Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs loop invariant code motion on machine instructions. We
     11 // attempt to remove as much code from the body of a loop as possible.
     12 //
     13 // This pass is not intended to be a replacement or a complete alternative
     14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
     15 // constructs that are not exposed before lowering and instruction selection.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/MachineDominators.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/CodeGen/TargetSchedule.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetLowering.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "machine-licm"
     42 
     43 static cl::opt<bool>
     44 AvoidSpeculation("avoid-speculation",
     45                  cl::desc("MachineLICM should avoid speculation"),
     46                  cl::init(true), cl::Hidden);
     47 
     48 static cl::opt<bool>
     49 HoistCheapInsts("hoist-cheap-insts",
     50                 cl::desc("MachineLICM should hoist even cheap instructions"),
     51                 cl::init(false), cl::Hidden);
     52 
     53 static cl::opt<bool>
     54 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
     55                        cl::desc("MachineLICM should sink instructions into "
     56                                 "loops to avoid register spills"),
     57                        cl::init(false), cl::Hidden);
     58 
     59 STATISTIC(NumHoisted,
     60           "Number of machine instructions hoisted out of loops");
     61 STATISTIC(NumLowRP,
     62           "Number of instructions hoisted in low reg pressure situation");
     63 STATISTIC(NumHighLatency,
     64           "Number of high latency instructions hoisted");
     65 STATISTIC(NumCSEed,
     66           "Number of hoisted machine instructions CSEed");
     67 STATISTIC(NumPostRAHoisted,
     68           "Number of machine instructions hoisted out of loops post regalloc");
     69 
     70 namespace {
     71   class MachineLICM : public MachineFunctionPass {
     72     const TargetInstrInfo *TII;
     73     const TargetLoweringBase *TLI;
     74     const TargetRegisterInfo *TRI;
     75     const MachineFrameInfo *MFI;
     76     MachineRegisterInfo *MRI;
     77     TargetSchedModel SchedModel;
     78     bool PreRegAlloc;
     79 
     80     // Various analyses that we use...
     81     AliasAnalysis        *AA;      // Alias analysis info.
     82     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
     83     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
     84 
     85     // State that is updated as we process loops
     86     bool         Changed;          // True if a loop is changed.
     87     bool         FirstInLoop;      // True if it's the first LICM in the loop.
     88     MachineLoop *CurLoop;          // The current loop we are working on.
     89     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
     90 
     91     // Exit blocks for CurLoop.
     92     SmallVector<MachineBasicBlock*, 8> ExitBlocks;
     93 
     94     bool isExitBlock(const MachineBasicBlock *MBB) const {
     95       return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
     96         ExitBlocks.end();
     97     }
     98 
     99     // Track 'estimated' register pressure.
    100     SmallSet<unsigned, 32> RegSeen;
    101     SmallVector<unsigned, 8> RegPressure;
    102 
    103     // Register pressure "limit" per register pressure set. If the pressure
    104     // is higher than the limit, then it's considered high.
    105     SmallVector<unsigned, 8> RegLimit;
    106 
    107     // Register pressure on path leading from loop preheader to current BB.
    108     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
    109 
    110     // For each opcode, keep a list of potential CSE instructions.
    111     DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
    112 
    113     enum {
    114       SpeculateFalse   = 0,
    115       SpeculateTrue    = 1,
    116       SpeculateUnknown = 2
    117     };
    118 
    119     // If a MBB does not dominate loop exiting blocks then it may not safe
    120     // to hoist loads from this block.
    121     // Tri-state: 0 - false, 1 - true, 2 - unknown
    122     unsigned SpeculationState;
    123 
    124   public:
    125     static char ID; // Pass identification, replacement for typeid
    126     MachineLICM() :
    127       MachineFunctionPass(ID), PreRegAlloc(true) {
    128         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    129       }
    130 
    131     explicit MachineLICM(bool PreRA) :
    132       MachineFunctionPass(ID), PreRegAlloc(PreRA) {
    133         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    134       }
    135 
    136     bool runOnMachineFunction(MachineFunction &MF) override;
    137 
    138     void getAnalysisUsage(AnalysisUsage &AU) const override {
    139       AU.addRequired<MachineLoopInfo>();
    140       AU.addRequired<MachineDominatorTree>();
    141       AU.addRequired<AAResultsWrapperPass>();
    142       AU.addPreserved<MachineLoopInfo>();
    143       AU.addPreserved<MachineDominatorTree>();
    144       MachineFunctionPass::getAnalysisUsage(AU);
    145     }
    146 
    147     void releaseMemory() override {
    148       RegSeen.clear();
    149       RegPressure.clear();
    150       RegLimit.clear();
    151       BackTrace.clear();
    152       CSEMap.clear();
    153     }
    154 
    155   private:
    156     /// Keep track of information about hoisting candidates.
    157     struct CandidateInfo {
    158       MachineInstr *MI;
    159       unsigned      Def;
    160       int           FI;
    161       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
    162         : MI(mi), Def(def), FI(fi) {}
    163     };
    164 
    165     void HoistRegionPostRA();
    166 
    167     void HoistPostRA(MachineInstr *MI, unsigned Def);
    168 
    169     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
    170                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
    171                    SmallVectorImpl<CandidateInfo> &Candidates);
    172 
    173     void AddToLiveIns(unsigned Reg);
    174 
    175     bool IsLICMCandidate(MachineInstr &I);
    176 
    177     bool IsLoopInvariantInst(MachineInstr &I);
    178 
    179     bool HasLoopPHIUse(const MachineInstr *MI) const;
    180 
    181     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
    182                                unsigned Reg) const;
    183 
    184     bool IsCheapInstruction(MachineInstr &MI) const;
    185 
    186     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
    187                                  bool Cheap);
    188 
    189     void UpdateBackTraceRegPressure(const MachineInstr *MI);
    190 
    191     bool IsProfitableToHoist(MachineInstr &MI);
    192 
    193     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
    194 
    195     void EnterScope(MachineBasicBlock *MBB);
    196 
    197     void ExitScope(MachineBasicBlock *MBB);
    198 
    199     void ExitScopeIfDone(
    200         MachineDomTreeNode *Node,
    201         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
    202         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
    203 
    204     void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
    205 
    206     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
    207 
    208     void SinkIntoLoop();
    209 
    210     void InitRegPressure(MachineBasicBlock *BB);
    211 
    212     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
    213                                              bool ConsiderSeen,
    214                                              bool ConsiderUnseenAsDef);
    215 
    216     void UpdateRegPressure(const MachineInstr *MI,
    217                            bool ConsiderUnseenAsDef = false);
    218 
    219     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
    220 
    221     const MachineInstr *
    222     LookForDuplicate(const MachineInstr *MI,
    223                      std::vector<const MachineInstr *> &PrevMIs);
    224 
    225     bool EliminateCSE(
    226         MachineInstr *MI,
    227         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
    228 
    229     bool MayCSE(MachineInstr *MI);
    230 
    231     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
    232 
    233     void InitCSEMap(MachineBasicBlock *BB);
    234 
    235     MachineBasicBlock *getCurPreheader();
    236   };
    237 } // end anonymous namespace
    238 
    239 char MachineLICM::ID = 0;
    240 char &llvm::MachineLICMID = MachineLICM::ID;
    241 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
    242                 "Machine Loop Invariant Code Motion", false, false)
    243 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    244 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    245 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    246 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
    247                 "Machine Loop Invariant Code Motion", false, false)
    248 
    249 /// Test if the given loop is the outer-most loop that has a unique predecessor.
    250 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
    251   // Check whether this loop even has a unique predecessor.
    252   if (!CurLoop->getLoopPredecessor())
    253     return false;
    254   // Ok, now check to see if any of its outer loops do.
    255   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    256     if (L->getLoopPredecessor())
    257       return false;
    258   // None of them did, so this is the outermost with a unique predecessor.
    259   return true;
    260 }
    261 
    262 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
    263   if (skipOptnoneFunction(*MF.getFunction()))
    264     return false;
    265 
    266   Changed = FirstInLoop = false;
    267   const TargetSubtargetInfo &ST = MF.getSubtarget();
    268   TII = ST.getInstrInfo();
    269   TLI = ST.getTargetLowering();
    270   TRI = ST.getRegisterInfo();
    271   MFI = MF.getFrameInfo();
    272   MRI = &MF.getRegInfo();
    273   SchedModel.init(ST.getSchedModel(), &ST, TII);
    274 
    275   PreRegAlloc = MRI->isSSA();
    276 
    277   if (PreRegAlloc)
    278     DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
    279   else
    280     DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
    281   DEBUG(dbgs() << MF.getName() << " ********\n");
    282 
    283   if (PreRegAlloc) {
    284     // Estimate register pressure during pre-regalloc pass.
    285     unsigned NumRPS = TRI->getNumRegPressureSets();
    286     RegPressure.resize(NumRPS);
    287     std::fill(RegPressure.begin(), RegPressure.end(), 0);
    288     RegLimit.resize(NumRPS);
    289     for (unsigned i = 0, e = NumRPS; i != e; ++i)
    290       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
    291   }
    292 
    293   // Get our Loop information...
    294   MLI = &getAnalysis<MachineLoopInfo>();
    295   DT  = &getAnalysis<MachineDominatorTree>();
    296   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    297 
    298   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
    299   while (!Worklist.empty()) {
    300     CurLoop = Worklist.pop_back_val();
    301     CurPreheader = nullptr;
    302     ExitBlocks.clear();
    303 
    304     // If this is done before regalloc, only visit outer-most preheader-sporting
    305     // loops.
    306     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
    307       Worklist.append(CurLoop->begin(), CurLoop->end());
    308       continue;
    309     }
    310 
    311     CurLoop->getExitBlocks(ExitBlocks);
    312 
    313     if (!PreRegAlloc)
    314       HoistRegionPostRA();
    315     else {
    316       // CSEMap is initialized for loop header when the first instruction is
    317       // being hoisted.
    318       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
    319       FirstInLoop = true;
    320       HoistOutOfLoop(N);
    321       CSEMap.clear();
    322 
    323       if (SinkInstsToAvoidSpills)
    324         SinkIntoLoop();
    325     }
    326   }
    327 
    328   return Changed;
    329 }
    330 
    331 /// Return true if instruction stores to the specified frame.
    332 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
    333   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    334          oe = MI->memoperands_end(); o != oe; ++o) {
    335     if (!(*o)->isStore() || !(*o)->getPseudoValue())
    336       continue;
    337     if (const FixedStackPseudoSourceValue *Value =
    338         dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) {
    339       if (Value->getFrameIndex() == FI)
    340         return true;
    341     }
    342   }
    343   return false;
    344 }
    345 
    346 /// Examine the instruction for potentai LICM candidate. Also
    347 /// gather register def and frame object update information.
    348 void MachineLICM::ProcessMI(MachineInstr *MI,
    349                             BitVector &PhysRegDefs,
    350                             BitVector &PhysRegClobbers,
    351                             SmallSet<int, 32> &StoredFIs,
    352                             SmallVectorImpl<CandidateInfo> &Candidates) {
    353   bool RuledOut = false;
    354   bool HasNonInvariantUse = false;
    355   unsigned Def = 0;
    356   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    357     const MachineOperand &MO = MI->getOperand(i);
    358     if (MO.isFI()) {
    359       // Remember if the instruction stores to the frame index.
    360       int FI = MO.getIndex();
    361       if (!StoredFIs.count(FI) &&
    362           MFI->isSpillSlotObjectIndex(FI) &&
    363           InstructionStoresToFI(MI, FI))
    364         StoredFIs.insert(FI);
    365       HasNonInvariantUse = true;
    366       continue;
    367     }
    368 
    369     // We can't hoist an instruction defining a physreg that is clobbered in
    370     // the loop.
    371     if (MO.isRegMask()) {
    372       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
    373       continue;
    374     }
    375 
    376     if (!MO.isReg())
    377       continue;
    378     unsigned Reg = MO.getReg();
    379     if (!Reg)
    380       continue;
    381     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
    382            "Not expecting virtual register!");
    383 
    384     if (!MO.isDef()) {
    385       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
    386         // If it's using a non-loop-invariant register, then it's obviously not
    387         // safe to hoist.
    388         HasNonInvariantUse = true;
    389       continue;
    390     }
    391 
    392     if (MO.isImplicit()) {
    393       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    394         PhysRegClobbers.set(*AI);
    395       if (!MO.isDead())
    396         // Non-dead implicit def? This cannot be hoisted.
    397         RuledOut = true;
    398       // No need to check if a dead implicit def is also defined by
    399       // another instruction.
    400       continue;
    401     }
    402 
    403     // FIXME: For now, avoid instructions with multiple defs, unless
    404     // it's a dead implicit def.
    405     if (Def)
    406       RuledOut = true;
    407     else
    408       Def = Reg;
    409 
    410     // If we have already seen another instruction that defines the same
    411     // register, then this is not safe.  Two defs is indicated by setting a
    412     // PhysRegClobbers bit.
    413     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
    414       if (PhysRegDefs.test(*AS))
    415         PhysRegClobbers.set(*AS);
    416       PhysRegDefs.set(*AS);
    417     }
    418     if (PhysRegClobbers.test(Reg))
    419       // MI defined register is seen defined by another instruction in
    420       // the loop, it cannot be a LICM candidate.
    421       RuledOut = true;
    422   }
    423 
    424   // Only consider reloads for now and remats which do not have register
    425   // operands. FIXME: Consider unfold load folding instructions.
    426   if (Def && !RuledOut) {
    427     int FI = INT_MIN;
    428     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
    429         (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
    430       Candidates.push_back(CandidateInfo(MI, Def, FI));
    431   }
    432 }
    433 
    434 /// Walk the specified region of the CFG and hoist loop invariants out to the
    435 /// preheader.
    436 void MachineLICM::HoistRegionPostRA() {
    437   MachineBasicBlock *Preheader = getCurPreheader();
    438   if (!Preheader)
    439     return;
    440 
    441   unsigned NumRegs = TRI->getNumRegs();
    442   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
    443   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
    444 
    445   SmallVector<CandidateInfo, 32> Candidates;
    446   SmallSet<int, 32> StoredFIs;
    447 
    448   // Walk the entire region, count number of defs for each register, and
    449   // collect potential LICM candidates.
    450   const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
    451   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    452     MachineBasicBlock *BB = Blocks[i];
    453 
    454     // If the header of the loop containing this basic block is a landing pad,
    455     // then don't try to hoist instructions out of this loop.
    456     const MachineLoop *ML = MLI->getLoopFor(BB);
    457     if (ML && ML->getHeader()->isEHPad()) continue;
    458 
    459     // Conservatively treat live-in's as an external def.
    460     // FIXME: That means a reload that're reused in successor block(s) will not
    461     // be LICM'ed.
    462     for (const auto &LI : BB->liveins()) {
    463       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
    464         PhysRegDefs.set(*AI);
    465     }
    466 
    467     SpeculationState = SpeculateUnknown;
    468     for (MachineBasicBlock::iterator
    469            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    470       MachineInstr *MI = &*MII;
    471       ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
    472     }
    473   }
    474 
    475   // Gather the registers read / clobbered by the terminator.
    476   BitVector TermRegs(NumRegs);
    477   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
    478   if (TI != Preheader->end()) {
    479     for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
    480       const MachineOperand &MO = TI->getOperand(i);
    481       if (!MO.isReg())
    482         continue;
    483       unsigned Reg = MO.getReg();
    484       if (!Reg)
    485         continue;
    486       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    487         TermRegs.set(*AI);
    488     }
    489   }
    490 
    491   // Now evaluate whether the potential candidates qualify.
    492   // 1. Check if the candidate defined register is defined by another
    493   //    instruction in the loop.
    494   // 2. If the candidate is a load from stack slot (always true for now),
    495   //    check if the slot is stored anywhere in the loop.
    496   // 3. Make sure candidate def should not clobber
    497   //    registers read by the terminator. Similarly its def should not be
    498   //    clobbered by the terminator.
    499   for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
    500     if (Candidates[i].FI != INT_MIN &&
    501         StoredFIs.count(Candidates[i].FI))
    502       continue;
    503 
    504     unsigned Def = Candidates[i].Def;
    505     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
    506       bool Safe = true;
    507       MachineInstr *MI = Candidates[i].MI;
    508       for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
    509         const MachineOperand &MO = MI->getOperand(j);
    510         if (!MO.isReg() || MO.isDef() || !MO.getReg())
    511           continue;
    512         unsigned Reg = MO.getReg();
    513         if (PhysRegDefs.test(Reg) ||
    514             PhysRegClobbers.test(Reg)) {
    515           // If it's using a non-loop-invariant register, then it's obviously
    516           // not safe to hoist.
    517           Safe = false;
    518           break;
    519         }
    520       }
    521       if (Safe)
    522         HoistPostRA(MI, Candidates[i].Def);
    523     }
    524   }
    525 }
    526 
    527 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
    528 /// sure it is not killed by any instructions in the loop.
    529 void MachineLICM::AddToLiveIns(unsigned Reg) {
    530   const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
    531   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    532     MachineBasicBlock *BB = Blocks[i];
    533     if (!BB->isLiveIn(Reg))
    534       BB->addLiveIn(Reg);
    535     for (MachineBasicBlock::iterator
    536            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    537       MachineInstr *MI = &*MII;
    538       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    539         MachineOperand &MO = MI->getOperand(i);
    540         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
    541         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
    542           MO.setIsKill(false);
    543       }
    544     }
    545   }
    546 }
    547 
    548 /// When an instruction is found to only use loop invariant operands that is
    549 /// safe to hoist, this instruction is called to do the dirty work.
    550 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
    551   MachineBasicBlock *Preheader = getCurPreheader();
    552 
    553   // Now move the instructions to the predecessor, inserting it before any
    554   // terminator instructions.
    555   DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
    556                << MI->getParent()->getNumber() << ": " << *MI);
    557 
    558   // Splice the instruction to the preheader.
    559   MachineBasicBlock *MBB = MI->getParent();
    560   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
    561 
    562   // Add register to livein list to all the BBs in the current loop since a
    563   // loop invariant must be kept live throughout the whole loop. This is
    564   // important to ensure later passes do not scavenge the def register.
    565   AddToLiveIns(Def);
    566 
    567   ++NumPostRAHoisted;
    568   Changed = true;
    569 }
    570 
    571 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
    572 /// may not be safe to hoist.
    573 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
    574   if (SpeculationState != SpeculateUnknown)
    575     return SpeculationState == SpeculateFalse;
    576 
    577   if (BB != CurLoop->getHeader()) {
    578     // Check loop exiting blocks.
    579     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
    580     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
    581     for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
    582       if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
    583         SpeculationState = SpeculateTrue;
    584         return false;
    585       }
    586   }
    587 
    588   SpeculationState = SpeculateFalse;
    589   return true;
    590 }
    591 
    592 void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
    593   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    594 
    595   // Remember livein register pressure.
    596   BackTrace.push_back(RegPressure);
    597 }
    598 
    599 void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
    600   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    601   BackTrace.pop_back();
    602 }
    603 
    604 /// Destroy scope for the MBB that corresponds to the given dominator tree node
    605 /// if its a leaf or all of its children are done. Walk up the dominator tree to
    606 /// destroy ancestors which are now done.
    607 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
    608                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
    609                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
    610   if (OpenChildren[Node])
    611     return;
    612 
    613   // Pop scope.
    614   ExitScope(Node->getBlock());
    615 
    616   // Now traverse upwards to pop ancestors whose offsprings are all done.
    617   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
    618     unsigned Left = --OpenChildren[Parent];
    619     if (Left != 0)
    620       break;
    621     ExitScope(Parent->getBlock());
    622     Node = Parent;
    623   }
    624 }
    625 
    626 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
    627 /// specified header block, and that are in the current loop) in depth first
    628 /// order w.r.t the DominatorTree. This allows us to visit definitions before
    629 /// uses, allowing us to hoist a loop body in one pass without iteration.
    630 ///
    631 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
    632   MachineBasicBlock *Preheader = getCurPreheader();
    633   if (!Preheader)
    634     return;
    635 
    636   SmallVector<MachineDomTreeNode*, 32> Scopes;
    637   SmallVector<MachineDomTreeNode*, 8> WorkList;
    638   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
    639   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    640 
    641   // Perform a DFS walk to determine the order of visit.
    642   WorkList.push_back(HeaderN);
    643   while (!WorkList.empty()) {
    644     MachineDomTreeNode *Node = WorkList.pop_back_val();
    645     assert(Node && "Null dominator tree node?");
    646     MachineBasicBlock *BB = Node->getBlock();
    647 
    648     // If the header of the loop containing this basic block is a landing pad,
    649     // then don't try to hoist instructions out of this loop.
    650     const MachineLoop *ML = MLI->getLoopFor(BB);
    651     if (ML && ML->getHeader()->isEHPad())
    652       continue;
    653 
    654     // If this subregion is not in the top level loop at all, exit.
    655     if (!CurLoop->contains(BB))
    656       continue;
    657 
    658     Scopes.push_back(Node);
    659     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    660     unsigned NumChildren = Children.size();
    661 
    662     // Don't hoist things out of a large switch statement.  This often causes
    663     // code to be hoisted that wasn't going to be executed, and increases
    664     // register pressure in a situation where it's likely to matter.
    665     if (BB->succ_size() >= 25)
    666       NumChildren = 0;
    667 
    668     OpenChildren[Node] = NumChildren;
    669     // Add children in reverse order as then the next popped worklist node is
    670     // the first child of this node.  This means we ultimately traverse the
    671     // DOM tree in exactly the same order as if we'd recursed.
    672     for (int i = (int)NumChildren-1; i >= 0; --i) {
    673       MachineDomTreeNode *Child = Children[i];
    674       ParentMap[Child] = Node;
    675       WorkList.push_back(Child);
    676     }
    677   }
    678 
    679   if (Scopes.size() == 0)
    680     return;
    681 
    682   // Compute registers which are livein into the loop headers.
    683   RegSeen.clear();
    684   BackTrace.clear();
    685   InitRegPressure(Preheader);
    686 
    687   // Now perform LICM.
    688   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    689     MachineDomTreeNode *Node = Scopes[i];
    690     MachineBasicBlock *MBB = Node->getBlock();
    691 
    692     EnterScope(MBB);
    693 
    694     // Process the block
    695     SpeculationState = SpeculateUnknown;
    696     for (MachineBasicBlock::iterator
    697          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
    698       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
    699       MachineInstr *MI = &*MII;
    700       if (!Hoist(MI, Preheader))
    701         UpdateRegPressure(MI);
    702       MII = NextMII;
    703     }
    704 
    705     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    706     ExitScopeIfDone(Node, OpenChildren, ParentMap);
    707   }
    708 }
    709 
    710 /// Sink instructions into loops if profitable. This especially tries to prevent
    711 /// register spills caused by register pressure if there is little to no
    712 /// overhead moving instructions into loops.
    713 void MachineLICM::SinkIntoLoop() {
    714   MachineBasicBlock *Preheader = getCurPreheader();
    715   if (!Preheader)
    716     return;
    717 
    718   SmallVector<MachineInstr *, 8> Candidates;
    719   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
    720        I != Preheader->instr_end(); ++I) {
    721     // We need to ensure that we can safely move this instruction into the loop.
    722     // As such, it must not have side-effects, e.g. such as a call has.
    723     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
    724       Candidates.push_back(&*I);
    725   }
    726 
    727   for (MachineInstr *I : Candidates) {
    728     const MachineOperand &MO = I->getOperand(0);
    729     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
    730       continue;
    731     if (!MRI->hasOneDef(MO.getReg()))
    732       continue;
    733     bool CanSink = true;
    734     MachineBasicBlock *B = nullptr;
    735     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
    736       // FIXME: Come up with a proper cost model that estimates whether sinking
    737       // the instruction (and thus possibly executing it on every loop
    738       // iteration) is more expensive than a register.
    739       // For now assumes that copies are cheap and thus almost always worth it.
    740       if (!MI.isCopy()) {
    741         CanSink = false;
    742         break;
    743       }
    744       if (!B) {
    745         B = MI.getParent();
    746         continue;
    747       }
    748       B = DT->findNearestCommonDominator(B, MI.getParent());
    749       if (!B) {
    750         CanSink = false;
    751         break;
    752       }
    753     }
    754     if (!CanSink || !B || B == Preheader)
    755       continue;
    756     B->splice(B->getFirstNonPHI(), Preheader, I);
    757   }
    758 }
    759 
    760 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
    761   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
    762 }
    763 
    764 /// Find all virtual register references that are liveout of the preheader to
    765 /// initialize the starting "register pressure". Note this does not count live
    766 /// through (livein but not used) registers.
    767 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
    768   std::fill(RegPressure.begin(), RegPressure.end(), 0);
    769 
    770   // If the preheader has only a single predecessor and it ends with a
    771   // fallthrough or an unconditional branch, then scan its predecessor for live
    772   // defs as well. This happens whenever the preheader is created by splitting
    773   // the critical edge from the loop predecessor to the loop header.
    774   if (BB->pred_size() == 1) {
    775     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    776     SmallVector<MachineOperand, 4> Cond;
    777     if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
    778       InitRegPressure(*BB->pred_begin());
    779   }
    780 
    781   for (const MachineInstr &MI : *BB)
    782     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
    783 }
    784 
    785 /// Update estimate of register pressure after the specified instruction.
    786 void MachineLICM::UpdateRegPressure(const MachineInstr *MI,
    787                                     bool ConsiderUnseenAsDef) {
    788   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
    789   for (const auto &RPIdAndCost : Cost) {
    790     unsigned Class = RPIdAndCost.first;
    791     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
    792       RegPressure[Class] = 0;
    793     else
    794       RegPressure[Class] += RPIdAndCost.second;
    795   }
    796 }
    797 
    798 /// Calculate the additional register pressure that the registers used in MI
    799 /// cause.
    800 ///
    801 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
    802 /// figure out which usages are live-ins.
    803 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
    804 DenseMap<unsigned, int>
    805 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
    806                               bool ConsiderUnseenAsDef) {
    807   DenseMap<unsigned, int> Cost;
    808   if (MI->isImplicitDef())
    809     return Cost;
    810   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    811     const MachineOperand &MO = MI->getOperand(i);
    812     if (!MO.isReg() || MO.isImplicit())
    813       continue;
    814     unsigned Reg = MO.getReg();
    815     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    816       continue;
    817 
    818     // FIXME: It seems bad to use RegSeen only for some of these calculations.
    819     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
    820     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    821 
    822     RegClassWeight W = TRI->getRegClassWeight(RC);
    823     int RCCost = 0;
    824     if (MO.isDef())
    825       RCCost = W.RegWeight;
    826     else {
    827       bool isKill = isOperandKill(MO, MRI);
    828       if (isNew && !isKill && ConsiderUnseenAsDef)
    829         // Haven't seen this, it must be a livein.
    830         RCCost = W.RegWeight;
    831       else if (!isNew && isKill)
    832         RCCost = -W.RegWeight;
    833     }
    834     if (RCCost == 0)
    835       continue;
    836     const int *PS = TRI->getRegClassPressureSets(RC);
    837     for (; *PS != -1; ++PS) {
    838       if (Cost.find(*PS) == Cost.end())
    839         Cost[*PS] = RCCost;
    840       else
    841         Cost[*PS] += RCCost;
    842     }
    843   }
    844   return Cost;
    845 }
    846 
    847 /// Return true if this machine instruction loads from global offset table or
    848 /// constant pool.
    849 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
    850   assert (MI.mayLoad() && "Expected MI that loads!");
    851   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
    852          E = MI.memoperands_end(); I != E; ++I) {
    853     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) {
    854       if (PSV->isGOT() || PSV->isConstantPool())
    855         return true;
    856     }
    857   }
    858   return false;
    859 }
    860 
    861 /// Returns true if the instruction may be a suitable candidate for LICM.
    862 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
    863 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
    864   // Check if it's safe to move the instruction.
    865   bool DontMoveAcrossStore = true;
    866   if (!I.isSafeToMove(AA, DontMoveAcrossStore))
    867     return false;
    868 
    869   // If it is load then check if it is guaranteed to execute by making sure that
    870   // it dominates all exiting blocks. If it doesn't, then there is a path out of
    871   // the loop which does not execute this load, so we can't hoist it. Loads
    872   // from constant memory are not safe to speculate all the time, for example
    873   // indexed load from a jump table.
    874   // Stores and side effects are already checked by isSafeToMove.
    875   if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
    876       !IsGuaranteedToExecute(I.getParent()))
    877     return false;
    878 
    879   return true;
    880 }
    881 
    882 /// Returns true if the instruction is loop invariant.
    883 /// I.e., all virtual register operands are defined outside of the loop,
    884 /// physical registers aren't accessed explicitly, and there are no side
    885 /// effects that aren't captured by the operands or other flags.
    886 ///
    887 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
    888   if (!IsLICMCandidate(I))
    889     return false;
    890 
    891   // The instruction is loop invariant if all of its operands are.
    892   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    893     const MachineOperand &MO = I.getOperand(i);
    894 
    895     if (!MO.isReg())
    896       continue;
    897 
    898     unsigned Reg = MO.getReg();
    899     if (Reg == 0) continue;
    900 
    901     // Don't hoist an instruction that uses or defines a physical register.
    902     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    903       if (MO.isUse()) {
    904         // If the physreg has no defs anywhere, it's just an ambient register
    905         // and we can freely move its uses. Alternatively, if it's allocatable,
    906         // it could get allocated to something with a def during allocation.
    907         if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
    908           return false;
    909         // Otherwise it's safe to move.
    910         continue;
    911       } else if (!MO.isDead()) {
    912         // A def that isn't dead. We can't move it.
    913         return false;
    914       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
    915         // If the reg is live into the loop, we can't hoist an instruction
    916         // which would clobber it.
    917         return false;
    918       }
    919     }
    920 
    921     if (!MO.isUse())
    922       continue;
    923 
    924     assert(MRI->getVRegDef(Reg) &&
    925            "Machine instr not mapped for this vreg?!");
    926 
    927     // If the loop contains the definition of an operand, then the instruction
    928     // isn't loop invariant.
    929     if (CurLoop->contains(MRI->getVRegDef(Reg)))
    930       return false;
    931   }
    932 
    933   // If we got this far, the instruction is loop invariant!
    934   return true;
    935 }
    936 
    937 
    938 /// Return true if the specified instruction is used by a phi node and hoisting
    939 /// it could cause a copy to be inserted.
    940 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
    941   SmallVector<const MachineInstr*, 8> Work(1, MI);
    942   do {
    943     MI = Work.pop_back_val();
    944     for (const MachineOperand &MO : MI->operands()) {
    945       if (!MO.isReg() || !MO.isDef())
    946         continue;
    947       unsigned Reg = MO.getReg();
    948       if (!TargetRegisterInfo::isVirtualRegister(Reg))
    949         continue;
    950       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
    951         // A PHI may cause a copy to be inserted.
    952         if (UseMI.isPHI()) {
    953           // A PHI inside the loop causes a copy because the live range of Reg is
    954           // extended across the PHI.
    955           if (CurLoop->contains(&UseMI))
    956             return true;
    957           // A PHI in an exit block can cause a copy to be inserted if the PHI
    958           // has multiple predecessors in the loop with different values.
    959           // For now, approximate by rejecting all exit blocks.
    960           if (isExitBlock(UseMI.getParent()))
    961             return true;
    962           continue;
    963         }
    964         // Look past copies as well.
    965         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
    966           Work.push_back(&UseMI);
    967       }
    968     }
    969   } while (!Work.empty());
    970   return false;
    971 }
    972 
    973 /// Compute operand latency between a def of 'Reg' and an use in the current
    974 /// loop, return true if the target considered it high.
    975 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
    976                                         unsigned DefIdx, unsigned Reg) const {
    977   if (MRI->use_nodbg_empty(Reg))
    978     return false;
    979 
    980   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
    981     if (UseMI.isCopyLike())
    982       continue;
    983     if (!CurLoop->contains(UseMI.getParent()))
    984       continue;
    985     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
    986       const MachineOperand &MO = UseMI.getOperand(i);
    987       if (!MO.isReg() || !MO.isUse())
    988         continue;
    989       unsigned MOReg = MO.getReg();
    990       if (MOReg != Reg)
    991         continue;
    992 
    993       if (TII->hasHighOperandLatency(SchedModel, MRI, &MI, DefIdx, &UseMI, i))
    994         return true;
    995     }
    996 
    997     // Only look at the first in loop use.
    998     break;
    999   }
   1000 
   1001   return false;
   1002 }
   1003 
   1004 /// Return true if the instruction is marked "cheap" or the operand latency
   1005 /// between its def and a use is one or less.
   1006 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
   1007   if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike())
   1008     return true;
   1009 
   1010   bool isCheap = false;
   1011   unsigned NumDefs = MI.getDesc().getNumDefs();
   1012   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
   1013     MachineOperand &DefMO = MI.getOperand(i);
   1014     if (!DefMO.isReg() || !DefMO.isDef())
   1015       continue;
   1016     --NumDefs;
   1017     unsigned Reg = DefMO.getReg();
   1018     if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1019       continue;
   1020 
   1021     if (!TII->hasLowDefLatency(SchedModel, &MI, i))
   1022       return false;
   1023     isCheap = true;
   1024   }
   1025 
   1026   return isCheap;
   1027 }
   1028 
   1029 /// Visit BBs from header to current BB, check if hoisting an instruction of the
   1030 /// given cost matrix can cause high register pressure.
   1031 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
   1032                                           bool CheapInstr) {
   1033   for (const auto &RPIdAndCost : Cost) {
   1034     if (RPIdAndCost.second <= 0)
   1035       continue;
   1036 
   1037     unsigned Class = RPIdAndCost.first;
   1038     int Limit = RegLimit[Class];
   1039 
   1040     // Don't hoist cheap instructions if they would increase register pressure,
   1041     // even if we're under the limit.
   1042     if (CheapInstr && !HoistCheapInsts)
   1043       return true;
   1044 
   1045     for (const auto &RP : BackTrace)
   1046       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
   1047         return true;
   1048   }
   1049 
   1050   return false;
   1051 }
   1052 
   1053 /// Traverse the back trace from header to the current block and update their
   1054 /// register pressures to reflect the effect of hoisting MI from the current
   1055 /// block to the preheader.
   1056 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
   1057   // First compute the 'cost' of the instruction, i.e. its contribution
   1058   // to register pressure.
   1059   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
   1060                                /*ConsiderUnseenAsDef=*/false);
   1061 
   1062   // Update register pressure of blocks from loop header to current block.
   1063   for (auto &RP : BackTrace)
   1064     for (const auto &RPIdAndCost : Cost)
   1065       RP[RPIdAndCost.first] += RPIdAndCost.second;
   1066 }
   1067 
   1068 /// Return true if it is potentially profitable to hoist the given loop
   1069 /// invariant.
   1070 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
   1071   if (MI.isImplicitDef())
   1072     return true;
   1073 
   1074   // Besides removing computation from the loop, hoisting an instruction has
   1075   // these effects:
   1076   //
   1077   // - The value defined by the instruction becomes live across the entire
   1078   //   loop. This increases register pressure in the loop.
   1079   //
   1080   // - If the value is used by a PHI in the loop, a copy will be required for
   1081   //   lowering the PHI after extending the live range.
   1082   //
   1083   // - When hoisting the last use of a value in the loop, that value no longer
   1084   //   needs to be live in the loop. This lowers register pressure in the loop.
   1085 
   1086   bool CheapInstr = IsCheapInstruction(MI);
   1087   bool CreatesCopy = HasLoopPHIUse(&MI);
   1088 
   1089   // Don't hoist a cheap instruction if it would create a copy in the loop.
   1090   if (CheapInstr && CreatesCopy) {
   1091     DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
   1092     return false;
   1093   }
   1094 
   1095   // Rematerializable instructions should always be hoisted since the register
   1096   // allocator can just pull them down again when needed.
   1097   if (TII->isTriviallyReMaterializable(&MI, AA))
   1098     return true;
   1099 
   1100   // FIXME: If there are long latency loop-invariant instructions inside the
   1101   // loop at this point, why didn't the optimizer's LICM hoist them?
   1102   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
   1103     const MachineOperand &MO = MI.getOperand(i);
   1104     if (!MO.isReg() || MO.isImplicit())
   1105       continue;
   1106     unsigned Reg = MO.getReg();
   1107     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1108       continue;
   1109     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
   1110       DEBUG(dbgs() << "Hoist High Latency: " << MI);
   1111       ++NumHighLatency;
   1112       return true;
   1113     }
   1114   }
   1115 
   1116   // Estimate register pressure to determine whether to LICM the instruction.
   1117   // In low register pressure situation, we can be more aggressive about
   1118   // hoisting. Also, favors hoisting long latency instructions even in
   1119   // moderately high pressure situation.
   1120   // Cheap instructions will only be hoisted if they don't increase register
   1121   // pressure at all.
   1122   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
   1123                                /*ConsiderUnseenAsDef=*/false);
   1124 
   1125   // Visit BBs from header to current BB, if hoisting this doesn't cause
   1126   // high register pressure, then it's safe to proceed.
   1127   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
   1128     DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
   1129     ++NumLowRP;
   1130     return true;
   1131   }
   1132 
   1133   // Don't risk increasing register pressure if it would create copies.
   1134   if (CreatesCopy) {
   1135     DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
   1136     return false;
   1137   }
   1138 
   1139   // Do not "speculate" in high register pressure situation. If an
   1140   // instruction is not guaranteed to be executed in the loop, it's best to be
   1141   // conservative.
   1142   if (AvoidSpeculation &&
   1143       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
   1144     DEBUG(dbgs() << "Won't speculate: " << MI);
   1145     return false;
   1146   }
   1147 
   1148   // High register pressure situation, only hoist if the instruction is going
   1149   // to be remat'ed.
   1150   if (!TII->isTriviallyReMaterializable(&MI, AA) &&
   1151       !MI.isInvariantLoad(AA)) {
   1152     DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
   1153     return false;
   1154   }
   1155 
   1156   return true;
   1157 }
   1158 
   1159 /// Unfold a load from the given machineinstr if the load itself could be
   1160 /// hoisted. Return the unfolded and hoistable load, or null if the load
   1161 /// couldn't be unfolded or if it wouldn't be hoistable.
   1162 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
   1163   // Don't unfold simple loads.
   1164   if (MI->canFoldAsLoad())
   1165     return nullptr;
   1166 
   1167   // If not, we may be able to unfold a load and hoist that.
   1168   // First test whether the instruction is loading from an amenable
   1169   // memory location.
   1170   if (!MI->isInvariantLoad(AA))
   1171     return nullptr;
   1172 
   1173   // Next determine the register class for a temporary register.
   1174   unsigned LoadRegIndex;
   1175   unsigned NewOpc =
   1176     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
   1177                                     /*UnfoldLoad=*/true,
   1178                                     /*UnfoldStore=*/false,
   1179                                     &LoadRegIndex);
   1180   if (NewOpc == 0) return nullptr;
   1181   const MCInstrDesc &MID = TII->get(NewOpc);
   1182   if (MID.getNumDefs() != 1) return nullptr;
   1183   MachineFunction &MF = *MI->getParent()->getParent();
   1184   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
   1185   // Ok, we're unfolding. Create a temporary register and do the unfold.
   1186   unsigned Reg = MRI->createVirtualRegister(RC);
   1187 
   1188   SmallVector<MachineInstr *, 2> NewMIs;
   1189   bool Success =
   1190     TII->unfoldMemoryOperand(MF, MI, Reg,
   1191                              /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
   1192                              NewMIs);
   1193   (void)Success;
   1194   assert(Success &&
   1195          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
   1196          "succeeded!");
   1197   assert(NewMIs.size() == 2 &&
   1198          "Unfolded a load into multiple instructions!");
   1199   MachineBasicBlock *MBB = MI->getParent();
   1200   MachineBasicBlock::iterator Pos = MI;
   1201   MBB->insert(Pos, NewMIs[0]);
   1202   MBB->insert(Pos, NewMIs[1]);
   1203   // If unfolding produced a load that wasn't loop-invariant or profitable to
   1204   // hoist, discard the new instructions and bail.
   1205   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
   1206     NewMIs[0]->eraseFromParent();
   1207     NewMIs[1]->eraseFromParent();
   1208     return nullptr;
   1209   }
   1210 
   1211   // Update register pressure for the unfolded instruction.
   1212   UpdateRegPressure(NewMIs[1]);
   1213 
   1214   // Otherwise we successfully unfolded a load that we can hoist.
   1215   MI->eraseFromParent();
   1216   return NewMIs[0];
   1217 }
   1218 
   1219 /// Initialize the CSE map with instructions that are in the current loop
   1220 /// preheader that may become duplicates of instructions that are hoisted
   1221 /// out of the loop.
   1222 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
   1223   for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
   1224     const MachineInstr *MI = &*I;
   1225     unsigned Opcode = MI->getOpcode();
   1226     CSEMap[Opcode].push_back(MI);
   1227   }
   1228 }
   1229 
   1230 /// Find an instruction amount PrevMIs that is a duplicate of MI.
   1231 /// Return this instruction if it's found.
   1232 const MachineInstr*
   1233 MachineLICM::LookForDuplicate(const MachineInstr *MI,
   1234                               std::vector<const MachineInstr*> &PrevMIs) {
   1235   for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
   1236     const MachineInstr *PrevMI = PrevMIs[i];
   1237     if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr)))
   1238       return PrevMI;
   1239   }
   1240   return nullptr;
   1241 }
   1242 
   1243 /// Given a LICM'ed instruction, look for an instruction on the preheader that
   1244 /// computes the same value. If it's found, do a RAU on with the definition of
   1245 /// the existing instruction rather than hoisting the instruction to the
   1246 /// preheader.
   1247 bool MachineLICM::EliminateCSE(MachineInstr *MI,
   1248           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
   1249   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1250   // the undef property onto uses.
   1251   if (CI == CSEMap.end() || MI->isImplicitDef())
   1252     return false;
   1253 
   1254   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
   1255     DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
   1256 
   1257     // Replace virtual registers defined by MI by their counterparts defined
   1258     // by Dup.
   1259     SmallVector<unsigned, 2> Defs;
   1260     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1261       const MachineOperand &MO = MI->getOperand(i);
   1262 
   1263       // Physical registers may not differ here.
   1264       assert((!MO.isReg() || MO.getReg() == 0 ||
   1265               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
   1266               MO.getReg() == Dup->getOperand(i).getReg()) &&
   1267              "Instructions with different phys regs are not identical!");
   1268 
   1269       if (MO.isReg() && MO.isDef() &&
   1270           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1271         Defs.push_back(i);
   1272     }
   1273 
   1274     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
   1275     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1276       unsigned Idx = Defs[i];
   1277       unsigned Reg = MI->getOperand(Idx).getReg();
   1278       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1279       OrigRCs.push_back(MRI->getRegClass(DupReg));
   1280 
   1281       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
   1282         // Restore old RCs if more than one defs.
   1283         for (unsigned j = 0; j != i; ++j)
   1284           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
   1285         return false;
   1286       }
   1287     }
   1288 
   1289     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1290       unsigned Idx = Defs[i];
   1291       unsigned Reg = MI->getOperand(Idx).getReg();
   1292       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1293       MRI->replaceRegWith(Reg, DupReg);
   1294       MRI->clearKillFlags(DupReg);
   1295     }
   1296 
   1297     MI->eraseFromParent();
   1298     ++NumCSEed;
   1299     return true;
   1300   }
   1301   return false;
   1302 }
   1303 
   1304 /// Return true if the given instruction will be CSE'd if it's hoisted out of
   1305 /// the loop.
   1306 bool MachineLICM::MayCSE(MachineInstr *MI) {
   1307   unsigned Opcode = MI->getOpcode();
   1308   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1309     CI = CSEMap.find(Opcode);
   1310   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1311   // the undef property onto uses.
   1312   if (CI == CSEMap.end() || MI->isImplicitDef())
   1313     return false;
   1314 
   1315   return LookForDuplicate(MI, CI->second) != nullptr;
   1316 }
   1317 
   1318 /// When an instruction is found to use only loop invariant operands
   1319 /// that are safe to hoist, this instruction is called to do the dirty work.
   1320 /// It returns true if the instruction is hoisted.
   1321 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
   1322   // First check whether we should hoist this instruction.
   1323   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
   1324     // If not, try unfolding a hoistable load.
   1325     MI = ExtractHoistableLoad(MI);
   1326     if (!MI) return false;
   1327   }
   1328 
   1329   // Now move the instructions to the predecessor, inserting it before any
   1330   // terminator instructions.
   1331   DEBUG({
   1332       dbgs() << "Hoisting " << *MI;
   1333       if (Preheader->getBasicBlock())
   1334         dbgs() << " to MachineBasicBlock "
   1335                << Preheader->getName();
   1336       if (MI->getParent()->getBasicBlock())
   1337         dbgs() << " from MachineBasicBlock "
   1338                << MI->getParent()->getName();
   1339       dbgs() << "\n";
   1340     });
   1341 
   1342   // If this is the first instruction being hoisted to the preheader,
   1343   // initialize the CSE map with potential common expressions.
   1344   if (FirstInLoop) {
   1345     InitCSEMap(Preheader);
   1346     FirstInLoop = false;
   1347   }
   1348 
   1349   // Look for opportunity to CSE the hoisted instruction.
   1350   unsigned Opcode = MI->getOpcode();
   1351   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1352     CI = CSEMap.find(Opcode);
   1353   if (!EliminateCSE(MI, CI)) {
   1354     // Otherwise, splice the instruction to the preheader.
   1355     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
   1356 
   1357     // Update register pressure for BBs from header to this block.
   1358     UpdateBackTraceRegPressure(MI);
   1359 
   1360     // Clear the kill flags of any register this instruction defines,
   1361     // since they may need to be live throughout the entire loop
   1362     // rather than just live for part of it.
   1363     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1364       MachineOperand &MO = MI->getOperand(i);
   1365       if (MO.isReg() && MO.isDef() && !MO.isDead())
   1366         MRI->clearKillFlags(MO.getReg());
   1367     }
   1368 
   1369     // Add to the CSE map.
   1370     if (CI != CSEMap.end())
   1371       CI->second.push_back(MI);
   1372     else
   1373       CSEMap[Opcode].push_back(MI);
   1374   }
   1375 
   1376   ++NumHoisted;
   1377   Changed = true;
   1378 
   1379   return true;
   1380 }
   1381 
   1382 /// Get the preheader for the current loop, splitting a critical edge if needed.
   1383 MachineBasicBlock *MachineLICM::getCurPreheader() {
   1384   // Determine the block to which to hoist instructions. If we can't find a
   1385   // suitable loop predecessor, we can't do any hoisting.
   1386 
   1387   // If we've tried to get a preheader and failed, don't try again.
   1388   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
   1389     return nullptr;
   1390 
   1391   if (!CurPreheader) {
   1392     CurPreheader = CurLoop->getLoopPreheader();
   1393     if (!CurPreheader) {
   1394       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
   1395       if (!Pred) {
   1396         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1397         return nullptr;
   1398       }
   1399 
   1400       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
   1401       if (!CurPreheader) {
   1402         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1403         return nullptr;
   1404       }
   1405     }
   1406   }
   1407   return CurPreheader;
   1408 }
   1409