the literal pool. 990 991 @cindex @code{ADRL reg,<label>} pseudo op, ARM 992 @item ADRL 993 @smallexample 994 adrl <register> <label> 995 @end smallexample 996 997 This instruction will load the address of @var{label} into the indicated 998 register. The instruction will evaluate to one or two PC relative ADD 999 or SUB instructions depending upon where the label is located. If a 1000 second instruction is not needed a NOP instruction will be generated in 1001 its place, so that this instruction is always 8 bytes long. 1002 1003 If the label is out of range, or if it is not defined in the same file 1004 (and section) as the ADRL instruction, then an error will be generated. 1005 This instruction will not make use of the literal pool. 1006 1007 @end table 1008 1009 For information on the ARM or Thumb instruction sets, see @cite{ARM 1010 Software Development Toolkit Reference Manual}, Advanced RISC Machines 1011 Ltd. 1012 1013 @node ARM Mapping Symbols 1014 @section Mapping Symbols 1015 1016 The ARM ELF specification requires that special symbols be inserted 1017 into object files to mark certain features: 1018 1019 @table @code 1020 1021 @cindex @code{$a} 1022 @item $a 1023 At the start of a region of code containing ARM instructions. 1024 1025 @cindex @code{$t} 1026 @item $t 1027 At the start of a region of code containing THUMB instructions. 1028 1029 @cindex @code{$d} 1030 @item $d 1031 At the start of a region of data. 1032 1033 @end table 1034 1035 The assembler will automatically insert these symbols for you - there 1036 is no need to code them yourself. Support for tagging symbols ($b, 1037 $f, $p and $m) which is also mentioned in the current ARM ELF 1038 specification is not implemented. This is because they have been 1039 dropped from the new EABI and so tools cannot rely upon their 1040 presence. 1041 1042 @node ARM Unwinding Tutorial 1043 @section Unwinding 1044 1045 The ABI for the ARM Architecture specifies a standard format for 1046 exception unwind information. This information is used when an 1047 exception is thrown to determine where control should be transferred. 1048 In particular, the unwind information is used to determine which 1049 function called the function that threw the exception, and which 1050 function called that one, and so forth. This information is also used 1051 to restore the values of callee-saved registers in the function 1052 catching the exception. 1053 1054 If you are writing functions in assembly code, and those functions 1055 call other functions that throw exceptions, you must use assembly 1056 pseudo ops to ensure that appropriate exception unwind information is 1057 generated. Otherwise, if one of the functions called by your assembly 1058 code throws an exception, the run-time library will be unable to 1059 unwind the stack through your assembly code and your program will not 1060 behave correctly. 1061 1062 To illustrate the use of these pseudo ops, we will examine the code 1063 that G++ generates for the following C++ input: 1064 1065 @verbatim 1066 void callee (int *); 1067 1068 int 1069 caller () 1070 { 1071 int i; 1072 callee (&i); 1073 return i; 1074 } 1075 @end verbatim 1076 1077 This example does not show how to throw or catch an exception from 1078 assembly code. That is a much more complex operation and should 1079 always be done in a high-level language, such as C++, that directly 1080 supports exceptions. 1081 1082 The code generated by one particular version of G++ when compiling the 1083 example above is: 1084 1085 @verbatim 1086 _Z6callerv: 1087 .fnstart 1088 .LFB2: 1089 @ Function supports interworking. 1090 @ args = 0, pretend = 0, frame = 8 1091 @ frame_needed = 1, uses_anonymous_args = 0 1092 stmfd sp!, {fp, lr} 1093 .save {fp, lr} 1094 .LCFI0: 1095 .setfp fp, sp, #4 1096 add fp, sp, #4 1097 .LCFI1: 1098 .pad #8 1099 sub sp, sp, #8 1100 .LCFI2: 1101 sub r3, fp, #8 1102 mov r0, r3 1103 bl _Z6calleePi 1104 ldr r3, [fp, #-8] 1105 mov r0, r3 1106 sub sp, fp, #4 1107 ldmfd sp!, {fp, lr} 1108 bx lr 1109 .LFE2: 1110 .fnend 1111 @end verbatim 1112 1113 Of course, the sequence of instructions varies based on the options 1114 you pass to GCC and on the version of GCC in use. The exact 1115 instructions are not important since we are focusing on the pseudo ops 1116 that are used to generate unwind information. 1117 1118 An important assumption made by the unwinder is that the stack frame 1119 does not change during the body of the function. In particular, since 1120 we assume that the assembly code does not itself throw an exception, 1121 the only point where an exception can be thrown is from a call, such 1122 as the @code{bl} instruction above. At each call site, the same saved 1123 registers (including @code{lr}, which indicates the return address) 1124 must be located in the same locations relative to the frame pointer. 1125 1126 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo 1127 op appears immediately before the first instruction of the function 1128 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo 1129 op appears immediately after the last instruction of the function. 1130 These pseudo ops specify the range of the function. 1131 1132 Only the order of the other pseudos ops (e.g., @code{.setfp} or 1133 @code{.pad}) matters; their exact locations are irrelevant. In the 1134 example above, the compiler emits the pseudo ops with particular 1135 instructions. That makes it easier to understand the code, but it is 1136 not required for correctness. It would work just as well to emit all 1137 of the pseudo ops other than @code{.fnend} in the same order, but 1138 immediately after @code{.fnstart}. 1139 1140 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op 1141 indicates registers that have been saved to the stack so that they can 1142 be restored before the function returns. The argument to the 1143 @code{.save} pseudo op is a list of registers to save. If a register 1144 is ``callee-saved'' (as specified by the ABI) and is modified by the 1145 function you are writing, then your code must save the value before it 1146 is modified and restore the original value before the function 1147 returns. If an exception is thrown, the run-time library restores the 1148 values of these registers from their locations on the stack before 1149 returning control to the exception handler. (Of course, if an 1150 exception is not thrown, the function that contains the @code{.save} 1151 pseudo op restores these registers in the function epilogue, as is 1152 done with the @code{ldmfd} instruction above.) 1153 1154 You do not have to save callee-saved registers at the very beginning 1155 of the function and you do not need to use the @code{.save} pseudo op 1156 immediately following the point at which the registers are saved. 1157 However, if you modify a callee-saved register, you must save it on 1158 the stack before modifying it and before calling any functions which 1159 might throw an exception. And, you must use the @code{.save} pseudo 1160 op to indicate that you have done so. 1161 1162 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a 1163 modification of the stack pointer that does not save any registers. 1164 The argument is the number of bytes (in decimal) that are subtracted 1165 from the stack pointer. (On ARM CPUs, the stack grows downwards, so 1166 subtracting from the stack pointer increases the size of the stack.) 1167 1168 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op 1169 indicates the register that contains the frame pointer. The first 1170 argument is the register that is set, which is typically @code{fp}. 1171 The second argument indicates the register from which the frame 1172 pointer takes its value. The third argument, if present, is the value 1173 (in decimal) added to the register specified by the second argument to 1174 compute the value of the frame pointer. You should not modify the 1175 frame pointer in the body of the function. 1176 1177 If you do not use a frame pointer, then you should not use the 1178 @code{.setfp} pseudo op. If you do not use a frame pointer, then you 1179 should avoid modifying the stack pointer outside of the function 1180 prologue. Otherwise, the run-time library will be unable to find 1181 saved registers when it is unwinding the stack. 1182 1183 The pseudo ops described above are sufficient for writing assembly 1184 code that calls functions which may throw exceptions. If you need to 1185 know more about the object-file format used to represent unwind 1186 information, you may consult the @cite{Exception Handling ABI for the 1187 ARM Architecture} available from @uref{http://infocenter.arm.com}. 1188