1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements semantic analysis for C++ templates. 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TypeVisitor.h" 21 #include "clang/Basic/Builtins.h" 22 #include "clang/Basic/LangOptions.h" 23 #include "clang/Basic/PartialDiagnostic.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Lookup.h" 27 #include "clang/Sema/ParsedTemplate.h" 28 #include "clang/Sema/Scope.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateDeduction.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/ADT/StringExtras.h" 35 using namespace clang; 36 using namespace sema; 37 38 // Exported for use by Parser. 39 SourceRange 40 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 41 unsigned N) { 42 if (!N) return SourceRange(); 43 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 44 } 45 46 /// \brief Determine whether the declaration found is acceptable as the name 47 /// of a template and, if so, return that template declaration. Otherwise, 48 /// returns NULL. 49 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 50 NamedDecl *Orig, 51 bool AllowFunctionTemplates) { 52 NamedDecl *D = Orig->getUnderlyingDecl(); 53 54 if (isa<TemplateDecl>(D)) { 55 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 56 return nullptr; 57 58 return Orig; 59 } 60 61 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 62 // C++ [temp.local]p1: 63 // Like normal (non-template) classes, class templates have an 64 // injected-class-name (Clause 9). The injected-class-name 65 // can be used with or without a template-argument-list. When 66 // it is used without a template-argument-list, it is 67 // equivalent to the injected-class-name followed by the 68 // template-parameters of the class template enclosed in 69 // <>. When it is used with a template-argument-list, it 70 // refers to the specified class template specialization, 71 // which could be the current specialization or another 72 // specialization. 73 if (Record->isInjectedClassName()) { 74 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 75 if (Record->getDescribedClassTemplate()) 76 return Record->getDescribedClassTemplate(); 77 78 if (ClassTemplateSpecializationDecl *Spec 79 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 80 return Spec->getSpecializedTemplate(); 81 } 82 83 return nullptr; 84 } 85 86 return nullptr; 87 } 88 89 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 90 bool AllowFunctionTemplates) { 91 // The set of class templates we've already seen. 92 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 93 LookupResult::Filter filter = R.makeFilter(); 94 while (filter.hasNext()) { 95 NamedDecl *Orig = filter.next(); 96 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 97 AllowFunctionTemplates); 98 if (!Repl) 99 filter.erase(); 100 else if (Repl != Orig) { 101 102 // C++ [temp.local]p3: 103 // A lookup that finds an injected-class-name (10.2) can result in an 104 // ambiguity in certain cases (for example, if it is found in more than 105 // one base class). If all of the injected-class-names that are found 106 // refer to specializations of the same class template, and if the name 107 // is used as a template-name, the reference refers to the class 108 // template itself and not a specialization thereof, and is not 109 // ambiguous. 110 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 111 if (!ClassTemplates.insert(ClassTmpl).second) { 112 filter.erase(); 113 continue; 114 } 115 116 // FIXME: we promote access to public here as a workaround to 117 // the fact that LookupResult doesn't let us remember that we 118 // found this template through a particular injected class name, 119 // which means we end up doing nasty things to the invariants. 120 // Pretending that access is public is *much* safer. 121 filter.replace(Repl, AS_public); 122 } 123 } 124 filter.done(); 125 } 126 127 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 128 bool AllowFunctionTemplates) { 129 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 130 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 131 return true; 132 133 return false; 134 } 135 136 TemplateNameKind Sema::isTemplateName(Scope *S, 137 CXXScopeSpec &SS, 138 bool hasTemplateKeyword, 139 UnqualifiedId &Name, 140 ParsedType ObjectTypePtr, 141 bool EnteringContext, 142 TemplateTy &TemplateResult, 143 bool &MemberOfUnknownSpecialization) { 144 assert(getLangOpts().CPlusPlus && "No template names in C!"); 145 146 DeclarationName TName; 147 MemberOfUnknownSpecialization = false; 148 149 switch (Name.getKind()) { 150 case UnqualifiedId::IK_Identifier: 151 TName = DeclarationName(Name.Identifier); 152 break; 153 154 case UnqualifiedId::IK_OperatorFunctionId: 155 TName = Context.DeclarationNames.getCXXOperatorName( 156 Name.OperatorFunctionId.Operator); 157 break; 158 159 case UnqualifiedId::IK_LiteralOperatorId: 160 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 161 break; 162 163 default: 164 return TNK_Non_template; 165 } 166 167 QualType ObjectType = ObjectTypePtr.get(); 168 169 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 170 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 171 MemberOfUnknownSpecialization); 172 if (R.empty()) return TNK_Non_template; 173 if (R.isAmbiguous()) { 174 // Suppress diagnostics; we'll redo this lookup later. 175 R.suppressDiagnostics(); 176 177 // FIXME: we might have ambiguous templates, in which case we 178 // should at least parse them properly! 179 return TNK_Non_template; 180 } 181 182 TemplateName Template; 183 TemplateNameKind TemplateKind; 184 185 unsigned ResultCount = R.end() - R.begin(); 186 if (ResultCount > 1) { 187 // We assume that we'll preserve the qualifier from a function 188 // template name in other ways. 189 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 190 TemplateKind = TNK_Function_template; 191 192 // We'll do this lookup again later. 193 R.suppressDiagnostics(); 194 } else { 195 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 196 197 if (SS.isSet() && !SS.isInvalid()) { 198 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 199 Template = Context.getQualifiedTemplateName(Qualifier, 200 hasTemplateKeyword, TD); 201 } else { 202 Template = TemplateName(TD); 203 } 204 205 if (isa<FunctionTemplateDecl>(TD)) { 206 TemplateKind = TNK_Function_template; 207 208 // We'll do this lookup again later. 209 R.suppressDiagnostics(); 210 } else { 211 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 212 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 213 isa<BuiltinTemplateDecl>(TD)); 214 TemplateKind = 215 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; 216 } 217 } 218 219 TemplateResult = TemplateTy::make(Template); 220 return TemplateKind; 221 } 222 223 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 224 SourceLocation IILoc, 225 Scope *S, 226 const CXXScopeSpec *SS, 227 TemplateTy &SuggestedTemplate, 228 TemplateNameKind &SuggestedKind) { 229 // We can't recover unless there's a dependent scope specifier preceding the 230 // template name. 231 // FIXME: Typo correction? 232 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 233 computeDeclContext(*SS)) 234 return false; 235 236 // The code is missing a 'template' keyword prior to the dependent template 237 // name. 238 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 239 Diag(IILoc, diag::err_template_kw_missing) 240 << Qualifier << II.getName() 241 << FixItHint::CreateInsertion(IILoc, "template "); 242 SuggestedTemplate 243 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 244 SuggestedKind = TNK_Dependent_template_name; 245 return true; 246 } 247 248 void Sema::LookupTemplateName(LookupResult &Found, 249 Scope *S, CXXScopeSpec &SS, 250 QualType ObjectType, 251 bool EnteringContext, 252 bool &MemberOfUnknownSpecialization) { 253 // Determine where to perform name lookup 254 MemberOfUnknownSpecialization = false; 255 DeclContext *LookupCtx = nullptr; 256 bool isDependent = false; 257 if (!ObjectType.isNull()) { 258 // This nested-name-specifier occurs in a member access expression, e.g., 259 // x->B::f, and we are looking into the type of the object. 260 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 261 LookupCtx = computeDeclContext(ObjectType); 262 isDependent = ObjectType->isDependentType(); 263 assert((isDependent || !ObjectType->isIncompleteType() || 264 ObjectType->castAs<TagType>()->isBeingDefined()) && 265 "Caller should have completed object type"); 266 267 // Template names cannot appear inside an Objective-C class or object type. 268 if (ObjectType->isObjCObjectOrInterfaceType()) { 269 Found.clear(); 270 return; 271 } 272 } else if (SS.isSet()) { 273 // This nested-name-specifier occurs after another nested-name-specifier, 274 // so long into the context associated with the prior nested-name-specifier. 275 LookupCtx = computeDeclContext(SS, EnteringContext); 276 isDependent = isDependentScopeSpecifier(SS); 277 278 // The declaration context must be complete. 279 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 280 return; 281 } 282 283 bool ObjectTypeSearchedInScope = false; 284 bool AllowFunctionTemplatesInLookup = true; 285 if (LookupCtx) { 286 // Perform "qualified" name lookup into the declaration context we 287 // computed, which is either the type of the base of a member access 288 // expression or the declaration context associated with a prior 289 // nested-name-specifier. 290 LookupQualifiedName(Found, LookupCtx); 291 if (!ObjectType.isNull() && Found.empty()) { 292 // C++ [basic.lookup.classref]p1: 293 // In a class member access expression (5.2.5), if the . or -> token is 294 // immediately followed by an identifier followed by a <, the 295 // identifier must be looked up to determine whether the < is the 296 // beginning of a template argument list (14.2) or a less-than operator. 297 // The identifier is first looked up in the class of the object 298 // expression. If the identifier is not found, it is then looked up in 299 // the context of the entire postfix-expression and shall name a class 300 // or function template. 301 if (S) LookupName(Found, S); 302 ObjectTypeSearchedInScope = true; 303 AllowFunctionTemplatesInLookup = false; 304 } 305 } else if (isDependent && (!S || ObjectType.isNull())) { 306 // We cannot look into a dependent object type or nested nme 307 // specifier. 308 MemberOfUnknownSpecialization = true; 309 return; 310 } else { 311 // Perform unqualified name lookup in the current scope. 312 LookupName(Found, S); 313 314 if (!ObjectType.isNull()) 315 AllowFunctionTemplatesInLookup = false; 316 } 317 318 if (Found.empty() && !isDependent) { 319 // If we did not find any names, attempt to correct any typos. 320 DeclarationName Name = Found.getLookupName(); 321 Found.clear(); 322 // Simple filter callback that, for keywords, only accepts the C++ *_cast 323 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>(); 324 FilterCCC->WantTypeSpecifiers = false; 325 FilterCCC->WantExpressionKeywords = false; 326 FilterCCC->WantRemainingKeywords = false; 327 FilterCCC->WantCXXNamedCasts = true; 328 if (TypoCorrection Corrected = CorrectTypo( 329 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, 330 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) { 331 Found.setLookupName(Corrected.getCorrection()); 332 if (Corrected.getCorrectionDecl()) 333 Found.addDecl(Corrected.getCorrectionDecl()); 334 FilterAcceptableTemplateNames(Found); 335 if (!Found.empty()) { 336 if (LookupCtx) { 337 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 338 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 339 Name.getAsString() == CorrectedStr; 340 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 341 << Name << LookupCtx << DroppedSpecifier 342 << SS.getRange()); 343 } else { 344 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 345 } 346 } 347 } else { 348 Found.setLookupName(Name); 349 } 350 } 351 352 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 353 if (Found.empty()) { 354 if (isDependent) 355 MemberOfUnknownSpecialization = true; 356 return; 357 } 358 359 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 360 !getLangOpts().CPlusPlus11) { 361 // C++03 [basic.lookup.classref]p1: 362 // [...] If the lookup in the class of the object expression finds a 363 // template, the name is also looked up in the context of the entire 364 // postfix-expression and [...] 365 // 366 // Note: C++11 does not perform this second lookup. 367 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 368 LookupOrdinaryName); 369 LookupName(FoundOuter, S); 370 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 371 372 if (FoundOuter.empty()) { 373 // - if the name is not found, the name found in the class of the 374 // object expression is used, otherwise 375 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 376 FoundOuter.isAmbiguous()) { 377 // - if the name is found in the context of the entire 378 // postfix-expression and does not name a class template, the name 379 // found in the class of the object expression is used, otherwise 380 FoundOuter.clear(); 381 } else if (!Found.isSuppressingDiagnostics()) { 382 // - if the name found is a class template, it must refer to the same 383 // entity as the one found in the class of the object expression, 384 // otherwise the program is ill-formed. 385 if (!Found.isSingleResult() || 386 Found.getFoundDecl()->getCanonicalDecl() 387 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 388 Diag(Found.getNameLoc(), 389 diag::ext_nested_name_member_ref_lookup_ambiguous) 390 << Found.getLookupName() 391 << ObjectType; 392 Diag(Found.getRepresentativeDecl()->getLocation(), 393 diag::note_ambig_member_ref_object_type) 394 << ObjectType; 395 Diag(FoundOuter.getFoundDecl()->getLocation(), 396 diag::note_ambig_member_ref_scope); 397 398 // Recover by taking the template that we found in the object 399 // expression's type. 400 } 401 } 402 } 403 } 404 405 /// ActOnDependentIdExpression - Handle a dependent id-expression that 406 /// was just parsed. This is only possible with an explicit scope 407 /// specifier naming a dependent type. 408 ExprResult 409 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 410 SourceLocation TemplateKWLoc, 411 const DeclarationNameInfo &NameInfo, 412 bool isAddressOfOperand, 413 const TemplateArgumentListInfo *TemplateArgs) { 414 DeclContext *DC = getFunctionLevelDeclContext(); 415 416 if (!isAddressOfOperand && 417 isa<CXXMethodDecl>(DC) && 418 cast<CXXMethodDecl>(DC)->isInstance()) { 419 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 420 421 // Since the 'this' expression is synthesized, we don't need to 422 // perform the double-lookup check. 423 NamedDecl *FirstQualifierInScope = nullptr; 424 425 return CXXDependentScopeMemberExpr::Create( 426 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 427 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 428 FirstQualifierInScope, NameInfo, TemplateArgs); 429 } 430 431 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 432 } 433 434 ExprResult 435 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 436 SourceLocation TemplateKWLoc, 437 const DeclarationNameInfo &NameInfo, 438 const TemplateArgumentListInfo *TemplateArgs) { 439 return DependentScopeDeclRefExpr::Create( 440 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 441 TemplateArgs); 442 } 443 444 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 445 /// that the template parameter 'PrevDecl' is being shadowed by a new 446 /// declaration at location Loc. Returns true to indicate that this is 447 /// an error, and false otherwise. 448 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 449 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 450 451 // Microsoft Visual C++ permits template parameters to be shadowed. 452 if (getLangOpts().MicrosoftExt) 453 return; 454 455 // C++ [temp.local]p4: 456 // A template-parameter shall not be redeclared within its 457 // scope (including nested scopes). 458 Diag(Loc, diag::err_template_param_shadow) 459 << cast<NamedDecl>(PrevDecl)->getDeclName(); 460 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 461 return; 462 } 463 464 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 465 /// the parameter D to reference the templated declaration and return a pointer 466 /// to the template declaration. Otherwise, do nothing to D and return null. 467 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 468 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 469 D = Temp->getTemplatedDecl(); 470 return Temp; 471 } 472 return nullptr; 473 } 474 475 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 476 SourceLocation EllipsisLoc) const { 477 assert(Kind == Template && 478 "Only template template arguments can be pack expansions here"); 479 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 480 "Template template argument pack expansion without packs"); 481 ParsedTemplateArgument Result(*this); 482 Result.EllipsisLoc = EllipsisLoc; 483 return Result; 484 } 485 486 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 487 const ParsedTemplateArgument &Arg) { 488 489 switch (Arg.getKind()) { 490 case ParsedTemplateArgument::Type: { 491 TypeSourceInfo *DI; 492 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 493 if (!DI) 494 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 495 return TemplateArgumentLoc(TemplateArgument(T), DI); 496 } 497 498 case ParsedTemplateArgument::NonType: { 499 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 500 return TemplateArgumentLoc(TemplateArgument(E), E); 501 } 502 503 case ParsedTemplateArgument::Template: { 504 TemplateName Template = Arg.getAsTemplate().get(); 505 TemplateArgument TArg; 506 if (Arg.getEllipsisLoc().isValid()) 507 TArg = TemplateArgument(Template, Optional<unsigned int>()); 508 else 509 TArg = Template; 510 return TemplateArgumentLoc(TArg, 511 Arg.getScopeSpec().getWithLocInContext( 512 SemaRef.Context), 513 Arg.getLocation(), 514 Arg.getEllipsisLoc()); 515 } 516 } 517 518 llvm_unreachable("Unhandled parsed template argument"); 519 } 520 521 /// \brief Translates template arguments as provided by the parser 522 /// into template arguments used by semantic analysis. 523 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 524 TemplateArgumentListInfo &TemplateArgs) { 525 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 526 TemplateArgs.addArgument(translateTemplateArgument(*this, 527 TemplateArgsIn[I])); 528 } 529 530 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 531 SourceLocation Loc, 532 IdentifierInfo *Name) { 533 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 534 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration); 535 if (PrevDecl && PrevDecl->isTemplateParameter()) 536 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 537 } 538 539 /// ActOnTypeParameter - Called when a C++ template type parameter 540 /// (e.g., "typename T") has been parsed. Typename specifies whether 541 /// the keyword "typename" was used to declare the type parameter 542 /// (otherwise, "class" was used), and KeyLoc is the location of the 543 /// "class" or "typename" keyword. ParamName is the name of the 544 /// parameter (NULL indicates an unnamed template parameter) and 545 /// ParamNameLoc is the location of the parameter name (if any). 546 /// If the type parameter has a default argument, it will be added 547 /// later via ActOnTypeParameterDefault. 548 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 549 SourceLocation EllipsisLoc, 550 SourceLocation KeyLoc, 551 IdentifierInfo *ParamName, 552 SourceLocation ParamNameLoc, 553 unsigned Depth, unsigned Position, 554 SourceLocation EqualLoc, 555 ParsedType DefaultArg) { 556 assert(S->isTemplateParamScope() && 557 "Template type parameter not in template parameter scope!"); 558 bool Invalid = false; 559 560 SourceLocation Loc = ParamNameLoc; 561 if (!ParamName) 562 Loc = KeyLoc; 563 564 bool IsParameterPack = EllipsisLoc.isValid(); 565 TemplateTypeParmDecl *Param 566 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 567 KeyLoc, Loc, Depth, Position, ParamName, 568 Typename, IsParameterPack); 569 Param->setAccess(AS_public); 570 if (Invalid) 571 Param->setInvalidDecl(); 572 573 if (ParamName) { 574 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 575 576 // Add the template parameter into the current scope. 577 S->AddDecl(Param); 578 IdResolver.AddDecl(Param); 579 } 580 581 // C++0x [temp.param]p9: 582 // A default template-argument may be specified for any kind of 583 // template-parameter that is not a template parameter pack. 584 if (DefaultArg && IsParameterPack) { 585 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 586 DefaultArg = ParsedType(); 587 } 588 589 // Handle the default argument, if provided. 590 if (DefaultArg) { 591 TypeSourceInfo *DefaultTInfo; 592 GetTypeFromParser(DefaultArg, &DefaultTInfo); 593 594 assert(DefaultTInfo && "expected source information for type"); 595 596 // Check for unexpanded parameter packs. 597 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 598 UPPC_DefaultArgument)) 599 return Param; 600 601 // Check the template argument itself. 602 if (CheckTemplateArgument(Param, DefaultTInfo)) { 603 Param->setInvalidDecl(); 604 return Param; 605 } 606 607 Param->setDefaultArgument(DefaultTInfo); 608 } 609 610 return Param; 611 } 612 613 /// \brief Check that the type of a non-type template parameter is 614 /// well-formed. 615 /// 616 /// \returns the (possibly-promoted) parameter type if valid; 617 /// otherwise, produces a diagnostic and returns a NULL type. 618 QualType 619 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 620 // We don't allow variably-modified types as the type of non-type template 621 // parameters. 622 if (T->isVariablyModifiedType()) { 623 Diag(Loc, diag::err_variably_modified_nontype_template_param) 624 << T; 625 return QualType(); 626 } 627 628 // C++ [temp.param]p4: 629 // 630 // A non-type template-parameter shall have one of the following 631 // (optionally cv-qualified) types: 632 // 633 // -- integral or enumeration type, 634 if (T->isIntegralOrEnumerationType() || 635 // -- pointer to object or pointer to function, 636 T->isPointerType() || 637 // -- reference to object or reference to function, 638 T->isReferenceType() || 639 // -- pointer to member, 640 T->isMemberPointerType() || 641 // -- std::nullptr_t. 642 T->isNullPtrType() || 643 // If T is a dependent type, we can't do the check now, so we 644 // assume that it is well-formed. 645 T->isDependentType()) { 646 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 647 // are ignored when determining its type. 648 return T.getUnqualifiedType(); 649 } 650 651 // C++ [temp.param]p8: 652 // 653 // A non-type template-parameter of type "array of T" or 654 // "function returning T" is adjusted to be of type "pointer to 655 // T" or "pointer to function returning T", respectively. 656 else if (T->isArrayType() || T->isFunctionType()) 657 return Context.getDecayedType(T); 658 659 Diag(Loc, diag::err_template_nontype_parm_bad_type) 660 << T; 661 662 return QualType(); 663 } 664 665 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 666 unsigned Depth, 667 unsigned Position, 668 SourceLocation EqualLoc, 669 Expr *Default) { 670 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 671 QualType T = TInfo->getType(); 672 673 assert(S->isTemplateParamScope() && 674 "Non-type template parameter not in template parameter scope!"); 675 bool Invalid = false; 676 677 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 678 if (T.isNull()) { 679 T = Context.IntTy; // Recover with an 'int' type. 680 Invalid = true; 681 } 682 683 IdentifierInfo *ParamName = D.getIdentifier(); 684 bool IsParameterPack = D.hasEllipsis(); 685 NonTypeTemplateParmDecl *Param 686 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 687 D.getLocStart(), 688 D.getIdentifierLoc(), 689 Depth, Position, ParamName, T, 690 IsParameterPack, TInfo); 691 Param->setAccess(AS_public); 692 693 if (Invalid) 694 Param->setInvalidDecl(); 695 696 if (ParamName) { 697 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 698 ParamName); 699 700 // Add the template parameter into the current scope. 701 S->AddDecl(Param); 702 IdResolver.AddDecl(Param); 703 } 704 705 // C++0x [temp.param]p9: 706 // A default template-argument may be specified for any kind of 707 // template-parameter that is not a template parameter pack. 708 if (Default && IsParameterPack) { 709 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 710 Default = nullptr; 711 } 712 713 // Check the well-formedness of the default template argument, if provided. 714 if (Default) { 715 // Check for unexpanded parameter packs. 716 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 717 return Param; 718 719 TemplateArgument Converted; 720 ExprResult DefaultRes = 721 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 722 if (DefaultRes.isInvalid()) { 723 Param->setInvalidDecl(); 724 return Param; 725 } 726 Default = DefaultRes.get(); 727 728 Param->setDefaultArgument(Default); 729 } 730 731 return Param; 732 } 733 734 /// ActOnTemplateTemplateParameter - Called when a C++ template template 735 /// parameter (e.g. T in template <template \<typename> class T> class array) 736 /// has been parsed. S is the current scope. 737 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 738 SourceLocation TmpLoc, 739 TemplateParameterList *Params, 740 SourceLocation EllipsisLoc, 741 IdentifierInfo *Name, 742 SourceLocation NameLoc, 743 unsigned Depth, 744 unsigned Position, 745 SourceLocation EqualLoc, 746 ParsedTemplateArgument Default) { 747 assert(S->isTemplateParamScope() && 748 "Template template parameter not in template parameter scope!"); 749 750 // Construct the parameter object. 751 bool IsParameterPack = EllipsisLoc.isValid(); 752 TemplateTemplateParmDecl *Param = 753 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 754 NameLoc.isInvalid()? TmpLoc : NameLoc, 755 Depth, Position, IsParameterPack, 756 Name, Params); 757 Param->setAccess(AS_public); 758 759 // If the template template parameter has a name, then link the identifier 760 // into the scope and lookup mechanisms. 761 if (Name) { 762 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 763 764 S->AddDecl(Param); 765 IdResolver.AddDecl(Param); 766 } 767 768 if (Params->size() == 0) { 769 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 770 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 771 Param->setInvalidDecl(); 772 } 773 774 // C++0x [temp.param]p9: 775 // A default template-argument may be specified for any kind of 776 // template-parameter that is not a template parameter pack. 777 if (IsParameterPack && !Default.isInvalid()) { 778 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 779 Default = ParsedTemplateArgument(); 780 } 781 782 if (!Default.isInvalid()) { 783 // Check only that we have a template template argument. We don't want to 784 // try to check well-formedness now, because our template template parameter 785 // might have dependent types in its template parameters, which we wouldn't 786 // be able to match now. 787 // 788 // If none of the template template parameter's template arguments mention 789 // other template parameters, we could actually perform more checking here. 790 // However, it isn't worth doing. 791 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 792 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 793 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 794 << DefaultArg.getSourceRange(); 795 return Param; 796 } 797 798 // Check for unexpanded parameter packs. 799 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 800 DefaultArg.getArgument().getAsTemplate(), 801 UPPC_DefaultArgument)) 802 return Param; 803 804 Param->setDefaultArgument(Context, DefaultArg); 805 } 806 807 return Param; 808 } 809 810 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 811 /// contains the template parameters in Params/NumParams. 812 TemplateParameterList * 813 Sema::ActOnTemplateParameterList(unsigned Depth, 814 SourceLocation ExportLoc, 815 SourceLocation TemplateLoc, 816 SourceLocation LAngleLoc, 817 Decl **Params, unsigned NumParams, 818 SourceLocation RAngleLoc) { 819 if (ExportLoc.isValid()) 820 Diag(ExportLoc, diag::warn_template_export_unsupported); 821 822 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 823 (NamedDecl**)Params, NumParams, 824 RAngleLoc); 825 } 826 827 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 828 if (SS.isSet()) 829 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 830 } 831 832 DeclResult 833 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 834 SourceLocation KWLoc, CXXScopeSpec &SS, 835 IdentifierInfo *Name, SourceLocation NameLoc, 836 AttributeList *Attr, 837 TemplateParameterList *TemplateParams, 838 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 839 SourceLocation FriendLoc, 840 unsigned NumOuterTemplateParamLists, 841 TemplateParameterList** OuterTemplateParamLists, 842 SkipBodyInfo *SkipBody) { 843 assert(TemplateParams && TemplateParams->size() > 0 && 844 "No template parameters"); 845 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 846 bool Invalid = false; 847 848 // Check that we can declare a template here. 849 if (CheckTemplateDeclScope(S, TemplateParams)) 850 return true; 851 852 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 853 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 854 855 // There is no such thing as an unnamed class template. 856 if (!Name) { 857 Diag(KWLoc, diag::err_template_unnamed_class); 858 return true; 859 } 860 861 // Find any previous declaration with this name. For a friend with no 862 // scope explicitly specified, we only look for tag declarations (per 863 // C++11 [basic.lookup.elab]p2). 864 DeclContext *SemanticContext; 865 LookupResult Previous(*this, Name, NameLoc, 866 (SS.isEmpty() && TUK == TUK_Friend) 867 ? LookupTagName : LookupOrdinaryName, 868 ForRedeclaration); 869 if (SS.isNotEmpty() && !SS.isInvalid()) { 870 SemanticContext = computeDeclContext(SS, true); 871 if (!SemanticContext) { 872 // FIXME: Horrible, horrible hack! We can't currently represent this 873 // in the AST, and historically we have just ignored such friend 874 // class templates, so don't complain here. 875 Diag(NameLoc, TUK == TUK_Friend 876 ? diag::warn_template_qualified_friend_ignored 877 : diag::err_template_qualified_declarator_no_match) 878 << SS.getScopeRep() << SS.getRange(); 879 return TUK != TUK_Friend; 880 } 881 882 if (RequireCompleteDeclContext(SS, SemanticContext)) 883 return true; 884 885 // If we're adding a template to a dependent context, we may need to 886 // rebuilding some of the types used within the template parameter list, 887 // now that we know what the current instantiation is. 888 if (SemanticContext->isDependentContext()) { 889 ContextRAII SavedContext(*this, SemanticContext); 890 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 891 Invalid = true; 892 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 893 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 894 895 LookupQualifiedName(Previous, SemanticContext); 896 } else { 897 SemanticContext = CurContext; 898 899 // C++14 [class.mem]p14: 900 // If T is the name of a class, then each of the following shall have a 901 // name different from T: 902 // -- every member template of class T 903 if (TUK != TUK_Friend && 904 DiagnoseClassNameShadow(SemanticContext, 905 DeclarationNameInfo(Name, NameLoc))) 906 return true; 907 908 LookupName(Previous, S); 909 } 910 911 if (Previous.isAmbiguous()) 912 return true; 913 914 NamedDecl *PrevDecl = nullptr; 915 if (Previous.begin() != Previous.end()) 916 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 917 918 // If there is a previous declaration with the same name, check 919 // whether this is a valid redeclaration. 920 ClassTemplateDecl *PrevClassTemplate 921 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 922 923 // We may have found the injected-class-name of a class template, 924 // class template partial specialization, or class template specialization. 925 // In these cases, grab the template that is being defined or specialized. 926 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 927 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 928 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 929 PrevClassTemplate 930 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 931 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 932 PrevClassTemplate 933 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 934 ->getSpecializedTemplate(); 935 } 936 } 937 938 if (TUK == TUK_Friend) { 939 // C++ [namespace.memdef]p3: 940 // [...] When looking for a prior declaration of a class or a function 941 // declared as a friend, and when the name of the friend class or 942 // function is neither a qualified name nor a template-id, scopes outside 943 // the innermost enclosing namespace scope are not considered. 944 if (!SS.isSet()) { 945 DeclContext *OutermostContext = CurContext; 946 while (!OutermostContext->isFileContext()) 947 OutermostContext = OutermostContext->getLookupParent(); 948 949 if (PrevDecl && 950 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 951 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 952 SemanticContext = PrevDecl->getDeclContext(); 953 } else { 954 // Declarations in outer scopes don't matter. However, the outermost 955 // context we computed is the semantic context for our new 956 // declaration. 957 PrevDecl = PrevClassTemplate = nullptr; 958 SemanticContext = OutermostContext; 959 960 // Check that the chosen semantic context doesn't already contain a 961 // declaration of this name as a non-tag type. 962 Previous.clear(LookupOrdinaryName); 963 DeclContext *LookupContext = SemanticContext; 964 while (LookupContext->isTransparentContext()) 965 LookupContext = LookupContext->getLookupParent(); 966 LookupQualifiedName(Previous, LookupContext); 967 968 if (Previous.isAmbiguous()) 969 return true; 970 971 if (Previous.begin() != Previous.end()) 972 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 973 } 974 } 975 } else if (PrevDecl && 976 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 977 S, SS.isValid())) 978 PrevDecl = PrevClassTemplate = nullptr; 979 980 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 981 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 982 if (SS.isEmpty() && 983 !(PrevClassTemplate && 984 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 985 SemanticContext->getRedeclContext()))) { 986 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 987 Diag(Shadow->getTargetDecl()->getLocation(), 988 diag::note_using_decl_target); 989 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 990 // Recover by ignoring the old declaration. 991 PrevDecl = PrevClassTemplate = nullptr; 992 } 993 } 994 995 if (PrevClassTemplate) { 996 // Ensure that the template parameter lists are compatible. Skip this check 997 // for a friend in a dependent context: the template parameter list itself 998 // could be dependent. 999 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1000 !TemplateParameterListsAreEqual(TemplateParams, 1001 PrevClassTemplate->getTemplateParameters(), 1002 /*Complain=*/true, 1003 TPL_TemplateMatch)) 1004 return true; 1005 1006 // C++ [temp.class]p4: 1007 // In a redeclaration, partial specialization, explicit 1008 // specialization or explicit instantiation of a class template, 1009 // the class-key shall agree in kind with the original class 1010 // template declaration (7.1.5.3). 1011 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1012 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1013 TUK == TUK_Definition, KWLoc, Name)) { 1014 Diag(KWLoc, diag::err_use_with_wrong_tag) 1015 << Name 1016 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1017 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1018 Kind = PrevRecordDecl->getTagKind(); 1019 } 1020 1021 // Check for redefinition of this class template. 1022 if (TUK == TUK_Definition) { 1023 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1024 // If we have a prior definition that is not visible, treat this as 1025 // simply making that previous definition visible. 1026 NamedDecl *Hidden = nullptr; 1027 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1028 SkipBody->ShouldSkip = true; 1029 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1030 assert(Tmpl && "original definition of a class template is not a " 1031 "class template?"); 1032 makeMergedDefinitionVisible(Hidden, KWLoc); 1033 makeMergedDefinitionVisible(Tmpl, KWLoc); 1034 return Def; 1035 } 1036 1037 Diag(NameLoc, diag::err_redefinition) << Name; 1038 Diag(Def->getLocation(), diag::note_previous_definition); 1039 // FIXME: Would it make sense to try to "forget" the previous 1040 // definition, as part of error recovery? 1041 return true; 1042 } 1043 } 1044 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1045 // Maybe we will complain about the shadowed template parameter. 1046 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1047 // Just pretend that we didn't see the previous declaration. 1048 PrevDecl = nullptr; 1049 } else if (PrevDecl) { 1050 // C++ [temp]p5: 1051 // A class template shall not have the same name as any other 1052 // template, class, function, object, enumeration, enumerator, 1053 // namespace, or type in the same scope (3.3), except as specified 1054 // in (14.5.4). 1055 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1056 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1057 return true; 1058 } 1059 1060 // Check the template parameter list of this declaration, possibly 1061 // merging in the template parameter list from the previous class 1062 // template declaration. Skip this check for a friend in a dependent 1063 // context, because the template parameter list might be dependent. 1064 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1065 CheckTemplateParameterList( 1066 TemplateParams, 1067 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() 1068 : nullptr, 1069 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1070 SemanticContext->isDependentContext()) 1071 ? TPC_ClassTemplateMember 1072 : TUK == TUK_Friend ? TPC_FriendClassTemplate 1073 : TPC_ClassTemplate)) 1074 Invalid = true; 1075 1076 if (SS.isSet()) { 1077 // If the name of the template was qualified, we must be defining the 1078 // template out-of-line. 1079 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1080 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1081 : diag::err_member_decl_does_not_match) 1082 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1083 Invalid = true; 1084 } 1085 } 1086 1087 CXXRecordDecl *NewClass = 1088 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1089 PrevClassTemplate? 1090 PrevClassTemplate->getTemplatedDecl() : nullptr, 1091 /*DelayTypeCreation=*/true); 1092 SetNestedNameSpecifier(NewClass, SS); 1093 if (NumOuterTemplateParamLists > 0) 1094 NewClass->setTemplateParameterListsInfo( 1095 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1096 NumOuterTemplateParamLists)); 1097 1098 // Add alignment attributes if necessary; these attributes are checked when 1099 // the ASTContext lays out the structure. 1100 if (TUK == TUK_Definition) { 1101 AddAlignmentAttributesForRecord(NewClass); 1102 AddMsStructLayoutForRecord(NewClass); 1103 } 1104 1105 ClassTemplateDecl *NewTemplate 1106 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1107 DeclarationName(Name), TemplateParams, 1108 NewClass, PrevClassTemplate); 1109 NewClass->setDescribedClassTemplate(NewTemplate); 1110 1111 if (ModulePrivateLoc.isValid()) 1112 NewTemplate->setModulePrivate(); 1113 1114 // Build the type for the class template declaration now. 1115 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1116 T = Context.getInjectedClassNameType(NewClass, T); 1117 assert(T->isDependentType() && "Class template type is not dependent?"); 1118 (void)T; 1119 1120 // If we are providing an explicit specialization of a member that is a 1121 // class template, make a note of that. 1122 if (PrevClassTemplate && 1123 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1124 PrevClassTemplate->setMemberSpecialization(); 1125 1126 // Set the access specifier. 1127 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1128 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1129 1130 // Set the lexical context of these templates 1131 NewClass->setLexicalDeclContext(CurContext); 1132 NewTemplate->setLexicalDeclContext(CurContext); 1133 1134 if (TUK == TUK_Definition) 1135 NewClass->startDefinition(); 1136 1137 if (Attr) 1138 ProcessDeclAttributeList(S, NewClass, Attr); 1139 1140 if (PrevClassTemplate) 1141 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1142 1143 AddPushedVisibilityAttribute(NewClass); 1144 1145 if (TUK != TUK_Friend) { 1146 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 1147 Scope *Outer = S; 1148 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 1149 Outer = Outer->getParent(); 1150 PushOnScopeChains(NewTemplate, Outer); 1151 } else { 1152 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1153 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1154 NewClass->setAccess(PrevClassTemplate->getAccess()); 1155 } 1156 1157 NewTemplate->setObjectOfFriendDecl(); 1158 1159 // Friend templates are visible in fairly strange ways. 1160 if (!CurContext->isDependentContext()) { 1161 DeclContext *DC = SemanticContext->getRedeclContext(); 1162 DC->makeDeclVisibleInContext(NewTemplate); 1163 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1164 PushOnScopeChains(NewTemplate, EnclosingScope, 1165 /* AddToContext = */ false); 1166 } 1167 1168 FriendDecl *Friend = FriendDecl::Create( 1169 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 1170 Friend->setAccess(AS_public); 1171 CurContext->addDecl(Friend); 1172 } 1173 1174 if (Invalid) { 1175 NewTemplate->setInvalidDecl(); 1176 NewClass->setInvalidDecl(); 1177 } 1178 1179 ActOnDocumentableDecl(NewTemplate); 1180 1181 return NewTemplate; 1182 } 1183 1184 /// \brief Diagnose the presence of a default template argument on a 1185 /// template parameter, which is ill-formed in certain contexts. 1186 /// 1187 /// \returns true if the default template argument should be dropped. 1188 static bool DiagnoseDefaultTemplateArgument(Sema &S, 1189 Sema::TemplateParamListContext TPC, 1190 SourceLocation ParamLoc, 1191 SourceRange DefArgRange) { 1192 switch (TPC) { 1193 case Sema::TPC_ClassTemplate: 1194 case Sema::TPC_VarTemplate: 1195 case Sema::TPC_TypeAliasTemplate: 1196 return false; 1197 1198 case Sema::TPC_FunctionTemplate: 1199 case Sema::TPC_FriendFunctionTemplateDefinition: 1200 // C++ [temp.param]p9: 1201 // A default template-argument shall not be specified in a 1202 // function template declaration or a function template 1203 // definition [...] 1204 // If a friend function template declaration specifies a default 1205 // template-argument, that declaration shall be a definition and shall be 1206 // the only declaration of the function template in the translation unit. 1207 // (C++98/03 doesn't have this wording; see DR226). 1208 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1209 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1210 : diag::ext_template_parameter_default_in_function_template) 1211 << DefArgRange; 1212 return false; 1213 1214 case Sema::TPC_ClassTemplateMember: 1215 // C++0x [temp.param]p9: 1216 // A default template-argument shall not be specified in the 1217 // template-parameter-lists of the definition of a member of a 1218 // class template that appears outside of the member's class. 1219 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1220 << DefArgRange; 1221 return true; 1222 1223 case Sema::TPC_FriendClassTemplate: 1224 case Sema::TPC_FriendFunctionTemplate: 1225 // C++ [temp.param]p9: 1226 // A default template-argument shall not be specified in a 1227 // friend template declaration. 1228 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1229 << DefArgRange; 1230 return true; 1231 1232 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1233 // for friend function templates if there is only a single 1234 // declaration (and it is a definition). Strange! 1235 } 1236 1237 llvm_unreachable("Invalid TemplateParamListContext!"); 1238 } 1239 1240 /// \brief Check for unexpanded parameter packs within the template parameters 1241 /// of a template template parameter, recursively. 1242 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1243 TemplateTemplateParmDecl *TTP) { 1244 // A template template parameter which is a parameter pack is also a pack 1245 // expansion. 1246 if (TTP->isParameterPack()) 1247 return false; 1248 1249 TemplateParameterList *Params = TTP->getTemplateParameters(); 1250 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1251 NamedDecl *P = Params->getParam(I); 1252 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1253 if (!NTTP->isParameterPack() && 1254 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1255 NTTP->getTypeSourceInfo(), 1256 Sema::UPPC_NonTypeTemplateParameterType)) 1257 return true; 1258 1259 continue; 1260 } 1261 1262 if (TemplateTemplateParmDecl *InnerTTP 1263 = dyn_cast<TemplateTemplateParmDecl>(P)) 1264 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 /// \brief Checks the validity of a template parameter list, possibly 1272 /// considering the template parameter list from a previous 1273 /// declaration. 1274 /// 1275 /// If an "old" template parameter list is provided, it must be 1276 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 1277 /// template parameter list. 1278 /// 1279 /// \param NewParams Template parameter list for a new template 1280 /// declaration. This template parameter list will be updated with any 1281 /// default arguments that are carried through from the previous 1282 /// template parameter list. 1283 /// 1284 /// \param OldParams If provided, template parameter list from a 1285 /// previous declaration of the same template. Default template 1286 /// arguments will be merged from the old template parameter list to 1287 /// the new template parameter list. 1288 /// 1289 /// \param TPC Describes the context in which we are checking the given 1290 /// template parameter list. 1291 /// 1292 /// \returns true if an error occurred, false otherwise. 1293 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1294 TemplateParameterList *OldParams, 1295 TemplateParamListContext TPC) { 1296 bool Invalid = false; 1297 1298 // C++ [temp.param]p10: 1299 // The set of default template-arguments available for use with a 1300 // template declaration or definition is obtained by merging the 1301 // default arguments from the definition (if in scope) and all 1302 // declarations in scope in the same way default function 1303 // arguments are (8.3.6). 1304 bool SawDefaultArgument = false; 1305 SourceLocation PreviousDefaultArgLoc; 1306 1307 // Dummy initialization to avoid warnings. 1308 TemplateParameterList::iterator OldParam = NewParams->end(); 1309 if (OldParams) 1310 OldParam = OldParams->begin(); 1311 1312 bool RemoveDefaultArguments = false; 1313 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1314 NewParamEnd = NewParams->end(); 1315 NewParam != NewParamEnd; ++NewParam) { 1316 // Variables used to diagnose redundant default arguments 1317 bool RedundantDefaultArg = false; 1318 SourceLocation OldDefaultLoc; 1319 SourceLocation NewDefaultLoc; 1320 1321 // Variable used to diagnose missing default arguments 1322 bool MissingDefaultArg = false; 1323 1324 // Variable used to diagnose non-final parameter packs 1325 bool SawParameterPack = false; 1326 1327 if (TemplateTypeParmDecl *NewTypeParm 1328 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1329 // Check the presence of a default argument here. 1330 if (NewTypeParm->hasDefaultArgument() && 1331 DiagnoseDefaultTemplateArgument(*this, TPC, 1332 NewTypeParm->getLocation(), 1333 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1334 .getSourceRange())) 1335 NewTypeParm->removeDefaultArgument(); 1336 1337 // Merge default arguments for template type parameters. 1338 TemplateTypeParmDecl *OldTypeParm 1339 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 1340 if (NewTypeParm->isParameterPack()) { 1341 assert(!NewTypeParm->hasDefaultArgument() && 1342 "Parameter packs can't have a default argument!"); 1343 SawParameterPack = true; 1344 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 1345 NewTypeParm->hasDefaultArgument()) { 1346 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1347 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1348 SawDefaultArgument = true; 1349 RedundantDefaultArg = true; 1350 PreviousDefaultArgLoc = NewDefaultLoc; 1351 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1352 // Merge the default argument from the old declaration to the 1353 // new declaration. 1354 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 1355 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1356 } else if (NewTypeParm->hasDefaultArgument()) { 1357 SawDefaultArgument = true; 1358 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1359 } else if (SawDefaultArgument) 1360 MissingDefaultArg = true; 1361 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1362 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1363 // Check for unexpanded parameter packs. 1364 if (!NewNonTypeParm->isParameterPack() && 1365 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1366 NewNonTypeParm->getTypeSourceInfo(), 1367 UPPC_NonTypeTemplateParameterType)) { 1368 Invalid = true; 1369 continue; 1370 } 1371 1372 // Check the presence of a default argument here. 1373 if (NewNonTypeParm->hasDefaultArgument() && 1374 DiagnoseDefaultTemplateArgument(*this, TPC, 1375 NewNonTypeParm->getLocation(), 1376 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1377 NewNonTypeParm->removeDefaultArgument(); 1378 } 1379 1380 // Merge default arguments for non-type template parameters 1381 NonTypeTemplateParmDecl *OldNonTypeParm 1382 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 1383 if (NewNonTypeParm->isParameterPack()) { 1384 assert(!NewNonTypeParm->hasDefaultArgument() && 1385 "Parameter packs can't have a default argument!"); 1386 if (!NewNonTypeParm->isPackExpansion()) 1387 SawParameterPack = true; 1388 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 1389 NewNonTypeParm->hasDefaultArgument()) { 1390 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1391 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1392 SawDefaultArgument = true; 1393 RedundantDefaultArg = true; 1394 PreviousDefaultArgLoc = NewDefaultLoc; 1395 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1396 // Merge the default argument from the old declaration to the 1397 // new declaration. 1398 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 1399 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1400 } else if (NewNonTypeParm->hasDefaultArgument()) { 1401 SawDefaultArgument = true; 1402 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1403 } else if (SawDefaultArgument) 1404 MissingDefaultArg = true; 1405 } else { 1406 TemplateTemplateParmDecl *NewTemplateParm 1407 = cast<TemplateTemplateParmDecl>(*NewParam); 1408 1409 // Check for unexpanded parameter packs, recursively. 1410 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1411 Invalid = true; 1412 continue; 1413 } 1414 1415 // Check the presence of a default argument here. 1416 if (NewTemplateParm->hasDefaultArgument() && 1417 DiagnoseDefaultTemplateArgument(*this, TPC, 1418 NewTemplateParm->getLocation(), 1419 NewTemplateParm->getDefaultArgument().getSourceRange())) 1420 NewTemplateParm->removeDefaultArgument(); 1421 1422 // Merge default arguments for template template parameters 1423 TemplateTemplateParmDecl *OldTemplateParm 1424 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 1425 if (NewTemplateParm->isParameterPack()) { 1426 assert(!NewTemplateParm->hasDefaultArgument() && 1427 "Parameter packs can't have a default argument!"); 1428 if (!NewTemplateParm->isPackExpansion()) 1429 SawParameterPack = true; 1430 } else if (OldTemplateParm && 1431 hasVisibleDefaultArgument(OldTemplateParm) && 1432 NewTemplateParm->hasDefaultArgument()) { 1433 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1434 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1435 SawDefaultArgument = true; 1436 RedundantDefaultArg = true; 1437 PreviousDefaultArgLoc = NewDefaultLoc; 1438 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1439 // Merge the default argument from the old declaration to the 1440 // new declaration. 1441 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 1442 PreviousDefaultArgLoc 1443 = OldTemplateParm->getDefaultArgument().getLocation(); 1444 } else if (NewTemplateParm->hasDefaultArgument()) { 1445 SawDefaultArgument = true; 1446 PreviousDefaultArgLoc 1447 = NewTemplateParm->getDefaultArgument().getLocation(); 1448 } else if (SawDefaultArgument) 1449 MissingDefaultArg = true; 1450 } 1451 1452 // C++11 [temp.param]p11: 1453 // If a template parameter of a primary class template or alias template 1454 // is a template parameter pack, it shall be the last template parameter. 1455 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1456 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 1457 TPC == TPC_TypeAliasTemplate)) { 1458 Diag((*NewParam)->getLocation(), 1459 diag::err_template_param_pack_must_be_last_template_parameter); 1460 Invalid = true; 1461 } 1462 1463 if (RedundantDefaultArg) { 1464 // C++ [temp.param]p12: 1465 // A template-parameter shall not be given default arguments 1466 // by two different declarations in the same scope. 1467 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1468 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1469 Invalid = true; 1470 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1471 // C++ [temp.param]p11: 1472 // If a template-parameter of a class template has a default 1473 // template-argument, each subsequent template-parameter shall either 1474 // have a default template-argument supplied or be a template parameter 1475 // pack. 1476 Diag((*NewParam)->getLocation(), 1477 diag::err_template_param_default_arg_missing); 1478 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1479 Invalid = true; 1480 RemoveDefaultArguments = true; 1481 } 1482 1483 // If we have an old template parameter list that we're merging 1484 // in, move on to the next parameter. 1485 if (OldParams) 1486 ++OldParam; 1487 } 1488 1489 // We were missing some default arguments at the end of the list, so remove 1490 // all of the default arguments. 1491 if (RemoveDefaultArguments) { 1492 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1493 NewParamEnd = NewParams->end(); 1494 NewParam != NewParamEnd; ++NewParam) { 1495 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1496 TTP->removeDefaultArgument(); 1497 else if (NonTypeTemplateParmDecl *NTTP 1498 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1499 NTTP->removeDefaultArgument(); 1500 else 1501 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1502 } 1503 } 1504 1505 return Invalid; 1506 } 1507 1508 namespace { 1509 1510 /// A class which looks for a use of a certain level of template 1511 /// parameter. 1512 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1513 typedef RecursiveASTVisitor<DependencyChecker> super; 1514 1515 unsigned Depth; 1516 bool Match; 1517 SourceLocation MatchLoc; 1518 1519 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {} 1520 1521 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1522 NamedDecl *ND = Params->getParam(0); 1523 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1524 Depth = PD->getDepth(); 1525 } else if (NonTypeTemplateParmDecl *PD = 1526 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1527 Depth = PD->getDepth(); 1528 } else { 1529 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1530 } 1531 } 1532 1533 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 1534 if (ParmDepth >= Depth) { 1535 Match = true; 1536 MatchLoc = Loc; 1537 return true; 1538 } 1539 return false; 1540 } 1541 1542 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 1543 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 1544 } 1545 1546 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1547 return !Matches(T->getDepth()); 1548 } 1549 1550 bool TraverseTemplateName(TemplateName N) { 1551 if (TemplateTemplateParmDecl *PD = 1552 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1553 if (Matches(PD->getDepth())) 1554 return false; 1555 return super::TraverseTemplateName(N); 1556 } 1557 1558 bool VisitDeclRefExpr(DeclRefExpr *E) { 1559 if (NonTypeTemplateParmDecl *PD = 1560 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 1561 if (Matches(PD->getDepth(), E->getExprLoc())) 1562 return false; 1563 return super::VisitDeclRefExpr(E); 1564 } 1565 1566 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 1567 return TraverseType(T->getReplacementType()); 1568 } 1569 1570 bool 1571 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 1572 return TraverseTemplateArgument(T->getArgumentPack()); 1573 } 1574 1575 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1576 return TraverseType(T->getInjectedSpecializationType()); 1577 } 1578 }; 1579 } 1580 1581 /// Determines whether a given type depends on the given parameter 1582 /// list. 1583 static bool 1584 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1585 DependencyChecker Checker(Params); 1586 Checker.TraverseType(T); 1587 return Checker.Match; 1588 } 1589 1590 // Find the source range corresponding to the named type in the given 1591 // nested-name-specifier, if any. 1592 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1593 QualType T, 1594 const CXXScopeSpec &SS) { 1595 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1596 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1597 if (const Type *CurType = NNS->getAsType()) { 1598 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1599 return NNSLoc.getTypeLoc().getSourceRange(); 1600 } else 1601 break; 1602 1603 NNSLoc = NNSLoc.getPrefix(); 1604 } 1605 1606 return SourceRange(); 1607 } 1608 1609 /// \brief Match the given template parameter lists to the given scope 1610 /// specifier, returning the template parameter list that applies to the 1611 /// name. 1612 /// 1613 /// \param DeclStartLoc the start of the declaration that has a scope 1614 /// specifier or a template parameter list. 1615 /// 1616 /// \param DeclLoc The location of the declaration itself. 1617 /// 1618 /// \param SS the scope specifier that will be matched to the given template 1619 /// parameter lists. This scope specifier precedes a qualified name that is 1620 /// being declared. 1621 /// 1622 /// \param TemplateId The template-id following the scope specifier, if there 1623 /// is one. Used to check for a missing 'template<>'. 1624 /// 1625 /// \param ParamLists the template parameter lists, from the outermost to the 1626 /// innermost template parameter lists. 1627 /// 1628 /// \param IsFriend Whether to apply the slightly different rules for 1629 /// matching template parameters to scope specifiers in friend 1630 /// declarations. 1631 /// 1632 /// \param IsExplicitSpecialization will be set true if the entity being 1633 /// declared is an explicit specialization, false otherwise. 1634 /// 1635 /// \returns the template parameter list, if any, that corresponds to the 1636 /// name that is preceded by the scope specifier @p SS. This template 1637 /// parameter list may have template parameters (if we're declaring a 1638 /// template) or may have no template parameters (if we're declaring a 1639 /// template specialization), or may be NULL (if what we're declaring isn't 1640 /// itself a template). 1641 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 1642 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 1643 TemplateIdAnnotation *TemplateId, 1644 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 1645 bool &IsExplicitSpecialization, bool &Invalid) { 1646 IsExplicitSpecialization = false; 1647 Invalid = false; 1648 1649 // The sequence of nested types to which we will match up the template 1650 // parameter lists. We first build this list by starting with the type named 1651 // by the nested-name-specifier and walking out until we run out of types. 1652 SmallVector<QualType, 4> NestedTypes; 1653 QualType T; 1654 if (SS.getScopeRep()) { 1655 if (CXXRecordDecl *Record 1656 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1657 T = Context.getTypeDeclType(Record); 1658 else 1659 T = QualType(SS.getScopeRep()->getAsType(), 0); 1660 } 1661 1662 // If we found an explicit specialization that prevents us from needing 1663 // 'template<>' headers, this will be set to the location of that 1664 // explicit specialization. 1665 SourceLocation ExplicitSpecLoc; 1666 1667 while (!T.isNull()) { 1668 NestedTypes.push_back(T); 1669 1670 // Retrieve the parent of a record type. 1671 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1672 // If this type is an explicit specialization, we're done. 1673 if (ClassTemplateSpecializationDecl *Spec 1674 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1675 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1676 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1677 ExplicitSpecLoc = Spec->getLocation(); 1678 break; 1679 } 1680 } else if (Record->getTemplateSpecializationKind() 1681 == TSK_ExplicitSpecialization) { 1682 ExplicitSpecLoc = Record->getLocation(); 1683 break; 1684 } 1685 1686 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1687 T = Context.getTypeDeclType(Parent); 1688 else 1689 T = QualType(); 1690 continue; 1691 } 1692 1693 if (const TemplateSpecializationType *TST 1694 = T->getAs<TemplateSpecializationType>()) { 1695 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1696 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1697 T = Context.getTypeDeclType(Parent); 1698 else 1699 T = QualType(); 1700 continue; 1701 } 1702 } 1703 1704 // Look one step prior in a dependent template specialization type. 1705 if (const DependentTemplateSpecializationType *DependentTST 1706 = T->getAs<DependentTemplateSpecializationType>()) { 1707 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1708 T = QualType(NNS->getAsType(), 0); 1709 else 1710 T = QualType(); 1711 continue; 1712 } 1713 1714 // Look one step prior in a dependent name type. 1715 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1716 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1717 T = QualType(NNS->getAsType(), 0); 1718 else 1719 T = QualType(); 1720 continue; 1721 } 1722 1723 // Retrieve the parent of an enumeration type. 1724 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1725 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1726 // check here. 1727 EnumDecl *Enum = EnumT->getDecl(); 1728 1729 // Get to the parent type. 1730 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1731 T = Context.getTypeDeclType(Parent); 1732 else 1733 T = QualType(); 1734 continue; 1735 } 1736 1737 T = QualType(); 1738 } 1739 // Reverse the nested types list, since we want to traverse from the outermost 1740 // to the innermost while checking template-parameter-lists. 1741 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1742 1743 // C++0x [temp.expl.spec]p17: 1744 // A member or a member template may be nested within many 1745 // enclosing class templates. In an explicit specialization for 1746 // such a member, the member declaration shall be preceded by a 1747 // template<> for each enclosing class template that is 1748 // explicitly specialized. 1749 bool SawNonEmptyTemplateParameterList = false; 1750 1751 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 1752 if (SawNonEmptyTemplateParameterList) { 1753 Diag(DeclLoc, diag::err_specialize_member_of_template) 1754 << !Recovery << Range; 1755 Invalid = true; 1756 IsExplicitSpecialization = false; 1757 return true; 1758 } 1759 1760 return false; 1761 }; 1762 1763 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 1764 // Check that we can have an explicit specialization here. 1765 if (CheckExplicitSpecialization(Range, true)) 1766 return true; 1767 1768 // We don't have a template header, but we should. 1769 SourceLocation ExpectedTemplateLoc; 1770 if (!ParamLists.empty()) 1771 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1772 else 1773 ExpectedTemplateLoc = DeclStartLoc; 1774 1775 Diag(DeclLoc, diag::err_template_spec_needs_header) 1776 << Range 1777 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1778 return false; 1779 }; 1780 1781 unsigned ParamIdx = 0; 1782 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1783 ++TypeIdx) { 1784 T = NestedTypes[TypeIdx]; 1785 1786 // Whether we expect a 'template<>' header. 1787 bool NeedEmptyTemplateHeader = false; 1788 1789 // Whether we expect a template header with parameters. 1790 bool NeedNonemptyTemplateHeader = false; 1791 1792 // For a dependent type, the set of template parameters that we 1793 // expect to see. 1794 TemplateParameterList *ExpectedTemplateParams = nullptr; 1795 1796 // C++0x [temp.expl.spec]p15: 1797 // A member or a member template may be nested within many enclosing 1798 // class templates. In an explicit specialization for such a member, the 1799 // member declaration shall be preceded by a template<> for each 1800 // enclosing class template that is explicitly specialized. 1801 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1802 if (ClassTemplatePartialSpecializationDecl *Partial 1803 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1804 ExpectedTemplateParams = Partial->getTemplateParameters(); 1805 NeedNonemptyTemplateHeader = true; 1806 } else if (Record->isDependentType()) { 1807 if (Record->getDescribedClassTemplate()) { 1808 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1809 ->getTemplateParameters(); 1810 NeedNonemptyTemplateHeader = true; 1811 } 1812 } else if (ClassTemplateSpecializationDecl *Spec 1813 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1814 // C++0x [temp.expl.spec]p4: 1815 // Members of an explicitly specialized class template are defined 1816 // in the same manner as members of normal classes, and not using 1817 // the template<> syntax. 1818 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1819 NeedEmptyTemplateHeader = true; 1820 else 1821 continue; 1822 } else if (Record->getTemplateSpecializationKind()) { 1823 if (Record->getTemplateSpecializationKind() 1824 != TSK_ExplicitSpecialization && 1825 TypeIdx == NumTypes - 1) 1826 IsExplicitSpecialization = true; 1827 1828 continue; 1829 } 1830 } else if (const TemplateSpecializationType *TST 1831 = T->getAs<TemplateSpecializationType>()) { 1832 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1833 ExpectedTemplateParams = Template->getTemplateParameters(); 1834 NeedNonemptyTemplateHeader = true; 1835 } 1836 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1837 // FIXME: We actually could/should check the template arguments here 1838 // against the corresponding template parameter list. 1839 NeedNonemptyTemplateHeader = false; 1840 } 1841 1842 // C++ [temp.expl.spec]p16: 1843 // In an explicit specialization declaration for a member of a class 1844 // template or a member template that ap- pears in namespace scope, the 1845 // member template and some of its enclosing class templates may remain 1846 // unspecialized, except that the declaration shall not explicitly 1847 // specialize a class member template if its en- closing class templates 1848 // are not explicitly specialized as well. 1849 if (ParamIdx < ParamLists.size()) { 1850 if (ParamLists[ParamIdx]->size() == 0) { 1851 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 1852 false)) 1853 return nullptr; 1854 } else 1855 SawNonEmptyTemplateParameterList = true; 1856 } 1857 1858 if (NeedEmptyTemplateHeader) { 1859 // If we're on the last of the types, and we need a 'template<>' header 1860 // here, then it's an explicit specialization. 1861 if (TypeIdx == NumTypes - 1) 1862 IsExplicitSpecialization = true; 1863 1864 if (ParamIdx < ParamLists.size()) { 1865 if (ParamLists[ParamIdx]->size() > 0) { 1866 // The header has template parameters when it shouldn't. Complain. 1867 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1868 diag::err_template_param_list_matches_nontemplate) 1869 << T 1870 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1871 ParamLists[ParamIdx]->getRAngleLoc()) 1872 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1873 Invalid = true; 1874 return nullptr; 1875 } 1876 1877 // Consume this template header. 1878 ++ParamIdx; 1879 continue; 1880 } 1881 1882 if (!IsFriend) 1883 if (DiagnoseMissingExplicitSpecialization( 1884 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 1885 return nullptr; 1886 1887 continue; 1888 } 1889 1890 if (NeedNonemptyTemplateHeader) { 1891 // In friend declarations we can have template-ids which don't 1892 // depend on the corresponding template parameter lists. But 1893 // assume that empty parameter lists are supposed to match this 1894 // template-id. 1895 if (IsFriend && T->isDependentType()) { 1896 if (ParamIdx < ParamLists.size() && 1897 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1898 ExpectedTemplateParams = nullptr; 1899 else 1900 continue; 1901 } 1902 1903 if (ParamIdx < ParamLists.size()) { 1904 // Check the template parameter list, if we can. 1905 if (ExpectedTemplateParams && 1906 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1907 ExpectedTemplateParams, 1908 true, TPL_TemplateMatch)) 1909 Invalid = true; 1910 1911 if (!Invalid && 1912 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 1913 TPC_ClassTemplateMember)) 1914 Invalid = true; 1915 1916 ++ParamIdx; 1917 continue; 1918 } 1919 1920 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1921 << T 1922 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1923 Invalid = true; 1924 continue; 1925 } 1926 } 1927 1928 // If there were at least as many template-ids as there were template 1929 // parameter lists, then there are no template parameter lists remaining for 1930 // the declaration itself. 1931 if (ParamIdx >= ParamLists.size()) { 1932 if (TemplateId && !IsFriend) { 1933 // We don't have a template header for the declaration itself, but we 1934 // should. 1935 IsExplicitSpecialization = true; 1936 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 1937 TemplateId->RAngleLoc)); 1938 1939 // Fabricate an empty template parameter list for the invented header. 1940 return TemplateParameterList::Create(Context, SourceLocation(), 1941 SourceLocation(), nullptr, 0, 1942 SourceLocation()); 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 // If there were too many template parameter lists, complain about that now. 1949 if (ParamIdx < ParamLists.size() - 1) { 1950 bool HasAnyExplicitSpecHeader = false; 1951 bool AllExplicitSpecHeaders = true; 1952 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 1953 if (ParamLists[I]->size() == 0) 1954 HasAnyExplicitSpecHeader = true; 1955 else 1956 AllExplicitSpecHeaders = false; 1957 } 1958 1959 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1960 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 1961 : diag::err_template_spec_extra_headers) 1962 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1963 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 1964 1965 // If there was a specialization somewhere, such that 'template<>' is 1966 // not required, and there were any 'template<>' headers, note where the 1967 // specialization occurred. 1968 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1969 Diag(ExplicitSpecLoc, 1970 diag::note_explicit_template_spec_does_not_need_header) 1971 << NestedTypes.back(); 1972 1973 // We have a template parameter list with no corresponding scope, which 1974 // means that the resulting template declaration can't be instantiated 1975 // properly (we'll end up with dependent nodes when we shouldn't). 1976 if (!AllExplicitSpecHeaders) 1977 Invalid = true; 1978 } 1979 1980 // C++ [temp.expl.spec]p16: 1981 // In an explicit specialization declaration for a member of a class 1982 // template or a member template that ap- pears in namespace scope, the 1983 // member template and some of its enclosing class templates may remain 1984 // unspecialized, except that the declaration shall not explicitly 1985 // specialize a class member template if its en- closing class templates 1986 // are not explicitly specialized as well. 1987 if (ParamLists.back()->size() == 0 && 1988 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 1989 false)) 1990 return nullptr; 1991 1992 // Return the last template parameter list, which corresponds to the 1993 // entity being declared. 1994 return ParamLists.back(); 1995 } 1996 1997 void Sema::NoteAllFoundTemplates(TemplateName Name) { 1998 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1999 Diag(Template->getLocation(), diag::note_template_declared_here) 2000 << (isa<FunctionTemplateDecl>(Template) 2001 ? 0 2002 : isa<ClassTemplateDecl>(Template) 2003 ? 1 2004 : isa<VarTemplateDecl>(Template) 2005 ? 2 2006 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 2007 << Template->getDeclName(); 2008 return; 2009 } 2010 2011 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 2012 for (OverloadedTemplateStorage::iterator I = OST->begin(), 2013 IEnd = OST->end(); 2014 I != IEnd; ++I) 2015 Diag((*I)->getLocation(), diag::note_template_declared_here) 2016 << 0 << (*I)->getDeclName(); 2017 2018 return; 2019 } 2020 } 2021 2022 static QualType 2023 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 2024 const SmallVectorImpl<TemplateArgument> &Converted, 2025 SourceLocation TemplateLoc, 2026 TemplateArgumentListInfo &TemplateArgs) { 2027 ASTContext &Context = SemaRef.getASTContext(); 2028 switch (BTD->getBuiltinTemplateKind()) { 2029 case BTK__make_integer_seq: 2030 // Specializations of __make_integer_seq<S, T, N> are treated like 2031 // S<T, 0, ..., N-1>. 2032 2033 // C++14 [inteseq.intseq]p1: 2034 // T shall be an integer type. 2035 if (!Converted[1].getAsType()->isIntegralType(Context)) { 2036 SemaRef.Diag(TemplateArgs[1].getLocation(), 2037 diag::err_integer_sequence_integral_element_type); 2038 return QualType(); 2039 } 2040 2041 // C++14 [inteseq.make]p1: 2042 // If N is negative the program is ill-formed. 2043 TemplateArgument NumArgsArg = Converted[2]; 2044 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 2045 if (NumArgs < 0) { 2046 SemaRef.Diag(TemplateArgs[2].getLocation(), 2047 diag::err_integer_sequence_negative_length); 2048 return QualType(); 2049 } 2050 2051 QualType ArgTy = NumArgsArg.getIntegralType(); 2052 TemplateArgumentListInfo SyntheticTemplateArgs; 2053 // The type argument gets reused as the first template argument in the 2054 // synthetic template argument list. 2055 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 2056 // Expand N into 0 ... N-1. 2057 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 2058 I < NumArgs; ++I) { 2059 TemplateArgument TA(Context, I, ArgTy); 2060 Expr *E = SemaRef.BuildExpressionFromIntegralTemplateArgument( 2061 TA, TemplateArgs[2].getLocation()) 2062 .getAs<Expr>(); 2063 SyntheticTemplateArgs.addArgument( 2064 TemplateArgumentLoc(TemplateArgument(E), E)); 2065 } 2066 // The first template argument will be reused as the template decl that 2067 // our synthetic template arguments will be applied to. 2068 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 2069 TemplateLoc, SyntheticTemplateArgs); 2070 } 2071 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 2072 } 2073 2074 QualType Sema::CheckTemplateIdType(TemplateName Name, 2075 SourceLocation TemplateLoc, 2076 TemplateArgumentListInfo &TemplateArgs) { 2077 DependentTemplateName *DTN 2078 = Name.getUnderlying().getAsDependentTemplateName(); 2079 if (DTN && DTN->isIdentifier()) 2080 // When building a template-id where the template-name is dependent, 2081 // assume the template is a type template. Either our assumption is 2082 // correct, or the code is ill-formed and will be diagnosed when the 2083 // dependent name is substituted. 2084 return Context.getDependentTemplateSpecializationType(ETK_None, 2085 DTN->getQualifier(), 2086 DTN->getIdentifier(), 2087 TemplateArgs); 2088 2089 TemplateDecl *Template = Name.getAsTemplateDecl(); 2090 if (!Template || isa<FunctionTemplateDecl>(Template) || 2091 isa<VarTemplateDecl>(Template)) { 2092 // We might have a substituted template template parameter pack. If so, 2093 // build a template specialization type for it. 2094 if (Name.getAsSubstTemplateTemplateParmPack()) 2095 return Context.getTemplateSpecializationType(Name, TemplateArgs); 2096 2097 Diag(TemplateLoc, diag::err_template_id_not_a_type) 2098 << Name; 2099 NoteAllFoundTemplates(Name); 2100 return QualType(); 2101 } 2102 2103 // Check that the template argument list is well-formed for this 2104 // template. 2105 SmallVector<TemplateArgument, 4> Converted; 2106 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 2107 false, Converted)) 2108 return QualType(); 2109 2110 QualType CanonType; 2111 2112 bool InstantiationDependent = false; 2113 if (TypeAliasTemplateDecl *AliasTemplate = 2114 dyn_cast<TypeAliasTemplateDecl>(Template)) { 2115 // Find the canonical type for this type alias template specialization. 2116 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 2117 if (Pattern->isInvalidDecl()) 2118 return QualType(); 2119 2120 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2121 Converted.data(), Converted.size()); 2122 2123 // Only substitute for the innermost template argument list. 2124 MultiLevelTemplateArgumentList TemplateArgLists; 2125 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2126 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2127 for (unsigned I = 0; I < Depth; ++I) 2128 TemplateArgLists.addOuterTemplateArguments(None); 2129 2130 LocalInstantiationScope Scope(*this); 2131 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2132 if (Inst.isInvalid()) 2133 return QualType(); 2134 2135 CanonType = SubstType(Pattern->getUnderlyingType(), 2136 TemplateArgLists, AliasTemplate->getLocation(), 2137 AliasTemplate->getDeclName()); 2138 if (CanonType.isNull()) 2139 return QualType(); 2140 } else if (Name.isDependent() || 2141 TemplateSpecializationType::anyDependentTemplateArguments( 2142 TemplateArgs, InstantiationDependent)) { 2143 // This class template specialization is a dependent 2144 // type. Therefore, its canonical type is another class template 2145 // specialization type that contains all of the converted 2146 // arguments in canonical form. This ensures that, e.g., A<T> and 2147 // A<T, T> have identical types when A is declared as: 2148 // 2149 // template<typename T, typename U = T> struct A; 2150 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2151 CanonType = Context.getTemplateSpecializationType(CanonName, 2152 Converted.data(), 2153 Converted.size()); 2154 2155 // FIXME: CanonType is not actually the canonical type, and unfortunately 2156 // it is a TemplateSpecializationType that we will never use again. 2157 // In the future, we need to teach getTemplateSpecializationType to only 2158 // build the canonical type and return that to us. 2159 CanonType = Context.getCanonicalType(CanonType); 2160 2161 // This might work out to be a current instantiation, in which 2162 // case the canonical type needs to be the InjectedClassNameType. 2163 // 2164 // TODO: in theory this could be a simple hashtable lookup; most 2165 // changes to CurContext don't change the set of current 2166 // instantiations. 2167 if (isa<ClassTemplateDecl>(Template)) { 2168 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2169 // If we get out to a namespace, we're done. 2170 if (Ctx->isFileContext()) break; 2171 2172 // If this isn't a record, keep looking. 2173 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2174 if (!Record) continue; 2175 2176 // Look for one of the two cases with InjectedClassNameTypes 2177 // and check whether it's the same template. 2178 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2179 !Record->getDescribedClassTemplate()) 2180 continue; 2181 2182 // Fetch the injected class name type and check whether its 2183 // injected type is equal to the type we just built. 2184 QualType ICNT = Context.getTypeDeclType(Record); 2185 QualType Injected = cast<InjectedClassNameType>(ICNT) 2186 ->getInjectedSpecializationType(); 2187 2188 if (CanonType != Injected->getCanonicalTypeInternal()) 2189 continue; 2190 2191 // If so, the canonical type of this TST is the injected 2192 // class name type of the record we just found. 2193 assert(ICNT.isCanonical()); 2194 CanonType = ICNT; 2195 break; 2196 } 2197 } 2198 } else if (ClassTemplateDecl *ClassTemplate 2199 = dyn_cast<ClassTemplateDecl>(Template)) { 2200 // Find the class template specialization declaration that 2201 // corresponds to these arguments. 2202 void *InsertPos = nullptr; 2203 ClassTemplateSpecializationDecl *Decl 2204 = ClassTemplate->findSpecialization(Converted, InsertPos); 2205 if (!Decl) { 2206 // This is the first time we have referenced this class template 2207 // specialization. Create the canonical declaration and add it to 2208 // the set of specializations. 2209 Decl = ClassTemplateSpecializationDecl::Create(Context, 2210 ClassTemplate->getTemplatedDecl()->getTagKind(), 2211 ClassTemplate->getDeclContext(), 2212 ClassTemplate->getTemplatedDecl()->getLocStart(), 2213 ClassTemplate->getLocation(), 2214 ClassTemplate, 2215 Converted.data(), 2216 Converted.size(), nullptr); 2217 ClassTemplate->AddSpecialization(Decl, InsertPos); 2218 if (ClassTemplate->isOutOfLine()) 2219 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2220 } 2221 2222 // Diagnose uses of this specialization. 2223 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 2224 2225 CanonType = Context.getTypeDeclType(Decl); 2226 assert(isa<RecordType>(CanonType) && 2227 "type of non-dependent specialization is not a RecordType"); 2228 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 2229 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 2230 TemplateArgs); 2231 } 2232 2233 // Build the fully-sugared type for this class template 2234 // specialization, which refers back to the class template 2235 // specialization we created or found. 2236 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2237 } 2238 2239 TypeResult 2240 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2241 TemplateTy TemplateD, SourceLocation TemplateLoc, 2242 SourceLocation LAngleLoc, 2243 ASTTemplateArgsPtr TemplateArgsIn, 2244 SourceLocation RAngleLoc, 2245 bool IsCtorOrDtorName) { 2246 if (SS.isInvalid()) 2247 return true; 2248 2249 TemplateName Template = TemplateD.get(); 2250 2251 // Translate the parser's template argument list in our AST format. 2252 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2253 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2254 2255 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2256 QualType T 2257 = Context.getDependentTemplateSpecializationType(ETK_None, 2258 DTN->getQualifier(), 2259 DTN->getIdentifier(), 2260 TemplateArgs); 2261 // Build type-source information. 2262 TypeLocBuilder TLB; 2263 DependentTemplateSpecializationTypeLoc SpecTL 2264 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2265 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2266 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2267 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2268 SpecTL.setTemplateNameLoc(TemplateLoc); 2269 SpecTL.setLAngleLoc(LAngleLoc); 2270 SpecTL.setRAngleLoc(RAngleLoc); 2271 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2272 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2273 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2274 } 2275 2276 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2277 2278 if (Result.isNull()) 2279 return true; 2280 2281 // Build type-source information. 2282 TypeLocBuilder TLB; 2283 TemplateSpecializationTypeLoc SpecTL 2284 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2285 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2286 SpecTL.setTemplateNameLoc(TemplateLoc); 2287 SpecTL.setLAngleLoc(LAngleLoc); 2288 SpecTL.setRAngleLoc(RAngleLoc); 2289 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2290 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2291 2292 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2293 // constructor or destructor name (in such a case, the scope specifier 2294 // will be attached to the enclosing Decl or Expr node). 2295 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2296 // Create an elaborated-type-specifier containing the nested-name-specifier. 2297 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2298 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2299 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2300 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2301 } 2302 2303 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2304 } 2305 2306 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2307 TypeSpecifierType TagSpec, 2308 SourceLocation TagLoc, 2309 CXXScopeSpec &SS, 2310 SourceLocation TemplateKWLoc, 2311 TemplateTy TemplateD, 2312 SourceLocation TemplateLoc, 2313 SourceLocation LAngleLoc, 2314 ASTTemplateArgsPtr TemplateArgsIn, 2315 SourceLocation RAngleLoc) { 2316 TemplateName Template = TemplateD.get(); 2317 2318 // Translate the parser's template argument list in our AST format. 2319 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2320 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2321 2322 // Determine the tag kind 2323 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2324 ElaboratedTypeKeyword Keyword 2325 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2326 2327 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2328 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2329 DTN->getQualifier(), 2330 DTN->getIdentifier(), 2331 TemplateArgs); 2332 2333 // Build type-source information. 2334 TypeLocBuilder TLB; 2335 DependentTemplateSpecializationTypeLoc SpecTL 2336 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2337 SpecTL.setElaboratedKeywordLoc(TagLoc); 2338 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2339 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2340 SpecTL.setTemplateNameLoc(TemplateLoc); 2341 SpecTL.setLAngleLoc(LAngleLoc); 2342 SpecTL.setRAngleLoc(RAngleLoc); 2343 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2344 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2345 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2346 } 2347 2348 if (TypeAliasTemplateDecl *TAT = 2349 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2350 // C++0x [dcl.type.elab]p2: 2351 // If the identifier resolves to a typedef-name or the simple-template-id 2352 // resolves to an alias template specialization, the 2353 // elaborated-type-specifier is ill-formed. 2354 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2355 Diag(TAT->getLocation(), diag::note_declared_at); 2356 } 2357 2358 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2359 if (Result.isNull()) 2360 return TypeResult(true); 2361 2362 // Check the tag kind 2363 if (const RecordType *RT = Result->getAs<RecordType>()) { 2364 RecordDecl *D = RT->getDecl(); 2365 2366 IdentifierInfo *Id = D->getIdentifier(); 2367 assert(Id && "templated class must have an identifier"); 2368 2369 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2370 TagLoc, Id)) { 2371 Diag(TagLoc, diag::err_use_with_wrong_tag) 2372 << Result 2373 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2374 Diag(D->getLocation(), diag::note_previous_use); 2375 } 2376 } 2377 2378 // Provide source-location information for the template specialization. 2379 TypeLocBuilder TLB; 2380 TemplateSpecializationTypeLoc SpecTL 2381 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2382 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2383 SpecTL.setTemplateNameLoc(TemplateLoc); 2384 SpecTL.setLAngleLoc(LAngleLoc); 2385 SpecTL.setRAngleLoc(RAngleLoc); 2386 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2387 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2388 2389 // Construct an elaborated type containing the nested-name-specifier (if any) 2390 // and tag keyword. 2391 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2392 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2393 ElabTL.setElaboratedKeywordLoc(TagLoc); 2394 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2395 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2396 } 2397 2398 static bool CheckTemplatePartialSpecializationArgs( 2399 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams, 2400 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs); 2401 2402 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 2403 NamedDecl *PrevDecl, 2404 SourceLocation Loc, 2405 bool IsPartialSpecialization); 2406 2407 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 2408 2409 static bool isTemplateArgumentTemplateParameter( 2410 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 2411 switch (Arg.getKind()) { 2412 case TemplateArgument::Null: 2413 case TemplateArgument::NullPtr: 2414 case TemplateArgument::Integral: 2415 case TemplateArgument::Declaration: 2416 case TemplateArgument::Pack: 2417 case TemplateArgument::TemplateExpansion: 2418 return false; 2419 2420 case TemplateArgument::Type: { 2421 QualType Type = Arg.getAsType(); 2422 const TemplateTypeParmType *TPT = 2423 Arg.getAsType()->getAs<TemplateTypeParmType>(); 2424 return TPT && !Type.hasQualifiers() && 2425 TPT->getDepth() == Depth && TPT->getIndex() == Index; 2426 } 2427 2428 case TemplateArgument::Expression: { 2429 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 2430 if (!DRE || !DRE->getDecl()) 2431 return false; 2432 const NonTypeTemplateParmDecl *NTTP = 2433 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 2434 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 2435 } 2436 2437 case TemplateArgument::Template: 2438 const TemplateTemplateParmDecl *TTP = 2439 dyn_cast_or_null<TemplateTemplateParmDecl>( 2440 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 2441 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 2442 } 2443 llvm_unreachable("unexpected kind of template argument"); 2444 } 2445 2446 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 2447 ArrayRef<TemplateArgument> Args) { 2448 if (Params->size() != Args.size()) 2449 return false; 2450 2451 unsigned Depth = Params->getDepth(); 2452 2453 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2454 TemplateArgument Arg = Args[I]; 2455 2456 // If the parameter is a pack expansion, the argument must be a pack 2457 // whose only element is a pack expansion. 2458 if (Params->getParam(I)->isParameterPack()) { 2459 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 2460 !Arg.pack_begin()->isPackExpansion()) 2461 return false; 2462 Arg = Arg.pack_begin()->getPackExpansionPattern(); 2463 } 2464 2465 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 2466 return false; 2467 } 2468 2469 return true; 2470 } 2471 2472 /// Convert the parser's template argument list representation into our form. 2473 static TemplateArgumentListInfo 2474 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 2475 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 2476 TemplateId.RAngleLoc); 2477 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 2478 TemplateId.NumArgs); 2479 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 2480 return TemplateArgs; 2481 } 2482 2483 DeclResult Sema::ActOnVarTemplateSpecialization( 2484 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 2485 TemplateParameterList *TemplateParams, StorageClass SC, 2486 bool IsPartialSpecialization) { 2487 // D must be variable template id. 2488 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId && 2489 "Variable template specialization is declared with a template it."); 2490 2491 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 2492 TemplateArgumentListInfo TemplateArgs = 2493 makeTemplateArgumentListInfo(*this, *TemplateId); 2494 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 2495 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 2496 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 2497 2498 TemplateName Name = TemplateId->Template.get(); 2499 2500 // The template-id must name a variable template. 2501 VarTemplateDecl *VarTemplate = 2502 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 2503 if (!VarTemplate) { 2504 NamedDecl *FnTemplate; 2505 if (auto *OTS = Name.getAsOverloadedTemplate()) 2506 FnTemplate = *OTS->begin(); 2507 else 2508 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 2509 if (FnTemplate) 2510 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 2511 << FnTemplate->getDeclName(); 2512 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 2513 << IsPartialSpecialization; 2514 } 2515 2516 // Check for unexpanded parameter packs in any of the template arguments. 2517 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 2518 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 2519 UPPC_PartialSpecialization)) 2520 return true; 2521 2522 // Check that the template argument list is well-formed for this 2523 // template. 2524 SmallVector<TemplateArgument, 4> Converted; 2525 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 2526 false, Converted)) 2527 return true; 2528 2529 // Find the variable template (partial) specialization declaration that 2530 // corresponds to these arguments. 2531 if (IsPartialSpecialization) { 2532 if (CheckTemplatePartialSpecializationArgs( 2533 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(), 2534 TemplateArgs.size(), Converted)) 2535 return true; 2536 2537 bool InstantiationDependent; 2538 if (!Name.isDependent() && 2539 !TemplateSpecializationType::anyDependentTemplateArguments( 2540 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 2541 InstantiationDependent)) { 2542 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 2543 << VarTemplate->getDeclName(); 2544 IsPartialSpecialization = false; 2545 } 2546 2547 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 2548 Converted)) { 2549 // C++ [temp.class.spec]p9b3: 2550 // 2551 // -- The argument list of the specialization shall not be identical 2552 // to the implicit argument list of the primary template. 2553 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2554 << /*variable template*/ 1 2555 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 2556 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 2557 // FIXME: Recover from this by treating the declaration as a redeclaration 2558 // of the primary template. 2559 return true; 2560 } 2561 } 2562 2563 void *InsertPos = nullptr; 2564 VarTemplateSpecializationDecl *PrevDecl = nullptr; 2565 2566 if (IsPartialSpecialization) 2567 // FIXME: Template parameter list matters too 2568 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); 2569 else 2570 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 2571 2572 VarTemplateSpecializationDecl *Specialization = nullptr; 2573 2574 // Check whether we can declare a variable template specialization in 2575 // the current scope. 2576 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 2577 TemplateNameLoc, 2578 IsPartialSpecialization)) 2579 return true; 2580 2581 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2582 // Since the only prior variable template specialization with these 2583 // arguments was referenced but not declared, reuse that 2584 // declaration node as our own, updating its source location and 2585 // the list of outer template parameters to reflect our new declaration. 2586 Specialization = PrevDecl; 2587 Specialization->setLocation(TemplateNameLoc); 2588 PrevDecl = nullptr; 2589 } else if (IsPartialSpecialization) { 2590 // Create a new class template partial specialization declaration node. 2591 VarTemplatePartialSpecializationDecl *PrevPartial = 2592 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 2593 VarTemplatePartialSpecializationDecl *Partial = 2594 VarTemplatePartialSpecializationDecl::Create( 2595 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 2596 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 2597 Converted.data(), Converted.size(), TemplateArgs); 2598 2599 if (!PrevPartial) 2600 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 2601 Specialization = Partial; 2602 2603 // If we are providing an explicit specialization of a member variable 2604 // template specialization, make a note of that. 2605 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 2606 PrevPartial->setMemberSpecialization(); 2607 2608 // Check that all of the template parameters of the variable template 2609 // partial specialization are deducible from the template 2610 // arguments. If not, this variable template partial specialization 2611 // will never be used. 2612 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 2613 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2614 TemplateParams->getDepth(), DeducibleParams); 2615 2616 if (!DeducibleParams.all()) { 2617 unsigned NumNonDeducible = 2618 DeducibleParams.size() - DeducibleParams.count(); 2619 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2620 << /*variable template*/ 1 << (NumNonDeducible > 1) 2621 << SourceRange(TemplateNameLoc, RAngleLoc); 2622 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2623 if (!DeducibleParams[I]) { 2624 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2625 if (Param->getDeclName()) 2626 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2627 << Param->getDeclName(); 2628 else 2629 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2630 << "(anonymous)"; 2631 } 2632 } 2633 } 2634 } else { 2635 // Create a new class template specialization declaration node for 2636 // this explicit specialization or friend declaration. 2637 Specialization = VarTemplateSpecializationDecl::Create( 2638 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 2639 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size()); 2640 Specialization->setTemplateArgsInfo(TemplateArgs); 2641 2642 if (!PrevDecl) 2643 VarTemplate->AddSpecialization(Specialization, InsertPos); 2644 } 2645 2646 // C++ [temp.expl.spec]p6: 2647 // If a template, a member template or the member of a class template is 2648 // explicitly specialized then that specialization shall be declared 2649 // before the first use of that specialization that would cause an implicit 2650 // instantiation to take place, in every translation unit in which such a 2651 // use occurs; no diagnostic is required. 2652 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 2653 bool Okay = false; 2654 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 2655 // Is there any previous explicit specialization declaration? 2656 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 2657 Okay = true; 2658 break; 2659 } 2660 } 2661 2662 if (!Okay) { 2663 SourceRange Range(TemplateNameLoc, RAngleLoc); 2664 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 2665 << Name << Range; 2666 2667 Diag(PrevDecl->getPointOfInstantiation(), 2668 diag::note_instantiation_required_here) 2669 << (PrevDecl->getTemplateSpecializationKind() != 2670 TSK_ImplicitInstantiation); 2671 return true; 2672 } 2673 } 2674 2675 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 2676 Specialization->setLexicalDeclContext(CurContext); 2677 2678 // Add the specialization into its lexical context, so that it can 2679 // be seen when iterating through the list of declarations in that 2680 // context. However, specializations are not found by name lookup. 2681 CurContext->addDecl(Specialization); 2682 2683 // Note that this is an explicit specialization. 2684 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2685 2686 if (PrevDecl) { 2687 // Check that this isn't a redefinition of this specialization, 2688 // merging with previous declarations. 2689 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 2690 ForRedeclaration); 2691 PrevSpec.addDecl(PrevDecl); 2692 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 2693 } else if (Specialization->isStaticDataMember() && 2694 Specialization->isOutOfLine()) { 2695 Specialization->setAccess(VarTemplate->getAccess()); 2696 } 2697 2698 // Link instantiations of static data members back to the template from 2699 // which they were instantiated. 2700 if (Specialization->isStaticDataMember()) 2701 Specialization->setInstantiationOfStaticDataMember( 2702 VarTemplate->getTemplatedDecl(), 2703 Specialization->getSpecializationKind()); 2704 2705 return Specialization; 2706 } 2707 2708 namespace { 2709 /// \brief A partial specialization whose template arguments have matched 2710 /// a given template-id. 2711 struct PartialSpecMatchResult { 2712 VarTemplatePartialSpecializationDecl *Partial; 2713 TemplateArgumentList *Args; 2714 }; 2715 } 2716 2717 DeclResult 2718 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 2719 SourceLocation TemplateNameLoc, 2720 const TemplateArgumentListInfo &TemplateArgs) { 2721 assert(Template && "A variable template id without template?"); 2722 2723 // Check that the template argument list is well-formed for this template. 2724 SmallVector<TemplateArgument, 4> Converted; 2725 if (CheckTemplateArgumentList( 2726 Template, TemplateNameLoc, 2727 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 2728 Converted)) 2729 return true; 2730 2731 // Find the variable template specialization declaration that 2732 // corresponds to these arguments. 2733 void *InsertPos = nullptr; 2734 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 2735 Converted, InsertPos)) 2736 // If we already have a variable template specialization, return it. 2737 return Spec; 2738 2739 // This is the first time we have referenced this variable template 2740 // specialization. Create the canonical declaration and add it to 2741 // the set of specializations, based on the closest partial specialization 2742 // that it represents. That is, 2743 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 2744 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 2745 Converted.data(), Converted.size()); 2746 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 2747 bool AmbiguousPartialSpec = false; 2748 typedef PartialSpecMatchResult MatchResult; 2749 SmallVector<MatchResult, 4> Matched; 2750 SourceLocation PointOfInstantiation = TemplateNameLoc; 2751 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 2752 /*ForTakingAddress=*/false); 2753 2754 // 1. Attempt to find the closest partial specialization that this 2755 // specializes, if any. 2756 // If any of the template arguments is dependent, then this is probably 2757 // a placeholder for an incomplete declarative context; which must be 2758 // complete by instantiation time. Thus, do not search through the partial 2759 // specializations yet. 2760 // TODO: Unify with InstantiateClassTemplateSpecialization()? 2761 // Perhaps better after unification of DeduceTemplateArguments() and 2762 // getMoreSpecializedPartialSpecialization(). 2763 bool InstantiationDependent = false; 2764 if (!TemplateSpecializationType::anyDependentTemplateArguments( 2765 TemplateArgs, InstantiationDependent)) { 2766 2767 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 2768 Template->getPartialSpecializations(PartialSpecs); 2769 2770 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 2771 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 2772 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 2773 2774 if (TemplateDeductionResult Result = 2775 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 2776 // Store the failed-deduction information for use in diagnostics, later. 2777 // TODO: Actually use the failed-deduction info? 2778 FailedCandidates.addCandidate() 2779 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info)); 2780 (void)Result; 2781 } else { 2782 Matched.push_back(PartialSpecMatchResult()); 2783 Matched.back().Partial = Partial; 2784 Matched.back().Args = Info.take(); 2785 } 2786 } 2787 2788 if (Matched.size() >= 1) { 2789 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 2790 if (Matched.size() == 1) { 2791 // -- If exactly one matching specialization is found, the 2792 // instantiation is generated from that specialization. 2793 // We don't need to do anything for this. 2794 } else { 2795 // -- If more than one matching specialization is found, the 2796 // partial order rules (14.5.4.2) are used to determine 2797 // whether one of the specializations is more specialized 2798 // than the others. If none of the specializations is more 2799 // specialized than all of the other matching 2800 // specializations, then the use of the variable template is 2801 // ambiguous and the program is ill-formed. 2802 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 2803 PEnd = Matched.end(); 2804 P != PEnd; ++P) { 2805 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 2806 PointOfInstantiation) == 2807 P->Partial) 2808 Best = P; 2809 } 2810 2811 // Determine if the best partial specialization is more specialized than 2812 // the others. 2813 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2814 PEnd = Matched.end(); 2815 P != PEnd; ++P) { 2816 if (P != Best && getMoreSpecializedPartialSpecialization( 2817 P->Partial, Best->Partial, 2818 PointOfInstantiation) != Best->Partial) { 2819 AmbiguousPartialSpec = true; 2820 break; 2821 } 2822 } 2823 } 2824 2825 // Instantiate using the best variable template partial specialization. 2826 InstantiationPattern = Best->Partial; 2827 InstantiationArgs = Best->Args; 2828 } else { 2829 // -- If no match is found, the instantiation is generated 2830 // from the primary template. 2831 // InstantiationPattern = Template->getTemplatedDecl(); 2832 } 2833 } 2834 2835 // 2. Create the canonical declaration. 2836 // Note that we do not instantiate the variable just yet, since 2837 // instantiation is handled in DoMarkVarDeclReferenced(). 2838 // FIXME: LateAttrs et al.? 2839 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 2840 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 2841 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 2842 if (!Decl) 2843 return true; 2844 2845 if (AmbiguousPartialSpec) { 2846 // Partial ordering did not produce a clear winner. Complain. 2847 Decl->setInvalidDecl(); 2848 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 2849 << Decl; 2850 2851 // Print the matching partial specializations. 2852 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2853 PEnd = Matched.end(); 2854 P != PEnd; ++P) 2855 Diag(P->Partial->getLocation(), diag::note_partial_spec_match) 2856 << getTemplateArgumentBindingsText( 2857 P->Partial->getTemplateParameters(), *P->Args); 2858 return true; 2859 } 2860 2861 if (VarTemplatePartialSpecializationDecl *D = 2862 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 2863 Decl->setInstantiationOf(D, InstantiationArgs); 2864 2865 assert(Decl && "No variable template specialization?"); 2866 return Decl; 2867 } 2868 2869 ExprResult 2870 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 2871 const DeclarationNameInfo &NameInfo, 2872 VarTemplateDecl *Template, SourceLocation TemplateLoc, 2873 const TemplateArgumentListInfo *TemplateArgs) { 2874 2875 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 2876 *TemplateArgs); 2877 if (Decl.isInvalid()) 2878 return ExprError(); 2879 2880 VarDecl *Var = cast<VarDecl>(Decl.get()); 2881 if (!Var->getTemplateSpecializationKind()) 2882 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 2883 NameInfo.getLoc()); 2884 2885 // Build an ordinary singleton decl ref. 2886 return BuildDeclarationNameExpr(SS, NameInfo, Var, 2887 /*FoundD=*/nullptr, TemplateArgs); 2888 } 2889 2890 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2891 SourceLocation TemplateKWLoc, 2892 LookupResult &R, 2893 bool RequiresADL, 2894 const TemplateArgumentListInfo *TemplateArgs) { 2895 // FIXME: Can we do any checking at this point? I guess we could check the 2896 // template arguments that we have against the template name, if the template 2897 // name refers to a single template. That's not a terribly common case, 2898 // though. 2899 // foo<int> could identify a single function unambiguously 2900 // This approach does NOT work, since f<int>(1); 2901 // gets resolved prior to resorting to overload resolution 2902 // i.e., template<class T> void f(double); 2903 // vs template<class T, class U> void f(U); 2904 2905 // These should be filtered out by our callers. 2906 assert(!R.empty() && "empty lookup results when building templateid"); 2907 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2908 2909 // In C++1y, check variable template ids. 2910 bool InstantiationDependent; 2911 if (R.getAsSingle<VarTemplateDecl>() && 2912 !TemplateSpecializationType::anyDependentTemplateArguments( 2913 *TemplateArgs, InstantiationDependent)) { 2914 return CheckVarTemplateId(SS, R.getLookupNameInfo(), 2915 R.getAsSingle<VarTemplateDecl>(), 2916 TemplateKWLoc, TemplateArgs); 2917 } 2918 2919 // We don't want lookup warnings at this point. 2920 R.suppressDiagnostics(); 2921 2922 UnresolvedLookupExpr *ULE 2923 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2924 SS.getWithLocInContext(Context), 2925 TemplateKWLoc, 2926 R.getLookupNameInfo(), 2927 RequiresADL, TemplateArgs, 2928 R.begin(), R.end()); 2929 2930 return ULE; 2931 } 2932 2933 // We actually only call this from template instantiation. 2934 ExprResult 2935 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2936 SourceLocation TemplateKWLoc, 2937 const DeclarationNameInfo &NameInfo, 2938 const TemplateArgumentListInfo *TemplateArgs) { 2939 2940 assert(TemplateArgs || TemplateKWLoc.isValid()); 2941 DeclContext *DC; 2942 if (!(DC = computeDeclContext(SS, false)) || 2943 DC->isDependentContext() || 2944 RequireCompleteDeclContext(SS, DC)) 2945 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2946 2947 bool MemberOfUnknownSpecialization; 2948 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2949 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false, 2950 MemberOfUnknownSpecialization); 2951 2952 if (R.isAmbiguous()) 2953 return ExprError(); 2954 2955 if (R.empty()) { 2956 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2957 << NameInfo.getName() << SS.getRange(); 2958 return ExprError(); 2959 } 2960 2961 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2962 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2963 << SS.getScopeRep() 2964 << NameInfo.getName().getAsString() << SS.getRange(); 2965 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2966 return ExprError(); 2967 } 2968 2969 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2970 } 2971 2972 /// \brief Form a dependent template name. 2973 /// 2974 /// This action forms a dependent template name given the template 2975 /// name and its (presumably dependent) scope specifier. For 2976 /// example, given "MetaFun::template apply", the scope specifier \p 2977 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2978 /// of the "template" keyword, and "apply" is the \p Name. 2979 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2980 CXXScopeSpec &SS, 2981 SourceLocation TemplateKWLoc, 2982 UnqualifiedId &Name, 2983 ParsedType ObjectType, 2984 bool EnteringContext, 2985 TemplateTy &Result) { 2986 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2987 Diag(TemplateKWLoc, 2988 getLangOpts().CPlusPlus11 ? 2989 diag::warn_cxx98_compat_template_outside_of_template : 2990 diag::ext_template_outside_of_template) 2991 << FixItHint::CreateRemoval(TemplateKWLoc); 2992 2993 DeclContext *LookupCtx = nullptr; 2994 if (SS.isSet()) 2995 LookupCtx = computeDeclContext(SS, EnteringContext); 2996 if (!LookupCtx && ObjectType) 2997 LookupCtx = computeDeclContext(ObjectType.get()); 2998 if (LookupCtx) { 2999 // C++0x [temp.names]p5: 3000 // If a name prefixed by the keyword template is not the name of 3001 // a template, the program is ill-formed. [Note: the keyword 3002 // template may not be applied to non-template members of class 3003 // templates. -end note ] [ Note: as is the case with the 3004 // typename prefix, the template prefix is allowed in cases 3005 // where it is not strictly necessary; i.e., when the 3006 // nested-name-specifier or the expression on the left of the -> 3007 // or . is not dependent on a template-parameter, or the use 3008 // does not appear in the scope of a template. -end note] 3009 // 3010 // Note: C++03 was more strict here, because it banned the use of 3011 // the "template" keyword prior to a template-name that was not a 3012 // dependent name. C++ DR468 relaxed this requirement (the 3013 // "template" keyword is now permitted). We follow the C++0x 3014 // rules, even in C++03 mode with a warning, retroactively applying the DR. 3015 bool MemberOfUnknownSpecialization; 3016 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 3017 ObjectType, EnteringContext, Result, 3018 MemberOfUnknownSpecialization); 3019 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 3020 isa<CXXRecordDecl>(LookupCtx) && 3021 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 3022 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 3023 // This is a dependent template. Handle it below. 3024 } else if (TNK == TNK_Non_template) { 3025 Diag(Name.getLocStart(), 3026 diag::err_template_kw_refers_to_non_template) 3027 << GetNameFromUnqualifiedId(Name).getName() 3028 << Name.getSourceRange() 3029 << TemplateKWLoc; 3030 return TNK_Non_template; 3031 } else { 3032 // We found something; return it. 3033 return TNK; 3034 } 3035 } 3036 3037 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 3038 3039 switch (Name.getKind()) { 3040 case UnqualifiedId::IK_Identifier: 3041 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 3042 Name.Identifier)); 3043 return TNK_Dependent_template_name; 3044 3045 case UnqualifiedId::IK_OperatorFunctionId: 3046 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 3047 Name.OperatorFunctionId.Operator)); 3048 return TNK_Function_template; 3049 3050 case UnqualifiedId::IK_LiteralOperatorId: 3051 llvm_unreachable("literal operator id cannot have a dependent scope"); 3052 3053 default: 3054 break; 3055 } 3056 3057 Diag(Name.getLocStart(), 3058 diag::err_template_kw_refers_to_non_template) 3059 << GetNameFromUnqualifiedId(Name).getName() 3060 << Name.getSourceRange() 3061 << TemplateKWLoc; 3062 return TNK_Non_template; 3063 } 3064 3065 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 3066 TemplateArgumentLoc &AL, 3067 SmallVectorImpl<TemplateArgument> &Converted) { 3068 const TemplateArgument &Arg = AL.getArgument(); 3069 QualType ArgType; 3070 TypeSourceInfo *TSI = nullptr; 3071 3072 // Check template type parameter. 3073 switch(Arg.getKind()) { 3074 case TemplateArgument::Type: 3075 // C++ [temp.arg.type]p1: 3076 // A template-argument for a template-parameter which is a 3077 // type shall be a type-id. 3078 ArgType = Arg.getAsType(); 3079 TSI = AL.getTypeSourceInfo(); 3080 break; 3081 case TemplateArgument::Template: { 3082 // We have a template type parameter but the template argument 3083 // is a template without any arguments. 3084 SourceRange SR = AL.getSourceRange(); 3085 TemplateName Name = Arg.getAsTemplate(); 3086 Diag(SR.getBegin(), diag::err_template_missing_args) 3087 << Name << SR; 3088 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 3089 Diag(Decl->getLocation(), diag::note_template_decl_here); 3090 3091 return true; 3092 } 3093 case TemplateArgument::Expression: { 3094 // We have a template type parameter but the template argument is an 3095 // expression; see if maybe it is missing the "typename" keyword. 3096 CXXScopeSpec SS; 3097 DeclarationNameInfo NameInfo; 3098 3099 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 3100 SS.Adopt(ArgExpr->getQualifierLoc()); 3101 NameInfo = ArgExpr->getNameInfo(); 3102 } else if (DependentScopeDeclRefExpr *ArgExpr = 3103 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 3104 SS.Adopt(ArgExpr->getQualifierLoc()); 3105 NameInfo = ArgExpr->getNameInfo(); 3106 } else if (CXXDependentScopeMemberExpr *ArgExpr = 3107 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 3108 if (ArgExpr->isImplicitAccess()) { 3109 SS.Adopt(ArgExpr->getQualifierLoc()); 3110 NameInfo = ArgExpr->getMemberNameInfo(); 3111 } 3112 } 3113 3114 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 3115 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 3116 LookupParsedName(Result, CurScope, &SS); 3117 3118 if (Result.getAsSingle<TypeDecl>() || 3119 Result.getResultKind() == 3120 LookupResult::NotFoundInCurrentInstantiation) { 3121 // Suggest that the user add 'typename' before the NNS. 3122 SourceLocation Loc = AL.getSourceRange().getBegin(); 3123 Diag(Loc, getLangOpts().MSVCCompat 3124 ? diag::ext_ms_template_type_arg_missing_typename 3125 : diag::err_template_arg_must_be_type_suggest) 3126 << FixItHint::CreateInsertion(Loc, "typename "); 3127 Diag(Param->getLocation(), diag::note_template_param_here); 3128 3129 // Recover by synthesizing a type using the location information that we 3130 // already have. 3131 ArgType = 3132 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 3133 TypeLocBuilder TLB; 3134 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 3135 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 3136 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 3137 TL.setNameLoc(NameInfo.getLoc()); 3138 TSI = TLB.getTypeSourceInfo(Context, ArgType); 3139 3140 // Overwrite our input TemplateArgumentLoc so that we can recover 3141 // properly. 3142 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 3143 TemplateArgumentLocInfo(TSI)); 3144 3145 break; 3146 } 3147 } 3148 // fallthrough 3149 } 3150 default: { 3151 // We have a template type parameter but the template argument 3152 // is not a type. 3153 SourceRange SR = AL.getSourceRange(); 3154 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 3155 Diag(Param->getLocation(), diag::note_template_param_here); 3156 3157 return true; 3158 } 3159 } 3160 3161 if (CheckTemplateArgument(Param, TSI)) 3162 return true; 3163 3164 // Add the converted template type argument. 3165 ArgType = Context.getCanonicalType(ArgType); 3166 3167 // Objective-C ARC: 3168 // If an explicitly-specified template argument type is a lifetime type 3169 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 3170 if (getLangOpts().ObjCAutoRefCount && 3171 ArgType->isObjCLifetimeType() && 3172 !ArgType.getObjCLifetime()) { 3173 Qualifiers Qs; 3174 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 3175 ArgType = Context.getQualifiedType(ArgType, Qs); 3176 } 3177 3178 Converted.push_back(TemplateArgument(ArgType)); 3179 return false; 3180 } 3181 3182 /// \brief Substitute template arguments into the default template argument for 3183 /// the given template type parameter. 3184 /// 3185 /// \param SemaRef the semantic analysis object for which we are performing 3186 /// the substitution. 3187 /// 3188 /// \param Template the template that we are synthesizing template arguments 3189 /// for. 3190 /// 3191 /// \param TemplateLoc the location of the template name that started the 3192 /// template-id we are checking. 3193 /// 3194 /// \param RAngleLoc the location of the right angle bracket ('>') that 3195 /// terminates the template-id. 3196 /// 3197 /// \param Param the template template parameter whose default we are 3198 /// substituting into. 3199 /// 3200 /// \param Converted the list of template arguments provided for template 3201 /// parameters that precede \p Param in the template parameter list. 3202 /// \returns the substituted template argument, or NULL if an error occurred. 3203 static TypeSourceInfo * 3204 SubstDefaultTemplateArgument(Sema &SemaRef, 3205 TemplateDecl *Template, 3206 SourceLocation TemplateLoc, 3207 SourceLocation RAngleLoc, 3208 TemplateTypeParmDecl *Param, 3209 SmallVectorImpl<TemplateArgument> &Converted) { 3210 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 3211 3212 // If the argument type is dependent, instantiate it now based 3213 // on the previously-computed template arguments. 3214 if (ArgType->getType()->isDependentType()) { 3215 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3216 Template, Converted, 3217 SourceRange(TemplateLoc, RAngleLoc)); 3218 if (Inst.isInvalid()) 3219 return nullptr; 3220 3221 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3222 Converted.data(), Converted.size()); 3223 3224 // Only substitute for the innermost template argument list. 3225 MultiLevelTemplateArgumentList TemplateArgLists; 3226 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 3227 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 3228 TemplateArgLists.addOuterTemplateArguments(None); 3229 3230 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3231 ArgType = 3232 SemaRef.SubstType(ArgType, TemplateArgLists, 3233 Param->getDefaultArgumentLoc(), Param->getDeclName()); 3234 } 3235 3236 return ArgType; 3237 } 3238 3239 /// \brief Substitute template arguments into the default template argument for 3240 /// the given non-type template parameter. 3241 /// 3242 /// \param SemaRef the semantic analysis object for which we are performing 3243 /// the substitution. 3244 /// 3245 /// \param Template the template that we are synthesizing template arguments 3246 /// for. 3247 /// 3248 /// \param TemplateLoc the location of the template name that started the 3249 /// template-id we are checking. 3250 /// 3251 /// \param RAngleLoc the location of the right angle bracket ('>') that 3252 /// terminates the template-id. 3253 /// 3254 /// \param Param the non-type template parameter whose default we are 3255 /// substituting into. 3256 /// 3257 /// \param Converted the list of template arguments provided for template 3258 /// parameters that precede \p Param in the template parameter list. 3259 /// 3260 /// \returns the substituted template argument, or NULL if an error occurred. 3261 static ExprResult 3262 SubstDefaultTemplateArgument(Sema &SemaRef, 3263 TemplateDecl *Template, 3264 SourceLocation TemplateLoc, 3265 SourceLocation RAngleLoc, 3266 NonTypeTemplateParmDecl *Param, 3267 SmallVectorImpl<TemplateArgument> &Converted) { 3268 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3269 Template, Converted, 3270 SourceRange(TemplateLoc, RAngleLoc)); 3271 if (Inst.isInvalid()) 3272 return ExprError(); 3273 3274 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3275 Converted.data(), Converted.size()); 3276 3277 // Only substitute for the innermost template argument list. 3278 MultiLevelTemplateArgumentList TemplateArgLists; 3279 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 3280 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 3281 TemplateArgLists.addOuterTemplateArguments(None); 3282 3283 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3284 EnterExpressionEvaluationContext ConstantEvaluated(SemaRef, 3285 Sema::ConstantEvaluated); 3286 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 3287 } 3288 3289 /// \brief Substitute template arguments into the default template argument for 3290 /// the given template template parameter. 3291 /// 3292 /// \param SemaRef the semantic analysis object for which we are performing 3293 /// the substitution. 3294 /// 3295 /// \param Template the template that we are synthesizing template arguments 3296 /// for. 3297 /// 3298 /// \param TemplateLoc the location of the template name that started the 3299 /// template-id we are checking. 3300 /// 3301 /// \param RAngleLoc the location of the right angle bracket ('>') that 3302 /// terminates the template-id. 3303 /// 3304 /// \param Param the template template parameter whose default we are 3305 /// substituting into. 3306 /// 3307 /// \param Converted the list of template arguments provided for template 3308 /// parameters that precede \p Param in the template parameter list. 3309 /// 3310 /// \param QualifierLoc Will be set to the nested-name-specifier (with 3311 /// source-location information) that precedes the template name. 3312 /// 3313 /// \returns the substituted template argument, or NULL if an error occurred. 3314 static TemplateName 3315 SubstDefaultTemplateArgument(Sema &SemaRef, 3316 TemplateDecl *Template, 3317 SourceLocation TemplateLoc, 3318 SourceLocation RAngleLoc, 3319 TemplateTemplateParmDecl *Param, 3320 SmallVectorImpl<TemplateArgument> &Converted, 3321 NestedNameSpecifierLoc &QualifierLoc) { 3322 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted, 3323 SourceRange(TemplateLoc, RAngleLoc)); 3324 if (Inst.isInvalid()) 3325 return TemplateName(); 3326 3327 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3328 Converted.data(), Converted.size()); 3329 3330 // Only substitute for the innermost template argument list. 3331 MultiLevelTemplateArgumentList TemplateArgLists; 3332 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 3333 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 3334 TemplateArgLists.addOuterTemplateArguments(None); 3335 3336 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3337 // Substitute into the nested-name-specifier first, 3338 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 3339 if (QualifierLoc) { 3340 QualifierLoc = 3341 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 3342 if (!QualifierLoc) 3343 return TemplateName(); 3344 } 3345 3346 return SemaRef.SubstTemplateName( 3347 QualifierLoc, 3348 Param->getDefaultArgument().getArgument().getAsTemplate(), 3349 Param->getDefaultArgument().getTemplateNameLoc(), 3350 TemplateArgLists); 3351 } 3352 3353 /// \brief If the given template parameter has a default template 3354 /// argument, substitute into that default template argument and 3355 /// return the corresponding template argument. 3356 TemplateArgumentLoc 3357 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 3358 SourceLocation TemplateLoc, 3359 SourceLocation RAngleLoc, 3360 Decl *Param, 3361 SmallVectorImpl<TemplateArgument> 3362 &Converted, 3363 bool &HasDefaultArg) { 3364 HasDefaultArg = false; 3365 3366 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 3367 if (!hasVisibleDefaultArgument(TypeParm)) 3368 return TemplateArgumentLoc(); 3369 3370 HasDefaultArg = true; 3371 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 3372 TemplateLoc, 3373 RAngleLoc, 3374 TypeParm, 3375 Converted); 3376 if (DI) 3377 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 3378 3379 return TemplateArgumentLoc(); 3380 } 3381 3382 if (NonTypeTemplateParmDecl *NonTypeParm 3383 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3384 if (!hasVisibleDefaultArgument(NonTypeParm)) 3385 return TemplateArgumentLoc(); 3386 3387 HasDefaultArg = true; 3388 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 3389 TemplateLoc, 3390 RAngleLoc, 3391 NonTypeParm, 3392 Converted); 3393 if (Arg.isInvalid()) 3394 return TemplateArgumentLoc(); 3395 3396 Expr *ArgE = Arg.getAs<Expr>(); 3397 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 3398 } 3399 3400 TemplateTemplateParmDecl *TempTempParm 3401 = cast<TemplateTemplateParmDecl>(Param); 3402 if (!hasVisibleDefaultArgument(TempTempParm)) 3403 return TemplateArgumentLoc(); 3404 3405 HasDefaultArg = true; 3406 NestedNameSpecifierLoc QualifierLoc; 3407 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 3408 TemplateLoc, 3409 RAngleLoc, 3410 TempTempParm, 3411 Converted, 3412 QualifierLoc); 3413 if (TName.isNull()) 3414 return TemplateArgumentLoc(); 3415 3416 return TemplateArgumentLoc(TemplateArgument(TName), 3417 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 3418 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 3419 } 3420 3421 /// \brief Check that the given template argument corresponds to the given 3422 /// template parameter. 3423 /// 3424 /// \param Param The template parameter against which the argument will be 3425 /// checked. 3426 /// 3427 /// \param Arg The template argument, which may be updated due to conversions. 3428 /// 3429 /// \param Template The template in which the template argument resides. 3430 /// 3431 /// \param TemplateLoc The location of the template name for the template 3432 /// whose argument list we're matching. 3433 /// 3434 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 3435 /// the template argument list. 3436 /// 3437 /// \param ArgumentPackIndex The index into the argument pack where this 3438 /// argument will be placed. Only valid if the parameter is a parameter pack. 3439 /// 3440 /// \param Converted The checked, converted argument will be added to the 3441 /// end of this small vector. 3442 /// 3443 /// \param CTAK Describes how we arrived at this particular template argument: 3444 /// explicitly written, deduced, etc. 3445 /// 3446 /// \returns true on error, false otherwise. 3447 bool Sema::CheckTemplateArgument(NamedDecl *Param, 3448 TemplateArgumentLoc &Arg, 3449 NamedDecl *Template, 3450 SourceLocation TemplateLoc, 3451 SourceLocation RAngleLoc, 3452 unsigned ArgumentPackIndex, 3453 SmallVectorImpl<TemplateArgument> &Converted, 3454 CheckTemplateArgumentKind CTAK) { 3455 // Check template type parameters. 3456 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 3457 return CheckTemplateTypeArgument(TTP, Arg, Converted); 3458 3459 // Check non-type template parameters. 3460 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3461 // Do substitution on the type of the non-type template parameter 3462 // with the template arguments we've seen thus far. But if the 3463 // template has a dependent context then we cannot substitute yet. 3464 QualType NTTPType = NTTP->getType(); 3465 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 3466 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 3467 3468 if (NTTPType->isDependentType() && 3469 !isa<TemplateTemplateParmDecl>(Template) && 3470 !Template->getDeclContext()->isDependentContext()) { 3471 // Do substitution on the type of the non-type template parameter. 3472 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3473 NTTP, Converted, 3474 SourceRange(TemplateLoc, RAngleLoc)); 3475 if (Inst.isInvalid()) 3476 return true; 3477 3478 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3479 Converted.data(), Converted.size()); 3480 NTTPType = SubstType(NTTPType, 3481 MultiLevelTemplateArgumentList(TemplateArgs), 3482 NTTP->getLocation(), 3483 NTTP->getDeclName()); 3484 // If that worked, check the non-type template parameter type 3485 // for validity. 3486 if (!NTTPType.isNull()) 3487 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 3488 NTTP->getLocation()); 3489 if (NTTPType.isNull()) 3490 return true; 3491 } 3492 3493 switch (Arg.getArgument().getKind()) { 3494 case TemplateArgument::Null: 3495 llvm_unreachable("Should never see a NULL template argument here"); 3496 3497 case TemplateArgument::Expression: { 3498 TemplateArgument Result; 3499 ExprResult Res = 3500 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 3501 Result, CTAK); 3502 if (Res.isInvalid()) 3503 return true; 3504 3505 // If the resulting expression is new, then use it in place of the 3506 // old expression in the template argument. 3507 if (Res.get() != Arg.getArgument().getAsExpr()) { 3508 TemplateArgument TA(Res.get()); 3509 Arg = TemplateArgumentLoc(TA, Res.get()); 3510 } 3511 3512 Converted.push_back(Result); 3513 break; 3514 } 3515 3516 case TemplateArgument::Declaration: 3517 case TemplateArgument::Integral: 3518 case TemplateArgument::NullPtr: 3519 // We've already checked this template argument, so just copy 3520 // it to the list of converted arguments. 3521 Converted.push_back(Arg.getArgument()); 3522 break; 3523 3524 case TemplateArgument::Template: 3525 case TemplateArgument::TemplateExpansion: 3526 // We were given a template template argument. It may not be ill-formed; 3527 // see below. 3528 if (DependentTemplateName *DTN 3529 = Arg.getArgument().getAsTemplateOrTemplatePattern() 3530 .getAsDependentTemplateName()) { 3531 // We have a template argument such as \c T::template X, which we 3532 // parsed as a template template argument. However, since we now 3533 // know that we need a non-type template argument, convert this 3534 // template name into an expression. 3535 3536 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 3537 Arg.getTemplateNameLoc()); 3538 3539 CXXScopeSpec SS; 3540 SS.Adopt(Arg.getTemplateQualifierLoc()); 3541 // FIXME: the template-template arg was a DependentTemplateName, 3542 // so it was provided with a template keyword. However, its source 3543 // location is not stored in the template argument structure. 3544 SourceLocation TemplateKWLoc; 3545 ExprResult E = DependentScopeDeclRefExpr::Create( 3546 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 3547 nullptr); 3548 3549 // If we parsed the template argument as a pack expansion, create a 3550 // pack expansion expression. 3551 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 3552 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 3553 if (E.isInvalid()) 3554 return true; 3555 } 3556 3557 TemplateArgument Result; 3558 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 3559 if (E.isInvalid()) 3560 return true; 3561 3562 Converted.push_back(Result); 3563 break; 3564 } 3565 3566 // We have a template argument that actually does refer to a class 3567 // template, alias template, or template template parameter, and 3568 // therefore cannot be a non-type template argument. 3569 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 3570 << Arg.getSourceRange(); 3571 3572 Diag(Param->getLocation(), diag::note_template_param_here); 3573 return true; 3574 3575 case TemplateArgument::Type: { 3576 // We have a non-type template parameter but the template 3577 // argument is a type. 3578 3579 // C++ [temp.arg]p2: 3580 // In a template-argument, an ambiguity between a type-id and 3581 // an expression is resolved to a type-id, regardless of the 3582 // form of the corresponding template-parameter. 3583 // 3584 // We warn specifically about this case, since it can be rather 3585 // confusing for users. 3586 QualType T = Arg.getArgument().getAsType(); 3587 SourceRange SR = Arg.getSourceRange(); 3588 if (T->isFunctionType()) 3589 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 3590 else 3591 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 3592 Diag(Param->getLocation(), diag::note_template_param_here); 3593 return true; 3594 } 3595 3596 case TemplateArgument::Pack: 3597 llvm_unreachable("Caller must expand template argument packs"); 3598 } 3599 3600 return false; 3601 } 3602 3603 3604 // Check template template parameters. 3605 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 3606 3607 // Substitute into the template parameter list of the template 3608 // template parameter, since previously-supplied template arguments 3609 // may appear within the template template parameter. 3610 { 3611 // Set up a template instantiation context. 3612 LocalInstantiationScope Scope(*this); 3613 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3614 TempParm, Converted, 3615 SourceRange(TemplateLoc, RAngleLoc)); 3616 if (Inst.isInvalid()) 3617 return true; 3618 3619 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3620 Converted.data(), Converted.size()); 3621 TempParm = cast_or_null<TemplateTemplateParmDecl>( 3622 SubstDecl(TempParm, CurContext, 3623 MultiLevelTemplateArgumentList(TemplateArgs))); 3624 if (!TempParm) 3625 return true; 3626 } 3627 3628 switch (Arg.getArgument().getKind()) { 3629 case TemplateArgument::Null: 3630 llvm_unreachable("Should never see a NULL template argument here"); 3631 3632 case TemplateArgument::Template: 3633 case TemplateArgument::TemplateExpansion: 3634 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 3635 return true; 3636 3637 Converted.push_back(Arg.getArgument()); 3638 break; 3639 3640 case TemplateArgument::Expression: 3641 case TemplateArgument::Type: 3642 // We have a template template parameter but the template 3643 // argument does not refer to a template. 3644 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 3645 << getLangOpts().CPlusPlus11; 3646 return true; 3647 3648 case TemplateArgument::Declaration: 3649 llvm_unreachable("Declaration argument with template template parameter"); 3650 case TemplateArgument::Integral: 3651 llvm_unreachable("Integral argument with template template parameter"); 3652 case TemplateArgument::NullPtr: 3653 llvm_unreachable("Null pointer argument with template template parameter"); 3654 3655 case TemplateArgument::Pack: 3656 llvm_unreachable("Caller must expand template argument packs"); 3657 } 3658 3659 return false; 3660 } 3661 3662 /// \brief Diagnose an arity mismatch in the 3663 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 3664 SourceLocation TemplateLoc, 3665 TemplateArgumentListInfo &TemplateArgs) { 3666 TemplateParameterList *Params = Template->getTemplateParameters(); 3667 unsigned NumParams = Params->size(); 3668 unsigned NumArgs = TemplateArgs.size(); 3669 3670 SourceRange Range; 3671 if (NumArgs > NumParams) 3672 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3673 TemplateArgs.getRAngleLoc()); 3674 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3675 << (NumArgs > NumParams) 3676 << (isa<ClassTemplateDecl>(Template)? 0 : 3677 isa<FunctionTemplateDecl>(Template)? 1 : 3678 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3679 << Template << Range; 3680 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3681 << Params->getSourceRange(); 3682 return true; 3683 } 3684 3685 /// \brief Check whether the template parameter is a pack expansion, and if so, 3686 /// determine the number of parameters produced by that expansion. For instance: 3687 /// 3688 /// \code 3689 /// template<typename ...Ts> struct A { 3690 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3691 /// }; 3692 /// \endcode 3693 /// 3694 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3695 /// is not a pack expansion, so returns an empty Optional. 3696 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3697 if (NonTypeTemplateParmDecl *NTTP 3698 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3699 if (NTTP->isExpandedParameterPack()) 3700 return NTTP->getNumExpansionTypes(); 3701 } 3702 3703 if (TemplateTemplateParmDecl *TTP 3704 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3705 if (TTP->isExpandedParameterPack()) 3706 return TTP->getNumExpansionTemplateParameters(); 3707 } 3708 3709 return None; 3710 } 3711 3712 /// Diagnose a missing template argument. 3713 template<typename TemplateParmDecl> 3714 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 3715 TemplateDecl *TD, 3716 const TemplateParmDecl *D, 3717 TemplateArgumentListInfo &Args) { 3718 // Dig out the most recent declaration of the template parameter; there may be 3719 // declarations of the template that are more recent than TD. 3720 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 3721 ->getTemplateParameters() 3722 ->getParam(D->getIndex())); 3723 3724 // If there's a default argument that's not visible, diagnose that we're 3725 // missing a module import. 3726 llvm::SmallVector<Module*, 8> Modules; 3727 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 3728 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 3729 D->getDefaultArgumentLoc(), Modules, 3730 Sema::MissingImportKind::DefaultArgument, 3731 /*Recover*/ true); 3732 return true; 3733 } 3734 3735 // FIXME: If there's a more recent default argument that *is* visible, 3736 // diagnose that it was declared too late. 3737 3738 return diagnoseArityMismatch(S, TD, Loc, Args); 3739 } 3740 3741 /// \brief Check that the given template argument list is well-formed 3742 /// for specializing the given template. 3743 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3744 SourceLocation TemplateLoc, 3745 TemplateArgumentListInfo &TemplateArgs, 3746 bool PartialTemplateArgs, 3747 SmallVectorImpl<TemplateArgument> &Converted) { 3748 // Make a copy of the template arguments for processing. Only make the 3749 // changes at the end when successful in matching the arguments to the 3750 // template. 3751 TemplateArgumentListInfo NewArgs = TemplateArgs; 3752 3753 TemplateParameterList *Params = Template->getTemplateParameters(); 3754 3755 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 3756 3757 // C++ [temp.arg]p1: 3758 // [...] The type and form of each template-argument specified in 3759 // a template-id shall match the type and form specified for the 3760 // corresponding parameter declared by the template in its 3761 // template-parameter-list. 3762 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3763 SmallVector<TemplateArgument, 2> ArgumentPack; 3764 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 3765 LocalInstantiationScope InstScope(*this, true); 3766 for (TemplateParameterList::iterator Param = Params->begin(), 3767 ParamEnd = Params->end(); 3768 Param != ParamEnd; /* increment in loop */) { 3769 // If we have an expanded parameter pack, make sure we don't have too 3770 // many arguments. 3771 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3772 if (*Expansions == ArgumentPack.size()) { 3773 // We're done with this parameter pack. Pack up its arguments and add 3774 // them to the list. 3775 Converted.push_back( 3776 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 3777 ArgumentPack.clear(); 3778 3779 // This argument is assigned to the next parameter. 3780 ++Param; 3781 continue; 3782 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3783 // Not enough arguments for this parameter pack. 3784 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3785 << false 3786 << (isa<ClassTemplateDecl>(Template)? 0 : 3787 isa<FunctionTemplateDecl>(Template)? 1 : 3788 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3789 << Template; 3790 Diag(Template->getLocation(), diag::note_template_decl_here) 3791 << Params->getSourceRange(); 3792 return true; 3793 } 3794 } 3795 3796 if (ArgIdx < NumArgs) { 3797 // Check the template argument we were given. 3798 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 3799 TemplateLoc, RAngleLoc, 3800 ArgumentPack.size(), Converted)) 3801 return true; 3802 3803 bool PackExpansionIntoNonPack = 3804 NewArgs[ArgIdx].getArgument().isPackExpansion() && 3805 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 3806 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) { 3807 // Core issue 1430: we have a pack expansion as an argument to an 3808 // alias template, and it's not part of a parameter pack. This 3809 // can't be canonicalized, so reject it now. 3810 Diag(NewArgs[ArgIdx].getLocation(), 3811 diag::err_alias_template_expansion_into_fixed_list) 3812 << NewArgs[ArgIdx].getSourceRange(); 3813 Diag((*Param)->getLocation(), diag::note_template_param_here); 3814 return true; 3815 } 3816 3817 // We're now done with this argument. 3818 ++ArgIdx; 3819 3820 if ((*Param)->isTemplateParameterPack()) { 3821 // The template parameter was a template parameter pack, so take the 3822 // deduced argument and place it on the argument pack. Note that we 3823 // stay on the same template parameter so that we can deduce more 3824 // arguments. 3825 ArgumentPack.push_back(Converted.pop_back_val()); 3826 } else { 3827 // Move to the next template parameter. 3828 ++Param; 3829 } 3830 3831 // If we just saw a pack expansion into a non-pack, then directly convert 3832 // the remaining arguments, because we don't know what parameters they'll 3833 // match up with. 3834 if (PackExpansionIntoNonPack) { 3835 if (!ArgumentPack.empty()) { 3836 // If we were part way through filling in an expanded parameter pack, 3837 // fall back to just producing individual arguments. 3838 Converted.insert(Converted.end(), 3839 ArgumentPack.begin(), ArgumentPack.end()); 3840 ArgumentPack.clear(); 3841 } 3842 3843 while (ArgIdx < NumArgs) { 3844 Converted.push_back(NewArgs[ArgIdx].getArgument()); 3845 ++ArgIdx; 3846 } 3847 3848 return false; 3849 } 3850 3851 continue; 3852 } 3853 3854 // If we're checking a partial template argument list, we're done. 3855 if (PartialTemplateArgs) { 3856 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3857 Converted.push_back( 3858 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 3859 3860 return false; 3861 } 3862 3863 // If we have a template parameter pack with no more corresponding 3864 // arguments, just break out now and we'll fill in the argument pack below. 3865 if ((*Param)->isTemplateParameterPack()) { 3866 assert(!getExpandedPackSize(*Param) && 3867 "Should have dealt with this already"); 3868 3869 // A non-expanded parameter pack before the end of the parameter list 3870 // only occurs for an ill-formed template parameter list, unless we've 3871 // got a partial argument list for a function template, so just bail out. 3872 if (Param + 1 != ParamEnd) 3873 return true; 3874 3875 Converted.push_back( 3876 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 3877 ArgumentPack.clear(); 3878 3879 ++Param; 3880 continue; 3881 } 3882 3883 // Check whether we have a default argument. 3884 TemplateArgumentLoc Arg; 3885 3886 // Retrieve the default template argument from the template 3887 // parameter. For each kind of template parameter, we substitute the 3888 // template arguments provided thus far and any "outer" template arguments 3889 // (when the template parameter was part of a nested template) into 3890 // the default argument. 3891 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3892 if (!hasVisibleDefaultArgument(TTP)) 3893 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 3894 NewArgs); 3895 3896 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3897 Template, 3898 TemplateLoc, 3899 RAngleLoc, 3900 TTP, 3901 Converted); 3902 if (!ArgType) 3903 return true; 3904 3905 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3906 ArgType); 3907 } else if (NonTypeTemplateParmDecl *NTTP 3908 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3909 if (!hasVisibleDefaultArgument(NTTP)) 3910 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 3911 NewArgs); 3912 3913 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3914 TemplateLoc, 3915 RAngleLoc, 3916 NTTP, 3917 Converted); 3918 if (E.isInvalid()) 3919 return true; 3920 3921 Expr *Ex = E.getAs<Expr>(); 3922 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3923 } else { 3924 TemplateTemplateParmDecl *TempParm 3925 = cast<TemplateTemplateParmDecl>(*Param); 3926 3927 if (!hasVisibleDefaultArgument(TempParm)) 3928 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 3929 NewArgs); 3930 3931 NestedNameSpecifierLoc QualifierLoc; 3932 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3933 TemplateLoc, 3934 RAngleLoc, 3935 TempParm, 3936 Converted, 3937 QualifierLoc); 3938 if (Name.isNull()) 3939 return true; 3940 3941 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3942 TempParm->getDefaultArgument().getTemplateNameLoc()); 3943 } 3944 3945 // Introduce an instantiation record that describes where we are using 3946 // the default template argument. 3947 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 3948 SourceRange(TemplateLoc, RAngleLoc)); 3949 if (Inst.isInvalid()) 3950 return true; 3951 3952 // Check the default template argument. 3953 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3954 RAngleLoc, 0, Converted)) 3955 return true; 3956 3957 // Core issue 150 (assumed resolution): if this is a template template 3958 // parameter, keep track of the default template arguments from the 3959 // template definition. 3960 if (isTemplateTemplateParameter) 3961 NewArgs.addArgument(Arg); 3962 3963 // Move to the next template parameter and argument. 3964 ++Param; 3965 ++ArgIdx; 3966 } 3967 3968 // If we're performing a partial argument substitution, allow any trailing 3969 // pack expansions; they might be empty. This can happen even if 3970 // PartialTemplateArgs is false (the list of arguments is complete but 3971 // still dependent). 3972 if (ArgIdx < NumArgs && CurrentInstantiationScope && 3973 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 3974 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 3975 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 3976 } 3977 3978 // If we have any leftover arguments, then there were too many arguments. 3979 // Complain and fail. 3980 if (ArgIdx < NumArgs) 3981 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs); 3982 3983 // No problems found with the new argument list, propagate changes back 3984 // to caller. 3985 TemplateArgs = std::move(NewArgs); 3986 3987 return false; 3988 } 3989 3990 namespace { 3991 class UnnamedLocalNoLinkageFinder 3992 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3993 { 3994 Sema &S; 3995 SourceRange SR; 3996 3997 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3998 3999 public: 4000 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 4001 4002 bool Visit(QualType T) { 4003 return inherited::Visit(T.getTypePtr()); 4004 } 4005 4006 #define TYPE(Class, Parent) \ 4007 bool Visit##Class##Type(const Class##Type *); 4008 #define ABSTRACT_TYPE(Class, Parent) \ 4009 bool Visit##Class##Type(const Class##Type *) { return false; } 4010 #define NON_CANONICAL_TYPE(Class, Parent) \ 4011 bool Visit##Class##Type(const Class##Type *) { return false; } 4012 #include "clang/AST/TypeNodes.def" 4013 4014 bool VisitTagDecl(const TagDecl *Tag); 4015 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 4016 }; 4017 } 4018 4019 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 4020 return false; 4021 } 4022 4023 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 4024 return Visit(T->getElementType()); 4025 } 4026 4027 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 4028 return Visit(T->getPointeeType()); 4029 } 4030 4031 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 4032 const BlockPointerType* T) { 4033 return Visit(T->getPointeeType()); 4034 } 4035 4036 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 4037 const LValueReferenceType* T) { 4038 return Visit(T->getPointeeType()); 4039 } 4040 4041 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 4042 const RValueReferenceType* T) { 4043 return Visit(T->getPointeeType()); 4044 } 4045 4046 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 4047 const MemberPointerType* T) { 4048 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 4049 } 4050 4051 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 4052 const ConstantArrayType* T) { 4053 return Visit(T->getElementType()); 4054 } 4055 4056 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 4057 const IncompleteArrayType* T) { 4058 return Visit(T->getElementType()); 4059 } 4060 4061 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 4062 const VariableArrayType* T) { 4063 return Visit(T->getElementType()); 4064 } 4065 4066 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 4067 const DependentSizedArrayType* T) { 4068 return Visit(T->getElementType()); 4069 } 4070 4071 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 4072 const DependentSizedExtVectorType* T) { 4073 return Visit(T->getElementType()); 4074 } 4075 4076 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 4077 return Visit(T->getElementType()); 4078 } 4079 4080 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 4081 return Visit(T->getElementType()); 4082 } 4083 4084 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 4085 const FunctionProtoType* T) { 4086 for (const auto &A : T->param_types()) { 4087 if (Visit(A)) 4088 return true; 4089 } 4090 4091 return Visit(T->getReturnType()); 4092 } 4093 4094 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 4095 const FunctionNoProtoType* T) { 4096 return Visit(T->getReturnType()); 4097 } 4098 4099 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 4100 const UnresolvedUsingType*) { 4101 return false; 4102 } 4103 4104 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 4105 return false; 4106 } 4107 4108 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 4109 return Visit(T->getUnderlyingType()); 4110 } 4111 4112 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 4113 return false; 4114 } 4115 4116 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 4117 const UnaryTransformType*) { 4118 return false; 4119 } 4120 4121 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 4122 return Visit(T->getDeducedType()); 4123 } 4124 4125 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 4126 return VisitTagDecl(T->getDecl()); 4127 } 4128 4129 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 4130 return VisitTagDecl(T->getDecl()); 4131 } 4132 4133 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 4134 const TemplateTypeParmType*) { 4135 return false; 4136 } 4137 4138 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 4139 const SubstTemplateTypeParmPackType *) { 4140 return false; 4141 } 4142 4143 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 4144 const TemplateSpecializationType*) { 4145 return false; 4146 } 4147 4148 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 4149 const InjectedClassNameType* T) { 4150 return VisitTagDecl(T->getDecl()); 4151 } 4152 4153 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 4154 const DependentNameType* T) { 4155 return VisitNestedNameSpecifier(T->getQualifier()); 4156 } 4157 4158 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 4159 const DependentTemplateSpecializationType* T) { 4160 return VisitNestedNameSpecifier(T->getQualifier()); 4161 } 4162 4163 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 4164 const PackExpansionType* T) { 4165 return Visit(T->getPattern()); 4166 } 4167 4168 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 4169 return false; 4170 } 4171 4172 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 4173 const ObjCInterfaceType *) { 4174 return false; 4175 } 4176 4177 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 4178 const ObjCObjectPointerType *) { 4179 return false; 4180 } 4181 4182 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 4183 return Visit(T->getValueType()); 4184 } 4185 4186 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 4187 if (Tag->getDeclContext()->isFunctionOrMethod()) { 4188 S.Diag(SR.getBegin(), 4189 S.getLangOpts().CPlusPlus11 ? 4190 diag::warn_cxx98_compat_template_arg_local_type : 4191 diag::ext_template_arg_local_type) 4192 << S.Context.getTypeDeclType(Tag) << SR; 4193 return true; 4194 } 4195 4196 if (!Tag->hasNameForLinkage()) { 4197 S.Diag(SR.getBegin(), 4198 S.getLangOpts().CPlusPlus11 ? 4199 diag::warn_cxx98_compat_template_arg_unnamed_type : 4200 diag::ext_template_arg_unnamed_type) << SR; 4201 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 4202 return true; 4203 } 4204 4205 return false; 4206 } 4207 4208 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 4209 NestedNameSpecifier *NNS) { 4210 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 4211 return true; 4212 4213 switch (NNS->getKind()) { 4214 case NestedNameSpecifier::Identifier: 4215 case NestedNameSpecifier::Namespace: 4216 case NestedNameSpecifier::NamespaceAlias: 4217 case NestedNameSpecifier::Global: 4218 case NestedNameSpecifier::Super: 4219 return false; 4220 4221 case NestedNameSpecifier::TypeSpec: 4222 case NestedNameSpecifier::TypeSpecWithTemplate: 4223 return Visit(QualType(NNS->getAsType(), 0)); 4224 } 4225 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 4226 } 4227 4228 4229 /// \brief Check a template argument against its corresponding 4230 /// template type parameter. 4231 /// 4232 /// This routine implements the semantics of C++ [temp.arg.type]. It 4233 /// returns true if an error occurred, and false otherwise. 4234 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 4235 TypeSourceInfo *ArgInfo) { 4236 assert(ArgInfo && "invalid TypeSourceInfo"); 4237 QualType Arg = ArgInfo->getType(); 4238 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 4239 4240 if (Arg->isVariablyModifiedType()) { 4241 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 4242 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 4243 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 4244 } 4245 4246 // C++03 [temp.arg.type]p2: 4247 // A local type, a type with no linkage, an unnamed type or a type 4248 // compounded from any of these types shall not be used as a 4249 // template-argument for a template type-parameter. 4250 // 4251 // C++11 allows these, and even in C++03 we allow them as an extension with 4252 // a warning. 4253 bool NeedsCheck; 4254 if (LangOpts.CPlusPlus11) 4255 NeedsCheck = 4256 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type, 4257 SR.getBegin()) || 4258 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type, 4259 SR.getBegin()); 4260 else 4261 NeedsCheck = Arg->hasUnnamedOrLocalType(); 4262 4263 if (NeedsCheck) { 4264 UnnamedLocalNoLinkageFinder Finder(*this, SR); 4265 (void)Finder.Visit(Context.getCanonicalType(Arg)); 4266 } 4267 4268 return false; 4269 } 4270 4271 enum NullPointerValueKind { 4272 NPV_NotNullPointer, 4273 NPV_NullPointer, 4274 NPV_Error 4275 }; 4276 4277 /// \brief Determine whether the given template argument is a null pointer 4278 /// value of the appropriate type. 4279 static NullPointerValueKind 4280 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 4281 QualType ParamType, Expr *Arg) { 4282 if (Arg->isValueDependent() || Arg->isTypeDependent()) 4283 return NPV_NotNullPointer; 4284 4285 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 4286 llvm_unreachable( 4287 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 4288 4289 if (!S.getLangOpts().CPlusPlus11) 4290 return NPV_NotNullPointer; 4291 4292 // Determine whether we have a constant expression. 4293 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 4294 if (ArgRV.isInvalid()) 4295 return NPV_Error; 4296 Arg = ArgRV.get(); 4297 4298 Expr::EvalResult EvalResult; 4299 SmallVector<PartialDiagnosticAt, 8> Notes; 4300 EvalResult.Diag = &Notes; 4301 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 4302 EvalResult.HasSideEffects) { 4303 SourceLocation DiagLoc = Arg->getExprLoc(); 4304 4305 // If our only note is the usual "invalid subexpression" note, just point 4306 // the caret at its location rather than producing an essentially 4307 // redundant note. 4308 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 4309 diag::note_invalid_subexpr_in_const_expr) { 4310 DiagLoc = Notes[0].first; 4311 Notes.clear(); 4312 } 4313 4314 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 4315 << Arg->getType() << Arg->getSourceRange(); 4316 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 4317 S.Diag(Notes[I].first, Notes[I].second); 4318 4319 S.Diag(Param->getLocation(), diag::note_template_param_here); 4320 return NPV_Error; 4321 } 4322 4323 // C++11 [temp.arg.nontype]p1: 4324 // - an address constant expression of type std::nullptr_t 4325 if (Arg->getType()->isNullPtrType()) 4326 return NPV_NullPointer; 4327 4328 // - a constant expression that evaluates to a null pointer value (4.10); or 4329 // - a constant expression that evaluates to a null member pointer value 4330 // (4.11); or 4331 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 4332 (EvalResult.Val.isMemberPointer() && 4333 !EvalResult.Val.getMemberPointerDecl())) { 4334 // If our expression has an appropriate type, we've succeeded. 4335 bool ObjCLifetimeConversion; 4336 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 4337 S.IsQualificationConversion(Arg->getType(), ParamType, false, 4338 ObjCLifetimeConversion)) 4339 return NPV_NullPointer; 4340 4341 // The types didn't match, but we know we got a null pointer; complain, 4342 // then recover as if the types were correct. 4343 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 4344 << Arg->getType() << ParamType << Arg->getSourceRange(); 4345 S.Diag(Param->getLocation(), diag::note_template_param_here); 4346 return NPV_NullPointer; 4347 } 4348 4349 // If we don't have a null pointer value, but we do have a NULL pointer 4350 // constant, suggest a cast to the appropriate type. 4351 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 4352 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 4353 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 4354 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 4355 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()), 4356 ")"); 4357 S.Diag(Param->getLocation(), diag::note_template_param_here); 4358 return NPV_NullPointer; 4359 } 4360 4361 // FIXME: If we ever want to support general, address-constant expressions 4362 // as non-type template arguments, we should return the ExprResult here to 4363 // be interpreted by the caller. 4364 return NPV_NotNullPointer; 4365 } 4366 4367 /// \brief Checks whether the given template argument is compatible with its 4368 /// template parameter. 4369 static bool CheckTemplateArgumentIsCompatibleWithParameter( 4370 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 4371 Expr *Arg, QualType ArgType) { 4372 bool ObjCLifetimeConversion; 4373 if (ParamType->isPointerType() && 4374 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 4375 S.IsQualificationConversion(ArgType, ParamType, false, 4376 ObjCLifetimeConversion)) { 4377 // For pointer-to-object types, qualification conversions are 4378 // permitted. 4379 } else { 4380 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 4381 if (!ParamRef->getPointeeType()->isFunctionType()) { 4382 // C++ [temp.arg.nontype]p5b3: 4383 // For a non-type template-parameter of type reference to 4384 // object, no conversions apply. The type referred to by the 4385 // reference may be more cv-qualified than the (otherwise 4386 // identical) type of the template- argument. The 4387 // template-parameter is bound directly to the 4388 // template-argument, which shall be an lvalue. 4389 4390 // FIXME: Other qualifiers? 4391 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 4392 unsigned ArgQuals = ArgType.getCVRQualifiers(); 4393 4394 if ((ParamQuals | ArgQuals) != ParamQuals) { 4395 S.Diag(Arg->getLocStart(), 4396 diag::err_template_arg_ref_bind_ignores_quals) 4397 << ParamType << Arg->getType() << Arg->getSourceRange(); 4398 S.Diag(Param->getLocation(), diag::note_template_param_here); 4399 return true; 4400 } 4401 } 4402 } 4403 4404 // At this point, the template argument refers to an object or 4405 // function with external linkage. We now need to check whether the 4406 // argument and parameter types are compatible. 4407 if (!S.Context.hasSameUnqualifiedType(ArgType, 4408 ParamType.getNonReferenceType())) { 4409 // We can't perform this conversion or binding. 4410 if (ParamType->isReferenceType()) 4411 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 4412 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 4413 else 4414 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4415 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 4416 S.Diag(Param->getLocation(), diag::note_template_param_here); 4417 return true; 4418 } 4419 } 4420 4421 return false; 4422 } 4423 4424 /// \brief Checks whether the given template argument is the address 4425 /// of an object or function according to C++ [temp.arg.nontype]p1. 4426 static bool 4427 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 4428 NonTypeTemplateParmDecl *Param, 4429 QualType ParamType, 4430 Expr *ArgIn, 4431 TemplateArgument &Converted) { 4432 bool Invalid = false; 4433 Expr *Arg = ArgIn; 4434 QualType ArgType = Arg->getType(); 4435 4436 bool AddressTaken = false; 4437 SourceLocation AddrOpLoc; 4438 if (S.getLangOpts().MicrosoftExt) { 4439 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 4440 // dereference and address-of operators. 4441 Arg = Arg->IgnoreParenCasts(); 4442 4443 bool ExtWarnMSTemplateArg = false; 4444 UnaryOperatorKind FirstOpKind; 4445 SourceLocation FirstOpLoc; 4446 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4447 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 4448 if (UnOpKind == UO_Deref) 4449 ExtWarnMSTemplateArg = true; 4450 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 4451 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 4452 if (!AddrOpLoc.isValid()) { 4453 FirstOpKind = UnOpKind; 4454 FirstOpLoc = UnOp->getOperatorLoc(); 4455 } 4456 } else 4457 break; 4458 } 4459 if (FirstOpLoc.isValid()) { 4460 if (ExtWarnMSTemplateArg) 4461 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument) 4462 << ArgIn->getSourceRange(); 4463 4464 if (FirstOpKind == UO_AddrOf) 4465 AddressTaken = true; 4466 else if (Arg->getType()->isPointerType()) { 4467 // We cannot let pointers get dereferenced here, that is obviously not a 4468 // constant expression. 4469 assert(FirstOpKind == UO_Deref); 4470 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4471 << Arg->getSourceRange(); 4472 } 4473 } 4474 } else { 4475 // See through any implicit casts we added to fix the type. 4476 Arg = Arg->IgnoreImpCasts(); 4477 4478 // C++ [temp.arg.nontype]p1: 4479 // 4480 // A template-argument for a non-type, non-template 4481 // template-parameter shall be one of: [...] 4482 // 4483 // -- the address of an object or function with external 4484 // linkage, including function templates and function 4485 // template-ids but excluding non-static class members, 4486 // expressed as & id-expression where the & is optional if 4487 // the name refers to a function or array, or if the 4488 // corresponding template-parameter is a reference; or 4489 4490 // In C++98/03 mode, give an extension warning on any extra parentheses. 4491 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4492 bool ExtraParens = false; 4493 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4494 if (!Invalid && !ExtraParens) { 4495 S.Diag(Arg->getLocStart(), 4496 S.getLangOpts().CPlusPlus11 4497 ? diag::warn_cxx98_compat_template_arg_extra_parens 4498 : diag::ext_template_arg_extra_parens) 4499 << Arg->getSourceRange(); 4500 ExtraParens = true; 4501 } 4502 4503 Arg = Parens->getSubExpr(); 4504 } 4505 4506 while (SubstNonTypeTemplateParmExpr *subst = 4507 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4508 Arg = subst->getReplacement()->IgnoreImpCasts(); 4509 4510 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4511 if (UnOp->getOpcode() == UO_AddrOf) { 4512 Arg = UnOp->getSubExpr(); 4513 AddressTaken = true; 4514 AddrOpLoc = UnOp->getOperatorLoc(); 4515 } 4516 } 4517 4518 while (SubstNonTypeTemplateParmExpr *subst = 4519 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4520 Arg = subst->getReplacement()->IgnoreImpCasts(); 4521 } 4522 4523 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 4524 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 4525 4526 // If our parameter has pointer type, check for a null template value. 4527 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 4528 NullPointerValueKind NPV; 4529 // dllimport'd entities aren't constant but are available inside of template 4530 // arguments. 4531 if (Entity && Entity->hasAttr<DLLImportAttr>()) 4532 NPV = NPV_NotNullPointer; 4533 else 4534 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn); 4535 switch (NPV) { 4536 case NPV_NullPointer: 4537 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4538 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 4539 /*isNullPtr=*/true); 4540 return false; 4541 4542 case NPV_Error: 4543 return true; 4544 4545 case NPV_NotNullPointer: 4546 break; 4547 } 4548 } 4549 4550 // Stop checking the precise nature of the argument if it is value dependent, 4551 // it should be checked when instantiated. 4552 if (Arg->isValueDependent()) { 4553 Converted = TemplateArgument(ArgIn); 4554 return false; 4555 } 4556 4557 if (isa<CXXUuidofExpr>(Arg)) { 4558 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, 4559 ArgIn, Arg, ArgType)) 4560 return true; 4561 4562 Converted = TemplateArgument(ArgIn); 4563 return false; 4564 } 4565 4566 if (!DRE) { 4567 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4568 << Arg->getSourceRange(); 4569 S.Diag(Param->getLocation(), diag::note_template_param_here); 4570 return true; 4571 } 4572 4573 // Cannot refer to non-static data members 4574 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 4575 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 4576 << Entity << Arg->getSourceRange(); 4577 S.Diag(Param->getLocation(), diag::note_template_param_here); 4578 return true; 4579 } 4580 4581 // Cannot refer to non-static member functions 4582 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 4583 if (!Method->isStatic()) { 4584 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 4585 << Method << Arg->getSourceRange(); 4586 S.Diag(Param->getLocation(), diag::note_template_param_here); 4587 return true; 4588 } 4589 } 4590 4591 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 4592 VarDecl *Var = dyn_cast<VarDecl>(Entity); 4593 4594 // A non-type template argument must refer to an object or function. 4595 if (!Func && !Var) { 4596 // We found something, but we don't know specifically what it is. 4597 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 4598 << Arg->getSourceRange(); 4599 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4600 return true; 4601 } 4602 4603 // Address / reference template args must have external linkage in C++98. 4604 if (Entity->getFormalLinkage() == InternalLinkage) { 4605 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 4606 diag::warn_cxx98_compat_template_arg_object_internal : 4607 diag::ext_template_arg_object_internal) 4608 << !Func << Entity << Arg->getSourceRange(); 4609 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4610 << !Func; 4611 } else if (!Entity->hasLinkage()) { 4612 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 4613 << !Func << Entity << Arg->getSourceRange(); 4614 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4615 << !Func; 4616 return true; 4617 } 4618 4619 if (Func) { 4620 // If the template parameter has pointer type, the function decays. 4621 if (ParamType->isPointerType() && !AddressTaken) 4622 ArgType = S.Context.getPointerType(Func->getType()); 4623 else if (AddressTaken && ParamType->isReferenceType()) { 4624 // If we originally had an address-of operator, but the 4625 // parameter has reference type, complain and (if things look 4626 // like they will work) drop the address-of operator. 4627 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 4628 ParamType.getNonReferenceType())) { 4629 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4630 << ParamType; 4631 S.Diag(Param->getLocation(), diag::note_template_param_here); 4632 return true; 4633 } 4634 4635 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4636 << ParamType 4637 << FixItHint::CreateRemoval(AddrOpLoc); 4638 S.Diag(Param->getLocation(), diag::note_template_param_here); 4639 4640 ArgType = Func->getType(); 4641 } 4642 } else { 4643 // A value of reference type is not an object. 4644 if (Var->getType()->isReferenceType()) { 4645 S.Diag(Arg->getLocStart(), 4646 diag::err_template_arg_reference_var) 4647 << Var->getType() << Arg->getSourceRange(); 4648 S.Diag(Param->getLocation(), diag::note_template_param_here); 4649 return true; 4650 } 4651 4652 // A template argument must have static storage duration. 4653 if (Var->getTLSKind()) { 4654 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 4655 << Arg->getSourceRange(); 4656 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 4657 return true; 4658 } 4659 4660 // If the template parameter has pointer type, we must have taken 4661 // the address of this object. 4662 if (ParamType->isReferenceType()) { 4663 if (AddressTaken) { 4664 // If we originally had an address-of operator, but the 4665 // parameter has reference type, complain and (if things look 4666 // like they will work) drop the address-of operator. 4667 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 4668 ParamType.getNonReferenceType())) { 4669 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4670 << ParamType; 4671 S.Diag(Param->getLocation(), diag::note_template_param_here); 4672 return true; 4673 } 4674 4675 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4676 << ParamType 4677 << FixItHint::CreateRemoval(AddrOpLoc); 4678 S.Diag(Param->getLocation(), diag::note_template_param_here); 4679 4680 ArgType = Var->getType(); 4681 } 4682 } else if (!AddressTaken && ParamType->isPointerType()) { 4683 if (Var->getType()->isArrayType()) { 4684 // Array-to-pointer decay. 4685 ArgType = S.Context.getArrayDecayedType(Var->getType()); 4686 } else { 4687 // If the template parameter has pointer type but the address of 4688 // this object was not taken, complain and (possibly) recover by 4689 // taking the address of the entity. 4690 ArgType = S.Context.getPointerType(Var->getType()); 4691 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 4692 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4693 << ParamType; 4694 S.Diag(Param->getLocation(), diag::note_template_param_here); 4695 return true; 4696 } 4697 4698 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4699 << ParamType 4700 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 4701 4702 S.Diag(Param->getLocation(), diag::note_template_param_here); 4703 } 4704 } 4705 } 4706 4707 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 4708 Arg, ArgType)) 4709 return true; 4710 4711 // Create the template argument. 4712 Converted = 4713 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); 4714 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 4715 return false; 4716 } 4717 4718 /// \brief Checks whether the given template argument is a pointer to 4719 /// member constant according to C++ [temp.arg.nontype]p1. 4720 static bool CheckTemplateArgumentPointerToMember(Sema &S, 4721 NonTypeTemplateParmDecl *Param, 4722 QualType ParamType, 4723 Expr *&ResultArg, 4724 TemplateArgument &Converted) { 4725 bool Invalid = false; 4726 4727 // Check for a null pointer value. 4728 Expr *Arg = ResultArg; 4729 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 4730 case NPV_Error: 4731 return true; 4732 case NPV_NullPointer: 4733 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4734 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 4735 /*isNullPtr*/true); 4736 return false; 4737 case NPV_NotNullPointer: 4738 break; 4739 } 4740 4741 bool ObjCLifetimeConversion; 4742 if (S.IsQualificationConversion(Arg->getType(), 4743 ParamType.getNonReferenceType(), 4744 false, ObjCLifetimeConversion)) { 4745 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 4746 Arg->getValueKind()).get(); 4747 ResultArg = Arg; 4748 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 4749 ParamType.getNonReferenceType())) { 4750 // We can't perform this conversion. 4751 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4752 << Arg->getType() << ParamType << Arg->getSourceRange(); 4753 S.Diag(Param->getLocation(), diag::note_template_param_here); 4754 return true; 4755 } 4756 4757 // See through any implicit casts we added to fix the type. 4758 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 4759 Arg = Cast->getSubExpr(); 4760 4761 // C++ [temp.arg.nontype]p1: 4762 // 4763 // A template-argument for a non-type, non-template 4764 // template-parameter shall be one of: [...] 4765 // 4766 // -- a pointer to member expressed as described in 5.3.1. 4767 DeclRefExpr *DRE = nullptr; 4768 4769 // In C++98/03 mode, give an extension warning on any extra parentheses. 4770 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4771 bool ExtraParens = false; 4772 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4773 if (!Invalid && !ExtraParens) { 4774 S.Diag(Arg->getLocStart(), 4775 S.getLangOpts().CPlusPlus11 ? 4776 diag::warn_cxx98_compat_template_arg_extra_parens : 4777 diag::ext_template_arg_extra_parens) 4778 << Arg->getSourceRange(); 4779 ExtraParens = true; 4780 } 4781 4782 Arg = Parens->getSubExpr(); 4783 } 4784 4785 while (SubstNonTypeTemplateParmExpr *subst = 4786 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4787 Arg = subst->getReplacement()->IgnoreImpCasts(); 4788 4789 // A pointer-to-member constant written &Class::member. 4790 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4791 if (UnOp->getOpcode() == UO_AddrOf) { 4792 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4793 if (DRE && !DRE->getQualifier()) 4794 DRE = nullptr; 4795 } 4796 } 4797 // A constant of pointer-to-member type. 4798 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4799 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4800 if (VD->getType()->isMemberPointerType()) { 4801 if (isa<NonTypeTemplateParmDecl>(VD)) { 4802 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4803 Converted = TemplateArgument(Arg); 4804 } else { 4805 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4806 Converted = TemplateArgument(VD, ParamType); 4807 } 4808 return Invalid; 4809 } 4810 } 4811 } 4812 4813 DRE = nullptr; 4814 } 4815 4816 if (!DRE) 4817 return S.Diag(Arg->getLocStart(), 4818 diag::err_template_arg_not_pointer_to_member_form) 4819 << Arg->getSourceRange(); 4820 4821 if (isa<FieldDecl>(DRE->getDecl()) || 4822 isa<IndirectFieldDecl>(DRE->getDecl()) || 4823 isa<CXXMethodDecl>(DRE->getDecl())) { 4824 assert((isa<FieldDecl>(DRE->getDecl()) || 4825 isa<IndirectFieldDecl>(DRE->getDecl()) || 4826 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4827 "Only non-static member pointers can make it here"); 4828 4829 // Okay: this is the address of a non-static member, and therefore 4830 // a member pointer constant. 4831 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4832 Converted = TemplateArgument(Arg); 4833 } else { 4834 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4835 Converted = TemplateArgument(D, ParamType); 4836 } 4837 return Invalid; 4838 } 4839 4840 // We found something else, but we don't know specifically what it is. 4841 S.Diag(Arg->getLocStart(), 4842 diag::err_template_arg_not_pointer_to_member_form) 4843 << Arg->getSourceRange(); 4844 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4845 return true; 4846 } 4847 4848 /// \brief Check a template argument against its corresponding 4849 /// non-type template parameter. 4850 /// 4851 /// This routine implements the semantics of C++ [temp.arg.nontype]. 4852 /// If an error occurred, it returns ExprError(); otherwise, it 4853 /// returns the converted template argument. \p ParamType is the 4854 /// type of the non-type template parameter after it has been instantiated. 4855 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4856 QualType ParamType, Expr *Arg, 4857 TemplateArgument &Converted, 4858 CheckTemplateArgumentKind CTAK) { 4859 SourceLocation StartLoc = Arg->getLocStart(); 4860 4861 // If either the parameter has a dependent type or the argument is 4862 // type-dependent, there's nothing we can check now. 4863 if (ParamType->isDependentType() || Arg->isTypeDependent()) { 4864 // FIXME: Produce a cloned, canonical expression? 4865 Converted = TemplateArgument(Arg); 4866 return Arg; 4867 } 4868 4869 // We should have already dropped all cv-qualifiers by now. 4870 assert(!ParamType.hasQualifiers() && 4871 "non-type template parameter type cannot be qualified"); 4872 4873 if (CTAK == CTAK_Deduced && 4874 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4875 // C++ [temp.deduct.type]p17: 4876 // If, in the declaration of a function template with a non-type 4877 // template-parameter, the non-type template-parameter is used 4878 // in an expression in the function parameter-list and, if the 4879 // corresponding template-argument is deduced, the 4880 // template-argument type shall match the type of the 4881 // template-parameter exactly, except that a template-argument 4882 // deduced from an array bound may be of any integral type. 4883 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4884 << Arg->getType().getUnqualifiedType() 4885 << ParamType.getUnqualifiedType(); 4886 Diag(Param->getLocation(), diag::note_template_param_here); 4887 return ExprError(); 4888 } 4889 4890 if (getLangOpts().CPlusPlus1z) { 4891 // FIXME: We can do some limited checking for a value-dependent but not 4892 // type-dependent argument. 4893 if (Arg->isValueDependent()) { 4894 Converted = TemplateArgument(Arg); 4895 return Arg; 4896 } 4897 4898 // C++1z [temp.arg.nontype]p1: 4899 // A template-argument for a non-type template parameter shall be 4900 // a converted constant expression of the type of the template-parameter. 4901 APValue Value; 4902 ExprResult ArgResult = CheckConvertedConstantExpression( 4903 Arg, ParamType, Value, CCEK_TemplateArg); 4904 if (ArgResult.isInvalid()) 4905 return ExprError(); 4906 4907 QualType CanonParamType = Context.getCanonicalType(ParamType); 4908 4909 // Convert the APValue to a TemplateArgument. 4910 switch (Value.getKind()) { 4911 case APValue::Uninitialized: 4912 assert(ParamType->isNullPtrType()); 4913 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 4914 break; 4915 case APValue::Int: 4916 assert(ParamType->isIntegralOrEnumerationType()); 4917 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 4918 break; 4919 case APValue::MemberPointer: { 4920 assert(ParamType->isMemberPointerType()); 4921 4922 // FIXME: We need TemplateArgument representation and mangling for these. 4923 if (!Value.getMemberPointerPath().empty()) { 4924 Diag(Arg->getLocStart(), 4925 diag::err_template_arg_member_ptr_base_derived_not_supported) 4926 << Value.getMemberPointerDecl() << ParamType 4927 << Arg->getSourceRange(); 4928 return ExprError(); 4929 } 4930 4931 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 4932 Converted = VD ? TemplateArgument(VD, CanonParamType) 4933 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 4934 break; 4935 } 4936 case APValue::LValue: { 4937 // For a non-type template-parameter of pointer or reference type, 4938 // the value of the constant expression shall not refer to 4939 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 4940 ParamType->isNullPtrType()); 4941 // -- a temporary object 4942 // -- a string literal 4943 // -- the result of a typeid expression, or 4944 // -- a predefind __func__ variable 4945 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) { 4946 if (isa<CXXUuidofExpr>(E)) { 4947 Converted = TemplateArgument(const_cast<Expr*>(E)); 4948 break; 4949 } 4950 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4951 << Arg->getSourceRange(); 4952 return ExprError(); 4953 } 4954 auto *VD = const_cast<ValueDecl *>( 4955 Value.getLValueBase().dyn_cast<const ValueDecl *>()); 4956 // -- a subobject 4957 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 4958 VD && VD->getType()->isArrayType() && 4959 Value.getLValuePath()[0].ArrayIndex == 0 && 4960 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 4961 // Per defect report (no number yet): 4962 // ... other than a pointer to the first element of a complete array 4963 // object. 4964 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 4965 Value.isLValueOnePastTheEnd()) { 4966 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 4967 << Value.getAsString(Context, ParamType); 4968 return ExprError(); 4969 } 4970 assert((VD || !ParamType->isReferenceType()) && 4971 "null reference should not be a constant expression"); 4972 assert((!VD || !ParamType->isNullPtrType()) && 4973 "non-null value of type nullptr_t?"); 4974 Converted = VD ? TemplateArgument(VD, CanonParamType) 4975 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 4976 break; 4977 } 4978 case APValue::AddrLabelDiff: 4979 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 4980 case APValue::Float: 4981 case APValue::ComplexInt: 4982 case APValue::ComplexFloat: 4983 case APValue::Vector: 4984 case APValue::Array: 4985 case APValue::Struct: 4986 case APValue::Union: 4987 llvm_unreachable("invalid kind for template argument"); 4988 } 4989 4990 return ArgResult.get(); 4991 } 4992 4993 // C++ [temp.arg.nontype]p5: 4994 // The following conversions are performed on each expression used 4995 // as a non-type template-argument. If a non-type 4996 // template-argument cannot be converted to the type of the 4997 // corresponding template-parameter then the program is 4998 // ill-formed. 4999 if (ParamType->isIntegralOrEnumerationType()) { 5000 // C++11: 5001 // -- for a non-type template-parameter of integral or 5002 // enumeration type, conversions permitted in a converted 5003 // constant expression are applied. 5004 // 5005 // C++98: 5006 // -- for a non-type template-parameter of integral or 5007 // enumeration type, integral promotions (4.5) and integral 5008 // conversions (4.7) are applied. 5009 5010 if (getLangOpts().CPlusPlus11) { 5011 // We can't check arbitrary value-dependent arguments. 5012 // FIXME: If there's no viable conversion to the template parameter type, 5013 // we should be able to diagnose that prior to instantiation. 5014 if (Arg->isValueDependent()) { 5015 Converted = TemplateArgument(Arg); 5016 return Arg; 5017 } 5018 5019 // C++ [temp.arg.nontype]p1: 5020 // A template-argument for a non-type, non-template template-parameter 5021 // shall be one of: 5022 // 5023 // -- for a non-type template-parameter of integral or enumeration 5024 // type, a converted constant expression of the type of the 5025 // template-parameter; or 5026 llvm::APSInt Value; 5027 ExprResult ArgResult = 5028 CheckConvertedConstantExpression(Arg, ParamType, Value, 5029 CCEK_TemplateArg); 5030 if (ArgResult.isInvalid()) 5031 return ExprError(); 5032 5033 // Widen the argument value to sizeof(parameter type). This is almost 5034 // always a no-op, except when the parameter type is bool. In 5035 // that case, this may extend the argument from 1 bit to 8 bits. 5036 QualType IntegerType = ParamType; 5037 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 5038 IntegerType = Enum->getDecl()->getIntegerType(); 5039 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 5040 5041 Converted = TemplateArgument(Context, Value, 5042 Context.getCanonicalType(ParamType)); 5043 return ArgResult; 5044 } 5045 5046 ExprResult ArgResult = DefaultLvalueConversion(Arg); 5047 if (ArgResult.isInvalid()) 5048 return ExprError(); 5049 Arg = ArgResult.get(); 5050 5051 QualType ArgType = Arg->getType(); 5052 5053 // C++ [temp.arg.nontype]p1: 5054 // A template-argument for a non-type, non-template 5055 // template-parameter shall be one of: 5056 // 5057 // -- an integral constant-expression of integral or enumeration 5058 // type; or 5059 // -- the name of a non-type template-parameter; or 5060 SourceLocation NonConstantLoc; 5061 llvm::APSInt Value; 5062 if (!ArgType->isIntegralOrEnumerationType()) { 5063 Diag(Arg->getLocStart(), 5064 diag::err_template_arg_not_integral_or_enumeral) 5065 << ArgType << Arg->getSourceRange(); 5066 Diag(Param->getLocation(), diag::note_template_param_here); 5067 return ExprError(); 5068 } else if (!Arg->isValueDependent()) { 5069 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 5070 QualType T; 5071 5072 public: 5073 TmplArgICEDiagnoser(QualType T) : T(T) { } 5074 5075 void diagnoseNotICE(Sema &S, SourceLocation Loc, 5076 SourceRange SR) override { 5077 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 5078 } 5079 } Diagnoser(ArgType); 5080 5081 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 5082 false).get(); 5083 if (!Arg) 5084 return ExprError(); 5085 } 5086 5087 // From here on out, all we care about is the unqualified form 5088 // of the argument type. 5089 ArgType = ArgType.getUnqualifiedType(); 5090 5091 // Try to convert the argument to the parameter's type. 5092 if (Context.hasSameType(ParamType, ArgType)) { 5093 // Okay: no conversion necessary 5094 } else if (ParamType->isBooleanType()) { 5095 // This is an integral-to-boolean conversion. 5096 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 5097 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 5098 !ParamType->isEnumeralType()) { 5099 // This is an integral promotion or conversion. 5100 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 5101 } else { 5102 // We can't perform this conversion. 5103 Diag(Arg->getLocStart(), 5104 diag::err_template_arg_not_convertible) 5105 << Arg->getType() << ParamType << Arg->getSourceRange(); 5106 Diag(Param->getLocation(), diag::note_template_param_here); 5107 return ExprError(); 5108 } 5109 5110 // Add the value of this argument to the list of converted 5111 // arguments. We use the bitwidth and signedness of the template 5112 // parameter. 5113 if (Arg->isValueDependent()) { 5114 // The argument is value-dependent. Create a new 5115 // TemplateArgument with the converted expression. 5116 Converted = TemplateArgument(Arg); 5117 return Arg; 5118 } 5119 5120 QualType IntegerType = Context.getCanonicalType(ParamType); 5121 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 5122 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 5123 5124 if (ParamType->isBooleanType()) { 5125 // Value must be zero or one. 5126 Value = Value != 0; 5127 unsigned AllowedBits = Context.getTypeSize(IntegerType); 5128 if (Value.getBitWidth() != AllowedBits) 5129 Value = Value.extOrTrunc(AllowedBits); 5130 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 5131 } else { 5132 llvm::APSInt OldValue = Value; 5133 5134 // Coerce the template argument's value to the value it will have 5135 // based on the template parameter's type. 5136 unsigned AllowedBits = Context.getTypeSize(IntegerType); 5137 if (Value.getBitWidth() != AllowedBits) 5138 Value = Value.extOrTrunc(AllowedBits); 5139 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 5140 5141 // Complain if an unsigned parameter received a negative value. 5142 if (IntegerType->isUnsignedIntegerOrEnumerationType() 5143 && (OldValue.isSigned() && OldValue.isNegative())) { 5144 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 5145 << OldValue.toString(10) << Value.toString(10) << Param->getType() 5146 << Arg->getSourceRange(); 5147 Diag(Param->getLocation(), diag::note_template_param_here); 5148 } 5149 5150 // Complain if we overflowed the template parameter's type. 5151 unsigned RequiredBits; 5152 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 5153 RequiredBits = OldValue.getActiveBits(); 5154 else if (OldValue.isUnsigned()) 5155 RequiredBits = OldValue.getActiveBits() + 1; 5156 else 5157 RequiredBits = OldValue.getMinSignedBits(); 5158 if (RequiredBits > AllowedBits) { 5159 Diag(Arg->getLocStart(), 5160 diag::warn_template_arg_too_large) 5161 << OldValue.toString(10) << Value.toString(10) << Param->getType() 5162 << Arg->getSourceRange(); 5163 Diag(Param->getLocation(), diag::note_template_param_here); 5164 } 5165 } 5166 5167 Converted = TemplateArgument(Context, Value, 5168 ParamType->isEnumeralType() 5169 ? Context.getCanonicalType(ParamType) 5170 : IntegerType); 5171 return Arg; 5172 } 5173 5174 QualType ArgType = Arg->getType(); 5175 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 5176 5177 // Handle pointer-to-function, reference-to-function, and 5178 // pointer-to-member-function all in (roughly) the same way. 5179 if (// -- For a non-type template-parameter of type pointer to 5180 // function, only the function-to-pointer conversion (4.3) is 5181 // applied. If the template-argument represents a set of 5182 // overloaded functions (or a pointer to such), the matching 5183 // function is selected from the set (13.4). 5184 (ParamType->isPointerType() && 5185 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 5186 // -- For a non-type template-parameter of type reference to 5187 // function, no conversions apply. If the template-argument 5188 // represents a set of overloaded functions, the matching 5189 // function is selected from the set (13.4). 5190 (ParamType->isReferenceType() && 5191 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 5192 // -- For a non-type template-parameter of type pointer to 5193 // member function, no conversions apply. If the 5194 // template-argument represents a set of overloaded member 5195 // functions, the matching member function is selected from 5196 // the set (13.4). 5197 (ParamType->isMemberPointerType() && 5198 ParamType->getAs<MemberPointerType>()->getPointeeType() 5199 ->isFunctionType())) { 5200 5201 if (Arg->getType() == Context.OverloadTy) { 5202 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 5203 true, 5204 FoundResult)) { 5205 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 5206 return ExprError(); 5207 5208 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 5209 ArgType = Arg->getType(); 5210 } else 5211 return ExprError(); 5212 } 5213 5214 if (!ParamType->isMemberPointerType()) { 5215 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 5216 ParamType, 5217 Arg, Converted)) 5218 return ExprError(); 5219 return Arg; 5220 } 5221 5222 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 5223 Converted)) 5224 return ExprError(); 5225 return Arg; 5226 } 5227 5228 if (ParamType->isPointerType()) { 5229 // -- for a non-type template-parameter of type pointer to 5230 // object, qualification conversions (4.4) and the 5231 // array-to-pointer conversion (4.2) are applied. 5232 // C++0x also allows a value of std::nullptr_t. 5233 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 5234 "Only object pointers allowed here"); 5235 5236 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 5237 ParamType, 5238 Arg, Converted)) 5239 return ExprError(); 5240 return Arg; 5241 } 5242 5243 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 5244 // -- For a non-type template-parameter of type reference to 5245 // object, no conversions apply. The type referred to by the 5246 // reference may be more cv-qualified than the (otherwise 5247 // identical) type of the template-argument. The 5248 // template-parameter is bound directly to the 5249 // template-argument, which must be an lvalue. 5250 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 5251 "Only object references allowed here"); 5252 5253 if (Arg->getType() == Context.OverloadTy) { 5254 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 5255 ParamRefType->getPointeeType(), 5256 true, 5257 FoundResult)) { 5258 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 5259 return ExprError(); 5260 5261 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 5262 ArgType = Arg->getType(); 5263 } else 5264 return ExprError(); 5265 } 5266 5267 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 5268 ParamType, 5269 Arg, Converted)) 5270 return ExprError(); 5271 return Arg; 5272 } 5273 5274 // Deal with parameters of type std::nullptr_t. 5275 if (ParamType->isNullPtrType()) { 5276 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 5277 Converted = TemplateArgument(Arg); 5278 return Arg; 5279 } 5280 5281 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 5282 case NPV_NotNullPointer: 5283 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 5284 << Arg->getType() << ParamType; 5285 Diag(Param->getLocation(), diag::note_template_param_here); 5286 return ExprError(); 5287 5288 case NPV_Error: 5289 return ExprError(); 5290 5291 case NPV_NullPointer: 5292 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 5293 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 5294 /*isNullPtr*/true); 5295 return Arg; 5296 } 5297 } 5298 5299 // -- For a non-type template-parameter of type pointer to data 5300 // member, qualification conversions (4.4) are applied. 5301 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 5302 5303 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 5304 Converted)) 5305 return ExprError(); 5306 return Arg; 5307 } 5308 5309 /// \brief Check a template argument against its corresponding 5310 /// template template parameter. 5311 /// 5312 /// This routine implements the semantics of C++ [temp.arg.template]. 5313 /// It returns true if an error occurred, and false otherwise. 5314 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 5315 TemplateArgumentLoc &Arg, 5316 unsigned ArgumentPackIndex) { 5317 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 5318 TemplateDecl *Template = Name.getAsTemplateDecl(); 5319 if (!Template) { 5320 // Any dependent template name is fine. 5321 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 5322 return false; 5323 } 5324 5325 // C++0x [temp.arg.template]p1: 5326 // A template-argument for a template template-parameter shall be 5327 // the name of a class template or an alias template, expressed as an 5328 // id-expression. When the template-argument names a class template, only 5329 // primary class templates are considered when matching the 5330 // template template argument with the corresponding parameter; 5331 // partial specializations are not considered even if their 5332 // parameter lists match that of the template template parameter. 5333 // 5334 // Note that we also allow template template parameters here, which 5335 // will happen when we are dealing with, e.g., class template 5336 // partial specializations. 5337 if (!isa<ClassTemplateDecl>(Template) && 5338 !isa<TemplateTemplateParmDecl>(Template) && 5339 !isa<TypeAliasTemplateDecl>(Template)) { 5340 assert(isa<FunctionTemplateDecl>(Template) && 5341 "Only function templates are possible here"); 5342 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 5343 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 5344 << Template; 5345 } 5346 5347 TemplateParameterList *Params = Param->getTemplateParameters(); 5348 if (Param->isExpandedParameterPack()) 5349 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 5350 5351 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 5352 Params, 5353 true, 5354 TPL_TemplateTemplateArgumentMatch, 5355 Arg.getLocation()); 5356 } 5357 5358 /// \brief Given a non-type template argument that refers to a 5359 /// declaration and the type of its corresponding non-type template 5360 /// parameter, produce an expression that properly refers to that 5361 /// declaration. 5362 ExprResult 5363 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 5364 QualType ParamType, 5365 SourceLocation Loc) { 5366 // C++ [temp.param]p8: 5367 // 5368 // A non-type template-parameter of type "array of T" or 5369 // "function returning T" is adjusted to be of type "pointer to 5370 // T" or "pointer to function returning T", respectively. 5371 if (ParamType->isArrayType()) 5372 ParamType = Context.getArrayDecayedType(ParamType); 5373 else if (ParamType->isFunctionType()) 5374 ParamType = Context.getPointerType(ParamType); 5375 5376 // For a NULL non-type template argument, return nullptr casted to the 5377 // parameter's type. 5378 if (Arg.getKind() == TemplateArgument::NullPtr) { 5379 return ImpCastExprToType( 5380 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 5381 ParamType, 5382 ParamType->getAs<MemberPointerType>() 5383 ? CK_NullToMemberPointer 5384 : CK_NullToPointer); 5385 } 5386 assert(Arg.getKind() == TemplateArgument::Declaration && 5387 "Only declaration template arguments permitted here"); 5388 5389 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 5390 5391 if (VD->getDeclContext()->isRecord() && 5392 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 5393 isa<IndirectFieldDecl>(VD))) { 5394 // If the value is a class member, we might have a pointer-to-member. 5395 // Determine whether the non-type template template parameter is of 5396 // pointer-to-member type. If so, we need to build an appropriate 5397 // expression for a pointer-to-member, since a "normal" DeclRefExpr 5398 // would refer to the member itself. 5399 if (ParamType->isMemberPointerType()) { 5400 QualType ClassType 5401 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 5402 NestedNameSpecifier *Qualifier 5403 = NestedNameSpecifier::Create(Context, nullptr, false, 5404 ClassType.getTypePtr()); 5405 CXXScopeSpec SS; 5406 SS.MakeTrivial(Context, Qualifier, Loc); 5407 5408 // The actual value-ness of this is unimportant, but for 5409 // internal consistency's sake, references to instance methods 5410 // are r-values. 5411 ExprValueKind VK = VK_LValue; 5412 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 5413 VK = VK_RValue; 5414 5415 ExprResult RefExpr = BuildDeclRefExpr(VD, 5416 VD->getType().getNonReferenceType(), 5417 VK, 5418 Loc, 5419 &SS); 5420 if (RefExpr.isInvalid()) 5421 return ExprError(); 5422 5423 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5424 5425 // We might need to perform a trailing qualification conversion, since 5426 // the element type on the parameter could be more qualified than the 5427 // element type in the expression we constructed. 5428 bool ObjCLifetimeConversion; 5429 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 5430 ParamType.getUnqualifiedType(), false, 5431 ObjCLifetimeConversion)) 5432 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp); 5433 5434 assert(!RefExpr.isInvalid() && 5435 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 5436 ParamType.getUnqualifiedType())); 5437 return RefExpr; 5438 } 5439 } 5440 5441 QualType T = VD->getType().getNonReferenceType(); 5442 5443 if (ParamType->isPointerType()) { 5444 // When the non-type template parameter is a pointer, take the 5445 // address of the declaration. 5446 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 5447 if (RefExpr.isInvalid()) 5448 return ExprError(); 5449 5450 if (T->isFunctionType() || T->isArrayType()) { 5451 // Decay functions and arrays. 5452 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 5453 if (RefExpr.isInvalid()) 5454 return ExprError(); 5455 5456 return RefExpr; 5457 } 5458 5459 // Take the address of everything else 5460 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5461 } 5462 5463 ExprValueKind VK = VK_RValue; 5464 5465 // If the non-type template parameter has reference type, qualify the 5466 // resulting declaration reference with the extra qualifiers on the 5467 // type that the reference refers to. 5468 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 5469 VK = VK_LValue; 5470 T = Context.getQualifiedType(T, 5471 TargetRef->getPointeeType().getQualifiers()); 5472 } else if (isa<FunctionDecl>(VD)) { 5473 // References to functions are always lvalues. 5474 VK = VK_LValue; 5475 } 5476 5477 return BuildDeclRefExpr(VD, T, VK, Loc); 5478 } 5479 5480 /// \brief Construct a new expression that refers to the given 5481 /// integral template argument with the given source-location 5482 /// information. 5483 /// 5484 /// This routine takes care of the mapping from an integral template 5485 /// argument (which may have any integral type) to the appropriate 5486 /// literal value. 5487 ExprResult 5488 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 5489 SourceLocation Loc) { 5490 assert(Arg.getKind() == TemplateArgument::Integral && 5491 "Operation is only valid for integral template arguments"); 5492 QualType OrigT = Arg.getIntegralType(); 5493 5494 // If this is an enum type that we're instantiating, we need to use an integer 5495 // type the same size as the enumerator. We don't want to build an 5496 // IntegerLiteral with enum type. The integer type of an enum type can be of 5497 // any integral type with C++11 enum classes, make sure we create the right 5498 // type of literal for it. 5499 QualType T = OrigT; 5500 if (const EnumType *ET = OrigT->getAs<EnumType>()) 5501 T = ET->getDecl()->getIntegerType(); 5502 5503 Expr *E; 5504 if (T->isAnyCharacterType()) { 5505 CharacterLiteral::CharacterKind Kind; 5506 if (T->isWideCharType()) 5507 Kind = CharacterLiteral::Wide; 5508 else if (T->isChar16Type()) 5509 Kind = CharacterLiteral::UTF16; 5510 else if (T->isChar32Type()) 5511 Kind = CharacterLiteral::UTF32; 5512 else 5513 Kind = CharacterLiteral::Ascii; 5514 5515 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 5516 Kind, T, Loc); 5517 } else if (T->isBooleanType()) { 5518 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 5519 T, Loc); 5520 } else if (T->isNullPtrType()) { 5521 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 5522 } else { 5523 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 5524 } 5525 5526 if (OrigT->isEnumeralType()) { 5527 // FIXME: This is a hack. We need a better way to handle substituted 5528 // non-type template parameters. 5529 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 5530 nullptr, 5531 Context.getTrivialTypeSourceInfo(OrigT, Loc), 5532 Loc, Loc); 5533 } 5534 5535 return E; 5536 } 5537 5538 /// \brief Match two template parameters within template parameter lists. 5539 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 5540 bool Complain, 5541 Sema::TemplateParameterListEqualKind Kind, 5542 SourceLocation TemplateArgLoc) { 5543 // Check the actual kind (type, non-type, template). 5544 if (Old->getKind() != New->getKind()) { 5545 if (Complain) { 5546 unsigned NextDiag = diag::err_template_param_different_kind; 5547 if (TemplateArgLoc.isValid()) { 5548 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5549 NextDiag = diag::note_template_param_different_kind; 5550 } 5551 S.Diag(New->getLocation(), NextDiag) 5552 << (Kind != Sema::TPL_TemplateMatch); 5553 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 5554 << (Kind != Sema::TPL_TemplateMatch); 5555 } 5556 5557 return false; 5558 } 5559 5560 // Check that both are parameter packs are neither are parameter packs. 5561 // However, if we are matching a template template argument to a 5562 // template template parameter, the template template parameter can have 5563 // a parameter pack where the template template argument does not. 5564 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 5565 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5566 Old->isTemplateParameterPack())) { 5567 if (Complain) { 5568 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 5569 if (TemplateArgLoc.isValid()) { 5570 S.Diag(TemplateArgLoc, 5571 diag::err_template_arg_template_params_mismatch); 5572 NextDiag = diag::note_template_parameter_pack_non_pack; 5573 } 5574 5575 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 5576 : isa<NonTypeTemplateParmDecl>(New)? 1 5577 : 2; 5578 S.Diag(New->getLocation(), NextDiag) 5579 << ParamKind << New->isParameterPack(); 5580 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 5581 << ParamKind << Old->isParameterPack(); 5582 } 5583 5584 return false; 5585 } 5586 5587 // For non-type template parameters, check the type of the parameter. 5588 if (NonTypeTemplateParmDecl *OldNTTP 5589 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 5590 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 5591 5592 // If we are matching a template template argument to a template 5593 // template parameter and one of the non-type template parameter types 5594 // is dependent, then we must wait until template instantiation time 5595 // to actually compare the arguments. 5596 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5597 (OldNTTP->getType()->isDependentType() || 5598 NewNTTP->getType()->isDependentType())) 5599 return true; 5600 5601 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 5602 if (Complain) { 5603 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 5604 if (TemplateArgLoc.isValid()) { 5605 S.Diag(TemplateArgLoc, 5606 diag::err_template_arg_template_params_mismatch); 5607 NextDiag = diag::note_template_nontype_parm_different_type; 5608 } 5609 S.Diag(NewNTTP->getLocation(), NextDiag) 5610 << NewNTTP->getType() 5611 << (Kind != Sema::TPL_TemplateMatch); 5612 S.Diag(OldNTTP->getLocation(), 5613 diag::note_template_nontype_parm_prev_declaration) 5614 << OldNTTP->getType(); 5615 } 5616 5617 return false; 5618 } 5619 5620 return true; 5621 } 5622 5623 // For template template parameters, check the template parameter types. 5624 // The template parameter lists of template template 5625 // parameters must agree. 5626 if (TemplateTemplateParmDecl *OldTTP 5627 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 5628 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 5629 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 5630 OldTTP->getTemplateParameters(), 5631 Complain, 5632 (Kind == Sema::TPL_TemplateMatch 5633 ? Sema::TPL_TemplateTemplateParmMatch 5634 : Kind), 5635 TemplateArgLoc); 5636 } 5637 5638 return true; 5639 } 5640 5641 /// \brief Diagnose a known arity mismatch when comparing template argument 5642 /// lists. 5643 static 5644 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 5645 TemplateParameterList *New, 5646 TemplateParameterList *Old, 5647 Sema::TemplateParameterListEqualKind Kind, 5648 SourceLocation TemplateArgLoc) { 5649 unsigned NextDiag = diag::err_template_param_list_different_arity; 5650 if (TemplateArgLoc.isValid()) { 5651 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5652 NextDiag = diag::note_template_param_list_different_arity; 5653 } 5654 S.Diag(New->getTemplateLoc(), NextDiag) 5655 << (New->size() > Old->size()) 5656 << (Kind != Sema::TPL_TemplateMatch) 5657 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 5658 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 5659 << (Kind != Sema::TPL_TemplateMatch) 5660 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 5661 } 5662 5663 /// \brief Determine whether the given template parameter lists are 5664 /// equivalent. 5665 /// 5666 /// \param New The new template parameter list, typically written in the 5667 /// source code as part of a new template declaration. 5668 /// 5669 /// \param Old The old template parameter list, typically found via 5670 /// name lookup of the template declared with this template parameter 5671 /// list. 5672 /// 5673 /// \param Complain If true, this routine will produce a diagnostic if 5674 /// the template parameter lists are not equivalent. 5675 /// 5676 /// \param Kind describes how we are to match the template parameter lists. 5677 /// 5678 /// \param TemplateArgLoc If this source location is valid, then we 5679 /// are actually checking the template parameter list of a template 5680 /// argument (New) against the template parameter list of its 5681 /// corresponding template template parameter (Old). We produce 5682 /// slightly different diagnostics in this scenario. 5683 /// 5684 /// \returns True if the template parameter lists are equal, false 5685 /// otherwise. 5686 bool 5687 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 5688 TemplateParameterList *Old, 5689 bool Complain, 5690 TemplateParameterListEqualKind Kind, 5691 SourceLocation TemplateArgLoc) { 5692 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 5693 if (Complain) 5694 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5695 TemplateArgLoc); 5696 5697 return false; 5698 } 5699 5700 // C++0x [temp.arg.template]p3: 5701 // A template-argument matches a template template-parameter (call it P) 5702 // when each of the template parameters in the template-parameter-list of 5703 // the template-argument's corresponding class template or alias template 5704 // (call it A) matches the corresponding template parameter in the 5705 // template-parameter-list of P. [...] 5706 TemplateParameterList::iterator NewParm = New->begin(); 5707 TemplateParameterList::iterator NewParmEnd = New->end(); 5708 for (TemplateParameterList::iterator OldParm = Old->begin(), 5709 OldParmEnd = Old->end(); 5710 OldParm != OldParmEnd; ++OldParm) { 5711 if (Kind != TPL_TemplateTemplateArgumentMatch || 5712 !(*OldParm)->isTemplateParameterPack()) { 5713 if (NewParm == NewParmEnd) { 5714 if (Complain) 5715 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5716 TemplateArgLoc); 5717 5718 return false; 5719 } 5720 5721 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5722 Kind, TemplateArgLoc)) 5723 return false; 5724 5725 ++NewParm; 5726 continue; 5727 } 5728 5729 // C++0x [temp.arg.template]p3: 5730 // [...] When P's template- parameter-list contains a template parameter 5731 // pack (14.5.3), the template parameter pack will match zero or more 5732 // template parameters or template parameter packs in the 5733 // template-parameter-list of A with the same type and form as the 5734 // template parameter pack in P (ignoring whether those template 5735 // parameters are template parameter packs). 5736 for (; NewParm != NewParmEnd; ++NewParm) { 5737 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5738 Kind, TemplateArgLoc)) 5739 return false; 5740 } 5741 } 5742 5743 // Make sure we exhausted all of the arguments. 5744 if (NewParm != NewParmEnd) { 5745 if (Complain) 5746 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5747 TemplateArgLoc); 5748 5749 return false; 5750 } 5751 5752 return true; 5753 } 5754 5755 /// \brief Check whether a template can be declared within this scope. 5756 /// 5757 /// If the template declaration is valid in this scope, returns 5758 /// false. Otherwise, issues a diagnostic and returns true. 5759 bool 5760 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 5761 if (!S) 5762 return false; 5763 5764 // Find the nearest enclosing declaration scope. 5765 while ((S->getFlags() & Scope::DeclScope) == 0 || 5766 (S->getFlags() & Scope::TemplateParamScope) != 0) 5767 S = S->getParent(); 5768 5769 // C++ [temp]p4: 5770 // A template [...] shall not have C linkage. 5771 DeclContext *Ctx = S->getEntity(); 5772 if (Ctx && Ctx->isExternCContext()) 5773 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 5774 << TemplateParams->getSourceRange(); 5775 5776 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 5777 Ctx = Ctx->getParent(); 5778 5779 // C++ [temp]p2: 5780 // A template-declaration can appear only as a namespace scope or 5781 // class scope declaration. 5782 if (Ctx) { 5783 if (Ctx->isFileContext()) 5784 return false; 5785 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 5786 // C++ [temp.mem]p2: 5787 // A local class shall not have member templates. 5788 if (RD->isLocalClass()) 5789 return Diag(TemplateParams->getTemplateLoc(), 5790 diag::err_template_inside_local_class) 5791 << TemplateParams->getSourceRange(); 5792 else 5793 return false; 5794 } 5795 } 5796 5797 return Diag(TemplateParams->getTemplateLoc(), 5798 diag::err_template_outside_namespace_or_class_scope) 5799 << TemplateParams->getSourceRange(); 5800 } 5801 5802 /// \brief Determine what kind of template specialization the given declaration 5803 /// is. 5804 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 5805 if (!D) 5806 return TSK_Undeclared; 5807 5808 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 5809 return Record->getTemplateSpecializationKind(); 5810 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 5811 return Function->getTemplateSpecializationKind(); 5812 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 5813 return Var->getTemplateSpecializationKind(); 5814 5815 return TSK_Undeclared; 5816 } 5817 5818 /// \brief Check whether a specialization is well-formed in the current 5819 /// context. 5820 /// 5821 /// This routine determines whether a template specialization can be declared 5822 /// in the current context (C++ [temp.expl.spec]p2). 5823 /// 5824 /// \param S the semantic analysis object for which this check is being 5825 /// performed. 5826 /// 5827 /// \param Specialized the entity being specialized or instantiated, which 5828 /// may be a kind of template (class template, function template, etc.) or 5829 /// a member of a class template (member function, static data member, 5830 /// member class). 5831 /// 5832 /// \param PrevDecl the previous declaration of this entity, if any. 5833 /// 5834 /// \param Loc the location of the explicit specialization or instantiation of 5835 /// this entity. 5836 /// 5837 /// \param IsPartialSpecialization whether this is a partial specialization of 5838 /// a class template. 5839 /// 5840 /// \returns true if there was an error that we cannot recover from, false 5841 /// otherwise. 5842 static bool CheckTemplateSpecializationScope(Sema &S, 5843 NamedDecl *Specialized, 5844 NamedDecl *PrevDecl, 5845 SourceLocation Loc, 5846 bool IsPartialSpecialization) { 5847 // Keep these "kind" numbers in sync with the %select statements in the 5848 // various diagnostics emitted by this routine. 5849 int EntityKind = 0; 5850 if (isa<ClassTemplateDecl>(Specialized)) 5851 EntityKind = IsPartialSpecialization? 1 : 0; 5852 else if (isa<VarTemplateDecl>(Specialized)) 5853 EntityKind = IsPartialSpecialization ? 3 : 2; 5854 else if (isa<FunctionTemplateDecl>(Specialized)) 5855 EntityKind = 4; 5856 else if (isa<CXXMethodDecl>(Specialized)) 5857 EntityKind = 5; 5858 else if (isa<VarDecl>(Specialized)) 5859 EntityKind = 6; 5860 else if (isa<RecordDecl>(Specialized)) 5861 EntityKind = 7; 5862 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 5863 EntityKind = 8; 5864 else { 5865 S.Diag(Loc, diag::err_template_spec_unknown_kind) 5866 << S.getLangOpts().CPlusPlus11; 5867 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5868 return true; 5869 } 5870 5871 // C++ [temp.expl.spec]p2: 5872 // An explicit specialization shall be declared in the namespace 5873 // of which the template is a member, or, for member templates, in 5874 // the namespace of which the enclosing class or enclosing class 5875 // template is a member. An explicit specialization of a member 5876 // function, member class or static data member of a class 5877 // template shall be declared in the namespace of which the class 5878 // template is a member. Such a declaration may also be a 5879 // definition. If the declaration is not a definition, the 5880 // specialization may be defined later in the name- space in which 5881 // the explicit specialization was declared, or in a namespace 5882 // that encloses the one in which the explicit specialization was 5883 // declared. 5884 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 5885 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5886 << Specialized; 5887 return true; 5888 } 5889 5890 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5891 if (S.getLangOpts().MicrosoftExt) { 5892 // Do not warn for class scope explicit specialization during 5893 // instantiation, warning was already emitted during pattern 5894 // semantic analysis. 5895 if (!S.ActiveTemplateInstantiations.size()) 5896 S.Diag(Loc, diag::ext_function_specialization_in_class) 5897 << Specialized; 5898 } else { 5899 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5900 << Specialized; 5901 return true; 5902 } 5903 } 5904 5905 if (S.CurContext->isRecord() && 5906 !S.CurContext->Equals(Specialized->getDeclContext())) { 5907 // Make sure that we're specializing in the right record context. 5908 // Otherwise, things can go horribly wrong. 5909 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5910 << Specialized; 5911 return true; 5912 } 5913 5914 // C++ [temp.class.spec]p6: 5915 // A class template partial specialization may be declared or redeclared 5916 // in any namespace scope in which its definition may be defined (14.5.1 5917 // and 14.5.2). 5918 DeclContext *SpecializedContext 5919 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5920 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5921 5922 // Make sure that this redeclaration (or definition) occurs in an enclosing 5923 // namespace. 5924 // Note that HandleDeclarator() performs this check for explicit 5925 // specializations of function templates, static data members, and member 5926 // functions, so we skip the check here for those kinds of entities. 5927 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5928 // Should we refactor that check, so that it occurs later? 5929 if (!DC->Encloses(SpecializedContext) && 5930 !(isa<FunctionTemplateDecl>(Specialized) || 5931 isa<FunctionDecl>(Specialized) || 5932 isa<VarTemplateDecl>(Specialized) || 5933 isa<VarDecl>(Specialized))) { 5934 if (isa<TranslationUnitDecl>(SpecializedContext)) 5935 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5936 << EntityKind << Specialized; 5937 else if (isa<NamespaceDecl>(SpecializedContext)) { 5938 int Diag = diag::err_template_spec_redecl_out_of_scope; 5939 if (S.getLangOpts().MicrosoftExt) 5940 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 5941 S.Diag(Loc, Diag) << EntityKind << Specialized 5942 << cast<NamedDecl>(SpecializedContext); 5943 } else 5944 llvm_unreachable("unexpected namespace context for specialization"); 5945 5946 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5947 } else if ((!PrevDecl || 5948 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5949 getTemplateSpecializationKind(PrevDecl) == 5950 TSK_ImplicitInstantiation)) { 5951 // C++ [temp.exp.spec]p2: 5952 // An explicit specialization shall be declared in the namespace of which 5953 // the template is a member, or, for member templates, in the namespace 5954 // of which the enclosing class or enclosing class template is a member. 5955 // An explicit specialization of a member function, member class or 5956 // static data member of a class template shall be declared in the 5957 // namespace of which the class template is a member. 5958 // 5959 // C++11 [temp.expl.spec]p2: 5960 // An explicit specialization shall be declared in a namespace enclosing 5961 // the specialized template. 5962 // C++11 [temp.explicit]p3: 5963 // An explicit instantiation shall appear in an enclosing namespace of its 5964 // template. 5965 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5966 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5967 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5968 assert(!IsCPlusPlus11Extension && 5969 "DC encloses TU but isn't in enclosing namespace set"); 5970 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5971 << EntityKind << Specialized; 5972 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5973 int Diag; 5974 if (!IsCPlusPlus11Extension) 5975 Diag = diag::err_template_spec_decl_out_of_scope; 5976 else if (!S.getLangOpts().CPlusPlus11) 5977 Diag = diag::ext_template_spec_decl_out_of_scope; 5978 else 5979 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5980 S.Diag(Loc, Diag) 5981 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5982 } 5983 5984 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5985 } 5986 } 5987 5988 return false; 5989 } 5990 5991 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) { 5992 if (!E->isInstantiationDependent()) 5993 return SourceLocation(); 5994 DependencyChecker Checker(Depth); 5995 Checker.TraverseStmt(E); 5996 if (Checker.Match && Checker.MatchLoc.isInvalid()) 5997 return E->getSourceRange(); 5998 return Checker.MatchLoc; 5999 } 6000 6001 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 6002 if (!TL.getType()->isDependentType()) 6003 return SourceLocation(); 6004 DependencyChecker Checker(Depth); 6005 Checker.TraverseTypeLoc(TL); 6006 if (Checker.Match && Checker.MatchLoc.isInvalid()) 6007 return TL.getSourceRange(); 6008 return Checker.MatchLoc; 6009 } 6010 6011 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs 6012 /// that checks non-type template partial specialization arguments. 6013 static bool CheckNonTypeTemplatePartialSpecializationArgs( 6014 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 6015 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 6016 for (unsigned I = 0; I != NumArgs; ++I) { 6017 if (Args[I].getKind() == TemplateArgument::Pack) { 6018 if (CheckNonTypeTemplatePartialSpecializationArgs( 6019 S, TemplateNameLoc, Param, Args[I].pack_begin(), 6020 Args[I].pack_size(), IsDefaultArgument)) 6021 return true; 6022 6023 continue; 6024 } 6025 6026 if (Args[I].getKind() != TemplateArgument::Expression) 6027 continue; 6028 6029 Expr *ArgExpr = Args[I].getAsExpr(); 6030 6031 // We can have a pack expansion of any of the bullets below. 6032 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 6033 ArgExpr = Expansion->getPattern(); 6034 6035 // Strip off any implicit casts we added as part of type checking. 6036 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 6037 ArgExpr = ICE->getSubExpr(); 6038 6039 // C++ [temp.class.spec]p8: 6040 // A non-type argument is non-specialized if it is the name of a 6041 // non-type parameter. All other non-type arguments are 6042 // specialized. 6043 // 6044 // Below, we check the two conditions that only apply to 6045 // specialized non-type arguments, so skip any non-specialized 6046 // arguments. 6047 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 6048 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 6049 continue; 6050 6051 // C++ [temp.class.spec]p9: 6052 // Within the argument list of a class template partial 6053 // specialization, the following restrictions apply: 6054 // -- A partially specialized non-type argument expression 6055 // shall not involve a template parameter of the partial 6056 // specialization except when the argument expression is a 6057 // simple identifier. 6058 SourceRange ParamUseRange = 6059 findTemplateParameter(Param->getDepth(), ArgExpr); 6060 if (ParamUseRange.isValid()) { 6061 if (IsDefaultArgument) { 6062 S.Diag(TemplateNameLoc, 6063 diag::err_dependent_non_type_arg_in_partial_spec); 6064 S.Diag(ParamUseRange.getBegin(), 6065 diag::note_dependent_non_type_default_arg_in_partial_spec) 6066 << ParamUseRange; 6067 } else { 6068 S.Diag(ParamUseRange.getBegin(), 6069 diag::err_dependent_non_type_arg_in_partial_spec) 6070 << ParamUseRange; 6071 } 6072 return true; 6073 } 6074 6075 // -- The type of a template parameter corresponding to a 6076 // specialized non-type argument shall not be dependent on a 6077 // parameter of the specialization. 6078 // 6079 // FIXME: We need to delay this check until instantiation in some cases: 6080 // 6081 // template<template<typename> class X> struct A { 6082 // template<typename T, X<T> N> struct B; 6083 // template<typename T> struct B<T, 0>; 6084 // }; 6085 // template<typename> using X = int; 6086 // A<X>::B<int, 0> b; 6087 ParamUseRange = findTemplateParameter( 6088 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 6089 if (ParamUseRange.isValid()) { 6090 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(), 6091 diag::err_dependent_typed_non_type_arg_in_partial_spec) 6092 << Param->getType() << ParamUseRange; 6093 S.Diag(Param->getLocation(), diag::note_template_param_here) 6094 << (IsDefaultArgument ? ParamUseRange : SourceRange()); 6095 return true; 6096 } 6097 } 6098 6099 return false; 6100 } 6101 6102 /// \brief Check the non-type template arguments of a class template 6103 /// partial specialization according to C++ [temp.class.spec]p9. 6104 /// 6105 /// \param TemplateNameLoc the location of the template name. 6106 /// \param TemplateParams the template parameters of the primary class 6107 /// template. 6108 /// \param NumExplicit the number of explicitly-specified template arguments. 6109 /// \param TemplateArgs the template arguments of the class template 6110 /// partial specialization. 6111 /// 6112 /// \returns \c true if there was an error, \c false otherwise. 6113 static bool CheckTemplatePartialSpecializationArgs( 6114 Sema &S, SourceLocation TemplateNameLoc, 6115 TemplateParameterList *TemplateParams, unsigned NumExplicit, 6116 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 6117 const TemplateArgument *ArgList = TemplateArgs.data(); 6118 6119 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 6120 NonTypeTemplateParmDecl *Param 6121 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 6122 if (!Param) 6123 continue; 6124 6125 if (CheckNonTypeTemplatePartialSpecializationArgs( 6126 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit)) 6127 return true; 6128 } 6129 6130 return false; 6131 } 6132 6133 DeclResult 6134 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 6135 TagUseKind TUK, 6136 SourceLocation KWLoc, 6137 SourceLocation ModulePrivateLoc, 6138 TemplateIdAnnotation &TemplateId, 6139 AttributeList *Attr, 6140 MultiTemplateParamsArg 6141 TemplateParameterLists, 6142 SkipBodyInfo *SkipBody) { 6143 assert(TUK != TUK_Reference && "References are not specializations"); 6144 6145 CXXScopeSpec &SS = TemplateId.SS; 6146 6147 // NOTE: KWLoc is the location of the tag keyword. This will instead 6148 // store the location of the outermost template keyword in the declaration. 6149 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 6150 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 6151 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 6152 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 6153 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 6154 6155 // Find the class template we're specializing 6156 TemplateName Name = TemplateId.Template.get(); 6157 ClassTemplateDecl *ClassTemplate 6158 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6159 6160 if (!ClassTemplate) { 6161 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 6162 << (Name.getAsTemplateDecl() && 6163 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 6164 return true; 6165 } 6166 6167 bool isExplicitSpecialization = false; 6168 bool isPartialSpecialization = false; 6169 6170 // Check the validity of the template headers that introduce this 6171 // template. 6172 // FIXME: We probably shouldn't complain about these headers for 6173 // friend declarations. 6174 bool Invalid = false; 6175 TemplateParameterList *TemplateParams = 6176 MatchTemplateParametersToScopeSpecifier( 6177 KWLoc, TemplateNameLoc, SS, &TemplateId, 6178 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization, 6179 Invalid); 6180 if (Invalid) 6181 return true; 6182 6183 if (TemplateParams && TemplateParams->size() > 0) { 6184 isPartialSpecialization = true; 6185 6186 if (TUK == TUK_Friend) { 6187 Diag(KWLoc, diag::err_partial_specialization_friend) 6188 << SourceRange(LAngleLoc, RAngleLoc); 6189 return true; 6190 } 6191 6192 // C++ [temp.class.spec]p10: 6193 // The template parameter list of a specialization shall not 6194 // contain default template argument values. 6195 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 6196 Decl *Param = TemplateParams->getParam(I); 6197 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 6198 if (TTP->hasDefaultArgument()) { 6199 Diag(TTP->getDefaultArgumentLoc(), 6200 diag::err_default_arg_in_partial_spec); 6201 TTP->removeDefaultArgument(); 6202 } 6203 } else if (NonTypeTemplateParmDecl *NTTP 6204 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 6205 if (Expr *DefArg = NTTP->getDefaultArgument()) { 6206 Diag(NTTP->getDefaultArgumentLoc(), 6207 diag::err_default_arg_in_partial_spec) 6208 << DefArg->getSourceRange(); 6209 NTTP->removeDefaultArgument(); 6210 } 6211 } else { 6212 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 6213 if (TTP->hasDefaultArgument()) { 6214 Diag(TTP->getDefaultArgument().getLocation(), 6215 diag::err_default_arg_in_partial_spec) 6216 << TTP->getDefaultArgument().getSourceRange(); 6217 TTP->removeDefaultArgument(); 6218 } 6219 } 6220 } 6221 } else if (TemplateParams) { 6222 if (TUK == TUK_Friend) 6223 Diag(KWLoc, diag::err_template_spec_friend) 6224 << FixItHint::CreateRemoval( 6225 SourceRange(TemplateParams->getTemplateLoc(), 6226 TemplateParams->getRAngleLoc())) 6227 << SourceRange(LAngleLoc, RAngleLoc); 6228 else 6229 isExplicitSpecialization = true; 6230 } else { 6231 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 6232 } 6233 6234 // Check that the specialization uses the same tag kind as the 6235 // original template. 6236 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6237 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 6238 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6239 Kind, TUK == TUK_Definition, KWLoc, 6240 ClassTemplate->getIdentifier())) { 6241 Diag(KWLoc, diag::err_use_with_wrong_tag) 6242 << ClassTemplate 6243 << FixItHint::CreateReplacement(KWLoc, 6244 ClassTemplate->getTemplatedDecl()->getKindName()); 6245 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6246 diag::note_previous_use); 6247 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6248 } 6249 6250 // Translate the parser's template argument list in our AST format. 6251 TemplateArgumentListInfo TemplateArgs = 6252 makeTemplateArgumentListInfo(*this, TemplateId); 6253 6254 // Check for unexpanded parameter packs in any of the template arguments. 6255 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6256 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 6257 UPPC_PartialSpecialization)) 6258 return true; 6259 6260 // Check that the template argument list is well-formed for this 6261 // template. 6262 SmallVector<TemplateArgument, 4> Converted; 6263 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6264 TemplateArgs, false, Converted)) 6265 return true; 6266 6267 // Find the class template (partial) specialization declaration that 6268 // corresponds to these arguments. 6269 if (isPartialSpecialization) { 6270 if (CheckTemplatePartialSpecializationArgs( 6271 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(), 6272 TemplateArgs.size(), Converted)) 6273 return true; 6274 6275 bool InstantiationDependent; 6276 if (!Name.isDependent() && 6277 !TemplateSpecializationType::anyDependentTemplateArguments( 6278 TemplateArgs.getArgumentArray(), 6279 TemplateArgs.size(), 6280 InstantiationDependent)) { 6281 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 6282 << ClassTemplate->getDeclName(); 6283 isPartialSpecialization = false; 6284 } 6285 } 6286 6287 void *InsertPos = nullptr; 6288 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 6289 6290 if (isPartialSpecialization) 6291 // FIXME: Template parameter list matters, too 6292 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); 6293 else 6294 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 6295 6296 ClassTemplateSpecializationDecl *Specialization = nullptr; 6297 6298 // Check whether we can declare a class template specialization in 6299 // the current scope. 6300 if (TUK != TUK_Friend && 6301 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 6302 TemplateNameLoc, 6303 isPartialSpecialization)) 6304 return true; 6305 6306 // The canonical type 6307 QualType CanonType; 6308 if (isPartialSpecialization) { 6309 // Build the canonical type that describes the converted template 6310 // arguments of the class template partial specialization. 6311 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 6312 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 6313 Converted.data(), 6314 Converted.size()); 6315 6316 if (Context.hasSameType(CanonType, 6317 ClassTemplate->getInjectedClassNameSpecialization())) { 6318 // C++ [temp.class.spec]p9b3: 6319 // 6320 // -- The argument list of the specialization shall not be identical 6321 // to the implicit argument list of the primary template. 6322 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 6323 << /*class template*/0 << (TUK == TUK_Definition) 6324 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 6325 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 6326 ClassTemplate->getIdentifier(), 6327 TemplateNameLoc, 6328 Attr, 6329 TemplateParams, 6330 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 6331 /*FriendLoc*/SourceLocation(), 6332 TemplateParameterLists.size() - 1, 6333 TemplateParameterLists.data()); 6334 } 6335 6336 // Create a new class template partial specialization declaration node. 6337 ClassTemplatePartialSpecializationDecl *PrevPartial 6338 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 6339 ClassTemplatePartialSpecializationDecl *Partial 6340 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 6341 ClassTemplate->getDeclContext(), 6342 KWLoc, TemplateNameLoc, 6343 TemplateParams, 6344 ClassTemplate, 6345 Converted.data(), 6346 Converted.size(), 6347 TemplateArgs, 6348 CanonType, 6349 PrevPartial); 6350 SetNestedNameSpecifier(Partial, SS); 6351 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 6352 Partial->setTemplateParameterListsInfo( 6353 Context, TemplateParameterLists.drop_back(1)); 6354 } 6355 6356 if (!PrevPartial) 6357 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 6358 Specialization = Partial; 6359 6360 // If we are providing an explicit specialization of a member class 6361 // template specialization, make a note of that. 6362 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 6363 PrevPartial->setMemberSpecialization(); 6364 6365 // Check that all of the template parameters of the class template 6366 // partial specialization are deducible from the template 6367 // arguments. If not, this class template partial specialization 6368 // will never be used. 6369 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 6370 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 6371 TemplateParams->getDepth(), 6372 DeducibleParams); 6373 6374 if (!DeducibleParams.all()) { 6375 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 6376 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 6377 << /*class template*/0 << (NumNonDeducible > 1) 6378 << SourceRange(TemplateNameLoc, RAngleLoc); 6379 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 6380 if (!DeducibleParams[I]) { 6381 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 6382 if (Param->getDeclName()) 6383 Diag(Param->getLocation(), 6384 diag::note_partial_spec_unused_parameter) 6385 << Param->getDeclName(); 6386 else 6387 Diag(Param->getLocation(), 6388 diag::note_partial_spec_unused_parameter) 6389 << "(anonymous)"; 6390 } 6391 } 6392 } 6393 } else { 6394 // Create a new class template specialization declaration node for 6395 // this explicit specialization or friend declaration. 6396 Specialization 6397 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6398 ClassTemplate->getDeclContext(), 6399 KWLoc, TemplateNameLoc, 6400 ClassTemplate, 6401 Converted.data(), 6402 Converted.size(), 6403 PrevDecl); 6404 SetNestedNameSpecifier(Specialization, SS); 6405 if (TemplateParameterLists.size() > 0) { 6406 Specialization->setTemplateParameterListsInfo(Context, 6407 TemplateParameterLists); 6408 } 6409 6410 if (!PrevDecl) 6411 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6412 6413 if (CurContext->isDependentContext()) { 6414 // -fms-extensions permits specialization of nested classes without 6415 // fully specializing the outer class(es). 6416 assert(getLangOpts().MicrosoftExt && 6417 "Only possible with -fms-extensions!"); 6418 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 6419 CanonType = Context.getTemplateSpecializationType( 6420 CanonTemplate, Converted.data(), Converted.size()); 6421 } else { 6422 CanonType = Context.getTypeDeclType(Specialization); 6423 } 6424 } 6425 6426 // C++ [temp.expl.spec]p6: 6427 // If a template, a member template or the member of a class template is 6428 // explicitly specialized then that specialization shall be declared 6429 // before the first use of that specialization that would cause an implicit 6430 // instantiation to take place, in every translation unit in which such a 6431 // use occurs; no diagnostic is required. 6432 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 6433 bool Okay = false; 6434 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6435 // Is there any previous explicit specialization declaration? 6436 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 6437 Okay = true; 6438 break; 6439 } 6440 } 6441 6442 if (!Okay) { 6443 SourceRange Range(TemplateNameLoc, RAngleLoc); 6444 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 6445 << Context.getTypeDeclType(Specialization) << Range; 6446 6447 Diag(PrevDecl->getPointOfInstantiation(), 6448 diag::note_instantiation_required_here) 6449 << (PrevDecl->getTemplateSpecializationKind() 6450 != TSK_ImplicitInstantiation); 6451 return true; 6452 } 6453 } 6454 6455 // If this is not a friend, note that this is an explicit specialization. 6456 if (TUK != TUK_Friend) 6457 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 6458 6459 // Check that this isn't a redefinition of this specialization. 6460 if (TUK == TUK_Definition) { 6461 RecordDecl *Def = Specialization->getDefinition(); 6462 NamedDecl *Hidden = nullptr; 6463 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 6464 SkipBody->ShouldSkip = true; 6465 makeMergedDefinitionVisible(Hidden, KWLoc); 6466 // From here on out, treat this as just a redeclaration. 6467 TUK = TUK_Declaration; 6468 } else if (Def) { 6469 SourceRange Range(TemplateNameLoc, RAngleLoc); 6470 Diag(TemplateNameLoc, diag::err_redefinition) 6471 << Context.getTypeDeclType(Specialization) << Range; 6472 Diag(Def->getLocation(), diag::note_previous_definition); 6473 Specialization->setInvalidDecl(); 6474 return true; 6475 } 6476 } 6477 6478 if (Attr) 6479 ProcessDeclAttributeList(S, Specialization, Attr); 6480 6481 // Add alignment attributes if necessary; these attributes are checked when 6482 // the ASTContext lays out the structure. 6483 if (TUK == TUK_Definition) { 6484 AddAlignmentAttributesForRecord(Specialization); 6485 AddMsStructLayoutForRecord(Specialization); 6486 } 6487 6488 if (ModulePrivateLoc.isValid()) 6489 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 6490 << (isPartialSpecialization? 1 : 0) 6491 << FixItHint::CreateRemoval(ModulePrivateLoc); 6492 6493 // Build the fully-sugared type for this class template 6494 // specialization as the user wrote in the specialization 6495 // itself. This means that we'll pretty-print the type retrieved 6496 // from the specialization's declaration the way that the user 6497 // actually wrote the specialization, rather than formatting the 6498 // name based on the "canonical" representation used to store the 6499 // template arguments in the specialization. 6500 TypeSourceInfo *WrittenTy 6501 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6502 TemplateArgs, CanonType); 6503 if (TUK != TUK_Friend) { 6504 Specialization->setTypeAsWritten(WrittenTy); 6505 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 6506 } 6507 6508 // C++ [temp.expl.spec]p9: 6509 // A template explicit specialization is in the scope of the 6510 // namespace in which the template was defined. 6511 // 6512 // We actually implement this paragraph where we set the semantic 6513 // context (in the creation of the ClassTemplateSpecializationDecl), 6514 // but we also maintain the lexical context where the actual 6515 // definition occurs. 6516 Specialization->setLexicalDeclContext(CurContext); 6517 6518 // We may be starting the definition of this specialization. 6519 if (TUK == TUK_Definition) 6520 Specialization->startDefinition(); 6521 6522 if (TUK == TUK_Friend) { 6523 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 6524 TemplateNameLoc, 6525 WrittenTy, 6526 /*FIXME:*/KWLoc); 6527 Friend->setAccess(AS_public); 6528 CurContext->addDecl(Friend); 6529 } else { 6530 // Add the specialization into its lexical context, so that it can 6531 // be seen when iterating through the list of declarations in that 6532 // context. However, specializations are not found by name lookup. 6533 CurContext->addDecl(Specialization); 6534 } 6535 return Specialization; 6536 } 6537 6538 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 6539 MultiTemplateParamsArg TemplateParameterLists, 6540 Declarator &D) { 6541 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 6542 ActOnDocumentableDecl(NewDecl); 6543 return NewDecl; 6544 } 6545 6546 /// \brief Strips various properties off an implicit instantiation 6547 /// that has just been explicitly specialized. 6548 static void StripImplicitInstantiation(NamedDecl *D) { 6549 D->dropAttr<DLLImportAttr>(); 6550 D->dropAttr<DLLExportAttr>(); 6551 6552 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 6553 FD->setInlineSpecified(false); 6554 } 6555 6556 /// \brief Compute the diagnostic location for an explicit instantiation 6557 // declaration or definition. 6558 static SourceLocation DiagLocForExplicitInstantiation( 6559 NamedDecl* D, SourceLocation PointOfInstantiation) { 6560 // Explicit instantiations following a specialization have no effect and 6561 // hence no PointOfInstantiation. In that case, walk decl backwards 6562 // until a valid name loc is found. 6563 SourceLocation PrevDiagLoc = PointOfInstantiation; 6564 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 6565 Prev = Prev->getPreviousDecl()) { 6566 PrevDiagLoc = Prev->getLocation(); 6567 } 6568 assert(PrevDiagLoc.isValid() && 6569 "Explicit instantiation without point of instantiation?"); 6570 return PrevDiagLoc; 6571 } 6572 6573 /// \brief Diagnose cases where we have an explicit template specialization 6574 /// before/after an explicit template instantiation, producing diagnostics 6575 /// for those cases where they are required and determining whether the 6576 /// new specialization/instantiation will have any effect. 6577 /// 6578 /// \param NewLoc the location of the new explicit specialization or 6579 /// instantiation. 6580 /// 6581 /// \param NewTSK the kind of the new explicit specialization or instantiation. 6582 /// 6583 /// \param PrevDecl the previous declaration of the entity. 6584 /// 6585 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 6586 /// 6587 /// \param PrevPointOfInstantiation if valid, indicates where the previus 6588 /// declaration was instantiated (either implicitly or explicitly). 6589 /// 6590 /// \param HasNoEffect will be set to true to indicate that the new 6591 /// specialization or instantiation has no effect and should be ignored. 6592 /// 6593 /// \returns true if there was an error that should prevent the introduction of 6594 /// the new declaration into the AST, false otherwise. 6595 bool 6596 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 6597 TemplateSpecializationKind NewTSK, 6598 NamedDecl *PrevDecl, 6599 TemplateSpecializationKind PrevTSK, 6600 SourceLocation PrevPointOfInstantiation, 6601 bool &HasNoEffect) { 6602 HasNoEffect = false; 6603 6604 switch (NewTSK) { 6605 case TSK_Undeclared: 6606 case TSK_ImplicitInstantiation: 6607 assert( 6608 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 6609 "previous declaration must be implicit!"); 6610 return false; 6611 6612 case TSK_ExplicitSpecialization: 6613 switch (PrevTSK) { 6614 case TSK_Undeclared: 6615 case TSK_ExplicitSpecialization: 6616 // Okay, we're just specializing something that is either already 6617 // explicitly specialized or has merely been mentioned without any 6618 // instantiation. 6619 return false; 6620 6621 case TSK_ImplicitInstantiation: 6622 if (PrevPointOfInstantiation.isInvalid()) { 6623 // The declaration itself has not actually been instantiated, so it is 6624 // still okay to specialize it. 6625 StripImplicitInstantiation(PrevDecl); 6626 return false; 6627 } 6628 // Fall through 6629 6630 case TSK_ExplicitInstantiationDeclaration: 6631 case TSK_ExplicitInstantiationDefinition: 6632 assert((PrevTSK == TSK_ImplicitInstantiation || 6633 PrevPointOfInstantiation.isValid()) && 6634 "Explicit instantiation without point of instantiation?"); 6635 6636 // C++ [temp.expl.spec]p6: 6637 // If a template, a member template or the member of a class template 6638 // is explicitly specialized then that specialization shall be declared 6639 // before the first use of that specialization that would cause an 6640 // implicit instantiation to take place, in every translation unit in 6641 // which such a use occurs; no diagnostic is required. 6642 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6643 // Is there any previous explicit specialization declaration? 6644 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 6645 return false; 6646 } 6647 6648 Diag(NewLoc, diag::err_specialization_after_instantiation) 6649 << PrevDecl; 6650 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 6651 << (PrevTSK != TSK_ImplicitInstantiation); 6652 6653 return true; 6654 } 6655 6656 case TSK_ExplicitInstantiationDeclaration: 6657 switch (PrevTSK) { 6658 case TSK_ExplicitInstantiationDeclaration: 6659 // This explicit instantiation declaration is redundant (that's okay). 6660 HasNoEffect = true; 6661 return false; 6662 6663 case TSK_Undeclared: 6664 case TSK_ImplicitInstantiation: 6665 // We're explicitly instantiating something that may have already been 6666 // implicitly instantiated; that's fine. 6667 return false; 6668 6669 case TSK_ExplicitSpecialization: 6670 // C++0x [temp.explicit]p4: 6671 // For a given set of template parameters, if an explicit instantiation 6672 // of a template appears after a declaration of an explicit 6673 // specialization for that template, the explicit instantiation has no 6674 // effect. 6675 HasNoEffect = true; 6676 return false; 6677 6678 case TSK_ExplicitInstantiationDefinition: 6679 // C++0x [temp.explicit]p10: 6680 // If an entity is the subject of both an explicit instantiation 6681 // declaration and an explicit instantiation definition in the same 6682 // translation unit, the definition shall follow the declaration. 6683 Diag(NewLoc, 6684 diag::err_explicit_instantiation_declaration_after_definition); 6685 6686 // Explicit instantiations following a specialization have no effect and 6687 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 6688 // until a valid name loc is found. 6689 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6690 diag::note_explicit_instantiation_definition_here); 6691 HasNoEffect = true; 6692 return false; 6693 } 6694 6695 case TSK_ExplicitInstantiationDefinition: 6696 switch (PrevTSK) { 6697 case TSK_Undeclared: 6698 case TSK_ImplicitInstantiation: 6699 // We're explicitly instantiating something that may have already been 6700 // implicitly instantiated; that's fine. 6701 return false; 6702 6703 case TSK_ExplicitSpecialization: 6704 // C++ DR 259, C++0x [temp.explicit]p4: 6705 // For a given set of template parameters, if an explicit 6706 // instantiation of a template appears after a declaration of 6707 // an explicit specialization for that template, the explicit 6708 // instantiation has no effect. 6709 // 6710 // In C++98/03 mode, we only give an extension warning here, because it 6711 // is not harmful to try to explicitly instantiate something that 6712 // has been explicitly specialized. 6713 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 6714 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 6715 diag::ext_explicit_instantiation_after_specialization) 6716 << PrevDecl; 6717 Diag(PrevDecl->getLocation(), 6718 diag::note_previous_template_specialization); 6719 HasNoEffect = true; 6720 return false; 6721 6722 case TSK_ExplicitInstantiationDeclaration: 6723 // We're explicity instantiating a definition for something for which we 6724 // were previously asked to suppress instantiations. That's fine. 6725 6726 // C++0x [temp.explicit]p4: 6727 // For a given set of template parameters, if an explicit instantiation 6728 // of a template appears after a declaration of an explicit 6729 // specialization for that template, the explicit instantiation has no 6730 // effect. 6731 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6732 // Is there any previous explicit specialization declaration? 6733 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 6734 HasNoEffect = true; 6735 break; 6736 } 6737 } 6738 6739 return false; 6740 6741 case TSK_ExplicitInstantiationDefinition: 6742 // C++0x [temp.spec]p5: 6743 // For a given template and a given set of template-arguments, 6744 // - an explicit instantiation definition shall appear at most once 6745 // in a program, 6746 6747 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 6748 Diag(NewLoc, (getLangOpts().MSVCCompat) 6749 ? diag::ext_explicit_instantiation_duplicate 6750 : diag::err_explicit_instantiation_duplicate) 6751 << PrevDecl; 6752 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6753 diag::note_previous_explicit_instantiation); 6754 HasNoEffect = true; 6755 return false; 6756 } 6757 } 6758 6759 llvm_unreachable("Missing specialization/instantiation case?"); 6760 } 6761 6762 /// \brief Perform semantic analysis for the given dependent function 6763 /// template specialization. 6764 /// 6765 /// The only possible way to get a dependent function template specialization 6766 /// is with a friend declaration, like so: 6767 /// 6768 /// \code 6769 /// template \<class T> void foo(T); 6770 /// template \<class T> class A { 6771 /// friend void foo<>(T); 6772 /// }; 6773 /// \endcode 6774 /// 6775 /// There really isn't any useful analysis we can do here, so we 6776 /// just store the information. 6777 bool 6778 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 6779 const TemplateArgumentListInfo &ExplicitTemplateArgs, 6780 LookupResult &Previous) { 6781 // Remove anything from Previous that isn't a function template in 6782 // the correct context. 6783 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6784 LookupResult::Filter F = Previous.makeFilter(); 6785 while (F.hasNext()) { 6786 NamedDecl *D = F.next()->getUnderlyingDecl(); 6787 if (!isa<FunctionTemplateDecl>(D) || 6788 !FDLookupContext->InEnclosingNamespaceSetOf( 6789 D->getDeclContext()->getRedeclContext())) 6790 F.erase(); 6791 } 6792 F.done(); 6793 6794 // Should this be diagnosed here? 6795 if (Previous.empty()) return true; 6796 6797 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 6798 ExplicitTemplateArgs); 6799 return false; 6800 } 6801 6802 /// \brief Perform semantic analysis for the given function template 6803 /// specialization. 6804 /// 6805 /// This routine performs all of the semantic analysis required for an 6806 /// explicit function template specialization. On successful completion, 6807 /// the function declaration \p FD will become a function template 6808 /// specialization. 6809 /// 6810 /// \param FD the function declaration, which will be updated to become a 6811 /// function template specialization. 6812 /// 6813 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 6814 /// if any. Note that this may be valid info even when 0 arguments are 6815 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 6816 /// as it anyway contains info on the angle brackets locations. 6817 /// 6818 /// \param Previous the set of declarations that may be specialized by 6819 /// this function specialization. 6820 bool Sema::CheckFunctionTemplateSpecialization( 6821 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 6822 LookupResult &Previous) { 6823 // The set of function template specializations that could match this 6824 // explicit function template specialization. 6825 UnresolvedSet<8> Candidates; 6826 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 6827 /*ForTakingAddress=*/false); 6828 6829 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 6830 ConvertedTemplateArgs; 6831 6832 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6833 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6834 I != E; ++I) { 6835 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 6836 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 6837 // Only consider templates found within the same semantic lookup scope as 6838 // FD. 6839 if (!FDLookupContext->InEnclosingNamespaceSetOf( 6840 Ovl->getDeclContext()->getRedeclContext())) 6841 continue; 6842 6843 // When matching a constexpr member function template specialization 6844 // against the primary template, we don't yet know whether the 6845 // specialization has an implicit 'const' (because we don't know whether 6846 // it will be a static member function until we know which template it 6847 // specializes), so adjust it now assuming it specializes this template. 6848 QualType FT = FD->getType(); 6849 if (FD->isConstexpr()) { 6850 CXXMethodDecl *OldMD = 6851 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 6852 if (OldMD && OldMD->isConst()) { 6853 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 6854 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 6855 EPI.TypeQuals |= Qualifiers::Const; 6856 FT = Context.getFunctionType(FPT->getReturnType(), 6857 FPT->getParamTypes(), EPI); 6858 } 6859 } 6860 6861 TemplateArgumentListInfo Args; 6862 if (ExplicitTemplateArgs) 6863 Args = *ExplicitTemplateArgs; 6864 6865 // C++ [temp.expl.spec]p11: 6866 // A trailing template-argument can be left unspecified in the 6867 // template-id naming an explicit function template specialization 6868 // provided it can be deduced from the function argument type. 6869 // Perform template argument deduction to determine whether we may be 6870 // specializing this template. 6871 // FIXME: It is somewhat wasteful to build 6872 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 6873 FunctionDecl *Specialization = nullptr; 6874 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 6875 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 6876 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info)) { 6877 // Template argument deduction failed; record why it failed, so 6878 // that we can provide nifty diagnostics. 6879 FailedCandidates.addCandidate() 6880 .set(FunTmpl->getTemplatedDecl(), 6881 MakeDeductionFailureInfo(Context, TDK, Info)); 6882 (void)TDK; 6883 continue; 6884 } 6885 6886 // Record this candidate. 6887 if (ExplicitTemplateArgs) 6888 ConvertedTemplateArgs[Specialization] = std::move(Args); 6889 Candidates.addDecl(Specialization, I.getAccess()); 6890 } 6891 } 6892 6893 // Find the most specialized function template. 6894 UnresolvedSetIterator Result = getMostSpecialized( 6895 Candidates.begin(), Candidates.end(), FailedCandidates, 6896 FD->getLocation(), 6897 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 6898 PDiag(diag::err_function_template_spec_ambiguous) 6899 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 6900 PDiag(diag::note_function_template_spec_matched)); 6901 6902 if (Result == Candidates.end()) 6903 return true; 6904 6905 // Ignore access information; it doesn't figure into redeclaration checking. 6906 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6907 6908 FunctionTemplateSpecializationInfo *SpecInfo 6909 = Specialization->getTemplateSpecializationInfo(); 6910 assert(SpecInfo && "Function template specialization info missing?"); 6911 6912 // Note: do not overwrite location info if previous template 6913 // specialization kind was explicit. 6914 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 6915 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 6916 Specialization->setLocation(FD->getLocation()); 6917 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6918 // function can differ from the template declaration with respect to 6919 // the constexpr specifier. 6920 Specialization->setConstexpr(FD->isConstexpr()); 6921 } 6922 6923 // FIXME: Check if the prior specialization has a point of instantiation. 6924 // If so, we have run afoul of . 6925 6926 // If this is a friend declaration, then we're not really declaring 6927 // an explicit specialization. 6928 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6929 6930 // Check the scope of this explicit specialization. 6931 if (!isFriend && 6932 CheckTemplateSpecializationScope(*this, 6933 Specialization->getPrimaryTemplate(), 6934 Specialization, FD->getLocation(), 6935 false)) 6936 return true; 6937 6938 // C++ [temp.expl.spec]p6: 6939 // If a template, a member template or the member of a class template is 6940 // explicitly specialized then that specialization shall be declared 6941 // before the first use of that specialization that would cause an implicit 6942 // instantiation to take place, in every translation unit in which such a 6943 // use occurs; no diagnostic is required. 6944 bool HasNoEffect = false; 6945 if (!isFriend && 6946 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6947 TSK_ExplicitSpecialization, 6948 Specialization, 6949 SpecInfo->getTemplateSpecializationKind(), 6950 SpecInfo->getPointOfInstantiation(), 6951 HasNoEffect)) 6952 return true; 6953 6954 // Mark the prior declaration as an explicit specialization, so that later 6955 // clients know that this is an explicit specialization. 6956 if (!isFriend) { 6957 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6958 MarkUnusedFileScopedDecl(Specialization); 6959 } 6960 6961 // Turn the given function declaration into a function template 6962 // specialization, with the template arguments from the previous 6963 // specialization. 6964 // Take copies of (semantic and syntactic) template argument lists. 6965 const TemplateArgumentList* TemplArgs = new (Context) 6966 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6967 FD->setFunctionTemplateSpecialization( 6968 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 6969 SpecInfo->getTemplateSpecializationKind(), 6970 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 6971 6972 // The "previous declaration" for this function template specialization is 6973 // the prior function template specialization. 6974 Previous.clear(); 6975 Previous.addDecl(Specialization); 6976 return false; 6977 } 6978 6979 /// \brief Perform semantic analysis for the given non-template member 6980 /// specialization. 6981 /// 6982 /// This routine performs all of the semantic analysis required for an 6983 /// explicit member function specialization. On successful completion, 6984 /// the function declaration \p FD will become a member function 6985 /// specialization. 6986 /// 6987 /// \param Member the member declaration, which will be updated to become a 6988 /// specialization. 6989 /// 6990 /// \param Previous the set of declarations, one of which may be specialized 6991 /// by this function specialization; the set will be modified to contain the 6992 /// redeclared member. 6993 bool 6994 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6995 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6996 6997 // Try to find the member we are instantiating. 6998 NamedDecl *Instantiation = nullptr; 6999 NamedDecl *InstantiatedFrom = nullptr; 7000 MemberSpecializationInfo *MSInfo = nullptr; 7001 7002 if (Previous.empty()) { 7003 // Nowhere to look anyway. 7004 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 7005 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7006 I != E; ++I) { 7007 NamedDecl *D = (*I)->getUnderlyingDecl(); 7008 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 7009 QualType Adjusted = Function->getType(); 7010 if (!hasExplicitCallingConv(Adjusted)) 7011 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 7012 if (Context.hasSameType(Adjusted, Method->getType())) { 7013 Instantiation = Method; 7014 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 7015 MSInfo = Method->getMemberSpecializationInfo(); 7016 break; 7017 } 7018 } 7019 } 7020 } else if (isa<VarDecl>(Member)) { 7021 VarDecl *PrevVar; 7022 if (Previous.isSingleResult() && 7023 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 7024 if (PrevVar->isStaticDataMember()) { 7025 Instantiation = PrevVar; 7026 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 7027 MSInfo = PrevVar->getMemberSpecializationInfo(); 7028 } 7029 } else if (isa<RecordDecl>(Member)) { 7030 CXXRecordDecl *PrevRecord; 7031 if (Previous.isSingleResult() && 7032 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 7033 Instantiation = PrevRecord; 7034 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 7035 MSInfo = PrevRecord->getMemberSpecializationInfo(); 7036 } 7037 } else if (isa<EnumDecl>(Member)) { 7038 EnumDecl *PrevEnum; 7039 if (Previous.isSingleResult() && 7040 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 7041 Instantiation = PrevEnum; 7042 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 7043 MSInfo = PrevEnum->getMemberSpecializationInfo(); 7044 } 7045 } 7046 7047 if (!Instantiation) { 7048 // There is no previous declaration that matches. Since member 7049 // specializations are always out-of-line, the caller will complain about 7050 // this mismatch later. 7051 return false; 7052 } 7053 7054 // If this is a friend, just bail out here before we start turning 7055 // things into explicit specializations. 7056 if (Member->getFriendObjectKind() != Decl::FOK_None) { 7057 // Preserve instantiation information. 7058 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 7059 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 7060 cast<CXXMethodDecl>(InstantiatedFrom), 7061 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 7062 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 7063 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 7064 cast<CXXRecordDecl>(InstantiatedFrom), 7065 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 7066 } 7067 7068 Previous.clear(); 7069 Previous.addDecl(Instantiation); 7070 return false; 7071 } 7072 7073 // Make sure that this is a specialization of a member. 7074 if (!InstantiatedFrom) { 7075 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 7076 << Member; 7077 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 7078 return true; 7079 } 7080 7081 // C++ [temp.expl.spec]p6: 7082 // If a template, a member template or the member of a class template is 7083 // explicitly specialized then that specialization shall be declared 7084 // before the first use of that specialization that would cause an implicit 7085 // instantiation to take place, in every translation unit in which such a 7086 // use occurs; no diagnostic is required. 7087 assert(MSInfo && "Member specialization info missing?"); 7088 7089 bool HasNoEffect = false; 7090 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 7091 TSK_ExplicitSpecialization, 7092 Instantiation, 7093 MSInfo->getTemplateSpecializationKind(), 7094 MSInfo->getPointOfInstantiation(), 7095 HasNoEffect)) 7096 return true; 7097 7098 // Check the scope of this explicit specialization. 7099 if (CheckTemplateSpecializationScope(*this, 7100 InstantiatedFrom, 7101 Instantiation, Member->getLocation(), 7102 false)) 7103 return true; 7104 7105 // Note that this is an explicit instantiation of a member. 7106 // the original declaration to note that it is an explicit specialization 7107 // (if it was previously an implicit instantiation). This latter step 7108 // makes bookkeeping easier. 7109 if (isa<FunctionDecl>(Member)) { 7110 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 7111 if (InstantiationFunction->getTemplateSpecializationKind() == 7112 TSK_ImplicitInstantiation) { 7113 InstantiationFunction->setTemplateSpecializationKind( 7114 TSK_ExplicitSpecialization); 7115 InstantiationFunction->setLocation(Member->getLocation()); 7116 } 7117 7118 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 7119 cast<CXXMethodDecl>(InstantiatedFrom), 7120 TSK_ExplicitSpecialization); 7121 MarkUnusedFileScopedDecl(InstantiationFunction); 7122 } else if (isa<VarDecl>(Member)) { 7123 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 7124 if (InstantiationVar->getTemplateSpecializationKind() == 7125 TSK_ImplicitInstantiation) { 7126 InstantiationVar->setTemplateSpecializationKind( 7127 TSK_ExplicitSpecialization); 7128 InstantiationVar->setLocation(Member->getLocation()); 7129 } 7130 7131 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember( 7132 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 7133 MarkUnusedFileScopedDecl(InstantiationVar); 7134 } else if (isa<CXXRecordDecl>(Member)) { 7135 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 7136 if (InstantiationClass->getTemplateSpecializationKind() == 7137 TSK_ImplicitInstantiation) { 7138 InstantiationClass->setTemplateSpecializationKind( 7139 TSK_ExplicitSpecialization); 7140 InstantiationClass->setLocation(Member->getLocation()); 7141 } 7142 7143 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 7144 cast<CXXRecordDecl>(InstantiatedFrom), 7145 TSK_ExplicitSpecialization); 7146 } else { 7147 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 7148 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 7149 if (InstantiationEnum->getTemplateSpecializationKind() == 7150 TSK_ImplicitInstantiation) { 7151 InstantiationEnum->setTemplateSpecializationKind( 7152 TSK_ExplicitSpecialization); 7153 InstantiationEnum->setLocation(Member->getLocation()); 7154 } 7155 7156 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 7157 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 7158 } 7159 7160 // Save the caller the trouble of having to figure out which declaration 7161 // this specialization matches. 7162 Previous.clear(); 7163 Previous.addDecl(Instantiation); 7164 return false; 7165 } 7166 7167 /// \brief Check the scope of an explicit instantiation. 7168 /// 7169 /// \returns true if a serious error occurs, false otherwise. 7170 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 7171 SourceLocation InstLoc, 7172 bool WasQualifiedName) { 7173 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 7174 DeclContext *CurContext = S.CurContext->getRedeclContext(); 7175 7176 if (CurContext->isRecord()) { 7177 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 7178 << D; 7179 return true; 7180 } 7181 7182 // C++11 [temp.explicit]p3: 7183 // An explicit instantiation shall appear in an enclosing namespace of its 7184 // template. If the name declared in the explicit instantiation is an 7185 // unqualified name, the explicit instantiation shall appear in the 7186 // namespace where its template is declared or, if that namespace is inline 7187 // (7.3.1), any namespace from its enclosing namespace set. 7188 // 7189 // This is DR275, which we do not retroactively apply to C++98/03. 7190 if (WasQualifiedName) { 7191 if (CurContext->Encloses(OrigContext)) 7192 return false; 7193 } else { 7194 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 7195 return false; 7196 } 7197 7198 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 7199 if (WasQualifiedName) 7200 S.Diag(InstLoc, 7201 S.getLangOpts().CPlusPlus11? 7202 diag::err_explicit_instantiation_out_of_scope : 7203 diag::warn_explicit_instantiation_out_of_scope_0x) 7204 << D << NS; 7205 else 7206 S.Diag(InstLoc, 7207 S.getLangOpts().CPlusPlus11? 7208 diag::err_explicit_instantiation_unqualified_wrong_namespace : 7209 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 7210 << D << NS; 7211 } else 7212 S.Diag(InstLoc, 7213 S.getLangOpts().CPlusPlus11? 7214 diag::err_explicit_instantiation_must_be_global : 7215 diag::warn_explicit_instantiation_must_be_global_0x) 7216 << D; 7217 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 7218 return false; 7219 } 7220 7221 /// \brief Determine whether the given scope specifier has a template-id in it. 7222 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 7223 if (!SS.isSet()) 7224 return false; 7225 7226 // C++11 [temp.explicit]p3: 7227 // If the explicit instantiation is for a member function, a member class 7228 // or a static data member of a class template specialization, the name of 7229 // the class template specialization in the qualified-id for the member 7230 // name shall be a simple-template-id. 7231 // 7232 // C++98 has the same restriction, just worded differently. 7233 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 7234 NNS = NNS->getPrefix()) 7235 if (const Type *T = NNS->getAsType()) 7236 if (isa<TemplateSpecializationType>(T)) 7237 return true; 7238 7239 return false; 7240 } 7241 7242 // Explicit instantiation of a class template specialization 7243 DeclResult 7244 Sema::ActOnExplicitInstantiation(Scope *S, 7245 SourceLocation ExternLoc, 7246 SourceLocation TemplateLoc, 7247 unsigned TagSpec, 7248 SourceLocation KWLoc, 7249 const CXXScopeSpec &SS, 7250 TemplateTy TemplateD, 7251 SourceLocation TemplateNameLoc, 7252 SourceLocation LAngleLoc, 7253 ASTTemplateArgsPtr TemplateArgsIn, 7254 SourceLocation RAngleLoc, 7255 AttributeList *Attr) { 7256 // Find the class template we're specializing 7257 TemplateName Name = TemplateD.get(); 7258 TemplateDecl *TD = Name.getAsTemplateDecl(); 7259 // Check that the specialization uses the same tag kind as the 7260 // original template. 7261 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 7262 assert(Kind != TTK_Enum && 7263 "Invalid enum tag in class template explicit instantiation!"); 7264 7265 if (isa<TypeAliasTemplateDecl>(TD)) { 7266 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind; 7267 Diag(TD->getTemplatedDecl()->getLocation(), 7268 diag::note_previous_use); 7269 return true; 7270 } 7271 7272 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD); 7273 7274 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 7275 Kind, /*isDefinition*/false, KWLoc, 7276 ClassTemplate->getIdentifier())) { 7277 Diag(KWLoc, diag::err_use_with_wrong_tag) 7278 << ClassTemplate 7279 << FixItHint::CreateReplacement(KWLoc, 7280 ClassTemplate->getTemplatedDecl()->getKindName()); 7281 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 7282 diag::note_previous_use); 7283 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 7284 } 7285 7286 // C++0x [temp.explicit]p2: 7287 // There are two forms of explicit instantiation: an explicit instantiation 7288 // definition and an explicit instantiation declaration. An explicit 7289 // instantiation declaration begins with the extern keyword. [...] 7290 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 7291 ? TSK_ExplicitInstantiationDefinition 7292 : TSK_ExplicitInstantiationDeclaration; 7293 7294 if (TSK == TSK_ExplicitInstantiationDeclaration) { 7295 // Check for dllexport class template instantiation declarations. 7296 for (AttributeList *A = Attr; A; A = A->getNext()) { 7297 if (A->getKind() == AttributeList::AT_DLLExport) { 7298 Diag(ExternLoc, 7299 diag::warn_attribute_dllexport_explicit_instantiation_decl); 7300 Diag(A->getLoc(), diag::note_attribute); 7301 break; 7302 } 7303 } 7304 7305 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 7306 Diag(ExternLoc, 7307 diag::warn_attribute_dllexport_explicit_instantiation_decl); 7308 Diag(A->getLocation(), diag::note_attribute); 7309 } 7310 } 7311 7312 // Translate the parser's template argument list in our AST format. 7313 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 7314 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 7315 7316 // Check that the template argument list is well-formed for this 7317 // template. 7318 SmallVector<TemplateArgument, 4> Converted; 7319 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 7320 TemplateArgs, false, Converted)) 7321 return true; 7322 7323 // Find the class template specialization declaration that 7324 // corresponds to these arguments. 7325 void *InsertPos = nullptr; 7326 ClassTemplateSpecializationDecl *PrevDecl 7327 = ClassTemplate->findSpecialization(Converted, InsertPos); 7328 7329 TemplateSpecializationKind PrevDecl_TSK 7330 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 7331 7332 // C++0x [temp.explicit]p2: 7333 // [...] An explicit instantiation shall appear in an enclosing 7334 // namespace of its template. [...] 7335 // 7336 // This is C++ DR 275. 7337 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 7338 SS.isSet())) 7339 return true; 7340 7341 ClassTemplateSpecializationDecl *Specialization = nullptr; 7342 7343 bool HasNoEffect = false; 7344 if (PrevDecl) { 7345 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 7346 PrevDecl, PrevDecl_TSK, 7347 PrevDecl->getPointOfInstantiation(), 7348 HasNoEffect)) 7349 return PrevDecl; 7350 7351 // Even though HasNoEffect == true means that this explicit instantiation 7352 // has no effect on semantics, we go on to put its syntax in the AST. 7353 7354 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 7355 PrevDecl_TSK == TSK_Undeclared) { 7356 // Since the only prior class template specialization with these 7357 // arguments was referenced but not declared, reuse that 7358 // declaration node as our own, updating the source location 7359 // for the template name to reflect our new declaration. 7360 // (Other source locations will be updated later.) 7361 Specialization = PrevDecl; 7362 Specialization->setLocation(TemplateNameLoc); 7363 PrevDecl = nullptr; 7364 } 7365 } 7366 7367 if (!Specialization) { 7368 // Create a new class template specialization declaration node for 7369 // this explicit specialization. 7370 Specialization 7371 = ClassTemplateSpecializationDecl::Create(Context, Kind, 7372 ClassTemplate->getDeclContext(), 7373 KWLoc, TemplateNameLoc, 7374 ClassTemplate, 7375 Converted.data(), 7376 Converted.size(), 7377 PrevDecl); 7378 SetNestedNameSpecifier(Specialization, SS); 7379 7380 if (!HasNoEffect && !PrevDecl) { 7381 // Insert the new specialization. 7382 ClassTemplate->AddSpecialization(Specialization, InsertPos); 7383 } 7384 } 7385 7386 // Build the fully-sugared type for this explicit instantiation as 7387 // the user wrote in the explicit instantiation itself. This means 7388 // that we'll pretty-print the type retrieved from the 7389 // specialization's declaration the way that the user actually wrote 7390 // the explicit instantiation, rather than formatting the name based 7391 // on the "canonical" representation used to store the template 7392 // arguments in the specialization. 7393 TypeSourceInfo *WrittenTy 7394 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 7395 TemplateArgs, 7396 Context.getTypeDeclType(Specialization)); 7397 Specialization->setTypeAsWritten(WrittenTy); 7398 7399 // Set source locations for keywords. 7400 Specialization->setExternLoc(ExternLoc); 7401 Specialization->setTemplateKeywordLoc(TemplateLoc); 7402 Specialization->setRBraceLoc(SourceLocation()); 7403 7404 if (Attr) 7405 ProcessDeclAttributeList(S, Specialization, Attr); 7406 7407 // Add the explicit instantiation into its lexical context. However, 7408 // since explicit instantiations are never found by name lookup, we 7409 // just put it into the declaration context directly. 7410 Specialization->setLexicalDeclContext(CurContext); 7411 CurContext->addDecl(Specialization); 7412 7413 // Syntax is now OK, so return if it has no other effect on semantics. 7414 if (HasNoEffect) { 7415 // Set the template specialization kind. 7416 Specialization->setTemplateSpecializationKind(TSK); 7417 return Specialization; 7418 } 7419 7420 // C++ [temp.explicit]p3: 7421 // A definition of a class template or class member template 7422 // shall be in scope at the point of the explicit instantiation of 7423 // the class template or class member template. 7424 // 7425 // This check comes when we actually try to perform the 7426 // instantiation. 7427 ClassTemplateSpecializationDecl *Def 7428 = cast_or_null<ClassTemplateSpecializationDecl>( 7429 Specialization->getDefinition()); 7430 if (!Def) 7431 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 7432 else if (TSK == TSK_ExplicitInstantiationDefinition) { 7433 MarkVTableUsed(TemplateNameLoc, Specialization, true); 7434 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 7435 } 7436 7437 // Instantiate the members of this class template specialization. 7438 Def = cast_or_null<ClassTemplateSpecializationDecl>( 7439 Specialization->getDefinition()); 7440 if (Def) { 7441 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 7442 7443 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 7444 // TSK_ExplicitInstantiationDefinition 7445 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 7446 TSK == TSK_ExplicitInstantiationDefinition) { 7447 // FIXME: Need to notify the ASTMutationListener that we did this. 7448 Def->setTemplateSpecializationKind(TSK); 7449 7450 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 7451 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 7452 // In the MS ABI, an explicit instantiation definition can add a dll 7453 // attribute to a template with a previous instantiation declaration. 7454 // MinGW doesn't allow this. 7455 auto *A = cast<InheritableAttr>( 7456 getDLLAttr(Specialization)->clone(getASTContext())); 7457 A->setInherited(true); 7458 Def->addAttr(A); 7459 checkClassLevelDLLAttribute(Def); 7460 7461 // Propagate attribute to base class templates. 7462 for (auto &B : Def->bases()) { 7463 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 7464 B.getType()->getAsCXXRecordDecl())) 7465 propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart()); 7466 } 7467 } 7468 } 7469 7470 // Set the template specialization kind. Make sure it is set before 7471 // instantiating the members which will trigger ASTConsumer callbacks. 7472 Specialization->setTemplateSpecializationKind(TSK); 7473 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 7474 } else { 7475 7476 // Set the template specialization kind. 7477 Specialization->setTemplateSpecializationKind(TSK); 7478 } 7479 7480 return Specialization; 7481 } 7482 7483 // Explicit instantiation of a member class of a class template. 7484 DeclResult 7485 Sema::ActOnExplicitInstantiation(Scope *S, 7486 SourceLocation ExternLoc, 7487 SourceLocation TemplateLoc, 7488 unsigned TagSpec, 7489 SourceLocation KWLoc, 7490 CXXScopeSpec &SS, 7491 IdentifierInfo *Name, 7492 SourceLocation NameLoc, 7493 AttributeList *Attr) { 7494 7495 bool Owned = false; 7496 bool IsDependent = false; 7497 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 7498 KWLoc, SS, Name, NameLoc, Attr, AS_none, 7499 /*ModulePrivateLoc=*/SourceLocation(), 7500 MultiTemplateParamsArg(), Owned, IsDependent, 7501 SourceLocation(), false, TypeResult(), 7502 /*IsTypeSpecifier*/false); 7503 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 7504 7505 if (!TagD) 7506 return true; 7507 7508 TagDecl *Tag = cast<TagDecl>(TagD); 7509 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 7510 7511 if (Tag->isInvalidDecl()) 7512 return true; 7513 7514 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 7515 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 7516 if (!Pattern) { 7517 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 7518 << Context.getTypeDeclType(Record); 7519 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 7520 return true; 7521 } 7522 7523 // C++0x [temp.explicit]p2: 7524 // If the explicit instantiation is for a class or member class, the 7525 // elaborated-type-specifier in the declaration shall include a 7526 // simple-template-id. 7527 // 7528 // C++98 has the same restriction, just worded differently. 7529 if (!ScopeSpecifierHasTemplateId(SS)) 7530 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 7531 << Record << SS.getRange(); 7532 7533 // C++0x [temp.explicit]p2: 7534 // There are two forms of explicit instantiation: an explicit instantiation 7535 // definition and an explicit instantiation declaration. An explicit 7536 // instantiation declaration begins with the extern keyword. [...] 7537 TemplateSpecializationKind TSK 7538 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7539 : TSK_ExplicitInstantiationDeclaration; 7540 7541 // C++0x [temp.explicit]p2: 7542 // [...] An explicit instantiation shall appear in an enclosing 7543 // namespace of its template. [...] 7544 // 7545 // This is C++ DR 275. 7546 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 7547 7548 // Verify that it is okay to explicitly instantiate here. 7549 CXXRecordDecl *PrevDecl 7550 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 7551 if (!PrevDecl && Record->getDefinition()) 7552 PrevDecl = Record; 7553 if (PrevDecl) { 7554 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 7555 bool HasNoEffect = false; 7556 assert(MSInfo && "No member specialization information?"); 7557 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 7558 PrevDecl, 7559 MSInfo->getTemplateSpecializationKind(), 7560 MSInfo->getPointOfInstantiation(), 7561 HasNoEffect)) 7562 return true; 7563 if (HasNoEffect) 7564 return TagD; 7565 } 7566 7567 CXXRecordDecl *RecordDef 7568 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7569 if (!RecordDef) { 7570 // C++ [temp.explicit]p3: 7571 // A definition of a member class of a class template shall be in scope 7572 // at the point of an explicit instantiation of the member class. 7573 CXXRecordDecl *Def 7574 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 7575 if (!Def) { 7576 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 7577 << 0 << Record->getDeclName() << Record->getDeclContext(); 7578 Diag(Pattern->getLocation(), diag::note_forward_declaration) 7579 << Pattern; 7580 return true; 7581 } else { 7582 if (InstantiateClass(NameLoc, Record, Def, 7583 getTemplateInstantiationArgs(Record), 7584 TSK)) 7585 return true; 7586 7587 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7588 if (!RecordDef) 7589 return true; 7590 } 7591 } 7592 7593 // Instantiate all of the members of the class. 7594 InstantiateClassMembers(NameLoc, RecordDef, 7595 getTemplateInstantiationArgs(Record), TSK); 7596 7597 if (TSK == TSK_ExplicitInstantiationDefinition) 7598 MarkVTableUsed(NameLoc, RecordDef, true); 7599 7600 // FIXME: We don't have any representation for explicit instantiations of 7601 // member classes. Such a representation is not needed for compilation, but it 7602 // should be available for clients that want to see all of the declarations in 7603 // the source code. 7604 return TagD; 7605 } 7606 7607 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 7608 SourceLocation ExternLoc, 7609 SourceLocation TemplateLoc, 7610 Declarator &D) { 7611 // Explicit instantiations always require a name. 7612 // TODO: check if/when DNInfo should replace Name. 7613 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 7614 DeclarationName Name = NameInfo.getName(); 7615 if (!Name) { 7616 if (!D.isInvalidType()) 7617 Diag(D.getDeclSpec().getLocStart(), 7618 diag::err_explicit_instantiation_requires_name) 7619 << D.getDeclSpec().getSourceRange() 7620 << D.getSourceRange(); 7621 7622 return true; 7623 } 7624 7625 // The scope passed in may not be a decl scope. Zip up the scope tree until 7626 // we find one that is. 7627 while ((S->getFlags() & Scope::DeclScope) == 0 || 7628 (S->getFlags() & Scope::TemplateParamScope) != 0) 7629 S = S->getParent(); 7630 7631 // Determine the type of the declaration. 7632 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 7633 QualType R = T->getType(); 7634 if (R.isNull()) 7635 return true; 7636 7637 // C++ [dcl.stc]p1: 7638 // A storage-class-specifier shall not be specified in [...] an explicit 7639 // instantiation (14.7.2) directive. 7640 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 7641 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 7642 << Name; 7643 return true; 7644 } else if (D.getDeclSpec().getStorageClassSpec() 7645 != DeclSpec::SCS_unspecified) { 7646 // Complain about then remove the storage class specifier. 7647 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 7648 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7649 7650 D.getMutableDeclSpec().ClearStorageClassSpecs(); 7651 } 7652 7653 // C++0x [temp.explicit]p1: 7654 // [...] An explicit instantiation of a function template shall not use the 7655 // inline or constexpr specifiers. 7656 // Presumably, this also applies to member functions of class templates as 7657 // well. 7658 if (D.getDeclSpec().isInlineSpecified()) 7659 Diag(D.getDeclSpec().getInlineSpecLoc(), 7660 getLangOpts().CPlusPlus11 ? 7661 diag::err_explicit_instantiation_inline : 7662 diag::warn_explicit_instantiation_inline_0x) 7663 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7664 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) 7665 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 7666 // not already specified. 7667 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7668 diag::err_explicit_instantiation_constexpr); 7669 7670 // C++0x [temp.explicit]p2: 7671 // There are two forms of explicit instantiation: an explicit instantiation 7672 // definition and an explicit instantiation declaration. An explicit 7673 // instantiation declaration begins with the extern keyword. [...] 7674 TemplateSpecializationKind TSK 7675 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7676 : TSK_ExplicitInstantiationDeclaration; 7677 7678 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 7679 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 7680 7681 if (!R->isFunctionType()) { 7682 // C++ [temp.explicit]p1: 7683 // A [...] static data member of a class template can be explicitly 7684 // instantiated from the member definition associated with its class 7685 // template. 7686 // C++1y [temp.explicit]p1: 7687 // A [...] variable [...] template specialization can be explicitly 7688 // instantiated from its template. 7689 if (Previous.isAmbiguous()) 7690 return true; 7691 7692 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 7693 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 7694 7695 if (!PrevTemplate) { 7696 if (!Prev || !Prev->isStaticDataMember()) { 7697 // We expect to see a data data member here. 7698 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 7699 << Name; 7700 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7701 P != PEnd; ++P) 7702 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 7703 return true; 7704 } 7705 7706 if (!Prev->getInstantiatedFromStaticDataMember()) { 7707 // FIXME: Check for explicit specialization? 7708 Diag(D.getIdentifierLoc(), 7709 diag::err_explicit_instantiation_data_member_not_instantiated) 7710 << Prev; 7711 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 7712 // FIXME: Can we provide a note showing where this was declared? 7713 return true; 7714 } 7715 } else { 7716 // Explicitly instantiate a variable template. 7717 7718 // C++1y [dcl.spec.auto]p6: 7719 // ... A program that uses auto or decltype(auto) in a context not 7720 // explicitly allowed in this section is ill-formed. 7721 // 7722 // This includes auto-typed variable template instantiations. 7723 if (R->isUndeducedType()) { 7724 Diag(T->getTypeLoc().getLocStart(), 7725 diag::err_auto_not_allowed_var_inst); 7726 return true; 7727 } 7728 7729 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 7730 // C++1y [temp.explicit]p3: 7731 // If the explicit instantiation is for a variable, the unqualified-id 7732 // in the declaration shall be a template-id. 7733 Diag(D.getIdentifierLoc(), 7734 diag::err_explicit_instantiation_without_template_id) 7735 << PrevTemplate; 7736 Diag(PrevTemplate->getLocation(), 7737 diag::note_explicit_instantiation_here); 7738 return true; 7739 } 7740 7741 // Translate the parser's template argument list into our AST format. 7742 TemplateArgumentListInfo TemplateArgs = 7743 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 7744 7745 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 7746 D.getIdentifierLoc(), TemplateArgs); 7747 if (Res.isInvalid()) 7748 return true; 7749 7750 // Ignore access control bits, we don't need them for redeclaration 7751 // checking. 7752 Prev = cast<VarDecl>(Res.get()); 7753 } 7754 7755 // C++0x [temp.explicit]p2: 7756 // If the explicit instantiation is for a member function, a member class 7757 // or a static data member of a class template specialization, the name of 7758 // the class template specialization in the qualified-id for the member 7759 // name shall be a simple-template-id. 7760 // 7761 // C++98 has the same restriction, just worded differently. 7762 // 7763 // This does not apply to variable template specializations, where the 7764 // template-id is in the unqualified-id instead. 7765 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 7766 Diag(D.getIdentifierLoc(), 7767 diag::ext_explicit_instantiation_without_qualified_id) 7768 << Prev << D.getCXXScopeSpec().getRange(); 7769 7770 // Check the scope of this explicit instantiation. 7771 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 7772 7773 // Verify that it is okay to explicitly instantiate here. 7774 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 7775 SourceLocation POI = Prev->getPointOfInstantiation(); 7776 bool HasNoEffect = false; 7777 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 7778 PrevTSK, POI, HasNoEffect)) 7779 return true; 7780 7781 if (!HasNoEffect) { 7782 // Instantiate static data member or variable template. 7783 7784 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7785 if (PrevTemplate) { 7786 // Merge attributes. 7787 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList()) 7788 ProcessDeclAttributeList(S, Prev, Attr); 7789 } 7790 if (TSK == TSK_ExplicitInstantiationDefinition) 7791 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 7792 } 7793 7794 // Check the new variable specialization against the parsed input. 7795 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 7796 Diag(T->getTypeLoc().getLocStart(), 7797 diag::err_invalid_var_template_spec_type) 7798 << 0 << PrevTemplate << R << Prev->getType(); 7799 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 7800 << 2 << PrevTemplate->getDeclName(); 7801 return true; 7802 } 7803 7804 // FIXME: Create an ExplicitInstantiation node? 7805 return (Decl*) nullptr; 7806 } 7807 7808 // If the declarator is a template-id, translate the parser's template 7809 // argument list into our AST format. 7810 bool HasExplicitTemplateArgs = false; 7811 TemplateArgumentListInfo TemplateArgs; 7812 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7813 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 7814 HasExplicitTemplateArgs = true; 7815 } 7816 7817 // C++ [temp.explicit]p1: 7818 // A [...] function [...] can be explicitly instantiated from its template. 7819 // A member function [...] of a class template can be explicitly 7820 // instantiated from the member definition associated with its class 7821 // template. 7822 UnresolvedSet<8> Matches; 7823 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 7824 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7825 P != PEnd; ++P) { 7826 NamedDecl *Prev = *P; 7827 if (!HasExplicitTemplateArgs) { 7828 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 7829 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType()); 7830 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 7831 Matches.clear(); 7832 7833 Matches.addDecl(Method, P.getAccess()); 7834 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 7835 break; 7836 } 7837 } 7838 } 7839 7840 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 7841 if (!FunTmpl) 7842 continue; 7843 7844 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 7845 FunctionDecl *Specialization = nullptr; 7846 if (TemplateDeductionResult TDK 7847 = DeduceTemplateArguments(FunTmpl, 7848 (HasExplicitTemplateArgs ? &TemplateArgs 7849 : nullptr), 7850 R, Specialization, Info)) { 7851 // Keep track of almost-matches. 7852 FailedCandidates.addCandidate() 7853 .set(FunTmpl->getTemplatedDecl(), 7854 MakeDeductionFailureInfo(Context, TDK, Info)); 7855 (void)TDK; 7856 continue; 7857 } 7858 7859 Matches.addDecl(Specialization, P.getAccess()); 7860 } 7861 7862 // Find the most specialized function template specialization. 7863 UnresolvedSetIterator Result = getMostSpecialized( 7864 Matches.begin(), Matches.end(), FailedCandidates, 7865 D.getIdentifierLoc(), 7866 PDiag(diag::err_explicit_instantiation_not_known) << Name, 7867 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 7868 PDiag(diag::note_explicit_instantiation_candidate)); 7869 7870 if (Result == Matches.end()) 7871 return true; 7872 7873 // Ignore access control bits, we don't need them for redeclaration checking. 7874 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 7875 7876 // C++11 [except.spec]p4 7877 // In an explicit instantiation an exception-specification may be specified, 7878 // but is not required. 7879 // If an exception-specification is specified in an explicit instantiation 7880 // directive, it shall be compatible with the exception-specifications of 7881 // other declarations of that function. 7882 if (auto *FPT = R->getAs<FunctionProtoType>()) 7883 if (FPT->hasExceptionSpec()) { 7884 unsigned DiagID = 7885 diag::err_mismatched_exception_spec_explicit_instantiation; 7886 if (getLangOpts().MicrosoftExt) 7887 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 7888 bool Result = CheckEquivalentExceptionSpec( 7889 PDiag(DiagID) << Specialization->getType(), 7890 PDiag(diag::note_explicit_instantiation_here), 7891 Specialization->getType()->getAs<FunctionProtoType>(), 7892 Specialization->getLocation(), FPT, D.getLocStart()); 7893 // In Microsoft mode, mismatching exception specifications just cause a 7894 // warning. 7895 if (!getLangOpts().MicrosoftExt && Result) 7896 return true; 7897 } 7898 7899 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 7900 Diag(D.getIdentifierLoc(), 7901 diag::err_explicit_instantiation_member_function_not_instantiated) 7902 << Specialization 7903 << (Specialization->getTemplateSpecializationKind() == 7904 TSK_ExplicitSpecialization); 7905 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 7906 return true; 7907 } 7908 7909 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 7910 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 7911 PrevDecl = Specialization; 7912 7913 if (PrevDecl) { 7914 bool HasNoEffect = false; 7915 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 7916 PrevDecl, 7917 PrevDecl->getTemplateSpecializationKind(), 7918 PrevDecl->getPointOfInstantiation(), 7919 HasNoEffect)) 7920 return true; 7921 7922 // FIXME: We may still want to build some representation of this 7923 // explicit specialization. 7924 if (HasNoEffect) 7925 return (Decl*) nullptr; 7926 } 7927 7928 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7929 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 7930 if (Attr) 7931 ProcessDeclAttributeList(S, Specialization, Attr); 7932 7933 if (Specialization->isDefined()) { 7934 // Let the ASTConsumer know that this function has been explicitly 7935 // instantiated now, and its linkage might have changed. 7936 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 7937 } else if (TSK == TSK_ExplicitInstantiationDefinition) 7938 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 7939 7940 // C++0x [temp.explicit]p2: 7941 // If the explicit instantiation is for a member function, a member class 7942 // or a static data member of a class template specialization, the name of 7943 // the class template specialization in the qualified-id for the member 7944 // name shall be a simple-template-id. 7945 // 7946 // C++98 has the same restriction, just worded differently. 7947 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 7948 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 7949 D.getCXXScopeSpec().isSet() && 7950 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 7951 Diag(D.getIdentifierLoc(), 7952 diag::ext_explicit_instantiation_without_qualified_id) 7953 << Specialization << D.getCXXScopeSpec().getRange(); 7954 7955 CheckExplicitInstantiationScope(*this, 7956 FunTmpl? (NamedDecl *)FunTmpl 7957 : Specialization->getInstantiatedFromMemberFunction(), 7958 D.getIdentifierLoc(), 7959 D.getCXXScopeSpec().isSet()); 7960 7961 // FIXME: Create some kind of ExplicitInstantiationDecl here. 7962 return (Decl*) nullptr; 7963 } 7964 7965 TypeResult 7966 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 7967 const CXXScopeSpec &SS, IdentifierInfo *Name, 7968 SourceLocation TagLoc, SourceLocation NameLoc) { 7969 // This has to hold, because SS is expected to be defined. 7970 assert(Name && "Expected a name in a dependent tag"); 7971 7972 NestedNameSpecifier *NNS = SS.getScopeRep(); 7973 if (!NNS) 7974 return true; 7975 7976 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 7977 7978 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 7979 Diag(NameLoc, diag::err_dependent_tag_decl) 7980 << (TUK == TUK_Definition) << Kind << SS.getRange(); 7981 return true; 7982 } 7983 7984 // Create the resulting type. 7985 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 7986 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 7987 7988 // Create type-source location information for this type. 7989 TypeLocBuilder TLB; 7990 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 7991 TL.setElaboratedKeywordLoc(TagLoc); 7992 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7993 TL.setNameLoc(NameLoc); 7994 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 7995 } 7996 7997 TypeResult 7998 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 7999 const CXXScopeSpec &SS, const IdentifierInfo &II, 8000 SourceLocation IdLoc) { 8001 if (SS.isInvalid()) 8002 return true; 8003 8004 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 8005 Diag(TypenameLoc, 8006 getLangOpts().CPlusPlus11 ? 8007 diag::warn_cxx98_compat_typename_outside_of_template : 8008 diag::ext_typename_outside_of_template) 8009 << FixItHint::CreateRemoval(TypenameLoc); 8010 8011 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 8012 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 8013 TypenameLoc, QualifierLoc, II, IdLoc); 8014 if (T.isNull()) 8015 return true; 8016 8017 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 8018 if (isa<DependentNameType>(T)) { 8019 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 8020 TL.setElaboratedKeywordLoc(TypenameLoc); 8021 TL.setQualifierLoc(QualifierLoc); 8022 TL.setNameLoc(IdLoc); 8023 } else { 8024 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 8025 TL.setElaboratedKeywordLoc(TypenameLoc); 8026 TL.setQualifierLoc(QualifierLoc); 8027 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 8028 } 8029 8030 return CreateParsedType(T, TSI); 8031 } 8032 8033 TypeResult 8034 Sema::ActOnTypenameType(Scope *S, 8035 SourceLocation TypenameLoc, 8036 const CXXScopeSpec &SS, 8037 SourceLocation TemplateKWLoc, 8038 TemplateTy TemplateIn, 8039 SourceLocation TemplateNameLoc, 8040 SourceLocation LAngleLoc, 8041 ASTTemplateArgsPtr TemplateArgsIn, 8042 SourceLocation RAngleLoc) { 8043 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 8044 Diag(TypenameLoc, 8045 getLangOpts().CPlusPlus11 ? 8046 diag::warn_cxx98_compat_typename_outside_of_template : 8047 diag::ext_typename_outside_of_template) 8048 << FixItHint::CreateRemoval(TypenameLoc); 8049 8050 // Translate the parser's template argument list in our AST format. 8051 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 8052 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 8053 8054 TemplateName Template = TemplateIn.get(); 8055 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 8056 // Construct a dependent template specialization type. 8057 assert(DTN && "dependent template has non-dependent name?"); 8058 assert(DTN->getQualifier() == SS.getScopeRep()); 8059 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 8060 DTN->getQualifier(), 8061 DTN->getIdentifier(), 8062 TemplateArgs); 8063 8064 // Create source-location information for this type. 8065 TypeLocBuilder Builder; 8066 DependentTemplateSpecializationTypeLoc SpecTL 8067 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 8068 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 8069 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 8070 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 8071 SpecTL.setTemplateNameLoc(TemplateNameLoc); 8072 SpecTL.setLAngleLoc(LAngleLoc); 8073 SpecTL.setRAngleLoc(RAngleLoc); 8074 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8075 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 8076 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 8077 } 8078 8079 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 8080 if (T.isNull()) 8081 return true; 8082 8083 // Provide source-location information for the template specialization type. 8084 TypeLocBuilder Builder; 8085 TemplateSpecializationTypeLoc SpecTL 8086 = Builder.push<TemplateSpecializationTypeLoc>(T); 8087 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 8088 SpecTL.setTemplateNameLoc(TemplateNameLoc); 8089 SpecTL.setLAngleLoc(LAngleLoc); 8090 SpecTL.setRAngleLoc(RAngleLoc); 8091 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8092 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 8093 8094 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 8095 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 8096 TL.setElaboratedKeywordLoc(TypenameLoc); 8097 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 8098 8099 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 8100 return CreateParsedType(T, TSI); 8101 } 8102 8103 8104 /// Determine whether this failed name lookup should be treated as being 8105 /// disabled by a usage of std::enable_if. 8106 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 8107 SourceRange &CondRange) { 8108 // We must be looking for a ::type... 8109 if (!II.isStr("type")) 8110 return false; 8111 8112 // ... within an explicitly-written template specialization... 8113 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 8114 return false; 8115 TypeLoc EnableIfTy = NNS.getTypeLoc(); 8116 TemplateSpecializationTypeLoc EnableIfTSTLoc = 8117 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 8118 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 8119 return false; 8120 const TemplateSpecializationType *EnableIfTST = 8121 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 8122 8123 // ... which names a complete class template declaration... 8124 const TemplateDecl *EnableIfDecl = 8125 EnableIfTST->getTemplateName().getAsTemplateDecl(); 8126 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 8127 return false; 8128 8129 // ... called "enable_if". 8130 const IdentifierInfo *EnableIfII = 8131 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 8132 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 8133 return false; 8134 8135 // Assume the first template argument is the condition. 8136 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 8137 return true; 8138 } 8139 8140 /// \brief Build the type that describes a C++ typename specifier, 8141 /// e.g., "typename T::type". 8142 QualType 8143 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 8144 SourceLocation KeywordLoc, 8145 NestedNameSpecifierLoc QualifierLoc, 8146 const IdentifierInfo &II, 8147 SourceLocation IILoc) { 8148 CXXScopeSpec SS; 8149 SS.Adopt(QualifierLoc); 8150 8151 DeclContext *Ctx = computeDeclContext(SS); 8152 if (!Ctx) { 8153 // If the nested-name-specifier is dependent and couldn't be 8154 // resolved to a type, build a typename type. 8155 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 8156 return Context.getDependentNameType(Keyword, 8157 QualifierLoc.getNestedNameSpecifier(), 8158 &II); 8159 } 8160 8161 // If the nested-name-specifier refers to the current instantiation, 8162 // the "typename" keyword itself is superfluous. In C++03, the 8163 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 8164 // allows such extraneous "typename" keywords, and we retroactively 8165 // apply this DR to C++03 code with only a warning. In any case we continue. 8166 8167 if (RequireCompleteDeclContext(SS, Ctx)) 8168 return QualType(); 8169 8170 DeclarationName Name(&II); 8171 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 8172 LookupQualifiedName(Result, Ctx, SS); 8173 unsigned DiagID = 0; 8174 Decl *Referenced = nullptr; 8175 switch (Result.getResultKind()) { 8176 case LookupResult::NotFound: { 8177 // If we're looking up 'type' within a template named 'enable_if', produce 8178 // a more specific diagnostic. 8179 SourceRange CondRange; 8180 if (isEnableIf(QualifierLoc, II, CondRange)) { 8181 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 8182 << Ctx << CondRange; 8183 return QualType(); 8184 } 8185 8186 DiagID = diag::err_typename_nested_not_found; 8187 break; 8188 } 8189 8190 case LookupResult::FoundUnresolvedValue: { 8191 // We found a using declaration that is a value. Most likely, the using 8192 // declaration itself is meant to have the 'typename' keyword. 8193 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 8194 IILoc); 8195 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 8196 << Name << Ctx << FullRange; 8197 if (UnresolvedUsingValueDecl *Using 8198 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 8199 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 8200 Diag(Loc, diag::note_using_value_decl_missing_typename) 8201 << FixItHint::CreateInsertion(Loc, "typename "); 8202 } 8203 } 8204 // Fall through to create a dependent typename type, from which we can recover 8205 // better. 8206 8207 case LookupResult::NotFoundInCurrentInstantiation: 8208 // Okay, it's a member of an unknown instantiation. 8209 return Context.getDependentNameType(Keyword, 8210 QualifierLoc.getNestedNameSpecifier(), 8211 &II); 8212 8213 case LookupResult::Found: 8214 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 8215 // We found a type. Build an ElaboratedType, since the 8216 // typename-specifier was just sugar. 8217 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 8218 return Context.getElaboratedType(ETK_Typename, 8219 QualifierLoc.getNestedNameSpecifier(), 8220 Context.getTypeDeclType(Type)); 8221 } 8222 8223 DiagID = diag::err_typename_nested_not_type; 8224 Referenced = Result.getFoundDecl(); 8225 break; 8226 8227 case LookupResult::FoundOverloaded: 8228 DiagID = diag::err_typename_nested_not_type; 8229 Referenced = *Result.begin(); 8230 break; 8231 8232 case LookupResult::Ambiguous: 8233 return QualType(); 8234 } 8235 8236 // If we get here, it's because name lookup did not find a 8237 // type. Emit an appropriate diagnostic and return an error. 8238 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 8239 IILoc); 8240 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 8241 if (Referenced) 8242 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 8243 << Name; 8244 return QualType(); 8245 } 8246 8247 namespace { 8248 // See Sema::RebuildTypeInCurrentInstantiation 8249 class CurrentInstantiationRebuilder 8250 : public TreeTransform<CurrentInstantiationRebuilder> { 8251 SourceLocation Loc; 8252 DeclarationName Entity; 8253 8254 public: 8255 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 8256 8257 CurrentInstantiationRebuilder(Sema &SemaRef, 8258 SourceLocation Loc, 8259 DeclarationName Entity) 8260 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 8261 Loc(Loc), Entity(Entity) { } 8262 8263 /// \brief Determine whether the given type \p T has already been 8264 /// transformed. 8265 /// 8266 /// For the purposes of type reconstruction, a type has already been 8267 /// transformed if it is NULL or if it is not dependent. 8268 bool AlreadyTransformed(QualType T) { 8269 return T.isNull() || !T->isDependentType(); 8270 } 8271 8272 /// \brief Returns the location of the entity whose type is being 8273 /// rebuilt. 8274 SourceLocation getBaseLocation() { return Loc; } 8275 8276 /// \brief Returns the name of the entity whose type is being rebuilt. 8277 DeclarationName getBaseEntity() { return Entity; } 8278 8279 /// \brief Sets the "base" location and entity when that 8280 /// information is known based on another transformation. 8281 void setBase(SourceLocation Loc, DeclarationName Entity) { 8282 this->Loc = Loc; 8283 this->Entity = Entity; 8284 } 8285 8286 ExprResult TransformLambdaExpr(LambdaExpr *E) { 8287 // Lambdas never need to be transformed. 8288 return E; 8289 } 8290 }; 8291 } 8292 8293 /// \brief Rebuilds a type within the context of the current instantiation. 8294 /// 8295 /// The type \p T is part of the type of an out-of-line member definition of 8296 /// a class template (or class template partial specialization) that was parsed 8297 /// and constructed before we entered the scope of the class template (or 8298 /// partial specialization thereof). This routine will rebuild that type now 8299 /// that we have entered the declarator's scope, which may produce different 8300 /// canonical types, e.g., 8301 /// 8302 /// \code 8303 /// template<typename T> 8304 /// struct X { 8305 /// typedef T* pointer; 8306 /// pointer data(); 8307 /// }; 8308 /// 8309 /// template<typename T> 8310 /// typename X<T>::pointer X<T>::data() { ... } 8311 /// \endcode 8312 /// 8313 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 8314 /// since we do not know that we can look into X<T> when we parsed the type. 8315 /// This function will rebuild the type, performing the lookup of "pointer" 8316 /// in X<T> and returning an ElaboratedType whose canonical type is the same 8317 /// as the canonical type of T*, allowing the return types of the out-of-line 8318 /// definition and the declaration to match. 8319 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 8320 SourceLocation Loc, 8321 DeclarationName Name) { 8322 if (!T || !T->getType()->isDependentType()) 8323 return T; 8324 8325 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 8326 return Rebuilder.TransformType(T); 8327 } 8328 8329 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 8330 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 8331 DeclarationName()); 8332 return Rebuilder.TransformExpr(E); 8333 } 8334 8335 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 8336 if (SS.isInvalid()) 8337 return true; 8338 8339 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 8340 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 8341 DeclarationName()); 8342 NestedNameSpecifierLoc Rebuilt 8343 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 8344 if (!Rebuilt) 8345 return true; 8346 8347 SS.Adopt(Rebuilt); 8348 return false; 8349 } 8350 8351 /// \brief Rebuild the template parameters now that we know we're in a current 8352 /// instantiation. 8353 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 8354 TemplateParameterList *Params) { 8355 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 8356 Decl *Param = Params->getParam(I); 8357 8358 // There is nothing to rebuild in a type parameter. 8359 if (isa<TemplateTypeParmDecl>(Param)) 8360 continue; 8361 8362 // Rebuild the template parameter list of a template template parameter. 8363 if (TemplateTemplateParmDecl *TTP 8364 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 8365 if (RebuildTemplateParamsInCurrentInstantiation( 8366 TTP->getTemplateParameters())) 8367 return true; 8368 8369 continue; 8370 } 8371 8372 // Rebuild the type of a non-type template parameter. 8373 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 8374 TypeSourceInfo *NewTSI 8375 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 8376 NTTP->getLocation(), 8377 NTTP->getDeclName()); 8378 if (!NewTSI) 8379 return true; 8380 8381 if (NewTSI != NTTP->getTypeSourceInfo()) { 8382 NTTP->setTypeSourceInfo(NewTSI); 8383 NTTP->setType(NewTSI->getType()); 8384 } 8385 } 8386 8387 return false; 8388 } 8389 8390 /// \brief Produces a formatted string that describes the binding of 8391 /// template parameters to template arguments. 8392 std::string 8393 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 8394 const TemplateArgumentList &Args) { 8395 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 8396 } 8397 8398 std::string 8399 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 8400 const TemplateArgument *Args, 8401 unsigned NumArgs) { 8402 SmallString<128> Str; 8403 llvm::raw_svector_ostream Out(Str); 8404 8405 if (!Params || Params->size() == 0 || NumArgs == 0) 8406 return std::string(); 8407 8408 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 8409 if (I >= NumArgs) 8410 break; 8411 8412 if (I == 0) 8413 Out << "[with "; 8414 else 8415 Out << ", "; 8416 8417 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 8418 Out << Id->getName(); 8419 } else { 8420 Out << '$' << I; 8421 } 8422 8423 Out << " = "; 8424 Args[I].print(getPrintingPolicy(), Out); 8425 } 8426 8427 Out << ']'; 8428 return Out.str(); 8429 } 8430 8431 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 8432 CachedTokens &Toks) { 8433 if (!FD) 8434 return; 8435 8436 LateParsedTemplate *LPT = new LateParsedTemplate; 8437 8438 // Take tokens to avoid allocations 8439 LPT->Toks.swap(Toks); 8440 LPT->D = FnD; 8441 LateParsedTemplateMap.insert(std::make_pair(FD, LPT)); 8442 8443 FD->setLateTemplateParsed(true); 8444 } 8445 8446 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 8447 if (!FD) 8448 return; 8449 FD->setLateTemplateParsed(false); 8450 } 8451 8452 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 8453 DeclContext *DC = CurContext; 8454 8455 while (DC) { 8456 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 8457 const FunctionDecl *FD = RD->isLocalClass(); 8458 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 8459 } else if (DC->isTranslationUnit() || DC->isNamespace()) 8460 return false; 8461 8462 DC = DC->getParent(); 8463 } 8464 return false; 8465 } 8466