Home | History | Annotate | Download | only in doc
      1 @c Copyright (C) 1996-2014 Free Software Foundation, Inc.
      2 @c This is part of the GAS manual.
      3 @c For copying conditions, see the file as.texinfo.
      4 
      5 @ifset GENERIC
      6 @page
      7 @node ARM-Dependent
      8 @chapter ARM Dependent Features
      9 @end ifset
     10 
     11 @ifclear GENERIC
     12 @node Machine Dependencies
     13 @chapter ARM Dependent Features
     14 @end ifclear
     15 
     16 @cindex ARM support
     17 @cindex Thumb support
     18 @menu
     19 * ARM Options::              Options
     20 * ARM Syntax::               Syntax
     21 * ARM Floating Point::       Floating Point
     22 * ARM Directives::           ARM Machine Directives
     23 * ARM Opcodes::              Opcodes
     24 * ARM Mapping Symbols::      Mapping Symbols
     25 * ARM Unwinding Tutorial::   Unwinding
     26 @end menu
     27 
     28 @node ARM Options
     29 @section Options
     30 @cindex ARM options (none)
     31 @cindex options for ARM (none)
     32 
     33 @table @code
     34 
     35 @cindex @code{-mcpu=} command line option, ARM
     36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
     37 This option specifies the target processor.  The assembler will issue an
     38 error message if an attempt is made to assemble an instruction which
     39 will not execute on the target processor.  The following processor names are
     40 recognized:
     41 @code{arm1},
     42 @code{arm2},
     43 @code{arm250},
     44 @code{arm3},
     45 @code{arm6},
     46 @code{arm60},
     47 @code{arm600},
     48 @code{arm610},
     49 @code{arm620},
     50 @code{arm7},
     51 @code{arm7m},
     52 @code{arm7d},
     53 @code{arm7dm},
     54 @code{arm7di},
     55 @code{arm7dmi},
     56 @code{arm70},
     57 @code{arm700},
     58 @code{arm700i},
     59 @code{arm710},
     60 @code{arm710t},
     61 @code{arm720},
     62 @code{arm720t},
     63 @code{arm740t},
     64 @code{arm710c},
     65 @code{arm7100},
     66 @code{arm7500},
     67 @code{arm7500fe},
     68 @code{arm7t},
     69 @code{arm7tdmi},
     70 @code{arm7tdmi-s},
     71 @code{arm8},
     72 @code{arm810},
     73 @code{strongarm},
     74 @code{strongarm1},
     75 @code{strongarm110},
     76 @code{strongarm1100},
     77 @code{strongarm1110},
     78 @code{arm9},
     79 @code{arm920},
     80 @code{arm920t},
     81 @code{arm922t},
     82 @code{arm940t},
     83 @code{arm9tdmi},
     84 @code{fa526} (Faraday FA526 processor),
     85 @code{fa626} (Faraday FA626 processor),
     86 @code{arm9e},
     87 @code{arm926e},
     88 @code{arm926ej-s},
     89 @code{arm946e-r0},
     90 @code{arm946e},
     91 @code{arm946e-s},
     92 @code{arm966e-r0},
     93 @code{arm966e},
     94 @code{arm966e-s},
     95 @code{arm968e-s},
     96 @code{arm10t},
     97 @code{arm10tdmi},
     98 @code{arm10e},
     99 @code{arm1020},
    100 @code{arm1020t},
    101 @code{arm1020e},
    102 @code{arm1022e},
    103 @code{arm1026ej-s},
    104 @code{fa606te} (Faraday FA606TE processor),
    105 @code{fa616te} (Faraday FA616TE processor),
    106 @code{fa626te} (Faraday FA626TE processor),
    107 @code{fmp626} (Faraday FMP626 processor),
    108 @code{fa726te} (Faraday FA726TE processor),
    109 @code{arm1136j-s},
    110 @code{arm1136jf-s},
    111 @code{arm1156t2-s},
    112 @code{arm1156t2f-s},
    113 @code{arm1176jz-s},
    114 @code{arm1176jzf-s},
    115 @code{mpcore},
    116 @code{mpcorenovfp},
    117 @code{cortex-a5},
    118 @code{cortex-a7},
    119 @code{cortex-a8},
    120 @code{cortex-a9},
    121 @code{cortex-a15},
    122 @code{cortex-r4},
    123 @code{cortex-r4f},
    124 @code{cortex-r5},
    125 @code{cortex-r7},
    126 @code{cortex-m4},
    127 @code{cortex-m3},
    128 @code{cortex-m1},
    129 @code{cortex-m0},
    130 @code{cortex-m0plus},
    131 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
    132 @code{i80200} (Intel XScale processor)
    133 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
    134 and
    135 @code{xscale}.
    136 The special name @code{all} may be used to allow the
    137 assembler to accept instructions valid for any ARM processor.
    138 
    139 In addition to the basic instruction set, the assembler can be told to
    140 accept various extension mnemonics that extend the processor using the
    141 co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
    142 is equivalent to specifying @code{-mcpu=ep9312}.
    143 
    144 Multiple extensions may be specified, separated by a @code{+}.  The
    145 extensions should be specified in ascending alphabetical order.
    146 
    147 Some extensions may be restricted to particular architectures; this is
    148 documented in the list of extensions below.
    149 
    150 Extension mnemonics may also be removed from those the assembler accepts.
    151 This is done be prepending @code{no} to the option that adds the extension.
    152 Extensions that are removed should be listed after all extensions which have
    153 been added, again in ascending alphabetical order.  For example,
    154 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
    155 
    156 
    157 The following extensions are currently supported:
    158 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
    159 @code{fp} (Floating Point Extensions for v8-A architecture),
    160 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
    161 @code{iwmmxt},
    162 @code{iwmmxt2},
    163 @code{maverick},
    164 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
    165 @code{os} (Operating System for v6M architecture),
    166 @code{sec} (Security Extensions for v6K and v7-A architectures),
    167 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
    168 @code{virt} (Virtualization Extensions for v7-A architecture, implies
    169 @code{idiv}),
    170 and
    171 @code{xscale}.
    172 
    173 @cindex @code{-march=} command line option, ARM
    174 @item -march=@var{architecture}[+@var{extension}@dots{}]
    175 This option specifies the target architecture.  The assembler will issue
    176 an error message if an attempt is made to assemble an instruction which
    177 will not execute on the target architecture.  The following architecture
    178 names are recognized:
    179 @code{armv1},
    180 @code{armv2},
    181 @code{armv2a},
    182 @code{armv2s},
    183 @code{armv3},
    184 @code{armv3m},
    185 @code{armv4},
    186 @code{armv4xm},
    187 @code{armv4t},
    188 @code{armv4txm},
    189 @code{armv5},
    190 @code{armv5t},
    191 @code{armv5txm},
    192 @code{armv5te},
    193 @code{armv5texp},
    194 @code{armv6},
    195 @code{armv6j},
    196 @code{armv6k},
    197 @code{armv6z},
    198 @code{armv6zk},
    199 @code{armv6-m},
    200 @code{armv6s-m},
    201 @code{armv7},
    202 @code{armv7-a},
    203 @code{armv7ve},
    204 @code{armv7-r},
    205 @code{armv7-m},
    206 @code{armv7e-m},
    207 @code{armv8-a},
    208 @code{iwmmxt}
    209 and
    210 @code{xscale}.
    211 If both @code{-mcpu} and
    212 @code{-march} are specified, the assembler will use
    213 the setting for @code{-mcpu}.
    214 
    215 The architecture option can be extended with the same instruction set
    216 extension options as the @code{-mcpu} option.
    217 
    218 @cindex @code{-mfpu=} command line option, ARM
    219 @item -mfpu=@var{floating-point-format}
    220 
    221 This option specifies the floating point format to assemble for.  The
    222 assembler will issue an error message if an attempt is made to assemble
    223 an instruction which will not execute on the target floating point unit.
    224 The following format options are recognized:
    225 @code{softfpa},
    226 @code{fpe},
    227 @code{fpe2},
    228 @code{fpe3},
    229 @code{fpa},
    230 @code{fpa10},
    231 @code{fpa11},
    232 @code{arm7500fe},
    233 @code{softvfp},
    234 @code{softvfp+vfp},
    235 @code{vfp},
    236 @code{vfp10},
    237 @code{vfp10-r0},
    238 @code{vfp9},
    239 @code{vfpxd},
    240 @code{vfpv2},
    241 @code{vfpv3},
    242 @code{vfpv3-fp16},
    243 @code{vfpv3-d16},
    244 @code{vfpv3-d16-fp16},
    245 @code{vfpv3xd},
    246 @code{vfpv3xd-d16},
    247 @code{vfpv4},
    248 @code{vfpv4-d16},
    249 @code{fpv4-sp-d16},
    250 @code{fp-armv8},
    251 @code{arm1020t},
    252 @code{arm1020e},
    253 @code{arm1136jf-s},
    254 @code{maverick},
    255 @code{neon},
    256 @code{neon-vfpv4},
    257 @code{neon-fp-armv8},
    258 and
    259 @code{crypto-neon-fp-armv8}.
    260 
    261 In addition to determining which instructions are assembled, this option
    262 also affects the way in which the @code{.double} assembler directive behaves
    263 when assembling little-endian code.
    264 
    265 The default is dependent on the processor selected.  For Architecture 5 or
    266 later, the default is to assembler for VFP instructions; for earlier
    267 architectures the default is to assemble for FPA instructions.
    268 
    269 @cindex @code{-mthumb} command line option, ARM
    270 @item -mthumb
    271 This option specifies that the assembler should start assembling Thumb
    272 instructions; that is, it should behave as though the file starts with a
    273 @code{.code 16} directive.
    274 
    275 @cindex @code{-mthumb-interwork} command line option, ARM
    276 @item -mthumb-interwork
    277 This option specifies that the output generated by the assembler should
    278 be marked as supporting interworking.
    279 
    280 @cindex @code{-mimplicit-it} command line option, ARM
    281 @item -mimplicit-it=never
    282 @itemx -mimplicit-it=always
    283 @itemx -mimplicit-it=arm
    284 @itemx -mimplicit-it=thumb
    285 The @code{-mimplicit-it} option controls the behavior of the assembler when
    286 conditional instructions are not enclosed in IT blocks.
    287 There are four possible behaviors.
    288 If @code{never} is specified, such constructs cause a warning in ARM
    289 code and an error in Thumb-2 code.
    290 If @code{always} is specified, such constructs are accepted in both
    291 ARM and Thumb-2 code, where the IT instruction is added implicitly.
    292 If @code{arm} is specified, such constructs are accepted in ARM code
    293 and cause an error in Thumb-2 code.
    294 If @code{thumb} is specified, such constructs cause a warning in ARM
    295 code and are accepted in Thumb-2 code.  If you omit this option, the
    296 behavior is equivalent to @code{-mimplicit-it=arm}.
    297 
    298 @cindex @code{-mapcs-26} command line option, ARM
    299 @cindex @code{-mapcs-32} command line option, ARM
    300 @item -mapcs-26
    301 @itemx -mapcs-32
    302 These options specify that the output generated by the assembler should
    303 be marked as supporting the indicated version of the Arm Procedure.
    304 Calling Standard.
    305 
    306 @cindex @code{-matpcs} command line option, ARM
    307 @item -matpcs
    308 This option specifies that the output generated by the assembler should
    309 be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
    310 enabled this option will cause the assembler to create an empty
    311 debugging section in the object file called .arm.atpcs.  Debuggers can
    312 use this to determine the ABI being used by.
    313 
    314 @cindex @code{-mapcs-float} command line option, ARM
    315 @item -mapcs-float
    316 This indicates the floating point variant of the APCS should be
    317 used.  In this variant floating point arguments are passed in FP
    318 registers rather than integer registers.
    319 
    320 @cindex @code{-mapcs-reentrant} command line option, ARM
    321 @item -mapcs-reentrant
    322 This indicates that the reentrant variant of the APCS should be used.
    323 This variant supports position independent code.
    324 
    325 @cindex @code{-mfloat-abi=} command line option, ARM
    326 @item -mfloat-abi=@var{abi}
    327 This option specifies that the output generated by the assembler should be
    328 marked as using specified floating point ABI.
    329 The following values are recognized:
    330 @code{soft},
    331 @code{softfp}
    332 and
    333 @code{hard}.
    334 
    335 @cindex @code{-eabi=} command line option, ARM
    336 @item -meabi=@var{ver}
    337 This option specifies which EABI version the produced object files should
    338 conform to.
    339 The following values are recognized:
    340 @code{gnu},
    341 @code{4}
    342 and
    343 @code{5}.
    344 
    345 @cindex @code{-EB} command line option, ARM
    346 @item -EB
    347 This option specifies that the output generated by the assembler should
    348 be marked as being encoded for a big-endian processor.
    349 
    350 @cindex @code{-EL} command line option, ARM
    351 @item -EL
    352 This option specifies that the output generated by the assembler should
    353 be marked as being encoded for a little-endian processor.
    354 
    355 @cindex @code{-k} command line option, ARM
    356 @cindex PIC code generation for ARM
    357 @item -k
    358 This option specifies that the output of the assembler should be marked
    359 as position-independent code (PIC).
    360 
    361 @cindex @code{--fix-v4bx} command line option, ARM
    362 @item --fix-v4bx
    363 Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
    364 the linker option of the same name.
    365 
    366 @cindex @code{-mwarn-deprecated} command line option, ARM
    367 @item -mwarn-deprecated
    368 @itemx -mno-warn-deprecated
    369 Enable or disable warnings about using deprecated options or
    370 features.  The default is to warn.
    371 
    372 @cindex @code{-mccs} command line option, ARM
    373 @item -mccs
    374 Turns on CodeComposer Studio assembly syntax compatibility mode.
    375 
    376 @end table
    377 
    378 
    379 @node ARM Syntax
    380 @section Syntax
    381 @menu
    382 * ARM-Instruction-Set::      Instruction Set
    383 * ARM-Chars::                Special Characters
    384 * ARM-Regs::                 Register Names
    385 * ARM-Relocations::	     Relocations
    386 * ARM-Neon-Alignment::	     NEON Alignment Specifiers
    387 @end menu
    388 
    389 @node ARM-Instruction-Set
    390 @subsection Instruction Set Syntax
    391 Two slightly different syntaxes are support for ARM and THUMB
    392 instructions.  The default, @code{divided}, uses the old style where
    393 ARM and THUMB instructions had their own, separate syntaxes.  The new,
    394 @code{unified} syntax, which can be selected via the @code{.syntax}
    395 directive, and has the following main features:
    396 
    397 @itemize @bullet
    398 @item
    399 Immediate operands do not require a @code{#} prefix.
    400 
    401 @item
    402 The @code{IT} instruction may appear, and if it does it is validated
    403 against subsequent conditional affixes.  In ARM mode it does not
    404 generate machine code, in THUMB mode it does.
    405 
    406 @item
    407 For ARM instructions the conditional affixes always appear at the end
    408 of the instruction.  For THUMB instructions conditional affixes can be
    409 used, but only inside the scope of an @code{IT} instruction.
    410 
    411 @item
    412 All of the instructions new to the V6T2 architecture (and later) are
    413 available.  (Only a few such instructions can be written in the
    414 @code{divided} syntax).
    415 
    416 @item
    417 The @code{.N} and @code{.W} suffixes are recognized and honored.
    418 
    419 @item
    420 All instructions set the flags if and only if they have an @code{s}
    421 affix.
    422 @end itemize
    423 
    424 @node ARM-Chars
    425 @subsection Special Characters
    426 
    427 @cindex line comment character, ARM
    428 @cindex ARM line comment character
    429 The presence of a @samp{@@} anywhere on a line indicates the start of
    430 a comment that extends to the end of that line.
    431 
    432 If a @samp{#} appears as the first character of a line then the whole
    433 line is treated as a comment, but in this case the line could also be
    434 a logical line number directive (@pxref{Comments}) or a preprocessor
    435 control command (@pxref{Preprocessing}).
    436 
    437 @cindex line separator, ARM
    438 @cindex statement separator, ARM
    439 @cindex ARM line separator
    440 The @samp{;} character can be used instead of a newline to separate
    441 statements.
    442 
    443 @cindex immediate character, ARM
    444 @cindex ARM immediate character
    445 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
    446 
    447 @cindex identifiers, ARM
    448 @cindex ARM identifiers
    449 *TODO* Explain about /data modifier on symbols.
    450 
    451 @node ARM-Regs
    452 @subsection Register Names
    453 
    454 @cindex ARM register names
    455 @cindex register names, ARM
    456 *TODO* Explain about ARM register naming, and the predefined names.
    457 
    458 @node ARM-Relocations
    459 @subsection ARM relocation generation
    460 
    461 @cindex data relocations, ARM
    462 @cindex ARM data relocations
    463 Specific data relocations can be generated by putting the relocation name
    464 in parentheses after the symbol name.  For example:
    465 
    466 @smallexample
    467         .word foo(TARGET1)
    468 @end smallexample
    469 
    470 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
    471 @var{foo}.
    472 The following relocations are supported:
    473 @code{GOT},
    474 @code{GOTOFF},
    475 @code{TARGET1},
    476 @code{TARGET2},
    477 @code{SBREL},
    478 @code{TLSGD},
    479 @code{TLSLDM},
    480 @code{TLSLDO},
    481 @code{TLSDESC},
    482 @code{TLSCALL},
    483 @code{GOTTPOFF},
    484 @code{GOT_PREL}
    485 and
    486 @code{TPOFF}.
    487 
    488 For compatibility with older toolchains the assembler also accepts
    489 @code{(PLT)} after branch targets.  On legacy targets this will
    490 generate the deprecated @samp{R_ARM_PLT32} relocation.  On EABI
    491 targets it will encode either the @samp{R_ARM_CALL} or
    492 @samp{R_ARM_JUMP24} relocation, as appropriate.
    493 
    494 @cindex MOVW and MOVT relocations, ARM
    495 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
    496 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
    497 respectively.  For example to load the 32-bit address of foo into r0:
    498 
    499 @smallexample
    500         MOVW r0, #:lower16:foo
    501         MOVT r0, #:upper16:foo
    502 @end smallexample
    503 
    504 @node ARM-Neon-Alignment
    505 @subsection NEON Alignment Specifiers
    506 
    507 @cindex alignment for NEON instructions
    508 Some NEON load/store instructions allow an optional address
    509 alignment qualifier.
    510 The ARM documentation specifies that this is indicated by
    511 @samp{@@ @var{align}}. However GAS already interprets
    512 the @samp{@@} character as a "line comment" start,
    513 so @samp{: @var{align}} is used instead.  For example:
    514 
    515 @smallexample
    516         vld1.8 @{q0@}, [r0, :128]
    517 @end smallexample
    518 
    519 @node ARM Floating Point
    520 @section Floating Point
    521 
    522 @cindex floating point, ARM (@sc{ieee})
    523 @cindex ARM floating point (@sc{ieee})
    524 The ARM family uses @sc{ieee} floating-point numbers.
    525 
    526 @node ARM Directives
    527 @section ARM Machine Directives
    528 
    529 @cindex machine directives, ARM
    530 @cindex ARM machine directives
    531 @table @code
    532 
    533 @c AAAAAAAAAAAAAAAAAAAAAAAAA
    534 
    535 @cindex @code{.2byte} directive, ARM
    536 @cindex @code{.4byte} directive, ARM
    537 @cindex @code{.8byte} directive, ARM
    538 @item .2byte @var{expression} [, @var{expression}]*
    539 @itemx .4byte @var{expression} [, @var{expression}]*
    540 @itemx .8byte @var{expression} [, @var{expression}]*
    541 These directives write 2, 4 or 8 byte values to the output section.
    542 
    543 @cindex @code{.align} directive, ARM
    544 @item .align @var{expression} [, @var{expression}]
    545 This is the generic @var{.align} directive.  For the ARM however if the
    546 first argument is zero (ie no alignment is needed) the assembler will
    547 behave as if the argument had been 2 (ie pad to the next four byte
    548 boundary).  This is for compatibility with ARM's own assembler.
    549 
    550 @cindex @code{.arch} directive, ARM
    551 @item .arch @var{name}
    552 Select the target architecture.  Valid values for @var{name} are the same as
    553 for the @option{-march} commandline option.
    554 
    555 Specifying @code{.arch} clears any previously selected architecture
    556 extensions.
    557 
    558 @cindex @code{.arch_extension} directive, ARM
    559 @item .arch_extension @var{name}
    560 Add or remove an architecture extension to the target architecture.  Valid
    561 values for @var{name} are the same as those accepted as architectural
    562 extensions by the @option{-mcpu} commandline option.
    563 
    564 @code{.arch_extension} may be used multiple times to add or remove extensions
    565 incrementally to the architecture being compiled for.
    566 
    567 @cindex @code{.arm} directive, ARM
    568 @item .arm
    569 This performs the same action as @var{.code 32}.
    570 
    571 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
    572 
    573 @cindex @code{.bss} directive, ARM
    574 @item .bss
    575 This directive switches to the @code{.bss} section.
    576 
    577 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
    578 
    579 @cindex @code{.cantunwind} directive, ARM
    580 @item .cantunwind
    581 Prevents unwinding through the current function.  No personality routine
    582 or exception table data is required or permitted.
    583 
    584 @cindex @code{.code} directive, ARM
    585 @item .code @code{[16|32]}
    586 This directive selects the instruction set being generated. The value 16
    587 selects Thumb, with the value 32 selecting ARM.
    588 
    589 @cindex @code{.cpu} directive, ARM
    590 @item .cpu @var{name}
    591 Select the target processor.  Valid values for @var{name} are the same as
    592 for the @option{-mcpu} commandline option.
    593 
    594 Specifying @code{.cpu} clears any previously selected architecture
    595 extensions.
    596 
    597 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
    598 
    599 @cindex @code{.dn} and @code{.qn} directives, ARM
    600 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
    601 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
    602 
    603 The @code{dn} and @code{qn} directives are used to create typed
    604 and/or indexed register aliases for use in Advanced SIMD Extension
    605 (Neon) instructions.  The former should be used to create aliases
    606 of double-precision registers, and the latter to create aliases of
    607 quad-precision registers.
    608 
    609 If these directives are used to create typed aliases, those aliases can
    610 be used in Neon instructions instead of writing types after the mnemonic
    611 or after each operand.  For example:
    612 
    613 @smallexample
    614         x .dn d2.f32
    615         y .dn d3.f32
    616         z .dn d4.f32[1]
    617         vmul x,y,z
    618 @end smallexample
    619 
    620 This is equivalent to writing the following:
    621 
    622 @smallexample
    623         vmul.f32 d2,d3,d4[1]
    624 @end smallexample
    625 
    626 Aliases created using @code{dn} or @code{qn} can be destroyed using
    627 @code{unreq}.
    628 
    629 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
    630 
    631 @cindex @code{.eabi_attribute} directive, ARM
    632 @item .eabi_attribute @var{tag}, @var{value}
    633 Set the EABI object attribute @var{tag} to @var{value}.
    634 
    635 The @var{tag} is either an attribute number, or one of the following:
    636 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
    637 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
    638 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
    639 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
    640 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
    641 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
    642 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
    643 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
    644 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
    645 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
    646 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
    647 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
    648 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
    649 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
    650 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
    651 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
    652 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
    653 @code{Tag_conformance}, @code{Tag_T2EE_use},
    654 @code{Tag_Virtualization_use}
    655 
    656 The @var{value} is either a @code{number}, @code{"string"}, or
    657 @code{number, "string"} depending on the tag.
    658 
    659 Note - the following legacy values are also accepted by @var{tag}:
    660 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
    661 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
    662 
    663 @cindex @code{.even} directive, ARM
    664 @item .even
    665 This directive aligns to an even-numbered address.
    666 
    667 @cindex @code{.extend} directive, ARM
    668 @cindex @code{.ldouble} directive, ARM
    669 @item .extend  @var{expression} [, @var{expression}]*
    670 @itemx .ldouble  @var{expression} [, @var{expression}]*
    671 These directives write 12byte long double floating-point values to the
    672 output section.  These are not compatible with current ARM processors
    673 or ABIs.
    674 
    675 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
    676 
    677 @anchor{arm_fnend}
    678 @cindex @code{.fnend} directive, ARM
    679 @item .fnend
    680 Marks the end of a function with an unwind table entry.  The unwind index
    681 table entry is created when this directive is processed.
    682 
    683 If no personality routine has been specified then standard personality
    684 routine 0 or 1 will be used, depending on the number of unwind opcodes
    685 required.
    686 
    687 @anchor{arm_fnstart}
    688 @cindex @code{.fnstart} directive, ARM
    689 @item .fnstart
    690 Marks the start of a function with an unwind table entry.
    691 
    692 @cindex @code{.force_thumb} directive, ARM
    693 @item .force_thumb
    694 This directive forces the selection of Thumb instructions, even if the
    695 target processor does not support those instructions
    696 
    697 @cindex @code{.fpu} directive, ARM
    698 @item .fpu @var{name}
    699 Select the floating-point unit to assemble for.  Valid values for @var{name}
    700 are the same as for the @option{-mfpu} commandline option.
    701 
    702 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
    703 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
    704 
    705 @cindex @code{.handlerdata} directive, ARM
    706 @item .handlerdata
    707 Marks the end of the current function, and the start of the exception table
    708 entry for that function.  Anything between this directive and the
    709 @code{.fnend} directive will be added to the exception table entry.
    710 
    711 Must be preceded by a @code{.personality} or @code{.personalityindex}
    712 directive.
    713 
    714 @c IIIIIIIIIIIIIIIIIIIIIIIIII
    715 
    716 @cindex @code{.inst} directive, ARM
    717 @item .inst @var{opcode} [ , @dots{} ]
    718 @itemx .inst.n @var{opcode} [ , @dots{} ]
    719 @itemx .inst.w @var{opcode} [ , @dots{} ]
    720 Generates the instruction corresponding to the numerical value @var{opcode}.
    721 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
    722 specified explicitly, overriding the normal encoding rules.
    723 
    724 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
    725 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
    726 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
    727 
    728 @item .ldouble  @var{expression} [, @var{expression}]*
    729 See @code{.extend}.
    730 
    731 @cindex @code{.ltorg} directive, ARM
    732 @item .ltorg
    733 This directive causes the current contents of the literal pool to be
    734 dumped into the current section (which is assumed to be the .text
    735 section) at the current location (aligned to a word boundary).
    736 @code{GAS} maintains a separate literal pool for each section and each
    737 sub-section.  The @code{.ltorg} directive will only affect the literal
    738 pool of the current section and sub-section.  At the end of assembly
    739 all remaining, un-empty literal pools will automatically be dumped.
    740 
    741 Note - older versions of @code{GAS} would dump the current literal
    742 pool any time a section change occurred.  This is no longer done, since
    743 it prevents accurate control of the placement of literal pools.
    744 
    745 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
    746 
    747 @cindex @code{.movsp} directive, ARM
    748 @item .movsp @var{reg} [, #@var{offset}]
    749 Tell the unwinder that @var{reg} contains an offset from the current
    750 stack pointer.  If @var{offset} is not specified then it is assumed to be
    751 zero.
    752 
    753 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
    754 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
    755 
    756 @cindex @code{.object_arch} directive, ARM
    757 @item .object_arch @var{name}
    758 Override the architecture recorded in the EABI object attribute section.
    759 Valid values for @var{name} are the same as for the @code{.arch} directive.
    760 Typically this is useful when code uses runtime detection of CPU features.
    761 
    762 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
    763 
    764 @cindex @code{.packed} directive, ARM
    765 @item .packed  @var{expression} [, @var{expression}]*
    766 This directive writes 12-byte packed floating-point values to the
    767 output section.  These are not compatible with current ARM processors
    768 or ABIs.
    769 
    770 @anchor{arm_pad}
    771 @cindex @code{.pad} directive, ARM
    772 @item .pad #@var{count}
    773 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
    774 A positive value indicates the function prologue allocated stack space by
    775 decrementing the stack pointer.
    776 
    777 @cindex @code{.personality} directive, ARM
    778 @item .personality @var{name}
    779 Sets the personality routine for the current function to @var{name}.
    780 
    781 @cindex @code{.personalityindex} directive, ARM
    782 @item .personalityindex @var{index}
    783 Sets the personality routine for the current function to the EABI standard
    784 routine number @var{index}
    785 
    786 @cindex @code{.pool} directive, ARM
    787 @item .pool
    788 This is a synonym for .ltorg.
    789 
    790 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
    791 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
    792 
    793 @cindex @code{.req} directive, ARM
    794 @item @var{name} .req @var{register name}
    795 This creates an alias for @var{register name} called @var{name}.  For
    796 example:
    797 
    798 @smallexample
    799         foo .req r0
    800 @end smallexample
    801 
    802 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
    803 
    804 @anchor{arm_save}
    805 @cindex @code{.save} directive, ARM
    806 @item .save @var{reglist}
    807 Generate unwinder annotations to restore the registers in @var{reglist}.
    808 The format of @var{reglist} is the same as the corresponding store-multiple
    809 instruction.
    810 
    811 @smallexample
    812 @exdent @emph{core registers}
    813   .save @{r4, r5, r6, lr@}
    814   stmfd sp!, @{r4, r5, r6, lr@}
    815 @exdent @emph{FPA registers}
    816   .save f4, 2
    817   sfmfd f4, 2, [sp]!
    818 @exdent @emph{VFP registers}
    819   .save @{d8, d9, d10@}
    820   fstmdx sp!, @{d8, d9, d10@}
    821 @exdent @emph{iWMMXt registers}
    822   .save @{wr10, wr11@}
    823   wstrd wr11, [sp, #-8]!
    824   wstrd wr10, [sp, #-8]!
    825 or
    826   .save wr11
    827   wstrd wr11, [sp, #-8]!
    828   .save wr10
    829   wstrd wr10, [sp, #-8]!
    830 @end smallexample
    831 
    832 @anchor{arm_setfp}
    833 @cindex @code{.setfp} directive, ARM
    834 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
    835 Make all unwinder annotations relative to a frame pointer.  Without this
    836 the unwinder will use offsets from the stack pointer.
    837 
    838 The syntax of this directive is the same as the @code{add} or @code{mov}
    839 instruction used to set the frame pointer.  @var{spreg} must be either
    840 @code{sp} or mentioned in a previous @code{.movsp} directive.
    841 
    842 @smallexample
    843 .movsp ip
    844 mov ip, sp
    845 @dots{}
    846 .setfp fp, ip, #4
    847 add fp, ip, #4
    848 @end smallexample
    849 
    850 @cindex @code{.secrel32} directive, ARM
    851 @item .secrel32 @var{expression} [, @var{expression}]*
    852 This directive emits relocations that evaluate to the section-relative
    853 offset of each expression's symbol.  This directive is only supported
    854 for PE targets.
    855 
    856 @cindex @code{.syntax} directive, ARM
    857 @item .syntax [@code{unified} | @code{divided}]
    858 This directive sets the Instruction Set Syntax as described in the
    859 @ref{ARM-Instruction-Set} section.
    860 
    861 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
    862 
    863 @cindex @code{.thumb} directive, ARM
    864 @item .thumb
    865 This performs the same action as @var{.code 16}.
    866 
    867 @cindex @code{.thumb_func} directive, ARM
    868 @item .thumb_func
    869 This directive specifies that the following symbol is the name of a
    870 Thumb encoded function.  This information is necessary in order to allow
    871 the assembler and linker to generate correct code for interworking
    872 between Arm and Thumb instructions and should be used even if
    873 interworking is not going to be performed.  The presence of this
    874 directive also implies @code{.thumb}
    875 
    876 This directive is not neccessary when generating EABI objects.  On these
    877 targets the encoding is implicit when generating Thumb code.
    878 
    879 @cindex @code{.thumb_set} directive, ARM
    880 @item .thumb_set
    881 This performs the equivalent of a @code{.set} directive in that it
    882 creates a symbol which is an alias for another symbol (possibly not yet
    883 defined).  This directive also has the added property in that it marks
    884 the aliased symbol as being a thumb function entry point, in the same
    885 way that the @code{.thumb_func} directive does.
    886 
    887 @cindex @code{.tlsdescseq} directive, ARM
    888 @item .tlsdescseq @var{tls-variable}
    889 This directive is used to annotate parts of an inlined TLS descriptor
    890 trampoline.  Normally the trampoline is provided by the linker, and
    891 this directive is not needed.
    892 
    893 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
    894 
    895 @cindex @code{.unreq} directive, ARM
    896 @item .unreq @var{alias-name}
    897 This undefines a register alias which was previously defined using the
    898 @code{req}, @code{dn} or @code{qn} directives.  For example:
    899 
    900 @smallexample
    901         foo .req r0
    902         .unreq foo
    903 @end smallexample
    904 
    905 An error occurs if the name is undefined.  Note - this pseudo op can
    906 be used to delete builtin in register name aliases (eg 'r0').  This
    907 should only be done if it is really necessary.
    908 
    909 @cindex @code{.unwind_raw} directive, ARM
    910 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
    911 Insert one of more arbitary unwind opcode bytes, which are known to adjust
    912 the stack pointer by @var{offset} bytes.
    913 
    914 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
    915 @code{.save @{r0@}}
    916 
    917 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
    918 
    919 @cindex @code{.vsave} directive, ARM
    920 @item .vsave @var{vfp-reglist}
    921 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
    922 using FLDMD.  Also works for VFPv3 registers
    923 that are to be restored using VLDM.
    924 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
    925 instruction.
    926 
    927 @smallexample
    928 @exdent @emph{VFP registers}
    929   .vsave @{d8, d9, d10@}
    930   fstmdd sp!, @{d8, d9, d10@}
    931 @exdent @emph{VFPv3 registers}
    932   .vsave @{d15, d16, d17@}
    933   vstm sp!, @{d15, d16, d17@}
    934 @end smallexample
    935 
    936 Since FLDMX and FSTMX are now deprecated, this directive should be
    937 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
    938 
    939 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
    940 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
    941 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
    942 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
    943 
    944 @end table
    945 
    946 @node ARM Opcodes
    947 @section Opcodes
    948 
    949 @cindex ARM opcodes
    950 @cindex opcodes for ARM
    951 @code{@value{AS}} implements all the standard ARM opcodes.  It also
    952 implements several pseudo opcodes, including several synthetic load
    953 instructions.
    954 
    955 @table @code
    956 
    957 @cindex @code{NOP} pseudo op, ARM
    958 @item NOP
    959 @smallexample
    960   nop
    961 @end smallexample
    962 
    963 This pseudo op will always evaluate to a legal ARM instruction that does
    964 nothing.  Currently it will evaluate to MOV r0, r0.
    965 
    966 @cindex @code{LDR reg,=<label>} pseudo op, ARM
    967 @item LDR
    968 @smallexample
    969   ldr <register> , = <expression>
    970 @end smallexample
    971 
    972 If expression evaluates to a numeric constant then a MOV or MVN
    973 instruction will be used in place of the LDR instruction, if the
    974 constant can be generated by either of these instructions.  Otherwise
    975 the constant will be placed into the nearest literal pool (if it not
    976 already there) and a PC relative LDR instruction will be generated.
    977 
    978 @cindex @code{ADR reg,<label>} pseudo op, ARM
    979 @item ADR
    980 @smallexample
    981   adr <register> <label>
    982 @end smallexample
    983 
    984 This instruction will load the address of @var{label} into the indicated
    985 register.  The instruction will evaluate to a PC relative ADD or SUB
    986 instruction depending upon where the label is located.  If the label is
    987 out of range, or if it is not defined in the same file (and section) as
    988 the ADR instruction, then an error will be generated.  This instruction
    989 will not make use of the literal pool.
    990 
    991 @cindex @code{ADRL reg,<label>} pseudo op, ARM
    992 @item ADRL
    993 @smallexample
    994   adrl <register> <label>
    995 @end smallexample
    996 
    997 This instruction will load the address of @var{label} into the indicated
    998 register.  The instruction will evaluate to one or two PC relative ADD
    999 or SUB instructions depending upon where the label is located.  If a
   1000 second instruction is not needed a NOP instruction will be generated in
   1001 its place, so that this instruction is always 8 bytes long.
   1002 
   1003 If the label is out of range, or if it is not defined in the same file
   1004 (and section) as the ADRL instruction, then an error will be generated.
   1005 This instruction will not make use of the literal pool.
   1006 
   1007 @end table
   1008 
   1009 For information on the ARM or Thumb instruction sets, see @cite{ARM
   1010 Software Development Toolkit Reference Manual}, Advanced RISC Machines
   1011 Ltd.
   1012 
   1013 @node ARM Mapping Symbols
   1014 @section Mapping Symbols
   1015 
   1016 The ARM ELF specification requires that special symbols be inserted
   1017 into object files to mark certain features:
   1018 
   1019 @table @code
   1020 
   1021 @cindex @code{$a}
   1022 @item $a
   1023 At the start of a region of code containing ARM instructions.
   1024 
   1025 @cindex @code{$t}
   1026 @item $t
   1027 At the start of a region of code containing THUMB instructions.
   1028 
   1029 @cindex @code{$d}
   1030 @item $d
   1031 At the start of a region of data.
   1032 
   1033 @end table
   1034 
   1035 The assembler will automatically insert these symbols for you - there
   1036 is no need to code them yourself.  Support for tagging symbols ($b,
   1037 $f, $p and $m) which is also mentioned in the current ARM ELF
   1038 specification is not implemented.  This is because they have been
   1039 dropped from the new EABI and so tools cannot rely upon their
   1040 presence.
   1041 
   1042 @node ARM Unwinding Tutorial
   1043 @section Unwinding
   1044 
   1045 The ABI for the ARM Architecture specifies a standard format for
   1046 exception unwind information.  This information is used when an
   1047 exception is thrown to determine where control should be transferred.
   1048 In particular, the unwind information is used to determine which
   1049 function called the function that threw the exception, and which
   1050 function called that one, and so forth.  This information is also used
   1051 to restore the values of callee-saved registers in the function
   1052 catching the exception.
   1053 
   1054 If you are writing functions in assembly code, and those functions
   1055 call other functions that throw exceptions, you must use assembly
   1056 pseudo ops to ensure that appropriate exception unwind information is
   1057 generated.  Otherwise, if one of the functions called by your assembly
   1058 code throws an exception, the run-time library will be unable to
   1059 unwind the stack through your assembly code and your program will not
   1060 behave correctly.
   1061 
   1062 To illustrate the use of these pseudo ops, we will examine the code
   1063 that G++ generates for the following C++ input:
   1064 
   1065 @verbatim
   1066 void callee (int *);
   1067 
   1068 int
   1069 caller ()
   1070 {
   1071   int i;
   1072   callee (&i);
   1073   return i;
   1074 }
   1075 @end verbatim
   1076 
   1077 This example does not show how to throw or catch an exception from
   1078 assembly code.  That is a much more complex operation and should
   1079 always be done in a high-level language, such as C++, that directly
   1080 supports exceptions.
   1081 
   1082 The code generated by one particular version of G++ when compiling the
   1083 example above is:
   1084 
   1085 @verbatim
   1086 _Z6callerv:
   1087 	.fnstart
   1088 .LFB2:
   1089 	@ Function supports interworking.
   1090 	@ args = 0, pretend = 0, frame = 8
   1091 	@ frame_needed = 1, uses_anonymous_args = 0
   1092 	stmfd	sp!, {fp, lr}
   1093 	.save {fp, lr}
   1094 .LCFI0:
   1095 	.setfp fp, sp, #4
   1096 	add	fp, sp, #4
   1097 .LCFI1:
   1098 	.pad #8
   1099 	sub	sp, sp, #8
   1100 .LCFI2:
   1101 	sub	r3, fp, #8
   1102 	mov	r0, r3
   1103 	bl	_Z6calleePi
   1104 	ldr	r3, [fp, #-8]
   1105 	mov	r0, r3
   1106 	sub	sp, fp, #4
   1107 	ldmfd	sp!, {fp, lr}
   1108 	bx	lr
   1109 .LFE2:
   1110 	.fnend
   1111 @end verbatim
   1112 
   1113 Of course, the sequence of instructions varies based on the options
   1114 you pass to GCC and on the version of GCC in use.  The exact
   1115 instructions are not important since we are focusing on the pseudo ops
   1116 that are used to generate unwind information.
   1117 
   1118 An important assumption made by the unwinder is that the stack frame
   1119 does not change during the body of the function.  In particular, since
   1120 we assume that the assembly code does not itself throw an exception,
   1121 the only point where an exception can be thrown is from a call, such
   1122 as the @code{bl} instruction above.  At each call site, the same saved
   1123 registers (including @code{lr}, which indicates the return address)
   1124 must be located in the same locations relative to the frame pointer.
   1125 
   1126 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
   1127 op appears immediately before the first instruction of the function
   1128 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
   1129 op appears immediately after the last instruction of the function.
   1130 These pseudo ops specify the range of the function.
   1131 
   1132 Only the order of the other pseudos ops (e.g., @code{.setfp} or
   1133 @code{.pad}) matters; their exact locations are irrelevant.  In the
   1134 example above, the compiler emits the pseudo ops with particular
   1135 instructions.  That makes it easier to understand the code, but it is
   1136 not required for correctness.  It would work just as well to emit all
   1137 of the pseudo ops other than @code{.fnend} in the same order, but
   1138 immediately after @code{.fnstart}.
   1139 
   1140 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
   1141 indicates registers that have been saved to the stack so that they can
   1142 be restored before the function returns.  The argument to the
   1143 @code{.save} pseudo op is a list of registers to save.  If a register
   1144 is ``callee-saved'' (as specified by the ABI) and is modified by the
   1145 function you are writing, then your code must save the value before it
   1146 is modified and restore the original value before the function
   1147 returns.  If an exception is thrown, the run-time library restores the
   1148 values of these registers from their locations on the stack before
   1149 returning control to the exception handler.  (Of course, if an
   1150 exception is not thrown, the function that contains the @code{.save}
   1151 pseudo op restores these registers in the function epilogue, as is
   1152 done with the @code{ldmfd} instruction above.)
   1153 
   1154 You do not have to save callee-saved registers at the very beginning
   1155 of the function and you do not need to use the @code{.save} pseudo op
   1156 immediately following the point at which the registers are saved.
   1157 However, if you modify a callee-saved register, you must save it on
   1158 the stack before modifying it and before calling any functions which
   1159 might throw an exception.  And, you must use the @code{.save} pseudo
   1160 op to indicate that you have done so.
   1161 
   1162 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
   1163 modification of the stack pointer that does not save any registers.
   1164 The argument is the number of bytes (in decimal) that are subtracted
   1165 from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
   1166 subtracting from the stack pointer increases the size of the stack.)
   1167 
   1168 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
   1169 indicates the register that contains the frame pointer.  The first
   1170 argument is the register that is set, which is typically @code{fp}.
   1171 The second argument indicates the register from which the frame
   1172 pointer takes its value.  The third argument, if present, is the value
   1173 (in decimal) added to the register specified by the second argument to
   1174 compute the value of the frame pointer.  You should not modify the
   1175 frame pointer in the body of the function.
   1176 
   1177 If you do not use a frame pointer, then you should not use the
   1178 @code{.setfp} pseudo op.  If you do not use a frame pointer, then you
   1179 should avoid modifying the stack pointer outside of the function
   1180 prologue.  Otherwise, the run-time library will be unable to find
   1181 saved registers when it is unwinding the stack.
   1182 
   1183 The pseudo ops described above are sufficient for writing assembly
   1184 code that calls functions which may throw exceptions.  If you need to
   1185 know more about the object-file format used to represent unwind
   1186 information, you may consult the @cite{Exception Handling ABI for the
   1187 ARM Architecture} available from @uref{http://infocenter.arm.com}.
   1188