Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/LazyValueInfo.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Analysis/TargetLibraryInfo.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/CFG.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/PatternMatch.h"
     31 #include "llvm/IR/ValueHandle.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include <map>
     35 #include <stack>
     36 using namespace llvm;
     37 using namespace PatternMatch;
     38 
     39 #define DEBUG_TYPE "lazy-value-info"
     40 
     41 char LazyValueInfo::ID = 0;
     42 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
     43                 "Lazy Value Information Analysis", false, true)
     44 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     45 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
     46 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
     47                 "Lazy Value Information Analysis", false, true)
     48 
     49 namespace llvm {
     50   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     51 }
     52 
     53 
     54 //===----------------------------------------------------------------------===//
     55 //                               LVILatticeVal
     56 //===----------------------------------------------------------------------===//
     57 
     58 /// This is the information tracked by LazyValueInfo for each value.
     59 ///
     60 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     61 /// in the future.
     62 ///
     63 namespace {
     64 class LVILatticeVal {
     65   enum LatticeValueTy {
     66     /// This Value has no known value yet.
     67     undefined,
     68 
     69     /// This Value has a specific constant value.
     70     constant,
     71 
     72     /// This Value is known to not have the specified value.
     73     notconstant,
     74 
     75     /// The Value falls within this range.
     76     constantrange,
     77 
     78     /// This value is not known to be constant, and we know that it has a value.
     79     overdefined
     80   };
     81 
     82   /// Val: This stores the current lattice value along with the Constant* for
     83   /// the constant if this is a 'constant' or 'notconstant' value.
     84   LatticeValueTy Tag;
     85   Constant *Val;
     86   ConstantRange Range;
     87 
     88 public:
     89   LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
     90 
     91   static LVILatticeVal get(Constant *C) {
     92     LVILatticeVal Res;
     93     if (!isa<UndefValue>(C))
     94       Res.markConstant(C);
     95     return Res;
     96   }
     97   static LVILatticeVal getNot(Constant *C) {
     98     LVILatticeVal Res;
     99     if (!isa<UndefValue>(C))
    100       Res.markNotConstant(C);
    101     return Res;
    102   }
    103   static LVILatticeVal getRange(ConstantRange CR) {
    104     LVILatticeVal Res;
    105     Res.markConstantRange(CR);
    106     return Res;
    107   }
    108   static LVILatticeVal getOverdefined() {
    109     LVILatticeVal Res;
    110     Res.markOverdefined();
    111     return Res;
    112   }
    113 
    114   bool isUndefined() const     { return Tag == undefined; }
    115   bool isConstant() const      { return Tag == constant; }
    116   bool isNotConstant() const   { return Tag == notconstant; }
    117   bool isConstantRange() const { return Tag == constantrange; }
    118   bool isOverdefined() const   { return Tag == overdefined; }
    119 
    120   Constant *getConstant() const {
    121     assert(isConstant() && "Cannot get the constant of a non-constant!");
    122     return Val;
    123   }
    124 
    125   Constant *getNotConstant() const {
    126     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    127     return Val;
    128   }
    129 
    130   ConstantRange getConstantRange() const {
    131     assert(isConstantRange() &&
    132            "Cannot get the constant-range of a non-constant-range!");
    133     return Range;
    134   }
    135 
    136   /// Return true if this is a change in status.
    137   bool markOverdefined() {
    138     if (isOverdefined())
    139       return false;
    140     Tag = overdefined;
    141     return true;
    142   }
    143 
    144   /// Return true if this is a change in status.
    145   bool markConstant(Constant *V) {
    146     assert(V && "Marking constant with NULL");
    147     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    148       return markConstantRange(ConstantRange(CI->getValue()));
    149     if (isa<UndefValue>(V))
    150       return false;
    151 
    152     assert((!isConstant() || getConstant() == V) &&
    153            "Marking constant with different value");
    154     assert(isUndefined());
    155     Tag = constant;
    156     Val = V;
    157     return true;
    158   }
    159 
    160   /// Return true if this is a change in status.
    161   bool markNotConstant(Constant *V) {
    162     assert(V && "Marking constant with NULL");
    163     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    164       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    165     if (isa<UndefValue>(V))
    166       return false;
    167 
    168     assert((!isConstant() || getConstant() != V) &&
    169            "Marking constant !constant with same value");
    170     assert((!isNotConstant() || getNotConstant() == V) &&
    171            "Marking !constant with different value");
    172     assert(isUndefined() || isConstant());
    173     Tag = notconstant;
    174     Val = V;
    175     return true;
    176   }
    177 
    178   /// Return true if this is a change in status.
    179   bool markConstantRange(const ConstantRange NewR) {
    180     if (isConstantRange()) {
    181       if (NewR.isEmptySet())
    182         return markOverdefined();
    183 
    184       bool changed = Range != NewR;
    185       Range = NewR;
    186       return changed;
    187     }
    188 
    189     assert(isUndefined());
    190     if (NewR.isEmptySet())
    191       return markOverdefined();
    192 
    193     Tag = constantrange;
    194     Range = NewR;
    195     return true;
    196   }
    197 
    198   /// Merge the specified lattice value into this one, updating this
    199   /// one and returning true if anything changed.
    200   bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
    201     if (RHS.isUndefined() || isOverdefined()) return false;
    202     if (RHS.isOverdefined()) return markOverdefined();
    203 
    204     if (isUndefined()) {
    205       Tag = RHS.Tag;
    206       Val = RHS.Val;
    207       Range = RHS.Range;
    208       return true;
    209     }
    210 
    211     if (isConstant()) {
    212       if (RHS.isConstant()) {
    213         if (Val == RHS.Val)
    214           return false;
    215         return markOverdefined();
    216       }
    217 
    218       if (RHS.isNotConstant()) {
    219         if (Val == RHS.Val)
    220           return markOverdefined();
    221 
    222         // Unless we can prove that the two Constants are different, we must
    223         // move to overdefined.
    224         if (ConstantInt *Res =
    225                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
    226                     CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
    227           if (Res->isOne())
    228             return markNotConstant(RHS.getNotConstant());
    229 
    230         return markOverdefined();
    231       }
    232 
    233       // RHS is a ConstantRange, LHS is a non-integer Constant.
    234 
    235       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    236       // a function. The correct result is to pick up RHS.
    237 
    238       return markOverdefined();
    239     }
    240 
    241     if (isNotConstant()) {
    242       if (RHS.isConstant()) {
    243         if (Val == RHS.Val)
    244           return markOverdefined();
    245 
    246         // Unless we can prove that the two Constants are different, we must
    247         // move to overdefined.
    248         if (ConstantInt *Res =
    249                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
    250                     CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
    251           if (Res->isOne())
    252             return false;
    253 
    254         return markOverdefined();
    255       }
    256 
    257       if (RHS.isNotConstant()) {
    258         if (Val == RHS.Val)
    259           return false;
    260         return markOverdefined();
    261       }
    262 
    263       return markOverdefined();
    264     }
    265 
    266     assert(isConstantRange() && "New LVILattice type?");
    267     if (!RHS.isConstantRange())
    268       return markOverdefined();
    269 
    270     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    271     if (NewR.isFullSet())
    272       return markOverdefined();
    273     return markConstantRange(NewR);
    274   }
    275 };
    276 
    277 } // end anonymous namespace.
    278 
    279 namespace llvm {
    280 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    281     LLVM_ATTRIBUTE_USED;
    282 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    283   if (Val.isUndefined())
    284     return OS << "undefined";
    285   if (Val.isOverdefined())
    286     return OS << "overdefined";
    287 
    288   if (Val.isNotConstant())
    289     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    290   else if (Val.isConstantRange())
    291     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    292               << Val.getConstantRange().getUpper() << '>';
    293   return OS << "constant<" << *Val.getConstant() << '>';
    294 }
    295 }
    296 
    297 //===----------------------------------------------------------------------===//
    298 //                          LazyValueInfoCache Decl
    299 //===----------------------------------------------------------------------===//
    300 
    301 namespace {
    302   /// A callback value handle updates the cache when values are erased.
    303   class LazyValueInfoCache;
    304   struct LVIValueHandle final : public CallbackVH {
    305     LazyValueInfoCache *Parent;
    306 
    307     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    308       : CallbackVH(V), Parent(P) { }
    309 
    310     void deleted() override;
    311     void allUsesReplacedWith(Value *V) override {
    312       deleted();
    313     }
    314   };
    315 }
    316 
    317 namespace {
    318   /// This is the cache kept by LazyValueInfo which
    319   /// maintains information about queries across the clients' queries.
    320   class LazyValueInfoCache {
    321     /// This is all of the cached block information for exactly one Value*.
    322     /// The entries are sorted by the BasicBlock* of the
    323     /// entries, allowing us to do a lookup with a binary search.
    324     /// Over-defined lattice values are recorded in OverDefinedCache to reduce
    325     /// memory overhead.
    326     typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4>
    327         ValueCacheEntryTy;
    328 
    329     /// This is all of the cached information for all values,
    330     /// mapped from Value* to key information.
    331     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    332 
    333     /// This tracks, on a per-block basis, the set of values that are
    334     /// over-defined at the end of that block.
    335     typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
    336         OverDefinedCacheTy;
    337     OverDefinedCacheTy OverDefinedCache;
    338 
    339     /// Keep track of all blocks that we have ever seen, so we
    340     /// don't spend time removing unused blocks from our caches.
    341     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
    342 
    343     /// This stack holds the state of the value solver during a query.
    344     /// It basically emulates the callstack of the naive
    345     /// recursive value lookup process.
    346     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    347 
    348     /// Keeps track of which block-value pairs are in BlockValueStack.
    349     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
    350 
    351     /// Push BV onto BlockValueStack unless it's already in there.
    352     /// Returns true on success.
    353     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
    354       if (!BlockValueSet.insert(BV).second)
    355         return false;  // It's already in the stack.
    356 
    357       BlockValueStack.push(BV);
    358       return true;
    359     }
    360 
    361     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
    362     const DataLayout &DL; ///< A mandatory DataLayout
    363     DominatorTree *DT;    ///< An optional DT pointer.
    364 
    365     friend struct LVIValueHandle;
    366 
    367     void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
    368       SeenBlocks.insert(BB);
    369 
    370       // Insert over-defined values into their own cache to reduce memory
    371       // overhead.
    372       if (Result.isOverdefined())
    373         OverDefinedCache[BB].insert(Val);
    374       else
    375         lookup(Val)[BB] = Result;
    376     }
    377 
    378     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    379     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    380                       LVILatticeVal &Result,
    381                       Instruction *CxtI = nullptr);
    382     bool hasBlockValue(Value *Val, BasicBlock *BB);
    383 
    384     // These methods process one work item and may add more. A false value
    385     // returned means that the work item was not completely processed and must
    386     // be revisited after going through the new items.
    387     bool solveBlockValue(Value *Val, BasicBlock *BB);
    388     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    389                                  Value *Val, BasicBlock *BB);
    390     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    391                                 PHINode *PN, BasicBlock *BB);
    392     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    393                                       Instruction *BBI, BasicBlock *BB);
    394     void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
    395                                             Instruction *BBI);
    396 
    397     void solve();
    398 
    399     ValueCacheEntryTy &lookup(Value *V) {
    400       return ValueCache[LVIValueHandle(V, this)];
    401     }
    402 
    403     bool isOverdefined(Value *V, BasicBlock *BB) const {
    404       auto ODI = OverDefinedCache.find(BB);
    405 
    406       if (ODI == OverDefinedCache.end())
    407         return false;
    408 
    409       return ODI->second.count(V);
    410     }
    411 
    412     bool hasCachedValueInfo(Value *V, BasicBlock *BB) {
    413       if (isOverdefined(V, BB))
    414         return true;
    415 
    416       LVIValueHandle ValHandle(V, this);
    417       auto I = ValueCache.find(ValHandle);
    418       if (I == ValueCache.end())
    419         return false;
    420 
    421       return I->second.count(BB);
    422     }
    423 
    424     LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) {
    425       if (isOverdefined(V, BB))
    426         return LVILatticeVal::getOverdefined();
    427 
    428       return lookup(V)[BB];
    429     }
    430 
    431   public:
    432     /// This is the query interface to determine the lattice
    433     /// value for the specified Value* at the end of the specified block.
    434     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
    435                                   Instruction *CxtI = nullptr);
    436 
    437     /// This is the query interface to determine the lattice
    438     /// value for the specified Value* at the specified instruction (generally
    439     /// from an assume intrinsic).
    440     LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
    441 
    442     /// This is the query interface to determine the lattice
    443     /// value for the specified Value* that is true on the specified edge.
    444     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
    445                                  Instruction *CxtI = nullptr);
    446 
    447     /// This is the update interface to inform the cache that an edge from
    448     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
    449     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    450 
    451     /// This is part of the update interface to inform the cache
    452     /// that a block has been deleted.
    453     void eraseBlock(BasicBlock *BB);
    454 
    455     /// clear - Empty the cache.
    456     void clear() {
    457       SeenBlocks.clear();
    458       ValueCache.clear();
    459       OverDefinedCache.clear();
    460     }
    461 
    462     LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
    463                        DominatorTree *DT = nullptr)
    464         : AC(AC), DL(DL), DT(DT) {}
    465   };
    466 } // end anonymous namespace
    467 
    468 void LVIValueHandle::deleted() {
    469   SmallVector<AssertingVH<BasicBlock>, 4> ToErase;
    470   for (auto &I : Parent->OverDefinedCache) {
    471     SmallPtrSetImpl<Value *> &ValueSet = I.second;
    472     if (ValueSet.count(getValPtr()))
    473       ValueSet.erase(getValPtr());
    474     if (ValueSet.empty())
    475       ToErase.push_back(I.first);
    476   }
    477   for (auto &BB : ToErase)
    478     Parent->OverDefinedCache.erase(BB);
    479 
    480   // This erasure deallocates *this, so it MUST happen after we're done
    481   // using any and all members of *this.
    482   Parent->ValueCache.erase(*this);
    483 }
    484 
    485 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    486   // Shortcut if we have never seen this block.
    487   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
    488   if (I == SeenBlocks.end())
    489     return;
    490   SeenBlocks.erase(I);
    491 
    492   auto ODI = OverDefinedCache.find(BB);
    493   if (ODI != OverDefinedCache.end())
    494     OverDefinedCache.erase(ODI);
    495 
    496   for (auto I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    497     I->second.erase(BB);
    498 }
    499 
    500 void LazyValueInfoCache::solve() {
    501   while (!BlockValueStack.empty()) {
    502     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    503     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
    504 
    505     if (solveBlockValue(e.second, e.first)) {
    506       // The work item was completely processed.
    507       assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
    508       assert(hasCachedValueInfo(e.second, e.first) &&
    509              "Result should be in cache!");
    510 
    511       BlockValueStack.pop();
    512       BlockValueSet.erase(e);
    513     } else {
    514       // More work needs to be done before revisiting.
    515       assert(BlockValueStack.top() != e && "Stack should have been pushed!");
    516     }
    517   }
    518 }
    519 
    520 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    521   // If already a constant, there is nothing to compute.
    522   if (isa<Constant>(Val))
    523     return true;
    524 
    525   return hasCachedValueInfo(Val, BB);
    526 }
    527 
    528 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    529   // If already a constant, there is nothing to compute.
    530   if (Constant *VC = dyn_cast<Constant>(Val))
    531     return LVILatticeVal::get(VC);
    532 
    533   SeenBlocks.insert(BB);
    534   return getCachedValueInfo(Val, BB);
    535 }
    536 
    537 static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
    538   switch (BBI->getOpcode()) {
    539   default: break;
    540   case Instruction::Load:
    541   case Instruction::Call:
    542   case Instruction::Invoke:
    543     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
    544       if (isa<IntegerType>(BBI->getType())) {
    545         ConstantRange Result = getConstantRangeFromMetadata(*Ranges);
    546         return LVILatticeVal::getRange(Result);
    547       }
    548     break;
    549   };
    550   // Nothing known - Note that we do not want overdefined here.  We may know
    551   // something else about the value and not having range metadata shouldn't
    552   // cause us to throw away those facts.
    553   return LVILatticeVal();
    554 }
    555 
    556 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    557   if (isa<Constant>(Val))
    558     return true;
    559 
    560   if (hasCachedValueInfo(Val, BB)) {
    561     // If we have a cached value, use that.
    562     DEBUG(dbgs() << "  reuse BB '" << BB->getName()
    563                  << "' val=" << getCachedValueInfo(Val, BB) << '\n');
    564 
    565     // Since we're reusing a cached value, we don't need to update the
    566     // OverDefinedCache. The cache will have been properly updated whenever the
    567     // cached value was inserted.
    568     return true;
    569   }
    570 
    571   // Hold off inserting this value into the Cache in case we have to return
    572   // false and come back later.
    573   LVILatticeVal Res;
    574 
    575   Instruction *BBI = dyn_cast<Instruction>(Val);
    576   if (!BBI || BBI->getParent() != BB) {
    577     if (!solveBlockValueNonLocal(Res, Val, BB))
    578       return false;
    579    insertResult(Val, BB, Res);
    580    return true;
    581   }
    582 
    583   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    584     if (!solveBlockValuePHINode(Res, PN, BB))
    585       return false;
    586     insertResult(Val, BB, Res);
    587     return true;
    588   }
    589 
    590   // If this value is a nonnull pointer, record it's range and bailout.
    591   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
    592   if (PT && isKnownNonNull(BBI)) {
    593     Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
    594     insertResult(Val, BB, Res);
    595     return true;
    596   }
    597 
    598   // If this is an instruction which supports range metadata, return the
    599   // implied range.  TODO: This should be an intersection, not a union.
    600   Res.mergeIn(getFromRangeMetadata(BBI), DL);
    601 
    602   // We can only analyze the definitions of certain classes of instructions
    603   // (integral binops and casts at the moment), so bail if this isn't one.
    604   LVILatticeVal Result;
    605   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    606      !BBI->getType()->isIntegerTy()) {
    607     DEBUG(dbgs() << " compute BB '" << BB->getName()
    608                  << "' - overdefined because inst def found.\n");
    609     Res.markOverdefined();
    610     insertResult(Val, BB, Res);
    611     return true;
    612   }
    613 
    614   // FIXME: We're currently limited to binops with a constant RHS.  This should
    615   // be improved.
    616   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    617   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    618     DEBUG(dbgs() << " compute BB '" << BB->getName()
    619                  << "' - overdefined because inst def found.\n");
    620 
    621     Res.markOverdefined();
    622     insertResult(Val, BB, Res);
    623     return true;
    624   }
    625 
    626   if (!solveBlockValueConstantRange(Res, BBI, BB))
    627     return false;
    628   insertResult(Val, BB, Res);
    629   return true;
    630 }
    631 
    632 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    633   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    634     return L->getPointerAddressSpace() == 0 &&
    635            GetUnderlyingObject(L->getPointerOperand(),
    636                                L->getModule()->getDataLayout()) == Ptr;
    637   }
    638   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    639     return S->getPointerAddressSpace() == 0 &&
    640            GetUnderlyingObject(S->getPointerOperand(),
    641                                S->getModule()->getDataLayout()) == Ptr;
    642   }
    643   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    644     if (MI->isVolatile()) return false;
    645 
    646     // FIXME: check whether it has a valuerange that excludes zero?
    647     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    648     if (!Len || Len->isZero()) return false;
    649 
    650     if (MI->getDestAddressSpace() == 0)
    651       if (GetUnderlyingObject(MI->getRawDest(),
    652                               MI->getModule()->getDataLayout()) == Ptr)
    653         return true;
    654     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    655       if (MTI->getSourceAddressSpace() == 0)
    656         if (GetUnderlyingObject(MTI->getRawSource(),
    657                                 MTI->getModule()->getDataLayout()) == Ptr)
    658           return true;
    659   }
    660   return false;
    661 }
    662 
    663 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    664                                                  Value *Val, BasicBlock *BB) {
    665   LVILatticeVal Result;  // Start Undefined.
    666 
    667   // If this is a pointer, and there's a load from that pointer in this BB,
    668   // then we know that the pointer can't be NULL.
    669   bool NotNull = false;
    670   if (Val->getType()->isPointerTy()) {
    671     if (isKnownNonNull(Val)) {
    672       NotNull = true;
    673     } else {
    674       const DataLayout &DL = BB->getModule()->getDataLayout();
    675       Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
    676       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
    677       // inside InstructionDereferencesPointer either.
    678       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
    679         for (Instruction &I : *BB) {
    680           if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
    681             NotNull = true;
    682             break;
    683           }
    684         }
    685       }
    686     }
    687   }
    688 
    689   // If this is the entry block, we must be asking about an argument.  The
    690   // value is overdefined.
    691   if (BB == &BB->getParent()->getEntryBlock()) {
    692     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    693     if (NotNull) {
    694       PointerType *PTy = cast<PointerType>(Val->getType());
    695       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    696     } else {
    697       Result.markOverdefined();
    698     }
    699     BBLV = Result;
    700     return true;
    701   }
    702 
    703   // Loop over all of our predecessors, merging what we know from them into
    704   // result.
    705   bool EdgesMissing = false;
    706   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    707     LVILatticeVal EdgeResult;
    708     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    709     if (EdgesMissing)
    710       continue;
    711 
    712     Result.mergeIn(EdgeResult, DL);
    713 
    714     // If we hit overdefined, exit early.  The BlockVals entry is already set
    715     // to overdefined.
    716     if (Result.isOverdefined()) {
    717       DEBUG(dbgs() << " compute BB '" << BB->getName()
    718             << "' - overdefined because of pred.\n");
    719       // If we previously determined that this is a pointer that can't be null
    720       // then return that rather than giving up entirely.
    721       if (NotNull) {
    722         PointerType *PTy = cast<PointerType>(Val->getType());
    723         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    724       }
    725 
    726       BBLV = Result;
    727       return true;
    728     }
    729   }
    730   if (EdgesMissing)
    731     return false;
    732 
    733   // Return the merged value, which is more precise than 'overdefined'.
    734   assert(!Result.isOverdefined());
    735   BBLV = Result;
    736   return true;
    737 }
    738 
    739 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    740                                                 PHINode *PN, BasicBlock *BB) {
    741   LVILatticeVal Result;  // Start Undefined.
    742 
    743   // Loop over all of our predecessors, merging what we know from them into
    744   // result.
    745   bool EdgesMissing = false;
    746   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    747     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    748     Value *PhiVal = PN->getIncomingValue(i);
    749     LVILatticeVal EdgeResult;
    750     // Note that we can provide PN as the context value to getEdgeValue, even
    751     // though the results will be cached, because PN is the value being used as
    752     // the cache key in the caller.
    753     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
    754     if (EdgesMissing)
    755       continue;
    756 
    757     Result.mergeIn(EdgeResult, DL);
    758 
    759     // If we hit overdefined, exit early.  The BlockVals entry is already set
    760     // to overdefined.
    761     if (Result.isOverdefined()) {
    762       DEBUG(dbgs() << " compute BB '" << BB->getName()
    763             << "' - overdefined because of pred.\n");
    764 
    765       BBLV = Result;
    766       return true;
    767     }
    768   }
    769   if (EdgesMissing)
    770     return false;
    771 
    772   // Return the merged value, which is more precise than 'overdefined'.
    773   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    774   BBLV = Result;
    775   return true;
    776 }
    777 
    778 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
    779                                       LVILatticeVal &Result,
    780                                       bool isTrueDest = true);
    781 
    782 // If we can determine a constant range for the value Val in the context
    783 // provided by the instruction BBI, then merge it into BBLV. If we did find a
    784 // constant range, return true.
    785 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
    786                                                             LVILatticeVal &BBLV,
    787                                                             Instruction *BBI) {
    788   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
    789   if (!BBI)
    790     return;
    791 
    792   for (auto &AssumeVH : AC->assumptions()) {
    793     if (!AssumeVH)
    794       continue;
    795     auto *I = cast<CallInst>(AssumeVH);
    796     if (!isValidAssumeForContext(I, BBI, DT))
    797       continue;
    798 
    799     Value *C = I->getArgOperand(0);
    800     if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
    801       LVILatticeVal Result;
    802       if (getValueFromFromCondition(Val, ICI, Result)) {
    803         if (BBLV.isOverdefined())
    804           BBLV = Result;
    805         else
    806           BBLV.mergeIn(Result, DL);
    807       }
    808     }
    809   }
    810 }
    811 
    812 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    813                                                       Instruction *BBI,
    814                                                       BasicBlock *BB) {
    815   // Figure out the range of the LHS.  If that fails, bail.
    816   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    817     if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
    818       return false;
    819     BBLV.markOverdefined();
    820     return true;
    821   }
    822 
    823   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    824   mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
    825   if (!LHSVal.isConstantRange()) {
    826     BBLV.markOverdefined();
    827     return true;
    828   }
    829 
    830   ConstantRange LHSRange = LHSVal.getConstantRange();
    831   ConstantRange RHSRange(1);
    832   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    833   if (isa<BinaryOperator>(BBI)) {
    834     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    835       RHSRange = ConstantRange(RHS->getValue());
    836     } else {
    837       BBLV.markOverdefined();
    838       return true;
    839     }
    840   }
    841 
    842   // NOTE: We're currently limited by the set of operations that ConstantRange
    843   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    844   // more definitions.
    845   LVILatticeVal Result;
    846   switch (BBI->getOpcode()) {
    847   case Instruction::Add:
    848     Result.markConstantRange(LHSRange.add(RHSRange));
    849     break;
    850   case Instruction::Sub:
    851     Result.markConstantRange(LHSRange.sub(RHSRange));
    852     break;
    853   case Instruction::Mul:
    854     Result.markConstantRange(LHSRange.multiply(RHSRange));
    855     break;
    856   case Instruction::UDiv:
    857     Result.markConstantRange(LHSRange.udiv(RHSRange));
    858     break;
    859   case Instruction::Shl:
    860     Result.markConstantRange(LHSRange.shl(RHSRange));
    861     break;
    862   case Instruction::LShr:
    863     Result.markConstantRange(LHSRange.lshr(RHSRange));
    864     break;
    865   case Instruction::Trunc:
    866     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    867     break;
    868   case Instruction::SExt:
    869     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    870     break;
    871   case Instruction::ZExt:
    872     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    873     break;
    874   case Instruction::BitCast:
    875     Result.markConstantRange(LHSRange);
    876     break;
    877   case Instruction::And:
    878     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    879     break;
    880   case Instruction::Or:
    881     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    882     break;
    883 
    884   // Unhandled instructions are overdefined.
    885   default:
    886     DEBUG(dbgs() << " compute BB '" << BB->getName()
    887                  << "' - overdefined because inst def found.\n");
    888     Result.markOverdefined();
    889     break;
    890   }
    891 
    892   BBLV = Result;
    893   return true;
    894 }
    895 
    896 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
    897                                LVILatticeVal &Result, bool isTrueDest) {
    898   if (ICI && isa<Constant>(ICI->getOperand(1))) {
    899     if (ICI->isEquality() && ICI->getOperand(0) == Val) {
    900       // We know that V has the RHS constant if this is a true SETEQ or
    901       // false SETNE.
    902       if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    903         Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    904       else
    905         Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    906       return true;
    907     }
    908 
    909     // Recognize the range checking idiom that InstCombine produces.
    910     // (X-C1) u< C2 --> [C1, C1+C2)
    911     ConstantInt *NegOffset = nullptr;
    912     if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
    913       match(ICI->getOperand(0), m_Add(m_Specific(Val),
    914                                       m_ConstantInt(NegOffset)));
    915 
    916     ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
    917     if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
    918       // Calculate the range of values that are allowed by the comparison
    919       ConstantRange CmpRange(CI->getValue());
    920       ConstantRange TrueValues =
    921           ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
    922 
    923       if (NegOffset) // Apply the offset from above.
    924         TrueValues = TrueValues.subtract(NegOffset->getValue());
    925 
    926       // If we're interested in the false dest, invert the condition.
    927       if (!isTrueDest) TrueValues = TrueValues.inverse();
    928 
    929       Result = LVILatticeVal::getRange(TrueValues);
    930       return true;
    931     }
    932   }
    933 
    934   return false;
    935 }
    936 
    937 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
    938 /// Val is not constrained on the edge.
    939 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
    940                               BasicBlock *BBTo, LVILatticeVal &Result) {
    941   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
    942   // know that v != 0.
    943   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    944     // If this is a conditional branch and only one successor goes to BBTo, then
    945     // we may be able to infer something from the condition.
    946     if (BI->isConditional() &&
    947         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    948       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    949       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    950              "BBTo isn't a successor of BBFrom");
    951 
    952       // If V is the condition of the branch itself, then we know exactly what
    953       // it is.
    954       if (BI->getCondition() == Val) {
    955         Result = LVILatticeVal::get(ConstantInt::get(
    956                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    957         return true;
    958       }
    959 
    960       // If the condition of the branch is an equality comparison, we may be
    961       // able to infer the value.
    962       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    963         if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
    964           return true;
    965     }
    966   }
    967 
    968   // If the edge was formed by a switch on the value, then we may know exactly
    969   // what it is.
    970   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    971     if (SI->getCondition() != Val)
    972       return false;
    973 
    974     bool DefaultCase = SI->getDefaultDest() == BBTo;
    975     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
    976     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
    977 
    978     for (SwitchInst::CaseIt i : SI->cases()) {
    979       ConstantRange EdgeVal(i.getCaseValue()->getValue());
    980       if (DefaultCase) {
    981         // It is possible that the default destination is the destination of
    982         // some cases. There is no need to perform difference for those cases.
    983         if (i.getCaseSuccessor() != BBTo)
    984           EdgesVals = EdgesVals.difference(EdgeVal);
    985       } else if (i.getCaseSuccessor() == BBTo)
    986         EdgesVals = EdgesVals.unionWith(EdgeVal);
    987     }
    988     Result = LVILatticeVal::getRange(EdgesVals);
    989     return true;
    990   }
    991   return false;
    992 }
    993 
    994 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
    995 /// the basic block if the edge does not constrain Val.
    996 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    997                                       BasicBlock *BBTo, LVILatticeVal &Result,
    998                                       Instruction *CxtI) {
    999   // If already a constant, there is nothing to compute.
   1000   if (Constant *VC = dyn_cast<Constant>(Val)) {
   1001     Result = LVILatticeVal::get(VC);
   1002     return true;
   1003   }
   1004 
   1005   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
   1006     if (!Result.isConstantRange() ||
   1007         Result.getConstantRange().getSingleElement())
   1008       return true;
   1009 
   1010     // FIXME: this check should be moved to the beginning of the function when
   1011     // LVI better supports recursive values. Even for the single value case, we
   1012     // can intersect to detect dead code (an empty range).
   1013     if (!hasBlockValue(Val, BBFrom)) {
   1014       if (pushBlockValue(std::make_pair(BBFrom, Val)))
   1015         return false;
   1016       Result.markOverdefined();
   1017       return true;
   1018     }
   1019 
   1020     // Try to intersect ranges of the BB and the constraint on the edge.
   1021     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
   1022     mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
   1023     // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
   1024     // and caching, below.
   1025     mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
   1026     if (!InBlock.isConstantRange())
   1027       return true;
   1028 
   1029     ConstantRange Range =
   1030       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
   1031     Result = LVILatticeVal::getRange(Range);
   1032     return true;
   1033   }
   1034 
   1035   if (!hasBlockValue(Val, BBFrom)) {
   1036     if (pushBlockValue(std::make_pair(BBFrom, Val)))
   1037       return false;
   1038     Result.markOverdefined();
   1039     return true;
   1040   }
   1041 
   1042   // If we couldn't compute the value on the edge, use the value from the BB.
   1043   Result = getBlockValue(Val, BBFrom);
   1044   mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
   1045   // We can use the context instruction (generically the ultimate instruction
   1046   // the calling pass is trying to simplify) here, even though the result of
   1047   // this function is generally cached when called from the solve* functions
   1048   // (and that cached result might be used with queries using a different
   1049   // context instruction), because when this function is called from the solve*
   1050   // functions, the context instruction is not provided. When called from
   1051   // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
   1052   // but then the result is not cached.
   1053   mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
   1054   return true;
   1055 }
   1056 
   1057 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
   1058                                                   Instruction *CxtI) {
   1059   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
   1060         << BB->getName() << "'\n");
   1061 
   1062   assert(BlockValueStack.empty() && BlockValueSet.empty());
   1063   pushBlockValue(std::make_pair(BB, V));
   1064 
   1065   solve();
   1066   LVILatticeVal Result = getBlockValue(V, BB);
   1067   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
   1068 
   1069   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1070   return Result;
   1071 }
   1072 
   1073 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
   1074   DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
   1075         << CxtI->getName() << "'\n");
   1076 
   1077   LVILatticeVal Result;
   1078   if (auto *I = dyn_cast<Instruction>(V))
   1079     Result = getFromRangeMetadata(I);
   1080   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
   1081 
   1082   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1083   return Result;
   1084 }
   1085 
   1086 LVILatticeVal LazyValueInfoCache::
   1087 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
   1088                Instruction *CxtI) {
   1089   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
   1090         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
   1091 
   1092   LVILatticeVal Result;
   1093   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
   1094     solve();
   1095     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
   1096     (void)WasFastQuery;
   1097     assert(WasFastQuery && "More work to do after problem solved?");
   1098   }
   1099 
   1100   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1101   return Result;
   1102 }
   1103 
   1104 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1105                                     BasicBlock *NewSucc) {
   1106   // When an edge in the graph has been threaded, values that we could not
   1107   // determine a value for before (i.e. were marked overdefined) may be
   1108   // possible to solve now. We do NOT try to proactively update these values.
   1109   // Instead, we clear their entries from the cache, and allow lazy updating to
   1110   // recompute them when needed.
   1111 
   1112   // The updating process is fairly simple: we need to drop cached info
   1113   // for all values that were marked overdefined in OldSucc, and for those same
   1114   // values in any successor of OldSucc (except NewSucc) in which they were
   1115   // also marked overdefined.
   1116   std::vector<BasicBlock*> worklist;
   1117   worklist.push_back(OldSucc);
   1118 
   1119   auto I = OverDefinedCache.find(OldSucc);
   1120   if (I == OverDefinedCache.end())
   1121     return; // Nothing to process here.
   1122   SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
   1123 
   1124   // Use a worklist to perform a depth-first search of OldSucc's successors.
   1125   // NOTE: We do not need a visited list since any blocks we have already
   1126   // visited will have had their overdefined markers cleared already, and we
   1127   // thus won't loop to their successors.
   1128   while (!worklist.empty()) {
   1129     BasicBlock *ToUpdate = worklist.back();
   1130     worklist.pop_back();
   1131 
   1132     // Skip blocks only accessible through NewSucc.
   1133     if (ToUpdate == NewSucc) continue;
   1134 
   1135     bool changed = false;
   1136     for (Value *V : ValsToClear) {
   1137       // If a value was marked overdefined in OldSucc, and is here too...
   1138       auto OI = OverDefinedCache.find(ToUpdate);
   1139       if (OI == OverDefinedCache.end())
   1140         continue;
   1141       SmallPtrSetImpl<Value *> &ValueSet = OI->second;
   1142       if (!ValueSet.count(V))
   1143         continue;
   1144 
   1145       ValueSet.erase(V);
   1146       if (ValueSet.empty())
   1147         OverDefinedCache.erase(OI);
   1148 
   1149       // If we removed anything, then we potentially need to update
   1150       // blocks successors too.
   1151       changed = true;
   1152     }
   1153 
   1154     if (!changed) continue;
   1155 
   1156     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
   1157   }
   1158 }
   1159 
   1160 //===----------------------------------------------------------------------===//
   1161 //                            LazyValueInfo Impl
   1162 //===----------------------------------------------------------------------===//
   1163 
   1164 /// This lazily constructs the LazyValueInfoCache.
   1165 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
   1166                                     const DataLayout *DL,
   1167                                     DominatorTree *DT = nullptr) {
   1168   if (!PImpl) {
   1169     assert(DL && "getCache() called with a null DataLayout");
   1170     PImpl = new LazyValueInfoCache(AC, *DL, DT);
   1171   }
   1172   return *static_cast<LazyValueInfoCache*>(PImpl);
   1173 }
   1174 
   1175 bool LazyValueInfo::runOnFunction(Function &F) {
   1176   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   1177   const DataLayout &DL = F.getParent()->getDataLayout();
   1178 
   1179   DominatorTreeWrapperPass *DTWP =
   1180       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1181   DT = DTWP ? &DTWP->getDomTree() : nullptr;
   1182 
   1183   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1184 
   1185   if (PImpl)
   1186     getCache(PImpl, AC, &DL, DT).clear();
   1187 
   1188   // Fully lazy.
   1189   return false;
   1190 }
   1191 
   1192 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
   1193   AU.setPreservesAll();
   1194   AU.addRequired<AssumptionCacheTracker>();
   1195   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1196 }
   1197 
   1198 void LazyValueInfo::releaseMemory() {
   1199   // If the cache was allocated, free it.
   1200   if (PImpl) {
   1201     delete &getCache(PImpl, AC, nullptr);
   1202     PImpl = nullptr;
   1203   }
   1204 }
   1205 
   1206 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
   1207                                      Instruction *CxtI) {
   1208   const DataLayout &DL = BB->getModule()->getDataLayout();
   1209   LVILatticeVal Result =
   1210       getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
   1211 
   1212   if (Result.isConstant())
   1213     return Result.getConstant();
   1214   if (Result.isConstantRange()) {
   1215     ConstantRange CR = Result.getConstantRange();
   1216     if (const APInt *SingleVal = CR.getSingleElement())
   1217       return ConstantInt::get(V->getContext(), *SingleVal);
   1218   }
   1219   return nullptr;
   1220 }
   1221 
   1222 /// Determine whether the specified value is known to be a
   1223 /// constant on the specified edge. Return null if not.
   1224 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1225                                            BasicBlock *ToBB,
   1226                                            Instruction *CxtI) {
   1227   const DataLayout &DL = FromBB->getModule()->getDataLayout();
   1228   LVILatticeVal Result =
   1229       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
   1230 
   1231   if (Result.isConstant())
   1232     return Result.getConstant();
   1233   if (Result.isConstantRange()) {
   1234     ConstantRange CR = Result.getConstantRange();
   1235     if (const APInt *SingleVal = CR.getSingleElement())
   1236       return ConstantInt::get(V->getContext(), *SingleVal);
   1237   }
   1238   return nullptr;
   1239 }
   1240 
   1241 static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
   1242                                                   LVILatticeVal &Result,
   1243                                                   const DataLayout &DL,
   1244                                                   TargetLibraryInfo *TLI) {
   1245 
   1246   // If we know the value is a constant, evaluate the conditional.
   1247   Constant *Res = nullptr;
   1248   if (Result.isConstant()) {
   1249     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
   1250                                           TLI);
   1251     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1252       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
   1253     return LazyValueInfo::Unknown;
   1254   }
   1255 
   1256   if (Result.isConstantRange()) {
   1257     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1258     if (!CI) return LazyValueInfo::Unknown;
   1259 
   1260     ConstantRange CR = Result.getConstantRange();
   1261     if (Pred == ICmpInst::ICMP_EQ) {
   1262       if (!CR.contains(CI->getValue()))
   1263         return LazyValueInfo::False;
   1264 
   1265       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1266         return LazyValueInfo::True;
   1267     } else if (Pred == ICmpInst::ICMP_NE) {
   1268       if (!CR.contains(CI->getValue()))
   1269         return LazyValueInfo::True;
   1270 
   1271       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1272         return LazyValueInfo::False;
   1273     }
   1274 
   1275     // Handle more complex predicates.
   1276     ConstantRange TrueValues =
   1277         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1278     if (TrueValues.contains(CR))
   1279       return LazyValueInfo::True;
   1280     if (TrueValues.inverse().contains(CR))
   1281       return LazyValueInfo::False;
   1282     return LazyValueInfo::Unknown;
   1283   }
   1284 
   1285   if (Result.isNotConstant()) {
   1286     // If this is an equality comparison, we can try to fold it knowing that
   1287     // "V != C1".
   1288     if (Pred == ICmpInst::ICMP_EQ) {
   1289       // !C1 == C -> false iff C1 == C.
   1290       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1291                                             Result.getNotConstant(), C, DL,
   1292                                             TLI);
   1293       if (Res->isNullValue())
   1294         return LazyValueInfo::False;
   1295     } else if (Pred == ICmpInst::ICMP_NE) {
   1296       // !C1 != C -> true iff C1 == C.
   1297       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1298                                             Result.getNotConstant(), C, DL,
   1299                                             TLI);
   1300       if (Res->isNullValue())
   1301         return LazyValueInfo::True;
   1302     }
   1303     return LazyValueInfo::Unknown;
   1304   }
   1305 
   1306   return LazyValueInfo::Unknown;
   1307 }
   1308 
   1309 /// Determine whether the specified value comparison with a constant is known to
   1310 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
   1311 LazyValueInfo::Tristate
   1312 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1313                                   BasicBlock *FromBB, BasicBlock *ToBB,
   1314                                   Instruction *CxtI) {
   1315   const DataLayout &DL = FromBB->getModule()->getDataLayout();
   1316   LVILatticeVal Result =
   1317       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
   1318 
   1319   return getPredicateResult(Pred, C, Result, DL, TLI);
   1320 }
   1321 
   1322 LazyValueInfo::Tristate
   1323 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
   1324                               Instruction *CxtI) {
   1325   const DataLayout &DL = CxtI->getModule()->getDataLayout();
   1326   LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
   1327   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
   1328   if (Ret != Unknown)
   1329     return Ret;
   1330 
   1331   // Note: The following bit of code is somewhat distinct from the rest of LVI;
   1332   // LVI as a whole tries to compute a lattice value which is conservatively
   1333   // correct at a given location.  In this case, we have a predicate which we
   1334   // weren't able to prove about the merged result, and we're pushing that
   1335   // predicate back along each incoming edge to see if we can prove it
   1336   // separately for each input.  As a motivating example, consider:
   1337   // bb1:
   1338   //   %v1 = ... ; constantrange<1, 5>
   1339   //   br label %merge
   1340   // bb2:
   1341   //   %v2 = ... ; constantrange<10, 20>
   1342   //   br label %merge
   1343   // merge:
   1344   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
   1345   //   %pred = icmp eq i32 %phi, 8
   1346   // We can't tell from the lattice value for '%phi' that '%pred' is false
   1347   // along each path, but by checking the predicate over each input separately,
   1348   // we can.
   1349   // We limit the search to one step backwards from the current BB and value.
   1350   // We could consider extending this to search further backwards through the
   1351   // CFG and/or value graph, but there are non-obvious compile time vs quality
   1352   // tradeoffs.
   1353   if (CxtI) {
   1354     BasicBlock *BB = CxtI->getParent();
   1355 
   1356     // Function entry or an unreachable block.  Bail to avoid confusing
   1357     // analysis below.
   1358     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
   1359     if (PI == PE)
   1360       return Unknown;
   1361 
   1362     // If V is a PHI node in the same block as the context, we need to ask
   1363     // questions about the predicate as applied to the incoming value along
   1364     // each edge. This is useful for eliminating cases where the predicate is
   1365     // known along all incoming edges.
   1366     if (auto *PHI = dyn_cast<PHINode>(V))
   1367       if (PHI->getParent() == BB) {
   1368         Tristate Baseline = Unknown;
   1369         for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
   1370           Value *Incoming = PHI->getIncomingValue(i);
   1371           BasicBlock *PredBB = PHI->getIncomingBlock(i);
   1372           // Note that PredBB may be BB itself.
   1373           Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
   1374                                                CxtI);
   1375 
   1376           // Keep going as long as we've seen a consistent known result for
   1377           // all inputs.
   1378           Baseline = (i == 0) ? Result /* First iteration */
   1379             : (Baseline == Result ? Baseline : Unknown); /* All others */
   1380           if (Baseline == Unknown)
   1381             break;
   1382         }
   1383         if (Baseline != Unknown)
   1384           return Baseline;
   1385       }
   1386 
   1387     // For a comparison where the V is outside this block, it's possible
   1388     // that we've branched on it before. Look to see if the value is known
   1389     // on all incoming edges.
   1390     if (!isa<Instruction>(V) ||
   1391         cast<Instruction>(V)->getParent() != BB) {
   1392       // For predecessor edge, determine if the comparison is true or false
   1393       // on that edge. If they're all true or all false, we can conclude
   1394       // the value of the comparison in this block.
   1395       Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
   1396       if (Baseline != Unknown) {
   1397         // Check that all remaining incoming values match the first one.
   1398         while (++PI != PE) {
   1399           Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
   1400           if (Ret != Baseline) break;
   1401         }
   1402         // If we terminated early, then one of the values didn't match.
   1403         if (PI == PE) {
   1404           return Baseline;
   1405         }
   1406       }
   1407     }
   1408   }
   1409   return Unknown;
   1410 }
   1411 
   1412 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1413                                BasicBlock *NewSucc) {
   1414   if (PImpl) {
   1415     const DataLayout &DL = PredBB->getModule()->getDataLayout();
   1416     getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
   1417   }
   1418 }
   1419 
   1420 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1421   if (PImpl) {
   1422     const DataLayout &DL = BB->getModule()->getDataLayout();
   1423     getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
   1424   }
   1425 }
   1426