Home | History | Annotate | Download | only in dsymutil
      1 //===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
      2 //
      3 //                             The LLVM Linker
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 #include "DebugMap.h"
     10 #include "BinaryHolder.h"
     11 #include "DebugMap.h"
     12 #include "dsymutil.h"
     13 #include "MachOUtils.h"
     14 #include "NonRelocatableStringpool.h"
     15 #include "llvm/ADT/IntervalMap.h"
     16 #include "llvm/ADT/StringMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/CodeGen/AsmPrinter.h"
     19 #include "llvm/CodeGen/DIE.h"
     20 #include "llvm/Config/config.h"
     21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
     22 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
     23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
     24 #include "llvm/MC/MCAsmBackend.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCContext.h"
     27 #include "llvm/MC/MCCodeEmitter.h"
     28 #include "llvm/MC/MCDwarf.h"
     29 #include "llvm/MC/MCInstrInfo.h"
     30 #include "llvm/MC/MCObjectFileInfo.h"
     31 #include "llvm/MC/MCRegisterInfo.h"
     32 #include "llvm/MC/MCStreamer.h"
     33 #include "llvm/MC/MCSubtargetInfo.h"
     34 #include "llvm/MC/MCTargetOptionsCommandFlags.h"
     35 #include "llvm/Object/MachO.h"
     36 #include "llvm/Support/Dwarf.h"
     37 #include "llvm/Support/LEB128.h"
     38 #include "llvm/Support/TargetRegistry.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 #include <string>
     42 #include <tuple>
     43 
     44 namespace llvm {
     45 namespace dsymutil {
     46 
     47 namespace {
     48 
     49 template <typename KeyT, typename ValT>
     50 using HalfOpenIntervalMap =
     51     IntervalMap<KeyT, ValT, IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
     52                 IntervalMapHalfOpenInfo<KeyT>>;
     53 
     54 typedef HalfOpenIntervalMap<uint64_t, int64_t> FunctionIntervals;
     55 
     56 // FIXME: Delete this structure.
     57 struct PatchLocation {
     58   DIE::value_iterator I;
     59 
     60   PatchLocation() = default;
     61   PatchLocation(DIE::value_iterator I) : I(I) {}
     62 
     63   void set(uint64_t New) const {
     64     assert(I);
     65     const auto &Old = *I;
     66     assert(Old.getType() == DIEValue::isInteger);
     67     *I = DIEValue(Old.getAttribute(), Old.getForm(), DIEInteger(New));
     68   }
     69 
     70   uint64_t get() const {
     71     assert(I);
     72     return I->getDIEInteger().getValue();
     73   }
     74 };
     75 
     76 class CompileUnit;
     77 struct DeclMapInfo;
     78 
     79 /// A DeclContext is a named program scope that is used for ODR
     80 /// uniquing of types.
     81 /// The set of DeclContext for the ODR-subject parts of a Dwarf link
     82 /// is expanded (and uniqued) with each new object file processed. We
     83 /// need to determine the context of each DIE in an linked object file
     84 /// to see if the corresponding type has already been emitted.
     85 ///
     86 /// The contexts are conceptually organised as a tree (eg. a function
     87 /// scope is contained in a namespace scope that contains other
     88 /// scopes), but storing/accessing them in an actual tree is too
     89 /// inefficient: we need to be able to very quickly query a context
     90 /// for a given child context by name. Storing a StringMap in each
     91 /// DeclContext would be too space inefficient.
     92 /// The solution here is to give each DeclContext a link to its parent
     93 /// (this allows to walk up the tree), but to query the existance of a
     94 /// specific DeclContext using a separate DenseMap keyed on the hash
     95 /// of the fully qualified name of the context.
     96 class DeclContext {
     97   unsigned QualifiedNameHash;
     98   uint32_t Line;
     99   uint32_t ByteSize;
    100   uint16_t Tag;
    101   StringRef Name;
    102   StringRef File;
    103   const DeclContext &Parent;
    104   const DWARFDebugInfoEntryMinimal *LastSeenDIE;
    105   uint32_t LastSeenCompileUnitID;
    106   uint32_t CanonicalDIEOffset;
    107 
    108   friend DeclMapInfo;
    109 
    110 public:
    111   typedef DenseSet<DeclContext *, DeclMapInfo> Map;
    112 
    113   DeclContext()
    114       : QualifiedNameHash(0), Line(0), ByteSize(0),
    115         Tag(dwarf::DW_TAG_compile_unit), Name(), File(), Parent(*this),
    116         LastSeenDIE(nullptr), LastSeenCompileUnitID(0), CanonicalDIEOffset(0) {}
    117 
    118   DeclContext(unsigned Hash, uint32_t Line, uint32_t ByteSize, uint16_t Tag,
    119               StringRef Name, StringRef File, const DeclContext &Parent,
    120               const DWARFDebugInfoEntryMinimal *LastSeenDIE = nullptr,
    121               unsigned CUId = 0)
    122       : QualifiedNameHash(Hash), Line(Line), ByteSize(ByteSize), Tag(Tag),
    123         Name(Name), File(File), Parent(Parent), LastSeenDIE(LastSeenDIE),
    124         LastSeenCompileUnitID(CUId), CanonicalDIEOffset(0) {}
    125 
    126   uint32_t getQualifiedNameHash() const { return QualifiedNameHash; }
    127 
    128   bool setLastSeenDIE(CompileUnit &U, const DWARFDebugInfoEntryMinimal *Die);
    129 
    130   uint32_t getCanonicalDIEOffset() const { return CanonicalDIEOffset; }
    131   void setCanonicalDIEOffset(uint32_t Offset) { CanonicalDIEOffset = Offset; }
    132 
    133   uint16_t getTag() const { return Tag; }
    134   StringRef getName() const { return Name; }
    135 };
    136 
    137 /// Info type for the DenseMap storing the DeclContext pointers.
    138 struct DeclMapInfo : private DenseMapInfo<DeclContext *> {
    139   using DenseMapInfo<DeclContext *>::getEmptyKey;
    140   using DenseMapInfo<DeclContext *>::getTombstoneKey;
    141 
    142   static unsigned getHashValue(const DeclContext *Ctxt) {
    143     return Ctxt->QualifiedNameHash;
    144   }
    145 
    146   static bool isEqual(const DeclContext *LHS, const DeclContext *RHS) {
    147     if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    148       return RHS == LHS;
    149     return LHS->QualifiedNameHash == RHS->QualifiedNameHash &&
    150            LHS->Line == RHS->Line && LHS->ByteSize == RHS->ByteSize &&
    151            LHS->Name.data() == RHS->Name.data() &&
    152            LHS->File.data() == RHS->File.data() &&
    153            LHS->Parent.QualifiedNameHash == RHS->Parent.QualifiedNameHash;
    154   }
    155 };
    156 
    157 /// This class gives a tree-like API to the DenseMap that stores the
    158 /// DeclContext objects. It also holds the BumpPtrAllocator where
    159 /// these objects will be allocated.
    160 class DeclContextTree {
    161   BumpPtrAllocator Allocator;
    162   DeclContext Root;
    163   DeclContext::Map Contexts;
    164 
    165 public:
    166   /// Get the child of \a Context described by \a DIE in \a Unit. The
    167   /// required strings will be interned in \a StringPool.
    168   /// \returns The child DeclContext along with one bit that is set if
    169   /// this context is invalid.
    170   /// An invalid context means it shouldn't be considered for uniquing, but its
    171   /// not returning null, because some children of that context might be
    172   /// uniquing candidates.  FIXME: The invalid bit along the return value is to
    173   /// emulate some dsymutil-classic functionality.
    174   PointerIntPair<DeclContext *, 1>
    175   getChildDeclContext(DeclContext &Context,
    176                       const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &Unit,
    177                       NonRelocatableStringpool &StringPool, bool InClangModule);
    178 
    179   DeclContext &getRoot() { return Root; }
    180 };
    181 
    182 /// \brief Stores all information relating to a compile unit, be it in
    183 /// its original instance in the object file to its brand new cloned
    184 /// and linked DIE tree.
    185 class CompileUnit {
    186 public:
    187   /// \brief Information gathered about a DIE in the object file.
    188   struct DIEInfo {
    189     int64_t AddrAdjust; ///< Address offset to apply to the described entity.
    190     DeclContext *Ctxt;  ///< ODR Declaration context.
    191     DIE *Clone;         ///< Cloned version of that DIE.
    192     uint32_t ParentIdx; ///< The index of this DIE's parent.
    193     bool Keep : 1;      ///< Is the DIE part of the linked output?
    194     bool InDebugMap : 1;///< Was this DIE's entity found in the map?
    195     bool Prune : 1;     ///< Is this a pure forward declaration we can strip?
    196   };
    197 
    198   CompileUnit(DWARFUnit &OrigUnit, unsigned ID, bool CanUseODR,
    199               StringRef ClangModuleName)
    200       : OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(),
    201         Ranges(RangeAlloc), ClangModuleName(ClangModuleName) {
    202     Info.resize(OrigUnit.getNumDIEs());
    203 
    204     const auto *CUDie = OrigUnit.getUnitDIE(false);
    205     unsigned Lang = CUDie->getAttributeValueAsUnsignedConstant(
    206         &OrigUnit, dwarf::DW_AT_language, 0);
    207     HasODR = CanUseODR && (Lang == dwarf::DW_LANG_C_plus_plus ||
    208                            Lang == dwarf::DW_LANG_C_plus_plus_03 ||
    209                            Lang == dwarf::DW_LANG_C_plus_plus_11 ||
    210                            Lang == dwarf::DW_LANG_C_plus_plus_14 ||
    211                            Lang == dwarf::DW_LANG_ObjC_plus_plus);
    212   }
    213 
    214   CompileUnit(CompileUnit &&RHS)
    215       : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
    216         CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
    217         NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) {
    218     // The CompileUnit container has been 'reserve()'d with the right
    219     // size. We cannot move the IntervalMap anyway.
    220     llvm_unreachable("CompileUnits should not be moved.");
    221   }
    222 
    223   DWARFUnit &getOrigUnit() const { return OrigUnit; }
    224 
    225   unsigned getUniqueID() const { return ID; }
    226 
    227   DIE *getOutputUnitDIE() const { return CUDie; }
    228   void setOutputUnitDIE(DIE *Die) { CUDie = Die; }
    229 
    230   bool hasODR() const { return HasODR; }
    231   bool isClangModule() const { return !ClangModuleName.empty(); }
    232   const std::string &getClangModuleName() const { return ClangModuleName; }
    233 
    234   DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
    235   const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
    236 
    237   uint64_t getStartOffset() const { return StartOffset; }
    238   uint64_t getNextUnitOffset() const { return NextUnitOffset; }
    239   void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; }
    240 
    241   uint64_t getLowPc() const { return LowPc; }
    242   uint64_t getHighPc() const { return HighPc; }
    243 
    244   Optional<PatchLocation> getUnitRangesAttribute() const {
    245     return UnitRangeAttribute;
    246   }
    247   const FunctionIntervals &getFunctionRanges() const { return Ranges; }
    248   const std::vector<PatchLocation> &getRangesAttributes() const {
    249     return RangeAttributes;
    250   }
    251 
    252   const std::vector<std::pair<PatchLocation, int64_t>> &
    253   getLocationAttributes() const {
    254     return LocationAttributes;
    255   }
    256 
    257   void setHasInterestingContent() { HasInterestingContent = true; }
    258   bool hasInterestingContent() { return HasInterestingContent; }
    259 
    260   /// Mark every DIE in this unit as kept. This function also
    261   /// marks variables as InDebugMap so that they appear in the
    262   /// reconstructed accelerator tables.
    263   void markEverythingAsKept();
    264 
    265   /// \brief Compute the end offset for this unit. Must be
    266   /// called after the CU's DIEs have been cloned.
    267   /// \returns the next unit offset (which is also the current
    268   /// debug_info section size).
    269   uint64_t computeNextUnitOffset();
    270 
    271   /// \brief Keep track of a forward reference to DIE \p Die in \p
    272   /// RefUnit by \p Attr. The attribute should be fixed up later to
    273   /// point to the absolute offset of \p Die in the debug_info section
    274   /// or to the canonical offset of \p Ctxt if it is non-null.
    275   void noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
    276                             DeclContext *Ctxt, PatchLocation Attr);
    277 
    278   /// \brief Apply all fixups recored by noteForwardReference().
    279   void fixupForwardReferences();
    280 
    281   /// \brief Add a function range [\p LowPC, \p HighPC) that is
    282   /// relocatad by applying offset \p PCOffset.
    283   void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset);
    284 
    285   /// \brief Keep track of a DW_AT_range attribute that we will need to
    286   /// patch up later.
    287   void noteRangeAttribute(const DIE &Die, PatchLocation Attr);
    288 
    289   /// \brief Keep track of a location attribute pointing to a location
    290   /// list in the debug_loc section.
    291   void noteLocationAttribute(PatchLocation Attr, int64_t PcOffset);
    292 
    293   /// \brief Add a name accelerator entry for \p Die with \p Name
    294   /// which is stored in the string table at \p Offset.
    295   void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset,
    296                           bool SkipPubnamesSection = false);
    297 
    298   /// \brief Add a type accelerator entry for \p Die with \p Name
    299   /// which is stored in the string table at \p Offset.
    300   void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset);
    301 
    302   struct AccelInfo {
    303     StringRef Name;      ///< Name of the entry.
    304     const DIE *Die;      ///< DIE this entry describes.
    305     uint32_t NameOffset; ///< Offset of Name in the string pool.
    306     bool SkipPubSection; ///< Emit this entry only in the apple_* sections.
    307 
    308     AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset,
    309               bool SkipPubSection = false)
    310         : Name(Name), Die(Die), NameOffset(NameOffset),
    311           SkipPubSection(SkipPubSection) {}
    312   };
    313 
    314   const std::vector<AccelInfo> &getPubnames() const { return Pubnames; }
    315   const std::vector<AccelInfo> &getPubtypes() const { return Pubtypes; }
    316 
    317   /// Get the full path for file \a FileNum in the line table
    318   const char *getResolvedPath(unsigned FileNum) {
    319     if (FileNum >= ResolvedPaths.size())
    320       return nullptr;
    321     return ResolvedPaths[FileNum].size() ? ResolvedPaths[FileNum].c_str()
    322                                          : nullptr;
    323   }
    324 
    325   /// Set the fully resolved path for the line-table's file \a FileNum
    326   /// to \a Path.
    327   void setResolvedPath(unsigned FileNum, const std::string &Path) {
    328     if (ResolvedPaths.size() <= FileNum)
    329       ResolvedPaths.resize(FileNum + 1);
    330     ResolvedPaths[FileNum] = Path;
    331   }
    332 
    333 private:
    334   DWARFUnit &OrigUnit;
    335   unsigned ID;
    336   std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
    337   DIE *CUDie;                ///< Root of the linked DIE tree.
    338 
    339   uint64_t StartOffset;
    340   uint64_t NextUnitOffset;
    341 
    342   uint64_t LowPc;
    343   uint64_t HighPc;
    344 
    345   /// \brief A list of attributes to fixup with the absolute offset of
    346   /// a DIE in the debug_info section.
    347   ///
    348   /// The offsets for the attributes in this array couldn't be set while
    349   /// cloning because for cross-cu forward refences the target DIE's
    350   /// offset isn't known you emit the reference attribute.
    351   std::vector<std::tuple<DIE *, const CompileUnit *, DeclContext *,
    352                          PatchLocation>> ForwardDIEReferences;
    353 
    354   FunctionIntervals::Allocator RangeAlloc;
    355   /// \brief The ranges in that interval map are the PC ranges for
    356   /// functions in this unit, associated with the PC offset to apply
    357   /// to the addresses to get the linked address.
    358   FunctionIntervals Ranges;
    359 
    360   /// \brief DW_AT_ranges attributes to patch after we have gathered
    361   /// all the unit's function addresses.
    362   /// @{
    363   std::vector<PatchLocation> RangeAttributes;
    364   Optional<PatchLocation> UnitRangeAttribute;
    365   /// @}
    366 
    367   /// \brief Location attributes that need to be transfered from th
    368   /// original debug_loc section to the liked one. They are stored
    369   /// along with the PC offset that is to be applied to their
    370   /// function's address.
    371   std::vector<std::pair<PatchLocation, int64_t>> LocationAttributes;
    372 
    373   /// \brief Accelerator entries for the unit, both for the pub*
    374   /// sections and the apple* ones.
    375   /// @{
    376   std::vector<AccelInfo> Pubnames;
    377   std::vector<AccelInfo> Pubtypes;
    378   /// @}
    379 
    380   /// Cached resolved paths from the line table.
    381   std::vector<std::string> ResolvedPaths;
    382 
    383   /// Is this unit subject to the ODR rule?
    384   bool HasODR;
    385   /// Did a DIE actually contain a valid reloc?
    386   bool HasInterestingContent;
    387   /// If this is a Clang module, this holds the module's name.
    388   std::string ClangModuleName;
    389 };
    390 
    391 void CompileUnit::markEverythingAsKept() {
    392   for (auto &I : Info)
    393     // Mark everything that wasn't explicity marked for pruning.
    394     I.Keep = !I.Prune;
    395 }
    396 
    397 uint64_t CompileUnit::computeNextUnitOffset() {
    398   NextUnitOffset = StartOffset + 11 /* Header size */;
    399   // The root DIE might be null, meaning that the Unit had nothing to
    400   // contribute to the linked output. In that case, we will emit the
    401   // unit header without any actual DIE.
    402   if (CUDie)
    403     NextUnitOffset += CUDie->getSize();
    404   return NextUnitOffset;
    405 }
    406 
    407 /// \brief Keep track of a forward cross-cu reference from this unit
    408 /// to \p Die that lives in \p RefUnit.
    409 void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
    410                                        DeclContext *Ctxt, PatchLocation Attr) {
    411   ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr);
    412 }
    413 
    414 /// \brief Apply all fixups recorded by noteForwardReference().
    415 void CompileUnit::fixupForwardReferences() {
    416   for (const auto &Ref : ForwardDIEReferences) {
    417     DIE *RefDie;
    418     const CompileUnit *RefUnit;
    419     PatchLocation Attr;
    420     DeclContext *Ctxt;
    421     std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref;
    422     if (Ctxt && Ctxt->getCanonicalDIEOffset())
    423       Attr.set(Ctxt->getCanonicalDIEOffset());
    424     else
    425       Attr.set(RefDie->getOffset() + RefUnit->getStartOffset());
    426   }
    427 }
    428 
    429 void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
    430                                    int64_t PcOffset) {
    431   Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
    432   this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
    433   this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
    434 }
    435 
    436 void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) {
    437   if (Die.getTag() != dwarf::DW_TAG_compile_unit)
    438     RangeAttributes.push_back(Attr);
    439   else
    440     UnitRangeAttribute = Attr;
    441 }
    442 
    443 void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) {
    444   LocationAttributes.emplace_back(Attr, PcOffset);
    445 }
    446 
    447 /// \brief Add a name accelerator entry for \p Die with \p Name
    448 /// which is stored in the string table at \p Offset.
    449 void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name,
    450                                      uint32_t Offset, bool SkipPubSection) {
    451   Pubnames.emplace_back(Name, Die, Offset, SkipPubSection);
    452 }
    453 
    454 /// \brief Add a type accelerator entry for \p Die with \p Name
    455 /// which is stored in the string table at \p Offset.
    456 void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name,
    457                                      uint32_t Offset) {
    458   Pubtypes.emplace_back(Name, Die, Offset, false);
    459 }
    460 
    461 /// \brief The Dwarf streaming logic
    462 ///
    463 /// All interactions with the MC layer that is used to build the debug
    464 /// information binary representation are handled in this class.
    465 class DwarfStreamer {
    466   /// \defgroup MCObjects MC layer objects constructed by the streamer
    467   /// @{
    468   std::unique_ptr<MCRegisterInfo> MRI;
    469   std::unique_ptr<MCAsmInfo> MAI;
    470   std::unique_ptr<MCObjectFileInfo> MOFI;
    471   std::unique_ptr<MCContext> MC;
    472   MCAsmBackend *MAB; // Owned by MCStreamer
    473   std::unique_ptr<MCInstrInfo> MII;
    474   std::unique_ptr<MCSubtargetInfo> MSTI;
    475   MCCodeEmitter *MCE; // Owned by MCStreamer
    476   MCStreamer *MS;     // Owned by AsmPrinter
    477   std::unique_ptr<TargetMachine> TM;
    478   std::unique_ptr<AsmPrinter> Asm;
    479   /// @}
    480 
    481   /// \brief the file we stream the linked Dwarf to.
    482   std::unique_ptr<raw_fd_ostream> OutFile;
    483 
    484   uint32_t RangesSectionSize;
    485   uint32_t LocSectionSize;
    486   uint32_t LineSectionSize;
    487   uint32_t FrameSectionSize;
    488 
    489   /// \brief Emit the pubnames or pubtypes section contribution for \p
    490   /// Unit into \p Sec. The data is provided in \p Names.
    491   void emitPubSectionForUnit(MCSection *Sec, StringRef Name,
    492                              const CompileUnit &Unit,
    493                              const std::vector<CompileUnit::AccelInfo> &Names);
    494 
    495 public:
    496   /// \brief Actually create the streamer and the ouptut file.
    497   ///
    498   /// This could be done directly in the constructor, but it feels
    499   /// more natural to handle errors through return value.
    500   bool init(Triple TheTriple, StringRef OutputFilename);
    501 
    502   /// \brief Dump the file to the disk.
    503   bool finish(const DebugMap &);
    504 
    505   AsmPrinter &getAsmPrinter() const { return *Asm; }
    506 
    507   /// \brief Set the current output section to debug_info and change
    508   /// the MC Dwarf version to \p DwarfVersion.
    509   void switchToDebugInfoSection(unsigned DwarfVersion);
    510 
    511   /// \brief Emit the compilation unit header for \p Unit in the
    512   /// debug_info section.
    513   ///
    514   /// As a side effect, this also switches the current Dwarf version
    515   /// of the MC layer to the one of U.getOrigUnit().
    516   void emitCompileUnitHeader(CompileUnit &Unit);
    517 
    518   /// \brief Recursively emit the DIE tree rooted at \p Die.
    519   void emitDIE(DIE &Die);
    520 
    521   /// \brief Emit the abbreviation table \p Abbrevs to the
    522   /// debug_abbrev section.
    523   void emitAbbrevs(const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs);
    524 
    525   /// \brief Emit the string table described by \p Pool.
    526   void emitStrings(const NonRelocatableStringpool &Pool);
    527 
    528   /// \brief Emit debug_ranges for \p FuncRange by translating the
    529   /// original \p Entries.
    530   void emitRangesEntries(
    531       int64_t UnitPcOffset, uint64_t OrigLowPc,
    532       FunctionIntervals::const_iterator FuncRange,
    533       const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
    534       unsigned AddressSize);
    535 
    536   /// \brief Emit debug_aranges entries for \p Unit and if \p
    537   /// DoRangesSection is true, also emit the debug_ranges entries for
    538   /// the DW_TAG_compile_unit's DW_AT_ranges attribute.
    539   void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection);
    540 
    541   uint32_t getRangesSectionSize() const { return RangesSectionSize; }
    542 
    543   /// \brief Emit the debug_loc contribution for \p Unit by copying
    544   /// the entries from \p Dwarf and offseting them. Update the
    545   /// location attributes to point to the new entries.
    546   void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf);
    547 
    548   /// \brief Emit the line table described in \p Rows into the
    549   /// debug_line section.
    550   void emitLineTableForUnit(MCDwarfLineTableParams Params,
    551                             StringRef PrologueBytes, unsigned MinInstLength,
    552                             std::vector<DWARFDebugLine::Row> &Rows,
    553                             unsigned AdddressSize);
    554 
    555   uint32_t getLineSectionSize() const { return LineSectionSize; }
    556 
    557   /// \brief Emit the .debug_pubnames contribution for \p Unit.
    558   void emitPubNamesForUnit(const CompileUnit &Unit);
    559 
    560   /// \brief Emit the .debug_pubtypes contribution for \p Unit.
    561   void emitPubTypesForUnit(const CompileUnit &Unit);
    562 
    563   /// \brief Emit a CIE.
    564   void emitCIE(StringRef CIEBytes);
    565 
    566   /// \brief Emit an FDE with data \p Bytes.
    567   void emitFDE(uint32_t CIEOffset, uint32_t AddreSize, uint32_t Address,
    568                StringRef Bytes);
    569 
    570   uint32_t getFrameSectionSize() const { return FrameSectionSize; }
    571 };
    572 
    573 bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
    574   std::string ErrorStr;
    575   std::string TripleName;
    576   StringRef Context = "dwarf streamer init";
    577 
    578   // Get the target.
    579   const Target *TheTarget =
    580       TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
    581   if (!TheTarget)
    582     return error(ErrorStr, Context);
    583   TripleName = TheTriple.getTriple();
    584 
    585   // Create all the MC Objects.
    586   MRI.reset(TheTarget->createMCRegInfo(TripleName));
    587   if (!MRI)
    588     return error(Twine("no register info for target ") + TripleName, Context);
    589 
    590   MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
    591   if (!MAI)
    592     return error("no asm info for target " + TripleName, Context);
    593 
    594   MOFI.reset(new MCObjectFileInfo);
    595   MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
    596   MOFI->InitMCObjectFileInfo(TheTriple, Reloc::Default, CodeModel::Default,
    597                              *MC);
    598 
    599   MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
    600   if (!MAB)
    601     return error("no asm backend for target " + TripleName, Context);
    602 
    603   MII.reset(TheTarget->createMCInstrInfo());
    604   if (!MII)
    605     return error("no instr info info for target " + TripleName, Context);
    606 
    607   MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
    608   if (!MSTI)
    609     return error("no subtarget info for target " + TripleName, Context);
    610 
    611   MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC);
    612   if (!MCE)
    613     return error("no code emitter for target " + TripleName, Context);
    614 
    615   // Create the output file.
    616   std::error_code EC;
    617   OutFile =
    618       llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
    619   if (EC)
    620     return error(Twine(OutputFilename) + ": " + EC.message(), Context);
    621 
    622   MCTargetOptions MCOptions = InitMCTargetOptionsFromFlags();
    623   MS = TheTarget->createMCObjectStreamer(
    624       TheTriple, *MC, *MAB, *OutFile, MCE, *MSTI, MCOptions.MCRelaxAll,
    625       MCOptions.MCIncrementalLinkerCompatible,
    626       /*DWARFMustBeAtTheEnd*/ false);
    627   if (!MS)
    628     return error("no object streamer for target " + TripleName, Context);
    629 
    630   // Finally create the AsmPrinter we'll use to emit the DIEs.
    631   TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions()));
    632   if (!TM)
    633     return error("no target machine for target " + TripleName, Context);
    634 
    635   Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
    636   if (!Asm)
    637     return error("no asm printer for target " + TripleName, Context);
    638 
    639   RangesSectionSize = 0;
    640   LocSectionSize = 0;
    641   LineSectionSize = 0;
    642   FrameSectionSize = 0;
    643 
    644   return true;
    645 }
    646 
    647 bool DwarfStreamer::finish(const DebugMap &DM) {
    648   if (DM.getTriple().isOSDarwin() && !DM.getBinaryPath().empty())
    649     return MachOUtils::generateDsymCompanion(DM, *MS, *OutFile);
    650 
    651   MS->Finish();
    652   return true;
    653 }
    654 
    655 /// \brief Set the current output section to debug_info and change
    656 /// the MC Dwarf version to \p DwarfVersion.
    657 void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
    658   MS->SwitchSection(MOFI->getDwarfInfoSection());
    659   MC->setDwarfVersion(DwarfVersion);
    660 }
    661 
    662 /// \brief Emit the compilation unit header for \p Unit in the
    663 /// debug_info section.
    664 ///
    665 /// A Dwarf scetion header is encoded as:
    666 ///  uint32_t   Unit length (omiting this field)
    667 ///  uint16_t   Version
    668 ///  uint32_t   Abbreviation table offset
    669 ///  uint8_t    Address size
    670 ///
    671 /// Leading to a total of 11 bytes.
    672 void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
    673   unsigned Version = Unit.getOrigUnit().getVersion();
    674   switchToDebugInfoSection(Version);
    675 
    676   // Emit size of content not including length itself. The size has
    677   // already been computed in CompileUnit::computeOffsets(). Substract
    678   // 4 to that size to account for the length field.
    679   Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
    680   Asm->EmitInt16(Version);
    681   // We share one abbreviations table across all units so it's always at the
    682   // start of the section.
    683   Asm->EmitInt32(0);
    684   Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
    685 }
    686 
    687 /// \brief Emit the \p Abbrevs array as the shared abbreviation table
    688 /// for the linked Dwarf file.
    689 void DwarfStreamer::emitAbbrevs(
    690     const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs) {
    691   MS->SwitchSection(MOFI->getDwarfAbbrevSection());
    692   Asm->emitDwarfAbbrevs(Abbrevs);
    693 }
    694 
    695 /// \brief Recursively emit the DIE tree rooted at \p Die.
    696 void DwarfStreamer::emitDIE(DIE &Die) {
    697   MS->SwitchSection(MOFI->getDwarfInfoSection());
    698   Asm->emitDwarfDIE(Die);
    699 }
    700 
    701 /// \brief Emit the debug_str section stored in \p Pool.
    702 void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
    703   Asm->OutStreamer->SwitchSection(MOFI->getDwarfStrSection());
    704   for (auto *Entry = Pool.getFirstEntry(); Entry;
    705        Entry = Pool.getNextEntry(Entry))
    706     Asm->OutStreamer->EmitBytes(
    707         StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
    708 }
    709 
    710 /// \brief Emit the debug_range section contents for \p FuncRange by
    711 /// translating the original \p Entries. The debug_range section
    712 /// format is totally trivial, consisting just of pairs of address
    713 /// sized addresses describing the ranges.
    714 void DwarfStreamer::emitRangesEntries(
    715     int64_t UnitPcOffset, uint64_t OrigLowPc,
    716     FunctionIntervals::const_iterator FuncRange,
    717     const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
    718     unsigned AddressSize) {
    719   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
    720 
    721   // Offset each range by the right amount.
    722   int64_t PcOffset = Entries.empty() ? 0 : FuncRange.value() + UnitPcOffset;
    723   for (const auto &Range : Entries) {
    724     if (Range.isBaseAddressSelectionEntry(AddressSize)) {
    725       warn("unsupported base address selection operation",
    726            "emitting debug_ranges");
    727       break;
    728     }
    729     // Do not emit empty ranges.
    730     if (Range.StartAddress == Range.EndAddress)
    731       continue;
    732 
    733     // All range entries should lie in the function range.
    734     if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() &&
    735           Range.EndAddress + OrigLowPc <= FuncRange.stop()))
    736       warn("inconsistent range data.", "emitting debug_ranges");
    737     MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize);
    738     MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize);
    739     RangesSectionSize += 2 * AddressSize;
    740   }
    741 
    742   // Add the terminator entry.
    743   MS->EmitIntValue(0, AddressSize);
    744   MS->EmitIntValue(0, AddressSize);
    745   RangesSectionSize += 2 * AddressSize;
    746 }
    747 
    748 /// \brief Emit the debug_aranges contribution of a unit and
    749 /// if \p DoDebugRanges is true the debug_range contents for a
    750 /// compile_unit level DW_AT_ranges attribute (Which are basically the
    751 /// same thing with a different base address).
    752 /// Just aggregate all the ranges gathered inside that unit.
    753 void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit,
    754                                           bool DoDebugRanges) {
    755   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
    756   // Gather the ranges in a vector, so that we can simplify them. The
    757   // IntervalMap will have coalesced the non-linked ranges, but here
    758   // we want to coalesce the linked addresses.
    759   std::vector<std::pair<uint64_t, uint64_t>> Ranges;
    760   const auto &FunctionRanges = Unit.getFunctionRanges();
    761   for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end();
    762        Range != End; ++Range)
    763     Ranges.push_back(std::make_pair(Range.start() + Range.value(),
    764                                     Range.stop() + Range.value()));
    765 
    766   // The object addresses where sorted, but again, the linked
    767   // addresses might end up in a different order.
    768   std::sort(Ranges.begin(), Ranges.end());
    769 
    770   if (!Ranges.empty()) {
    771     MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection());
    772 
    773     MCSymbol *BeginLabel = Asm->createTempSymbol("Barange");
    774     MCSymbol *EndLabel = Asm->createTempSymbol("Earange");
    775 
    776     unsigned HeaderSize =
    777         sizeof(int32_t) + // Size of contents (w/o this field
    778         sizeof(int16_t) + // DWARF ARange version number
    779         sizeof(int32_t) + // Offset of CU in the .debug_info section
    780         sizeof(int8_t) +  // Pointer Size (in bytes)
    781         sizeof(int8_t);   // Segment Size (in bytes)
    782 
    783     unsigned TupleSize = AddressSize * 2;
    784     unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize);
    785 
    786     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length
    787     Asm->OutStreamer->EmitLabel(BeginLabel);
    788     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number
    789     Asm->EmitInt32(Unit.getStartOffset());     // Corresponding unit's offset
    790     Asm->EmitInt8(AddressSize);                // Address size
    791     Asm->EmitInt8(0);                          // Segment size
    792 
    793     Asm->OutStreamer->EmitFill(Padding, 0x0);
    794 
    795     for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End;
    796          ++Range) {
    797       uint64_t RangeStart = Range->first;
    798       MS->EmitIntValue(RangeStart, AddressSize);
    799       while ((Range + 1) != End && Range->second == (Range + 1)->first)
    800         ++Range;
    801       MS->EmitIntValue(Range->second - RangeStart, AddressSize);
    802     }
    803 
    804     // Emit terminator
    805     Asm->OutStreamer->EmitIntValue(0, AddressSize);
    806     Asm->OutStreamer->EmitIntValue(0, AddressSize);
    807     Asm->OutStreamer->EmitLabel(EndLabel);
    808   }
    809 
    810   if (!DoDebugRanges)
    811     return;
    812 
    813   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
    814   // Offset each range by the right amount.
    815   int64_t PcOffset = -Unit.getLowPc();
    816   // Emit coalesced ranges.
    817   for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) {
    818     MS->EmitIntValue(Range->first + PcOffset, AddressSize);
    819     while (Range + 1 != End && Range->second == (Range + 1)->first)
    820       ++Range;
    821     MS->EmitIntValue(Range->second + PcOffset, AddressSize);
    822     RangesSectionSize += 2 * AddressSize;
    823   }
    824 
    825   // Add the terminator entry.
    826   MS->EmitIntValue(0, AddressSize);
    827   MS->EmitIntValue(0, AddressSize);
    828   RangesSectionSize += 2 * AddressSize;
    829 }
    830 
    831 /// \brief Emit location lists for \p Unit and update attribtues to
    832 /// point to the new entries.
    833 void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit,
    834                                          DWARFContext &Dwarf) {
    835   const auto &Attributes = Unit.getLocationAttributes();
    836 
    837   if (Attributes.empty())
    838     return;
    839 
    840   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection());
    841 
    842   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
    843   const DWARFSection &InputSec = Dwarf.getLocSection();
    844   DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize);
    845   DWARFUnit &OrigUnit = Unit.getOrigUnit();
    846   const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
    847   int64_t UnitPcOffset = 0;
    848   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
    849       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
    850   if (OrigLowPc != -1ULL)
    851     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
    852 
    853   for (const auto &Attr : Attributes) {
    854     uint32_t Offset = Attr.first.get();
    855     Attr.first.set(LocSectionSize);
    856     // This is the quantity to add to the old location address to get
    857     // the correct address for the new one.
    858     int64_t LocPcOffset = Attr.second + UnitPcOffset;
    859     while (Data.isValidOffset(Offset)) {
    860       uint64_t Low = Data.getUnsigned(&Offset, AddressSize);
    861       uint64_t High = Data.getUnsigned(&Offset, AddressSize);
    862       LocSectionSize += 2 * AddressSize;
    863       if (Low == 0 && High == 0) {
    864         Asm->OutStreamer->EmitIntValue(0, AddressSize);
    865         Asm->OutStreamer->EmitIntValue(0, AddressSize);
    866         break;
    867       }
    868       Asm->OutStreamer->EmitIntValue(Low + LocPcOffset, AddressSize);
    869       Asm->OutStreamer->EmitIntValue(High + LocPcOffset, AddressSize);
    870       uint64_t Length = Data.getU16(&Offset);
    871       Asm->OutStreamer->EmitIntValue(Length, 2);
    872       // Just copy the bytes over.
    873       Asm->OutStreamer->EmitBytes(
    874           StringRef(InputSec.Data.substr(Offset, Length)));
    875       Offset += Length;
    876       LocSectionSize += Length + 2;
    877     }
    878   }
    879 }
    880 
    881 void DwarfStreamer::emitLineTableForUnit(MCDwarfLineTableParams Params,
    882                                          StringRef PrologueBytes,
    883                                          unsigned MinInstLength,
    884                                          std::vector<DWARFDebugLine::Row> &Rows,
    885                                          unsigned PointerSize) {
    886   // Switch to the section where the table will be emitted into.
    887   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection());
    888   MCSymbol *LineStartSym = MC->createTempSymbol();
    889   MCSymbol *LineEndSym = MC->createTempSymbol();
    890 
    891   // The first 4 bytes is the total length of the information for this
    892   // compilation unit (not including these 4 bytes for the length).
    893   Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4);
    894   Asm->OutStreamer->EmitLabel(LineStartSym);
    895   // Copy Prologue.
    896   MS->EmitBytes(PrologueBytes);
    897   LineSectionSize += PrologueBytes.size() + 4;
    898 
    899   SmallString<128> EncodingBuffer;
    900   raw_svector_ostream EncodingOS(EncodingBuffer);
    901 
    902   if (Rows.empty()) {
    903     // We only have the dummy entry, dsymutil emits an entry with a 0
    904     // address in that case.
    905     MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
    906     MS->EmitBytes(EncodingOS.str());
    907     LineSectionSize += EncodingBuffer.size();
    908     MS->EmitLabel(LineEndSym);
    909     return;
    910   }
    911 
    912   // Line table state machine fields
    913   unsigned FileNum = 1;
    914   unsigned LastLine = 1;
    915   unsigned Column = 0;
    916   unsigned IsStatement = 1;
    917   unsigned Isa = 0;
    918   uint64_t Address = -1ULL;
    919 
    920   unsigned RowsSinceLastSequence = 0;
    921 
    922   for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) {
    923     auto &Row = Rows[Idx];
    924 
    925     int64_t AddressDelta;
    926     if (Address == -1ULL) {
    927       MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
    928       MS->EmitULEB128IntValue(PointerSize + 1);
    929       MS->EmitIntValue(dwarf::DW_LNE_set_address, 1);
    930       MS->EmitIntValue(Row.Address, PointerSize);
    931       LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1);
    932       AddressDelta = 0;
    933     } else {
    934       AddressDelta = (Row.Address - Address) / MinInstLength;
    935     }
    936 
    937     // FIXME: code copied and transfromed from
    938     // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share
    939     // this code, but the current compatibility requirement with
    940     // classic dsymutil makes it hard. Revisit that once this
    941     // requirement is dropped.
    942 
    943     if (FileNum != Row.File) {
    944       FileNum = Row.File;
    945       MS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
    946       MS->EmitULEB128IntValue(FileNum);
    947       LineSectionSize += 1 + getULEB128Size(FileNum);
    948     }
    949     if (Column != Row.Column) {
    950       Column = Row.Column;
    951       MS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
    952       MS->EmitULEB128IntValue(Column);
    953       LineSectionSize += 1 + getULEB128Size(Column);
    954     }
    955 
    956     // FIXME: We should handle the discriminator here, but dsymutil
    957     // doesn' consider it, thus ignore it for now.
    958 
    959     if (Isa != Row.Isa) {
    960       Isa = Row.Isa;
    961       MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
    962       MS->EmitULEB128IntValue(Isa);
    963       LineSectionSize += 1 + getULEB128Size(Isa);
    964     }
    965     if (IsStatement != Row.IsStmt) {
    966       IsStatement = Row.IsStmt;
    967       MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
    968       LineSectionSize += 1;
    969     }
    970     if (Row.BasicBlock) {
    971       MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
    972       LineSectionSize += 1;
    973     }
    974 
    975     if (Row.PrologueEnd) {
    976       MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
    977       LineSectionSize += 1;
    978     }
    979 
    980     if (Row.EpilogueBegin) {
    981       MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
    982       LineSectionSize += 1;
    983     }
    984 
    985     int64_t LineDelta = int64_t(Row.Line) - LastLine;
    986     if (!Row.EndSequence) {
    987       MCDwarfLineAddr::Encode(*MC, Params, LineDelta, AddressDelta, EncodingOS);
    988       MS->EmitBytes(EncodingOS.str());
    989       LineSectionSize += EncodingBuffer.size();
    990       EncodingBuffer.resize(0);
    991       Address = Row.Address;
    992       LastLine = Row.Line;
    993       RowsSinceLastSequence++;
    994     } else {
    995       if (LineDelta) {
    996         MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1);
    997         MS->EmitSLEB128IntValue(LineDelta);
    998         LineSectionSize += 1 + getSLEB128Size(LineDelta);
    999       }
   1000       if (AddressDelta) {
   1001         MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1);
   1002         MS->EmitULEB128IntValue(AddressDelta);
   1003         LineSectionSize += 1 + getULEB128Size(AddressDelta);
   1004       }
   1005       MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
   1006       MS->EmitBytes(EncodingOS.str());
   1007       LineSectionSize += EncodingBuffer.size();
   1008       EncodingBuffer.resize(0);
   1009       Address = -1ULL;
   1010       LastLine = FileNum = IsStatement = 1;
   1011       RowsSinceLastSequence = Column = Isa = 0;
   1012     }
   1013   }
   1014 
   1015   if (RowsSinceLastSequence) {
   1016     MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
   1017     MS->EmitBytes(EncodingOS.str());
   1018     LineSectionSize += EncodingBuffer.size();
   1019     EncodingBuffer.resize(0);
   1020   }
   1021 
   1022   MS->EmitLabel(LineEndSym);
   1023 }
   1024 
   1025 /// \brief Emit the pubnames or pubtypes section contribution for \p
   1026 /// Unit into \p Sec. The data is provided in \p Names.
   1027 void DwarfStreamer::emitPubSectionForUnit(
   1028     MCSection *Sec, StringRef SecName, const CompileUnit &Unit,
   1029     const std::vector<CompileUnit::AccelInfo> &Names) {
   1030   if (Names.empty())
   1031     return;
   1032 
   1033   // Start the dwarf pubnames section.
   1034   Asm->OutStreamer->SwitchSection(Sec);
   1035   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin");
   1036   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end");
   1037 
   1038   bool HeaderEmitted = false;
   1039   // Emit the pubnames for this compilation unit.
   1040   for (const auto &Name : Names) {
   1041     if (Name.SkipPubSection)
   1042       continue;
   1043 
   1044     if (!HeaderEmitted) {
   1045       // Emit the header.
   1046       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length
   1047       Asm->OutStreamer->EmitLabel(BeginLabel);
   1048       Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version
   1049       Asm->EmitInt32(Unit.getStartOffset());      // Unit offset
   1050       Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size
   1051       HeaderEmitted = true;
   1052     }
   1053     Asm->EmitInt32(Name.Die->getOffset());
   1054     Asm->OutStreamer->EmitBytes(
   1055         StringRef(Name.Name.data(), Name.Name.size() + 1));
   1056   }
   1057 
   1058   if (!HeaderEmitted)
   1059     return;
   1060   Asm->EmitInt32(0); // End marker.
   1061   Asm->OutStreamer->EmitLabel(EndLabel);
   1062 }
   1063 
   1064 /// \brief Emit .debug_pubnames for \p Unit.
   1065 void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) {
   1066   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(),
   1067                         "names", Unit, Unit.getPubnames());
   1068 }
   1069 
   1070 /// \brief Emit .debug_pubtypes for \p Unit.
   1071 void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) {
   1072   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(),
   1073                         "types", Unit, Unit.getPubtypes());
   1074 }
   1075 
   1076 /// \brief Emit a CIE into the debug_frame section.
   1077 void DwarfStreamer::emitCIE(StringRef CIEBytes) {
   1078   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
   1079 
   1080   MS->EmitBytes(CIEBytes);
   1081   FrameSectionSize += CIEBytes.size();
   1082 }
   1083 
   1084 /// \brief Emit a FDE into the debug_frame section. \p FDEBytes
   1085 /// contains the FDE data without the length, CIE offset and address
   1086 /// which will be replaced with the paramter values.
   1087 void DwarfStreamer::emitFDE(uint32_t CIEOffset, uint32_t AddrSize,
   1088                             uint32_t Address, StringRef FDEBytes) {
   1089   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
   1090 
   1091   MS->EmitIntValue(FDEBytes.size() + 4 + AddrSize, 4);
   1092   MS->EmitIntValue(CIEOffset, 4);
   1093   MS->EmitIntValue(Address, AddrSize);
   1094   MS->EmitBytes(FDEBytes);
   1095   FrameSectionSize += FDEBytes.size() + 8 + AddrSize;
   1096 }
   1097 
   1098 /// \brief The core of the Dwarf linking logic.
   1099 ///
   1100 /// The link of the dwarf information from the object files will be
   1101 /// driven by the selection of 'root DIEs', which are DIEs that
   1102 /// describe variables or functions that are present in the linked
   1103 /// binary (and thus have entries in the debug map). All the debug
   1104 /// information that will be linked (the DIEs, but also the line
   1105 /// tables, ranges, ...) is derived from that set of root DIEs.
   1106 ///
   1107 /// The root DIEs are identified because they contain relocations that
   1108 /// correspond to a debug map entry at specific places (the low_pc for
   1109 /// a function, the location for a variable). These relocations are
   1110 /// called ValidRelocs in the DwarfLinker and are gathered as a very
   1111 /// first step when we start processing a DebugMapObject.
   1112 class DwarfLinker {
   1113 public:
   1114   DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
   1115       : OutputFilename(OutputFilename), Options(Options),
   1116         BinHolder(Options.Verbose), LastCIEOffset(0) {}
   1117 
   1118   /// \brief Link the contents of the DebugMap.
   1119   bool link(const DebugMap &);
   1120 
   1121   void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
   1122                      const DWARFDebugInfoEntryMinimal *DIE = nullptr) const;
   1123 
   1124 private:
   1125   /// \brief Called at the start of a debug object link.
   1126   void startDebugObject(DWARFContext &, DebugMapObject &);
   1127 
   1128   /// \brief Called at the end of a debug object link.
   1129   void endDebugObject();
   1130 
   1131   /// Keeps track of relocations.
   1132   class RelocationManager {
   1133     struct ValidReloc {
   1134       uint32_t Offset;
   1135       uint32_t Size;
   1136       uint64_t Addend;
   1137       const DebugMapObject::DebugMapEntry *Mapping;
   1138 
   1139       ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
   1140                  const DebugMapObject::DebugMapEntry *Mapping)
   1141           : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
   1142 
   1143       bool operator<(const ValidReloc &RHS) const {
   1144         return Offset < RHS.Offset;
   1145       }
   1146     };
   1147 
   1148     DwarfLinker &Linker;
   1149 
   1150     /// \brief The valid relocations for the current DebugMapObject.
   1151     /// This vector is sorted by relocation offset.
   1152     std::vector<ValidReloc> ValidRelocs;
   1153 
   1154     /// \brief Index into ValidRelocs of the next relocation to
   1155     /// consider. As we walk the DIEs in acsending file offset and as
   1156     /// ValidRelocs is sorted by file offset, keeping this index
   1157     /// uptodate is all we have to do to have a cheap lookup during the
   1158     /// root DIE selection and during DIE cloning.
   1159     unsigned NextValidReloc;
   1160 
   1161   public:
   1162     RelocationManager(DwarfLinker &Linker)
   1163         : Linker(Linker), NextValidReloc(0) {}
   1164 
   1165     bool hasValidRelocs() const { return !ValidRelocs.empty(); }
   1166     /// \brief Reset the NextValidReloc counter.
   1167     void resetValidRelocs() { NextValidReloc = 0; }
   1168 
   1169     /// \defgroup FindValidRelocations Translate debug map into a list
   1170     /// of relevant relocations
   1171     ///
   1172     /// @{
   1173     bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
   1174                                     const DebugMapObject &DMO);
   1175 
   1176     bool findValidRelocs(const object::SectionRef &Section,
   1177                          const object::ObjectFile &Obj,
   1178                          const DebugMapObject &DMO);
   1179 
   1180     void findValidRelocsMachO(const object::SectionRef &Section,
   1181                               const object::MachOObjectFile &Obj,
   1182                               const DebugMapObject &DMO);
   1183     /// @}
   1184 
   1185     bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   1186                             CompileUnit::DIEInfo &Info);
   1187 
   1188     bool applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
   1189                           bool isLittleEndian);
   1190   };
   1191 
   1192   /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
   1193   ///
   1194   /// @{
   1195   /// \brief Recursively walk the \p DIE tree and look for DIEs to
   1196   /// keep. Store that information in \p CU's DIEInfo.
   1197   void lookForDIEsToKeep(RelocationManager &RelocMgr,
   1198                          const DWARFDebugInfoEntryMinimal &DIE,
   1199                          const DebugMapObject &DMO, CompileUnit &CU,
   1200                          unsigned Flags);
   1201 
   1202   /// If this compile unit is really a skeleton CU that points to a
   1203   /// clang module, register it in ClangModules and return true.
   1204   ///
   1205   /// A skeleton CU is a CU without children, a DW_AT_gnu_dwo_name
   1206   /// pointing to the module, and a DW_AT_gnu_dwo_id with the module
   1207   /// hash.
   1208   bool registerModuleReference(const DWARFDebugInfoEntryMinimal &CUDie,
   1209                                const DWARFUnit &Unit, DebugMap &ModuleMap,
   1210                                unsigned Indent = 0);
   1211 
   1212   /// Recursively add the debug info in this clang module .pcm
   1213   /// file (and all the modules imported by it in a bottom-up fashion)
   1214   /// to Units.
   1215   void loadClangModule(StringRef Filename, StringRef ModulePath,
   1216                        StringRef ModuleName, uint64_t DwoId,
   1217                        DebugMap &ModuleMap, unsigned Indent = 0);
   1218 
   1219   /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
   1220   enum TravesalFlags {
   1221     TF_Keep = 1 << 0,            ///< Mark the traversed DIEs as kept.
   1222     TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
   1223     TF_DependencyWalk = 1 << 2,  ///< Walking the dependencies of a kept DIE.
   1224     TF_ParentWalk = 1 << 3,      ///< Walking up the parents of a kept DIE.
   1225     TF_ODR = 1 << 4,             ///< Use the ODR whhile keeping dependants.
   1226     TF_SkipPC = 1 << 5,          ///< Skip all location attributes.
   1227   };
   1228 
   1229   /// \brief Mark the passed DIE as well as all the ones it depends on
   1230   /// as kept.
   1231   void keepDIEAndDependencies(RelocationManager &RelocMgr,
   1232                                const DWARFDebugInfoEntryMinimal &DIE,
   1233                                CompileUnit::DIEInfo &MyInfo,
   1234                                const DebugMapObject &DMO, CompileUnit &CU,
   1235                                bool UseODR);
   1236 
   1237   unsigned shouldKeepDIE(RelocationManager &RelocMgr,
   1238                          const DWARFDebugInfoEntryMinimal &DIE,
   1239                          CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
   1240                          unsigned Flags);
   1241 
   1242   unsigned shouldKeepVariableDIE(RelocationManager &RelocMgr,
   1243                                  const DWARFDebugInfoEntryMinimal &DIE,
   1244                                  CompileUnit &Unit,
   1245                                  CompileUnit::DIEInfo &MyInfo, unsigned Flags);
   1246 
   1247   unsigned shouldKeepSubprogramDIE(RelocationManager &RelocMgr,
   1248                                    const DWARFDebugInfoEntryMinimal &DIE,
   1249                                    CompileUnit &Unit,
   1250                                    CompileUnit::DIEInfo &MyInfo,
   1251                                    unsigned Flags);
   1252 
   1253   bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   1254                           CompileUnit::DIEInfo &Info);
   1255   /// @}
   1256 
   1257   /// \defgroup Linking Methods used to link the debug information
   1258   ///
   1259   /// @{
   1260 
   1261   class DIECloner {
   1262     DwarfLinker &Linker;
   1263     RelocationManager &RelocMgr;
   1264     /// Allocator used for all the DIEValue objects.
   1265     BumpPtrAllocator &DIEAlloc;
   1266     MutableArrayRef<CompileUnit> CompileUnits;
   1267     LinkOptions Options;
   1268 
   1269   public:
   1270     DIECloner(DwarfLinker &Linker, RelocationManager &RelocMgr,
   1271               BumpPtrAllocator &DIEAlloc,
   1272               MutableArrayRef<CompileUnit> CompileUnits, LinkOptions &Options)
   1273         : Linker(Linker), RelocMgr(RelocMgr), DIEAlloc(DIEAlloc),
   1274           CompileUnits(CompileUnits), Options(Options) {}
   1275 
   1276     /// Recursively clone \p InputDIE into an tree of DIE objects
   1277     /// where useless (as decided by lookForDIEsToKeep()) bits have been
   1278     /// stripped out and addresses have been rewritten according to the
   1279     /// debug map.
   1280     ///
   1281     /// \param OutOffset is the offset the cloned DIE in the output
   1282     /// compile unit.
   1283     /// \param PCOffset (while cloning a function scope) is the offset
   1284     /// applied to the entry point of the function to get the linked address.
   1285     ///
   1286     /// \returns the root of the cloned tree or null if nothing was selected.
   1287     DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
   1288                   int64_t PCOffset, uint32_t OutOffset, unsigned Flags);
   1289 
   1290     /// Construct the output DIE tree by cloning the DIEs we
   1291     /// chose to keep above. If there are no valid relocs, then there's
   1292     /// nothing to clone/emit.
   1293     void cloneAllCompileUnits(DWARFContextInMemory &DwarfContext);
   1294 
   1295   private:
   1296     typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
   1297 
   1298     /// Information gathered and exchanged between the various
   1299     /// clone*Attributes helpers about the attributes of a particular DIE.
   1300     struct AttributesInfo {
   1301       const char *Name, *MangledName;         ///< Names.
   1302       uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool.
   1303 
   1304       uint64_t OrigLowPc;  ///< Value of AT_low_pc in the input DIE
   1305       uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE
   1306       int64_t PCOffset; ///< Offset to apply to PC addresses inside a function.
   1307 
   1308       bool HasLowPc;      ///< Does the DIE have a low_pc attribute?
   1309       bool IsDeclaration; ///< Is this DIE only a declaration?
   1310 
   1311       AttributesInfo()
   1312           : Name(nullptr), MangledName(nullptr), NameOffset(0),
   1313             MangledNameOffset(0), OrigLowPc(UINT64_MAX), OrigHighPc(0),
   1314             PCOffset(0), HasLowPc(false), IsDeclaration(false) {}
   1315     };
   1316 
   1317     /// Helper for cloneDIE.
   1318     unsigned cloneAttribute(DIE &Die,
   1319                             const DWARFDebugInfoEntryMinimal &InputDIE,
   1320                             CompileUnit &U, const DWARFFormValue &Val,
   1321                             const AttributeSpec AttrSpec, unsigned AttrSize,
   1322                             AttributesInfo &AttrInfo);
   1323 
   1324     /// Clone a string attribute described by \p AttrSpec and add
   1325     /// it to \p Die.
   1326     /// \returns the size of the new attribute.
   1327     unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
   1328                                   const DWARFFormValue &Val,
   1329                                   const DWARFUnit &U);
   1330 
   1331     /// Clone an attribute referencing another DIE and add
   1332     /// it to \p Die.
   1333     /// \returns the size of the new attribute.
   1334     unsigned
   1335     cloneDieReferenceAttribute(DIE &Die,
   1336                                const DWARFDebugInfoEntryMinimal &InputDIE,
   1337                                AttributeSpec AttrSpec, unsigned AttrSize,
   1338                                const DWARFFormValue &Val, CompileUnit &Unit);
   1339 
   1340     /// Clone an attribute referencing another DIE and add
   1341     /// it to \p Die.
   1342     /// \returns the size of the new attribute.
   1343     unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
   1344                                  const DWARFFormValue &Val, unsigned AttrSize);
   1345 
   1346     /// Clone an attribute referencing another DIE and add
   1347     /// it to \p Die.
   1348     /// \returns the size of the new attribute.
   1349     unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
   1350                                    const DWARFFormValue &Val,
   1351                                    const CompileUnit &Unit,
   1352                                    AttributesInfo &Info);
   1353 
   1354     /// Clone a scalar attribute  and add it to \p Die.
   1355     /// \returns the size of the new attribute.
   1356     unsigned cloneScalarAttribute(DIE &Die,
   1357                                   const DWARFDebugInfoEntryMinimal &InputDIE,
   1358                                   CompileUnit &U, AttributeSpec AttrSpec,
   1359                                   const DWARFFormValue &Val, unsigned AttrSize,
   1360                                   AttributesInfo &Info);
   1361 
   1362     /// Get the potential name and mangled name for the entity
   1363     /// described by \p Die and store them in \Info if they are not
   1364     /// already there.
   1365     /// \returns is a name was found.
   1366     bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U,
   1367                      AttributesInfo &Info);
   1368 
   1369     /// Create a copy of abbreviation Abbrev.
   1370     void copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR);
   1371   };
   1372 
   1373   /// \brief Assign an abbreviation number to \p Abbrev
   1374   void AssignAbbrev(DIEAbbrev &Abbrev);
   1375 
   1376   /// \brief FoldingSet that uniques the abbreviations.
   1377   FoldingSet<DIEAbbrev> AbbreviationsSet;
   1378   /// \brief Storage for the unique Abbreviations.
   1379   /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
   1380   /// be changed to a vecot of unique_ptrs.
   1381   std::vector<std::unique_ptr<DIEAbbrev>> Abbreviations;
   1382 
   1383   /// \brief Compute and emit debug_ranges section for \p Unit, and
   1384   /// patch the attributes referencing it.
   1385   void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const;
   1386 
   1387   /// \brief Generate and emit the DW_AT_ranges attribute for a
   1388   /// compile_unit if it had one.
   1389   void generateUnitRanges(CompileUnit &Unit) const;
   1390 
   1391   /// \brief Extract the line tables fromt he original dwarf, extract
   1392   /// the relevant parts according to the linked function ranges and
   1393   /// emit the result in the debug_line section.
   1394   void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf);
   1395 
   1396   /// \brief Emit the accelerator entries for \p Unit.
   1397   void emitAcceleratorEntriesForUnit(CompileUnit &Unit);
   1398 
   1399   /// \brief Patch the frame info for an object file and emit it.
   1400   void patchFrameInfoForObject(const DebugMapObject &, DWARFContext &,
   1401                                unsigned AddressSize);
   1402 
   1403   /// \brief DIELoc objects that need to be destructed (but not freed!).
   1404   std::vector<DIELoc *> DIELocs;
   1405   /// \brief DIEBlock objects that need to be destructed (but not freed!).
   1406   std::vector<DIEBlock *> DIEBlocks;
   1407   /// \brief Allocator used for all the DIEValue objects.
   1408   BumpPtrAllocator DIEAlloc;
   1409   /// @}
   1410 
   1411   /// ODR Contexts for that link.
   1412   DeclContextTree ODRContexts;
   1413 
   1414   /// \defgroup Helpers Various helper methods.
   1415   ///
   1416   /// @{
   1417   bool createStreamer(Triple TheTriple, StringRef OutputFilename);
   1418 
   1419   /// \brief Attempt to load a debug object from disk.
   1420   ErrorOr<const object::ObjectFile &> loadObject(BinaryHolder &BinaryHolder,
   1421                                                  DebugMapObject &Obj,
   1422                                                  const DebugMap &Map);
   1423   /// @}
   1424 
   1425   std::string OutputFilename;
   1426   LinkOptions Options;
   1427   BinaryHolder BinHolder;
   1428   std::unique_ptr<DwarfStreamer> Streamer;
   1429   uint64_t OutputDebugInfoSize;
   1430   unsigned UnitID; ///< A unique ID that identifies each compile unit.
   1431 
   1432   /// The units of the current debug map object.
   1433   std::vector<CompileUnit> Units;
   1434 
   1435   /// The debug map object currently under consideration.
   1436   DebugMapObject *CurrentDebugObject;
   1437 
   1438   /// \brief The Dwarf string pool
   1439   NonRelocatableStringpool StringPool;
   1440 
   1441   /// \brief This map is keyed by the entry PC of functions in that
   1442   /// debug object and the associated value is a pair storing the
   1443   /// corresponding end PC and the offset to apply to get the linked
   1444   /// address.
   1445   ///
   1446   /// See startDebugObject() for a more complete description of its use.
   1447   std::map<uint64_t, std::pair<uint64_t, int64_t>> Ranges;
   1448 
   1449   /// \brief The CIEs that have been emitted in the output
   1450   /// section. The actual CIE data serves a the key to this StringMap,
   1451   /// this takes care of comparing the semantics of CIEs defined in
   1452   /// different object files.
   1453   StringMap<uint32_t> EmittedCIEs;
   1454 
   1455   /// Offset of the last CIE that has been emitted in the output
   1456   /// debug_frame section.
   1457   uint32_t LastCIEOffset;
   1458 
   1459   /// Mapping the PCM filename to the DwoId.
   1460   StringMap<uint64_t> ClangModules;
   1461 };
   1462 
   1463 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
   1464 /// CompileUnit object instead.
   1465 static CompileUnit *getUnitForOffset(MutableArrayRef<CompileUnit> Units,
   1466                                      unsigned Offset) {
   1467   auto CU =
   1468       std::upper_bound(Units.begin(), Units.end(), Offset,
   1469                        [](uint32_t LHS, const CompileUnit &RHS) {
   1470                          return LHS < RHS.getOrigUnit().getNextUnitOffset();
   1471                        });
   1472   return CU != Units.end() ? &*CU : nullptr;
   1473 }
   1474 
   1475 /// Resolve the DIE attribute reference that has been
   1476 /// extracted in \p RefValue. The resulting DIE migh be in another
   1477 /// CompileUnit which is stored into \p ReferencedCU.
   1478 /// \returns null if resolving fails for any reason.
   1479 static const DWARFDebugInfoEntryMinimal *resolveDIEReference(
   1480     const DwarfLinker &Linker, MutableArrayRef<CompileUnit> Units,
   1481     const DWARFFormValue &RefValue, const DWARFUnit &Unit,
   1482     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
   1483   assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
   1484   uint64_t RefOffset = *RefValue.getAsReference(&Unit);
   1485 
   1486   if ((RefCU = getUnitForOffset(Units, RefOffset)))
   1487     if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
   1488       return RefDie;
   1489 
   1490   Linker.reportWarning("could not find referenced DIE", &Unit, &DIE);
   1491   return nullptr;
   1492 }
   1493 
   1494 /// \returns whether the passed \a Attr type might contain a DIE
   1495 /// reference suitable for ODR uniquing.
   1496 static bool isODRAttribute(uint16_t Attr) {
   1497   switch (Attr) {
   1498   default:
   1499     return false;
   1500   case dwarf::DW_AT_type:
   1501   case dwarf::DW_AT_containing_type:
   1502   case dwarf::DW_AT_specification:
   1503   case dwarf::DW_AT_abstract_origin:
   1504   case dwarf::DW_AT_import:
   1505     return true;
   1506   }
   1507   llvm_unreachable("Improper attribute.");
   1508 }
   1509 
   1510 /// Set the last DIE/CU a context was seen in and, possibly invalidate
   1511 /// the context if it is ambiguous.
   1512 ///
   1513 /// In the current implementation, we don't handle overloaded
   1514 /// functions well, because the argument types are not taken into
   1515 /// account when computing the DeclContext tree.
   1516 ///
   1517 /// Some of this is mitigated byt using mangled names that do contain
   1518 /// the arguments types, but sometimes (eg. with function templates)
   1519 /// we don't have that. In that case, just do not unique anything that
   1520 /// refers to the contexts we are not able to distinguish.
   1521 ///
   1522 /// If a context that is not a namespace appears twice in the same CU,
   1523 /// we know it is ambiguous. Make it invalid.
   1524 bool DeclContext::setLastSeenDIE(CompileUnit &U,
   1525                                  const DWARFDebugInfoEntryMinimal *Die) {
   1526   if (LastSeenCompileUnitID == U.getUniqueID()) {
   1527     DWARFUnit &OrigUnit = U.getOrigUnit();
   1528     uint32_t FirstIdx = OrigUnit.getDIEIndex(LastSeenDIE);
   1529     U.getInfo(FirstIdx).Ctxt = nullptr;
   1530     return false;
   1531   }
   1532 
   1533   LastSeenCompileUnitID = U.getUniqueID();
   1534   LastSeenDIE = Die;
   1535   return true;
   1536 }
   1537 
   1538 PointerIntPair<DeclContext *, 1> DeclContextTree::getChildDeclContext(
   1539     DeclContext &Context, const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &U,
   1540     NonRelocatableStringpool &StringPool, bool InClangModule) {
   1541   unsigned Tag = DIE->getTag();
   1542 
   1543   // FIXME: dsymutil-classic compat: We should bail out here if we
   1544   // have a specification or an abstract_origin. We will get the
   1545   // parent context wrong here.
   1546 
   1547   switch (Tag) {
   1548   default:
   1549     // By default stop gathering child contexts.
   1550     return PointerIntPair<DeclContext *, 1>(nullptr);
   1551   case dwarf::DW_TAG_module:
   1552     break;
   1553   case dwarf::DW_TAG_compile_unit:
   1554     return PointerIntPair<DeclContext *, 1>(&Context);
   1555   case dwarf::DW_TAG_subprogram:
   1556     // Do not unique anything inside CU local functions.
   1557     if ((Context.getTag() == dwarf::DW_TAG_namespace ||
   1558          Context.getTag() == dwarf::DW_TAG_compile_unit) &&
   1559         !DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
   1560                                                   dwarf::DW_AT_external, 0))
   1561       return PointerIntPair<DeclContext *, 1>(nullptr);
   1562   // Fallthrough
   1563   case dwarf::DW_TAG_member:
   1564   case dwarf::DW_TAG_namespace:
   1565   case dwarf::DW_TAG_structure_type:
   1566   case dwarf::DW_TAG_class_type:
   1567   case dwarf::DW_TAG_union_type:
   1568   case dwarf::DW_TAG_enumeration_type:
   1569   case dwarf::DW_TAG_typedef:
   1570     // Artificial things might be ambiguous, because they might be
   1571     // created on demand. For example implicitely defined constructors
   1572     // are ambiguous because of the way we identify contexts, and they
   1573     // won't be generated everytime everywhere.
   1574     if (DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
   1575                                                  dwarf::DW_AT_artificial, 0))
   1576       return PointerIntPair<DeclContext *, 1>(nullptr);
   1577     break;
   1578   }
   1579 
   1580   const char *Name = DIE->getName(&U.getOrigUnit(), DINameKind::LinkageName);
   1581   const char *ShortName = DIE->getName(&U.getOrigUnit(), DINameKind::ShortName);
   1582   StringRef NameRef;
   1583   StringRef ShortNameRef;
   1584   StringRef FileRef;
   1585 
   1586   if (Name)
   1587     NameRef = StringPool.internString(Name);
   1588   else if (Tag == dwarf::DW_TAG_namespace)
   1589     // FIXME: For dsymutil-classic compatibility. I think uniquing
   1590     // within anonymous namespaces is wrong. There is no ODR guarantee
   1591     // there.
   1592     NameRef = StringPool.internString("(anonymous namespace)");
   1593 
   1594   if (ShortName && ShortName != Name)
   1595     ShortNameRef = StringPool.internString(ShortName);
   1596   else
   1597     ShortNameRef = NameRef;
   1598 
   1599   if (Tag != dwarf::DW_TAG_class_type && Tag != dwarf::DW_TAG_structure_type &&
   1600       Tag != dwarf::DW_TAG_union_type &&
   1601       Tag != dwarf::DW_TAG_enumeration_type && NameRef.empty())
   1602     return PointerIntPair<DeclContext *, 1>(nullptr);
   1603 
   1604   std::string File;
   1605   unsigned Line = 0;
   1606   unsigned ByteSize = UINT32_MAX;
   1607 
   1608   if (!InClangModule) {
   1609     // Gather some discriminating data about the DeclContext we will be
   1610     // creating: File, line number and byte size. This shouldn't be
   1611     // necessary, because the ODR is just about names, but given that we
   1612     // do some approximations with overloaded functions and anonymous
   1613     // namespaces, use these additional data points to make the process
   1614     // safer.  This is disabled for clang modules, because forward
   1615     // declarations of module-defined types do not have a file and line.
   1616     ByteSize = DIE->getAttributeValueAsUnsignedConstant(
   1617         &U.getOrigUnit(), dwarf::DW_AT_byte_size, UINT64_MAX);
   1618     if (Tag != dwarf::DW_TAG_namespace || !Name) {
   1619       if (unsigned FileNum = DIE->getAttributeValueAsUnsignedConstant(
   1620               &U.getOrigUnit(), dwarf::DW_AT_decl_file, 0)) {
   1621         if (const auto *LT = U.getOrigUnit().getContext().getLineTableForUnit(
   1622                 &U.getOrigUnit())) {
   1623           // FIXME: dsymutil-classic compatibility. I'd rather not
   1624           // unique anything in anonymous namespaces, but if we do, then
   1625           // verify that the file and line correspond.
   1626           if (!Name && Tag == dwarf::DW_TAG_namespace)
   1627             FileNum = 1;
   1628 
   1629           // FIXME: Passing U.getOrigUnit().getCompilationDir()
   1630           // instead of "" would allow more uniquing, but for now, do
   1631           // it this way to match dsymutil-classic.
   1632           if (LT->getFileNameByIndex(
   1633                   FileNum, "",
   1634                   DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
   1635                   File)) {
   1636             Line = DIE->getAttributeValueAsUnsignedConstant(
   1637                 &U.getOrigUnit(), dwarf::DW_AT_decl_line, 0);
   1638 #ifdef HAVE_REALPATH
   1639             // Cache the resolved paths, because calling realpath is expansive.
   1640             if (const char *ResolvedPath = U.getResolvedPath(FileNum)) {
   1641               File = ResolvedPath;
   1642             } else {
   1643               char RealPath[PATH_MAX + 1];
   1644               RealPath[PATH_MAX] = 0;
   1645               if (::realpath(File.c_str(), RealPath))
   1646                 File = RealPath;
   1647               U.setResolvedPath(FileNum, File);
   1648             }
   1649 #endif
   1650             FileRef = StringPool.internString(File);
   1651           }
   1652         }
   1653       }
   1654     }
   1655   }
   1656 
   1657   if (!Line && NameRef.empty())
   1658     return PointerIntPair<DeclContext *, 1>(nullptr);
   1659 
   1660   // We hash NameRef, which is the mangled name, in order to get most
   1661   // overloaded functions resolve correctly.
   1662   //
   1663   // Strictly speaking, hashing the Tag is only necessary for a
   1664   // DW_TAG_module, to prevent uniquing of a module and a namespace
   1665   // with the same name.
   1666   //
   1667   // FIXME: dsymutil-classic won't unique the same type presented
   1668   // once as a struct and once as a class. Using the Tag in the fully
   1669   // qualified name hash to get the same effect.
   1670   unsigned Hash = hash_combine(Context.getQualifiedNameHash(), Tag, NameRef);
   1671 
   1672   // FIXME: dsymutil-classic compatibility: when we don't have a name,
   1673   // use the filename.
   1674   if (Tag == dwarf::DW_TAG_namespace && NameRef == "(anonymous namespace)")
   1675     Hash = hash_combine(Hash, FileRef);
   1676 
   1677   // Now look if this context already exists.
   1678   DeclContext Key(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context);
   1679   auto ContextIter = Contexts.find(&Key);
   1680 
   1681   if (ContextIter == Contexts.end()) {
   1682     // The context wasn't found.
   1683     bool Inserted;
   1684     DeclContext *NewContext =
   1685         new (Allocator) DeclContext(Hash, Line, ByteSize, Tag, NameRef, FileRef,
   1686                                     Context, DIE, U.getUniqueID());
   1687     std::tie(ContextIter, Inserted) = Contexts.insert(NewContext);
   1688     assert(Inserted && "Failed to insert DeclContext");
   1689     (void)Inserted;
   1690   } else if (Tag != dwarf::DW_TAG_namespace &&
   1691              !(*ContextIter)->setLastSeenDIE(U, DIE)) {
   1692     // The context was found, but it is ambiguous with another context
   1693     // in the same file. Mark it invalid.
   1694     return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
   1695   }
   1696 
   1697   assert(ContextIter != Contexts.end());
   1698   // FIXME: dsymutil-classic compatibility. Union types aren't
   1699   // uniques, but their children might be.
   1700   if ((Tag == dwarf::DW_TAG_subprogram &&
   1701        Context.getTag() != dwarf::DW_TAG_structure_type &&
   1702        Context.getTag() != dwarf::DW_TAG_class_type) ||
   1703       (Tag == dwarf::DW_TAG_union_type))
   1704     return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
   1705 
   1706   return PointerIntPair<DeclContext *, 1>(*ContextIter);
   1707 }
   1708 
   1709 bool DwarfLinker::DIECloner::getDIENames(const DWARFDebugInfoEntryMinimal &Die,
   1710                                          DWARFUnit &U, AttributesInfo &Info) {
   1711   // FIXME: a bit wasteful as the first getName might return the
   1712   // short name.
   1713   if (!Info.MangledName &&
   1714       (Info.MangledName = Die.getName(&U, DINameKind::LinkageName)))
   1715     Info.MangledNameOffset =
   1716         Linker.StringPool.getStringOffset(Info.MangledName);
   1717 
   1718   if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName)))
   1719     Info.NameOffset = Linker.StringPool.getStringOffset(Info.Name);
   1720 
   1721   return Info.Name || Info.MangledName;
   1722 }
   1723 
   1724 /// \brief Report a warning to the user, optionaly including
   1725 /// information about a specific \p DIE related to the warning.
   1726 void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
   1727                                 const DWARFDebugInfoEntryMinimal *DIE) const {
   1728   StringRef Context = "<debug map>";
   1729   if (CurrentDebugObject)
   1730     Context = CurrentDebugObject->getObjectFilename();
   1731   warn(Warning, Context);
   1732 
   1733   if (!Options.Verbose || !DIE)
   1734     return;
   1735 
   1736   errs() << "    in DIE:\n";
   1737   DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
   1738             6 /* Indent */);
   1739 }
   1740 
   1741 bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) {
   1742   if (Options.NoOutput)
   1743     return true;
   1744 
   1745   Streamer = llvm::make_unique<DwarfStreamer>();
   1746   return Streamer->init(TheTriple, OutputFilename);
   1747 }
   1748 
   1749 /// Recursive helper to build the global DeclContext information and
   1750 /// gather the child->parent relationships in the original compile unit.
   1751 ///
   1752 /// \return true when this DIE and all of its children are only
   1753 /// forward declarations to types defined in external clang modules
   1754 /// (i.e., forward declarations that are children of a DW_TAG_module).
   1755 static bool analyzeContextInfo(const DWARFDebugInfoEntryMinimal *DIE,
   1756                                unsigned ParentIdx, CompileUnit &CU,
   1757                                DeclContext *CurrentDeclContext,
   1758                                NonRelocatableStringpool &StringPool,
   1759                                DeclContextTree &Contexts,
   1760                                bool InImportedModule = false) {
   1761   unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
   1762   CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
   1763 
   1764   // Clang imposes an ODR on modules(!) regardless of the language:
   1765   //  "The module-id should consist of only a single identifier,
   1766   //   which provides the name of the module being defined. Each
   1767   //   module shall have a single definition."
   1768   //
   1769   // This does not extend to the types inside the modules:
   1770   //  "[I]n C, this implies that if two structs are defined in
   1771   //   different submodules with the same name, those two types are
   1772   //   distinct types (but may be compatible types if their
   1773   //   definitions match)."
   1774   //
   1775   // We treat non-C++ modules like namespaces for this reason.
   1776   if (DIE->getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
   1777       DIE->getAttributeValueAsString(&CU.getOrigUnit(), dwarf::DW_AT_name,
   1778                                      "") != CU.getClangModuleName()) {
   1779     InImportedModule = true;
   1780   }
   1781 
   1782   Info.ParentIdx = ParentIdx;
   1783   bool InClangModule = CU.isClangModule() || InImportedModule;
   1784   if (CU.hasODR() || InClangModule) {
   1785     if (CurrentDeclContext) {
   1786       auto PtrInvalidPair = Contexts.getChildDeclContext(
   1787           *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
   1788       CurrentDeclContext = PtrInvalidPair.getPointer();
   1789       Info.Ctxt =
   1790           PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
   1791     } else
   1792       Info.Ctxt = CurrentDeclContext = nullptr;
   1793   }
   1794 
   1795   Info.Prune = InImportedModule;
   1796   if (DIE->hasChildren())
   1797     for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
   1798          Child = Child->getSibling())
   1799       Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
   1800                                        StringPool, Contexts, InImportedModule);
   1801 
   1802   // Prune this DIE if it is either a forward declaration inside a
   1803   // DW_TAG_module or a DW_TAG_module that contains nothing but
   1804   // forward declarations.
   1805   Info.Prune &= (DIE->getTag() == dwarf::DW_TAG_module) ||
   1806                 DIE->getAttributeValueAsUnsignedConstant(
   1807                     &CU.getOrigUnit(), dwarf::DW_AT_declaration, 0);
   1808 
   1809   // Don't prune it if there is no definition for the DIE.
   1810   Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
   1811 
   1812   return Info.Prune;
   1813 }
   1814 
   1815 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
   1816   switch (Tag) {
   1817   default:
   1818     return false;
   1819   case dwarf::DW_TAG_subprogram:
   1820   case dwarf::DW_TAG_lexical_block:
   1821   case dwarf::DW_TAG_subroutine_type:
   1822   case dwarf::DW_TAG_structure_type:
   1823   case dwarf::DW_TAG_class_type:
   1824   case dwarf::DW_TAG_union_type:
   1825     return true;
   1826   }
   1827   llvm_unreachable("Invalid Tag");
   1828 }
   1829 
   1830 static unsigned getRefAddrSize(const DWARFUnit &U) {
   1831   if (U.getVersion() == 2)
   1832     return U.getAddressByteSize();
   1833   return 4;
   1834 }
   1835 
   1836 void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) {
   1837   Units.reserve(Dwarf.getNumCompileUnits());
   1838   // Iterate over the debug map entries and put all the ones that are
   1839   // functions (because they have a size) into the Ranges map. This
   1840   // map is very similar to the FunctionRanges that are stored in each
   1841   // unit, with 2 notable differences:
   1842   //  - obviously this one is global, while the other ones are per-unit.
   1843   //  - this one contains not only the functions described in the DIE
   1844   // tree, but also the ones that are only in the debug map.
   1845   // The latter information is required to reproduce dsymutil's logic
   1846   // while linking line tables. The cases where this information
   1847   // matters look like bugs that need to be investigated, but for now
   1848   // we need to reproduce dsymutil's behavior.
   1849   // FIXME: Once we understood exactly if that information is needed,
   1850   // maybe totally remove this (or try to use it to do a real
   1851   // -gline-tables-only on Darwin.
   1852   for (const auto &Entry : Obj.symbols()) {
   1853     const auto &Mapping = Entry.getValue();
   1854     if (Mapping.Size)
   1855       Ranges[Mapping.ObjectAddress] = std::make_pair(
   1856           Mapping.ObjectAddress + Mapping.Size,
   1857           int64_t(Mapping.BinaryAddress) - Mapping.ObjectAddress);
   1858   }
   1859 }
   1860 
   1861 void DwarfLinker::endDebugObject() {
   1862   Units.clear();
   1863   Ranges.clear();
   1864 
   1865   for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
   1866     (*I)->~DIEBlock();
   1867   for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
   1868     (*I)->~DIELoc();
   1869 
   1870   DIEBlocks.clear();
   1871   DIELocs.clear();
   1872   DIEAlloc.Reset();
   1873 }
   1874 
   1875 /// \brief Iterate over the relocations of the given \p Section and
   1876 /// store the ones that correspond to debug map entries into the
   1877 /// ValidRelocs array.
   1878 void DwarfLinker::RelocationManager::
   1879 findValidRelocsMachO(const object::SectionRef &Section,
   1880                      const object::MachOObjectFile &Obj,
   1881                      const DebugMapObject &DMO) {
   1882   StringRef Contents;
   1883   Section.getContents(Contents);
   1884   DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
   1885 
   1886   for (const object::RelocationRef &Reloc : Section.relocations()) {
   1887     object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
   1888     MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
   1889     unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
   1890     uint64_t Offset64 = Reloc.getOffset();
   1891     if ((RelocSize != 4 && RelocSize != 8)) {
   1892       Linker.reportWarning(" unsupported relocation in debug_info section.");
   1893       continue;
   1894     }
   1895     uint32_t Offset = Offset64;
   1896     // Mach-o uses REL relocations, the addend is at the relocation offset.
   1897     uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
   1898 
   1899     auto Sym = Reloc.getSymbol();
   1900     if (Sym != Obj.symbol_end()) {
   1901       ErrorOr<StringRef> SymbolName = Sym->getName();
   1902       if (!SymbolName) {
   1903         Linker.reportWarning("error getting relocation symbol name.");
   1904         continue;
   1905       }
   1906       if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
   1907         ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
   1908     } else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) {
   1909       // Do not store the addend. The addend was the address of the
   1910       // symbol in the object file, the address in the binary that is
   1911       // stored in the debug map doesn't need to be offseted.
   1912       ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping);
   1913     }
   1914   }
   1915 }
   1916 
   1917 /// \brief Dispatch the valid relocation finding logic to the
   1918 /// appropriate handler depending on the object file format.
   1919 bool DwarfLinker::RelocationManager::findValidRelocs(
   1920     const object::SectionRef &Section, const object::ObjectFile &Obj,
   1921     const DebugMapObject &DMO) {
   1922   // Dispatch to the right handler depending on the file type.
   1923   if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
   1924     findValidRelocsMachO(Section, *MachOObj, DMO);
   1925   else
   1926     Linker.reportWarning(Twine("unsupported object file type: ") +
   1927                          Obj.getFileName());
   1928 
   1929   if (ValidRelocs.empty())
   1930     return false;
   1931 
   1932   // Sort the relocations by offset. We will walk the DIEs linearly in
   1933   // the file, this allows us to just keep an index in the relocation
   1934   // array that we advance during our walk, rather than resorting to
   1935   // some associative container. See DwarfLinker::NextValidReloc.
   1936   std::sort(ValidRelocs.begin(), ValidRelocs.end());
   1937   return true;
   1938 }
   1939 
   1940 /// \brief Look for relocations in the debug_info section that match
   1941 /// entries in the debug map. These relocations will drive the Dwarf
   1942 /// link by indicating which DIEs refer to symbols present in the
   1943 /// linked binary.
   1944 /// \returns wether there are any valid relocations in the debug info.
   1945 bool DwarfLinker::RelocationManager::
   1946 findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
   1947                            const DebugMapObject &DMO) {
   1948   // Find the debug_info section.
   1949   for (const object::SectionRef &Section : Obj.sections()) {
   1950     StringRef SectionName;
   1951     Section.getName(SectionName);
   1952     SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
   1953     if (SectionName != "debug_info")
   1954       continue;
   1955     return findValidRelocs(Section, Obj, DMO);
   1956   }
   1957   return false;
   1958 }
   1959 
   1960 /// \brief Checks that there is a relocation against an actual debug
   1961 /// map entry between \p StartOffset and \p NextOffset.
   1962 ///
   1963 /// This function must be called with offsets in strictly ascending
   1964 /// order because it never looks back at relocations it already 'went past'.
   1965 /// \returns true and sets Info.InDebugMap if it is the case.
   1966 bool DwarfLinker::RelocationManager::
   1967 hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   1968                    CompileUnit::DIEInfo &Info) {
   1969   assert(NextValidReloc == 0 ||
   1970          StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
   1971   if (NextValidReloc >= ValidRelocs.size())
   1972     return false;
   1973 
   1974   uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
   1975 
   1976   // We might need to skip some relocs that we didn't consider. For
   1977   // example the high_pc of a discarded DIE might contain a reloc that
   1978   // is in the list because it actually corresponds to the start of a
   1979   // function that is in the debug map.
   1980   while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
   1981     RelocOffset = ValidRelocs[++NextValidReloc].Offset;
   1982 
   1983   if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
   1984     return false;
   1985 
   1986   const auto &ValidReloc = ValidRelocs[NextValidReloc++];
   1987   const auto &Mapping = ValidReloc.Mapping->getValue();
   1988   if (Linker.Options.Verbose)
   1989     outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
   1990            << " " << format("\t%016" PRIx64 " => %016" PRIx64,
   1991                             uint64_t(Mapping.ObjectAddress),
   1992                             uint64_t(Mapping.BinaryAddress));
   1993 
   1994   Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend -
   1995                     Mapping.ObjectAddress;
   1996   Info.InDebugMap = true;
   1997   return true;
   1998 }
   1999 
   2000 /// \brief Get the starting and ending (exclusive) offset for the
   2001 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
   2002 /// supposed to point to the position of the first attribute described
   2003 /// by \p Abbrev.
   2004 /// \return [StartOffset, EndOffset) as a pair.
   2005 static std::pair<uint32_t, uint32_t>
   2006 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
   2007                     unsigned Offset, const DWARFUnit &Unit) {
   2008   DataExtractor Data = Unit.getDebugInfoExtractor();
   2009 
   2010   for (unsigned i = 0; i < Idx; ++i)
   2011     DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
   2012 
   2013   uint32_t End = Offset;
   2014   DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
   2015 
   2016   return std::make_pair(Offset, End);
   2017 }
   2018 
   2019 /// \brief Check if a variable describing DIE should be kept.
   2020 /// \returns updated TraversalFlags.
   2021 unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr,
   2022                                             const DWARFDebugInfoEntryMinimal &DIE,
   2023                                             CompileUnit &Unit,
   2024                                             CompileUnit::DIEInfo &MyInfo,
   2025                                             unsigned Flags) {
   2026   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
   2027 
   2028   // Global variables with constant value can always be kept.
   2029   if (!(Flags & TF_InFunctionScope) &&
   2030       Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
   2031     MyInfo.InDebugMap = true;
   2032     return Flags | TF_Keep;
   2033   }
   2034 
   2035   uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
   2036   if (LocationIdx == -1U)
   2037     return Flags;
   2038 
   2039   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
   2040   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2041   uint32_t LocationOffset, LocationEndOffset;
   2042   std::tie(LocationOffset, LocationEndOffset) =
   2043       getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
   2044 
   2045   // See if there is a relocation to a valid debug map entry inside
   2046   // this variable's location. The order is important here. We want to
   2047   // always check in the variable has a valid relocation, so that the
   2048   // DIEInfo is filled. However, we don't want a static variable in a
   2049   // function to force us to keep the enclosing function.
   2050   if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
   2051       (Flags & TF_InFunctionScope))
   2052     return Flags;
   2053 
   2054   if (Options.Verbose)
   2055     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
   2056 
   2057   return Flags | TF_Keep;
   2058 }
   2059 
   2060 /// \brief Check if a function describing DIE should be kept.
   2061 /// \returns updated TraversalFlags.
   2062 unsigned DwarfLinker::shouldKeepSubprogramDIE(
   2063     RelocationManager &RelocMgr,
   2064     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
   2065     CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
   2066   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
   2067 
   2068   Flags |= TF_InFunctionScope;
   2069 
   2070   uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
   2071   if (LowPcIdx == -1U)
   2072     return Flags;
   2073 
   2074   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
   2075   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2076   uint32_t LowPcOffset, LowPcEndOffset;
   2077   std::tie(LowPcOffset, LowPcEndOffset) =
   2078       getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
   2079 
   2080   uint64_t LowPc =
   2081       DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
   2082   assert(LowPc != -1ULL && "low_pc attribute is not an address.");
   2083   if (LowPc == -1ULL ||
   2084       !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
   2085     return Flags;
   2086 
   2087   if (Options.Verbose)
   2088     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
   2089 
   2090   Flags |= TF_Keep;
   2091 
   2092   DWARFFormValue HighPcValue;
   2093   if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) {
   2094     reportWarning("Function without high_pc. Range will be discarded.\n",
   2095                   &OrigUnit, &DIE);
   2096     return Flags;
   2097   }
   2098 
   2099   uint64_t HighPc;
   2100   if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) {
   2101     HighPc = *HighPcValue.getAsAddress(&OrigUnit);
   2102   } else {
   2103     assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant));
   2104     HighPc = LowPc + *HighPcValue.getAsUnsignedConstant();
   2105   }
   2106 
   2107   // Replace the debug map range with a more accurate one.
   2108   Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust);
   2109   Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust);
   2110   return Flags;
   2111 }
   2112 
   2113 /// \brief Check if a DIE should be kept.
   2114 /// \returns updated TraversalFlags.
   2115 unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr,
   2116                                     const DWARFDebugInfoEntryMinimal &DIE,
   2117                                     CompileUnit &Unit,
   2118                                     CompileUnit::DIEInfo &MyInfo,
   2119                                     unsigned Flags) {
   2120   switch (DIE.getTag()) {
   2121   case dwarf::DW_TAG_constant:
   2122   case dwarf::DW_TAG_variable:
   2123     return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
   2124   case dwarf::DW_TAG_subprogram:
   2125     return shouldKeepSubprogramDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
   2126   case dwarf::DW_TAG_module:
   2127   case dwarf::DW_TAG_imported_module:
   2128   case dwarf::DW_TAG_imported_declaration:
   2129   case dwarf::DW_TAG_imported_unit:
   2130     // We always want to keep these.
   2131     return Flags | TF_Keep;
   2132   }
   2133 
   2134   return Flags;
   2135 }
   2136 
   2137 /// \brief Mark the passed DIE as well as all the ones it depends on
   2138 /// as kept.
   2139 ///
   2140 /// This function is called by lookForDIEsToKeep on DIEs that are
   2141 /// newly discovered to be needed in the link. It recursively calls
   2142 /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
   2143 /// TraversalFlags to inform it that it's not doing the primary DIE
   2144 /// tree walk.
   2145 void DwarfLinker::keepDIEAndDependencies(RelocationManager &RelocMgr,
   2146                                           const DWARFDebugInfoEntryMinimal &Die,
   2147                                           CompileUnit::DIEInfo &MyInfo,
   2148                                           const DebugMapObject &DMO,
   2149                                           CompileUnit &CU, bool UseODR) {
   2150   const DWARFUnit &Unit = CU.getOrigUnit();
   2151   MyInfo.Keep = true;
   2152 
   2153   // First mark all the parent chain as kept.
   2154   unsigned AncestorIdx = MyInfo.ParentIdx;
   2155   while (!CU.getInfo(AncestorIdx).Keep) {
   2156     unsigned ODRFlag = UseODR ? TF_ODR : 0;
   2157     lookForDIEsToKeep(RelocMgr, *Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
   2158                       TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag);
   2159     AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
   2160   }
   2161 
   2162   // Then we need to mark all the DIEs referenced by this DIE's
   2163   // attributes as kept.
   2164   DataExtractor Data = Unit.getDebugInfoExtractor();
   2165   const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
   2166   uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
   2167 
   2168   // Mark all DIEs referenced through atttributes as kept.
   2169   for (const auto &AttrSpec : Abbrev->attributes()) {
   2170     DWARFFormValue Val(AttrSpec.Form);
   2171 
   2172     if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
   2173       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
   2174       continue;
   2175     }
   2176 
   2177     Val.extractValue(Data, &Offset, &Unit);
   2178     CompileUnit *ReferencedCU;
   2179     if (const auto *RefDIE =
   2180             resolveDIEReference(*this, MutableArrayRef<CompileUnit>(Units), Val,
   2181                                 Unit, Die, ReferencedCU)) {
   2182       uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDIE);
   2183       CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
   2184       // If the referenced DIE has a DeclContext that has already been
   2185       // emitted, then do not keep the one in this CU. We'll link to
   2186       // the canonical DIE in cloneDieReferenceAttribute.
   2187       // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
   2188       // be necessary and could be advantageously replaced by
   2189       // ReferencedCU->hasODR() && CU.hasODR().
   2190       // FIXME: compatibility with dsymutil-classic. There is no
   2191       // reason not to unique ref_addr references.
   2192       if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && UseODR && Info.Ctxt &&
   2193           Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
   2194           Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
   2195         continue;
   2196 
   2197       // Keep a module forward declaration if there is no definition.
   2198       if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
   2199             Info.Ctxt->getCanonicalDIEOffset()))
   2200         Info.Prune = false;
   2201 
   2202       unsigned ODRFlag = UseODR ? TF_ODR : 0;
   2203       lookForDIEsToKeep(RelocMgr, *RefDIE, DMO, *ReferencedCU,
   2204                         TF_Keep | TF_DependencyWalk | ODRFlag);
   2205     }
   2206   }
   2207 }
   2208 
   2209 /// \brief Recursively walk the \p DIE tree and look for DIEs to
   2210 /// keep. Store that information in \p CU's DIEInfo.
   2211 ///
   2212 /// This function is the entry point of the DIE selection
   2213 /// algorithm. It is expected to walk the DIE tree in file order and
   2214 /// (though the mediation of its helper) call hasValidRelocation() on
   2215 /// each DIE that might be a 'root DIE' (See DwarfLinker class
   2216 /// comment).
   2217 /// While walking the dependencies of root DIEs, this function is
   2218 /// also called, but during these dependency walks the file order is
   2219 /// not respected. The TF_DependencyWalk flag tells us which kind of
   2220 /// traversal we are currently doing.
   2221 void DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr,
   2222                                     const DWARFDebugInfoEntryMinimal &Die,
   2223                                     const DebugMapObject &DMO, CompileUnit &CU,
   2224                                     unsigned Flags) {
   2225   unsigned Idx = CU.getOrigUnit().getDIEIndex(&Die);
   2226   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
   2227   bool AlreadyKept = MyInfo.Keep;
   2228   if (MyInfo.Prune)
   2229     return;
   2230 
   2231   // If the Keep flag is set, we are marking a required DIE's
   2232   // dependencies. If our target is already marked as kept, we're all
   2233   // set.
   2234   if ((Flags & TF_DependencyWalk) && AlreadyKept)
   2235     return;
   2236 
   2237   // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
   2238   // because it would screw up the relocation finding logic.
   2239   if (!(Flags & TF_DependencyWalk))
   2240     Flags = shouldKeepDIE(RelocMgr, Die, CU, MyInfo, Flags);
   2241 
   2242   // If it is a newly kept DIE mark it as well as all its dependencies as kept.
   2243   if (!AlreadyKept && (Flags & TF_Keep)) {
   2244     bool UseOdr = (Flags & TF_DependencyWalk) ? (Flags & TF_ODR) : CU.hasODR();
   2245     keepDIEAndDependencies(RelocMgr, Die, MyInfo, DMO, CU, UseOdr);
   2246   }
   2247   // The TF_ParentWalk flag tells us that we are currently walking up
   2248   // the parent chain of a required DIE, and we don't want to mark all
   2249   // the children of the parents as kept (consider for example a
   2250   // DW_TAG_namespace node in the parent chain). There are however a
   2251   // set of DIE types for which we want to ignore that directive and still
   2252   // walk their children.
   2253   if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
   2254     Flags &= ~TF_ParentWalk;
   2255 
   2256   if (!Die.hasChildren() || (Flags & TF_ParentWalk))
   2257     return;
   2258 
   2259   for (auto *Child = Die.getFirstChild(); Child && !Child->isNULL();
   2260        Child = Child->getSibling())
   2261     lookForDIEsToKeep(RelocMgr, *Child, DMO, CU, Flags);
   2262 }
   2263 
   2264 /// \brief Assign an abbreviation numer to \p Abbrev.
   2265 ///
   2266 /// Our DIEs get freed after every DebugMapObject has been processed,
   2267 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
   2268 /// the instances hold by the DIEs. When we encounter an abbreviation
   2269 /// that we don't know, we create a permanent copy of it.
   2270 void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
   2271   // Check the set for priors.
   2272   FoldingSetNodeID ID;
   2273   Abbrev.Profile(ID);
   2274   void *InsertToken;
   2275   DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
   2276 
   2277   // If it's newly added.
   2278   if (InSet) {
   2279     // Assign existing abbreviation number.
   2280     Abbrev.setNumber(InSet->getNumber());
   2281   } else {
   2282     // Add to abbreviation list.
   2283     Abbreviations.push_back(
   2284         llvm::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
   2285     for (const auto &Attr : Abbrev.getData())
   2286       Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
   2287     AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
   2288     // Assign the unique abbreviation number.
   2289     Abbrev.setNumber(Abbreviations.size());
   2290     Abbreviations.back()->setNumber(Abbreviations.size());
   2291   }
   2292 }
   2293 
   2294 unsigned DwarfLinker::DIECloner::cloneStringAttribute(DIE &Die,
   2295                                                       AttributeSpec AttrSpec,
   2296                                                       const DWARFFormValue &Val,
   2297                                                       const DWARFUnit &U) {
   2298   // Switch everything to out of line strings.
   2299   const char *String = *Val.getAsCString(&U);
   2300   unsigned Offset = Linker.StringPool.getStringOffset(String);
   2301   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
   2302                DIEInteger(Offset));
   2303   return 4;
   2304 }
   2305 
   2306 unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute(
   2307     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
   2308     AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val,
   2309     CompileUnit &Unit) {
   2310   const DWARFUnit &U = Unit.getOrigUnit();
   2311   uint32_t Ref = *Val.getAsReference(&U);
   2312   DIE *NewRefDie = nullptr;
   2313   CompileUnit *RefUnit = nullptr;
   2314   DeclContext *Ctxt = nullptr;
   2315 
   2316   const DWARFDebugInfoEntryMinimal *RefDie =
   2317       resolveDIEReference(Linker, CompileUnits, Val, U, InputDIE, RefUnit);
   2318 
   2319   // If the referenced DIE is not found,  drop the attribute.
   2320   if (!RefDie)
   2321     return 0;
   2322 
   2323   unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
   2324   CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
   2325 
   2326   // If we already have emitted an equivalent DeclContext, just point
   2327   // at it.
   2328   if (isODRAttribute(AttrSpec.Attr)) {
   2329     Ctxt = RefInfo.Ctxt;
   2330     if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
   2331       DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
   2332       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2333                    dwarf::DW_FORM_ref_addr, Attr);
   2334       return getRefAddrSize(U);
   2335     }
   2336   }
   2337 
   2338   if (!RefInfo.Clone) {
   2339     assert(Ref > InputDIE.getOffset());
   2340     // We haven't cloned this DIE yet. Just create an empty one and
   2341     // store it. It'll get really cloned when we process it.
   2342     RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie->getTag()));
   2343   }
   2344   NewRefDie = RefInfo.Clone;
   2345 
   2346   if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
   2347       (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
   2348     // We cannot currently rely on a DIEEntry to emit ref_addr
   2349     // references, because the implementation calls back to DwarfDebug
   2350     // to find the unit offset. (We don't have a DwarfDebug)
   2351     // FIXME: we should be able to design DIEEntry reliance on
   2352     // DwarfDebug away.
   2353     uint64_t Attr;
   2354     if (Ref < InputDIE.getOffset()) {
   2355       // We must have already cloned that DIE.
   2356       uint32_t NewRefOffset =
   2357           RefUnit->getStartOffset() + NewRefDie->getOffset();
   2358       Attr = NewRefOffset;
   2359       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2360                    dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
   2361     } else {
   2362       // A forward reference. Note and fixup later.
   2363       Attr = 0xBADDEF;
   2364       Unit.noteForwardReference(
   2365           NewRefDie, RefUnit, Ctxt,
   2366           Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2367                        dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
   2368     }
   2369     return getRefAddrSize(U);
   2370   }
   2371 
   2372   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2373                dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
   2374   return AttrSize;
   2375 }
   2376 
   2377 unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die,
   2378                                                      AttributeSpec AttrSpec,
   2379                                                      const DWARFFormValue &Val,
   2380                                                      unsigned AttrSize) {
   2381   DIEValueList *Attr;
   2382   DIEValue Value;
   2383   DIELoc *Loc = nullptr;
   2384   DIEBlock *Block = nullptr;
   2385   // Just copy the block data over.
   2386   if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
   2387     Loc = new (DIEAlloc) DIELoc;
   2388     Linker.DIELocs.push_back(Loc);
   2389   } else {
   2390     Block = new (DIEAlloc) DIEBlock;
   2391     Linker.DIEBlocks.push_back(Block);
   2392   }
   2393   Attr = Loc ? static_cast<DIEValueList *>(Loc)
   2394              : static_cast<DIEValueList *>(Block);
   2395 
   2396   if (Loc)
   2397     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
   2398                      dwarf::Form(AttrSpec.Form), Loc);
   2399   else
   2400     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
   2401                      dwarf::Form(AttrSpec.Form), Block);
   2402   ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
   2403   for (auto Byte : Bytes)
   2404     Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
   2405                    dwarf::DW_FORM_data1, DIEInteger(Byte));
   2406   // FIXME: If DIEBlock and DIELoc just reuses the Size field of
   2407   // the DIE class, this if could be replaced by
   2408   // Attr->setSize(Bytes.size()).
   2409   if (Linker.Streamer) {
   2410     auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
   2411     if (Loc)
   2412       Loc->ComputeSize(AsmPrinter);
   2413     else
   2414       Block->ComputeSize(AsmPrinter);
   2415   }
   2416   Die.addValue(DIEAlloc, Value);
   2417   return AttrSize;
   2418 }
   2419 
   2420 unsigned DwarfLinker::DIECloner::cloneAddressAttribute(
   2421     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
   2422     const CompileUnit &Unit, AttributesInfo &Info) {
   2423   uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit());
   2424   if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
   2425     if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
   2426         Die.getTag() == dwarf::DW_TAG_lexical_block)
   2427       // The low_pc of a block or inline subroutine might get
   2428       // relocated because it happens to match the low_pc of the
   2429       // enclosing subprogram. To prevent issues with that, always use
   2430       // the low_pc from the input DIE if relocations have been applied.
   2431       Addr = (Info.OrigLowPc != UINT64_MAX ? Info.OrigLowPc : Addr) +
   2432              Info.PCOffset;
   2433     else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2434       Addr = Unit.getLowPc();
   2435       if (Addr == UINT64_MAX)
   2436         return 0;
   2437     }
   2438     Info.HasLowPc = true;
   2439   } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
   2440     if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2441       if (uint64_t HighPc = Unit.getHighPc())
   2442         Addr = HighPc;
   2443       else
   2444         return 0;
   2445     } else
   2446       // If we have a high_pc recorded for the input DIE, use
   2447       // it. Otherwise (when no relocations where applied) just use the
   2448       // one we just decoded.
   2449       Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
   2450   }
   2451 
   2452   Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
   2453                static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
   2454   return Unit.getOrigUnit().getAddressByteSize();
   2455 }
   2456 
   2457 unsigned DwarfLinker::DIECloner::cloneScalarAttribute(
   2458     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2459     AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
   2460     AttributesInfo &Info) {
   2461   uint64_t Value;
   2462   if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
   2463       Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2464     if (Unit.getLowPc() == -1ULL)
   2465       return 0;
   2466     // Dwarf >= 4 high_pc is an size, not an address.
   2467     Value = Unit.getHighPc() - Unit.getLowPc();
   2468   } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
   2469     Value = *Val.getAsSectionOffset();
   2470   else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
   2471     Value = *Val.getAsSignedConstant();
   2472   else if (auto OptionalValue = Val.getAsUnsignedConstant())
   2473     Value = *OptionalValue;
   2474   else {
   2475     Linker.reportWarning(
   2476         "Unsupported scalar attribute form. Dropping attribute.",
   2477         &Unit.getOrigUnit(), &InputDIE);
   2478     return 0;
   2479   }
   2480   PatchLocation Patch =
   2481       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2482                    dwarf::Form(AttrSpec.Form), DIEInteger(Value));
   2483   if (AttrSpec.Attr == dwarf::DW_AT_ranges)
   2484     Unit.noteRangeAttribute(Die, Patch);
   2485 
   2486   // A more generic way to check for location attributes would be
   2487   // nice, but it's very unlikely that any other attribute needs a
   2488   // location list.
   2489   else if (AttrSpec.Attr == dwarf::DW_AT_location ||
   2490            AttrSpec.Attr == dwarf::DW_AT_frame_base)
   2491     Unit.noteLocationAttribute(Patch, Info.PCOffset);
   2492   else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
   2493     Info.IsDeclaration = true;
   2494 
   2495   return AttrSize;
   2496 }
   2497 
   2498 /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
   2499 /// value \p Val, and add it to \p Die.
   2500 /// \returns the size of the cloned attribute.
   2501 unsigned DwarfLinker::DIECloner::cloneAttribute(
   2502     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2503     const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize,
   2504     AttributesInfo &Info) {
   2505   const DWARFUnit &U = Unit.getOrigUnit();
   2506 
   2507   switch (AttrSpec.Form) {
   2508   case dwarf::DW_FORM_strp:
   2509   case dwarf::DW_FORM_string:
   2510     return cloneStringAttribute(Die, AttrSpec, Val, U);
   2511   case dwarf::DW_FORM_ref_addr:
   2512   case dwarf::DW_FORM_ref1:
   2513   case dwarf::DW_FORM_ref2:
   2514   case dwarf::DW_FORM_ref4:
   2515   case dwarf::DW_FORM_ref8:
   2516     return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
   2517                                       Unit);
   2518   case dwarf::DW_FORM_block:
   2519   case dwarf::DW_FORM_block1:
   2520   case dwarf::DW_FORM_block2:
   2521   case dwarf::DW_FORM_block4:
   2522   case dwarf::DW_FORM_exprloc:
   2523     return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
   2524   case dwarf::DW_FORM_addr:
   2525     return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
   2526   case dwarf::DW_FORM_data1:
   2527   case dwarf::DW_FORM_data2:
   2528   case dwarf::DW_FORM_data4:
   2529   case dwarf::DW_FORM_data8:
   2530   case dwarf::DW_FORM_udata:
   2531   case dwarf::DW_FORM_sdata:
   2532   case dwarf::DW_FORM_sec_offset:
   2533   case dwarf::DW_FORM_flag:
   2534   case dwarf::DW_FORM_flag_present:
   2535     return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize,
   2536                                 Info);
   2537   default:
   2538     Linker.reportWarning(
   2539         "Unsupported attribute form in cloneAttribute. Dropping.", &U,
   2540         &InputDIE);
   2541   }
   2542 
   2543   return 0;
   2544 }
   2545 
   2546 /// \brief Apply the valid relocations found by findValidRelocs() to
   2547 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
   2548 /// in the debug_info section.
   2549 ///
   2550 /// Like for findValidRelocs(), this function must be called with
   2551 /// monotonic \p BaseOffset values.
   2552 ///
   2553 /// \returns wether any reloc has been applied.
   2554 bool DwarfLinker::RelocationManager::
   2555 applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
   2556                  bool isLittleEndian) {
   2557   assert((NextValidReloc == 0 ||
   2558           BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
   2559          "BaseOffset should only be increasing.");
   2560   if (NextValidReloc >= ValidRelocs.size())
   2561     return false;
   2562 
   2563   // Skip relocs that haven't been applied.
   2564   while (NextValidReloc < ValidRelocs.size() &&
   2565          ValidRelocs[NextValidReloc].Offset < BaseOffset)
   2566     ++NextValidReloc;
   2567 
   2568   bool Applied = false;
   2569   uint64_t EndOffset = BaseOffset + Data.size();
   2570   while (NextValidReloc < ValidRelocs.size() &&
   2571          ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
   2572          ValidRelocs[NextValidReloc].Offset < EndOffset) {
   2573     const auto &ValidReloc = ValidRelocs[NextValidReloc++];
   2574     assert(ValidReloc.Offset - BaseOffset < Data.size());
   2575     assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
   2576     char Buf[8];
   2577     uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
   2578     Value += ValidReloc.Addend;
   2579     for (unsigned i = 0; i != ValidReloc.Size; ++i) {
   2580       unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
   2581       Buf[i] = uint8_t(Value >> (Index * 8));
   2582     }
   2583     assert(ValidReloc.Size <= sizeof(Buf));
   2584     memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
   2585     Applied = true;
   2586   }
   2587 
   2588   return Applied;
   2589 }
   2590 
   2591 static bool isTypeTag(uint16_t Tag) {
   2592   switch (Tag) {
   2593   case dwarf::DW_TAG_array_type:
   2594   case dwarf::DW_TAG_class_type:
   2595   case dwarf::DW_TAG_enumeration_type:
   2596   case dwarf::DW_TAG_pointer_type:
   2597   case dwarf::DW_TAG_reference_type:
   2598   case dwarf::DW_TAG_string_type:
   2599   case dwarf::DW_TAG_structure_type:
   2600   case dwarf::DW_TAG_subroutine_type:
   2601   case dwarf::DW_TAG_typedef:
   2602   case dwarf::DW_TAG_union_type:
   2603   case dwarf::DW_TAG_ptr_to_member_type:
   2604   case dwarf::DW_TAG_set_type:
   2605   case dwarf::DW_TAG_subrange_type:
   2606   case dwarf::DW_TAG_base_type:
   2607   case dwarf::DW_TAG_const_type:
   2608   case dwarf::DW_TAG_constant:
   2609   case dwarf::DW_TAG_file_type:
   2610   case dwarf::DW_TAG_namelist:
   2611   case dwarf::DW_TAG_packed_type:
   2612   case dwarf::DW_TAG_volatile_type:
   2613   case dwarf::DW_TAG_restrict_type:
   2614   case dwarf::DW_TAG_interface_type:
   2615   case dwarf::DW_TAG_unspecified_type:
   2616   case dwarf::DW_TAG_shared_type:
   2617     return true;
   2618   default:
   2619     break;
   2620   }
   2621   return false;
   2622 }
   2623 
   2624 static bool
   2625 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
   2626                     uint16_t Tag, bool InDebugMap, bool SkipPC,
   2627                     bool InFunctionScope) {
   2628   switch (AttrSpec.Attr) {
   2629   default:
   2630     return false;
   2631   case dwarf::DW_AT_low_pc:
   2632   case dwarf::DW_AT_high_pc:
   2633   case dwarf::DW_AT_ranges:
   2634     return SkipPC;
   2635   case dwarf::DW_AT_location:
   2636   case dwarf::DW_AT_frame_base:
   2637     // FIXME: for some reason dsymutil-classic keeps the location
   2638     // attributes when they are of block type (ie. not location
   2639     // lists). This is totally wrong for globals where we will keep a
   2640     // wrong address. It is mostly harmless for locals, but there is
   2641     // no point in keeping these anyway when the function wasn't linked.
   2642     return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
   2643                        !InDebugMap)) &&
   2644            !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
   2645   }
   2646 }
   2647 
   2648 DIE *DwarfLinker::DIECloner::cloneDIE(
   2649     const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2650     int64_t PCOffset, uint32_t OutOffset, unsigned Flags) {
   2651   DWARFUnit &U = Unit.getOrigUnit();
   2652   unsigned Idx = U.getDIEIndex(&InputDIE);
   2653   CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
   2654 
   2655   // Should the DIE appear in the output?
   2656   if (!Unit.getInfo(Idx).Keep)
   2657     return nullptr;
   2658 
   2659   uint32_t Offset = InputDIE.getOffset();
   2660   // The DIE might have been already created by a forward reference
   2661   // (see cloneDieReferenceAttribute()).
   2662   DIE *Die = Info.Clone;
   2663   if (!Die)
   2664     Die = Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
   2665   assert(Die->getTag() == InputDIE.getTag());
   2666   Die->setOffset(OutOffset);
   2667   if ((Unit.hasODR() || Unit.isClangModule()) &&
   2668       Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
   2669       Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
   2670       !Info.Ctxt->getCanonicalDIEOffset()) {
   2671     // We are about to emit a DIE that is the root of its own valid
   2672     // DeclContext tree. Make the current offset the canonical offset
   2673     // for this context.
   2674     Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
   2675   }
   2676 
   2677   // Extract and clone every attribute.
   2678   DataExtractor Data = U.getDebugInfoExtractor();
   2679   // Point to the next DIE (generally there is always at least a NULL
   2680   // entry after the current one). If this is a lone
   2681   // DW_TAG_compile_unit without any children, point to the next unit.
   2682   uint32_t NextOffset =
   2683     (Idx + 1 < U.getNumDIEs())
   2684     ? U.getDIEAtIndex(Idx + 1)->getOffset()
   2685     : U.getNextUnitOffset();
   2686   AttributesInfo AttrInfo;
   2687 
   2688   // We could copy the data only if we need to aply a relocation to
   2689   // it. After testing, it seems there is no performance downside to
   2690   // doing the copy unconditionally, and it makes the code simpler.
   2691   SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
   2692   Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
   2693   // Modify the copy with relocated addresses.
   2694   if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
   2695     // If we applied relocations, we store the value of high_pc that was
   2696     // potentially stored in the input DIE. If high_pc is an address
   2697     // (Dwarf version == 2), then it might have been relocated to a
   2698     // totally unrelated value (because the end address in the object
   2699     // file might be start address of another function which got moved
   2700     // independantly by the linker). The computation of the actual
   2701     // high_pc value is done in cloneAddressAttribute().
   2702     AttrInfo.OrigHighPc =
   2703         InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0);
   2704     // Also store the low_pc. It might get relocated in an
   2705     // inline_subprogram that happens at the beginning of its
   2706     // inlining function.
   2707     AttrInfo.OrigLowPc =
   2708         InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_low_pc, UINT64_MAX);
   2709   }
   2710 
   2711   // Reset the Offset to 0 as we will be working on the local copy of
   2712   // the data.
   2713   Offset = 0;
   2714 
   2715   const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
   2716   Offset += getULEB128Size(Abbrev->getCode());
   2717 
   2718   // We are entering a subprogram. Get and propagate the PCOffset.
   2719   if (Die->getTag() == dwarf::DW_TAG_subprogram)
   2720     PCOffset = Info.AddrAdjust;
   2721   AttrInfo.PCOffset = PCOffset;
   2722 
   2723   if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
   2724     Flags |= TF_InFunctionScope;
   2725     if (!Info.InDebugMap)
   2726       Flags |= TF_SkipPC;
   2727   }
   2728 
   2729   bool Copied = false;
   2730   for (const auto &AttrSpec : Abbrev->attributes()) {
   2731     if (shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
   2732                             Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
   2733       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &U);
   2734       // FIXME: dsymutil-classic keeps the old abbreviation around
   2735       // even if it's not used. We can remove this (and the copyAbbrev
   2736       // helper) as soon as bit-for-bit compatibility is not a goal anymore.
   2737       if (!Copied) {
   2738         copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
   2739         Copied = true;
   2740       }
   2741       continue;
   2742     }
   2743 
   2744     DWARFFormValue Val(AttrSpec.Form);
   2745     uint32_t AttrSize = Offset;
   2746     Val.extractValue(Data, &Offset, &U);
   2747     AttrSize = Offset - AttrSize;
   2748 
   2749     OutOffset +=
   2750         cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo);
   2751   }
   2752 
   2753   // Look for accelerator entries.
   2754   uint16_t Tag = InputDIE.getTag();
   2755   // FIXME: This is slightly wrong. An inline_subroutine without a
   2756   // low_pc, but with AT_ranges might be interesting to get into the
   2757   // accelerator tables too. For now stick with dsymutil's behavior.
   2758   if ((Info.InDebugMap || AttrInfo.HasLowPc) &&
   2759       Tag != dwarf::DW_TAG_compile_unit &&
   2760       getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
   2761     if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
   2762       Unit.addNameAccelerator(Die, AttrInfo.MangledName,
   2763                               AttrInfo.MangledNameOffset,
   2764                               Tag == dwarf::DW_TAG_inlined_subroutine);
   2765     if (AttrInfo.Name)
   2766       Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset,
   2767                               Tag == dwarf::DW_TAG_inlined_subroutine);
   2768   } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
   2769              getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
   2770     Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset);
   2771   }
   2772 
   2773   // Determine whether there are any children that we want to keep.
   2774   bool HasChildren = false;
   2775   for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
   2776        Child = Child->getSibling()) {
   2777     unsigned Idx = U.getDIEIndex(Child);
   2778     if (Unit.getInfo(Idx).Keep) {
   2779       HasChildren = true;
   2780       break;
   2781     }
   2782   }
   2783 
   2784   DIEAbbrev NewAbbrev = Die->generateAbbrev();
   2785   if (HasChildren)
   2786     NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
   2787   // Assign a permanent abbrev number
   2788   Linker.AssignAbbrev(NewAbbrev);
   2789   Die->setAbbrevNumber(NewAbbrev.getNumber());
   2790 
   2791   // Add the size of the abbreviation number to the output offset.
   2792   OutOffset += getULEB128Size(Die->getAbbrevNumber());
   2793 
   2794   if (!HasChildren) {
   2795     // Update our size.
   2796     Die->setSize(OutOffset - Die->getOffset());
   2797     return Die;
   2798   }
   2799 
   2800   // Recursively clone children.
   2801   for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
   2802        Child = Child->getSibling()) {
   2803     if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset, Flags)) {
   2804       Die->addChild(Clone);
   2805       OutOffset = Clone->getOffset() + Clone->getSize();
   2806     }
   2807   }
   2808 
   2809   // Account for the end of children marker.
   2810   OutOffset += sizeof(int8_t);
   2811   // Update our size.
   2812   Die->setSize(OutOffset - Die->getOffset());
   2813   return Die;
   2814 }
   2815 
   2816 /// \brief Patch the input object file relevant debug_ranges entries
   2817 /// and emit them in the output file. Update the relevant attributes
   2818 /// to point at the new entries.
   2819 void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
   2820                                      DWARFContext &OrigDwarf) const {
   2821   DWARFDebugRangeList RangeList;
   2822   const auto &FunctionRanges = Unit.getFunctionRanges();
   2823   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
   2824   DataExtractor RangeExtractor(OrigDwarf.getRangeSection(),
   2825                                OrigDwarf.isLittleEndian(), AddressSize);
   2826   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
   2827   DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2828   const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
   2829   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
   2830       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
   2831   // Ranges addresses are based on the unit's low_pc. Compute the
   2832   // offset we need to apply to adapt to the new unit's low_pc.
   2833   int64_t UnitPcOffset = 0;
   2834   if (OrigLowPc != -1ULL)
   2835     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
   2836 
   2837   for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
   2838     uint32_t Offset = RangeAttribute.get();
   2839     RangeAttribute.set(Streamer->getRangesSectionSize());
   2840     RangeList.extract(RangeExtractor, &Offset);
   2841     const auto &Entries = RangeList.getEntries();
   2842     if (!Entries.empty()) {
   2843       const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
   2844 
   2845       if (CurrRange == InvalidRange ||
   2846           First.StartAddress + OrigLowPc < CurrRange.start() ||
   2847           First.StartAddress + OrigLowPc >= CurrRange.stop()) {
   2848         CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
   2849         if (CurrRange == InvalidRange ||
   2850             CurrRange.start() > First.StartAddress + OrigLowPc) {
   2851           reportWarning("no mapping for range.");
   2852           continue;
   2853         }
   2854       }
   2855     }
   2856 
   2857     Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
   2858                                 AddressSize);
   2859   }
   2860 }
   2861 
   2862 /// \brief Generate the debug_aranges entries for \p Unit and if the
   2863 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
   2864 /// contribution for this attribute.
   2865 /// FIXME: this could actually be done right in patchRangesForUnit,
   2866 /// but for the sake of initial bit-for-bit compatibility with legacy
   2867 /// dsymutil, we have to do it in a delayed pass.
   2868 void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
   2869   auto Attr = Unit.getUnitRangesAttribute();
   2870   if (Attr)
   2871     Attr->set(Streamer->getRangesSectionSize());
   2872   Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
   2873 }
   2874 
   2875 /// \brief Insert the new line info sequence \p Seq into the current
   2876 /// set of already linked line info \p Rows.
   2877 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
   2878                                std::vector<DWARFDebugLine::Row> &Rows) {
   2879   if (Seq.empty())
   2880     return;
   2881 
   2882   if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
   2883     Rows.insert(Rows.end(), Seq.begin(), Seq.end());
   2884     Seq.clear();
   2885     return;
   2886   }
   2887 
   2888   auto InsertPoint = std::lower_bound(
   2889       Rows.begin(), Rows.end(), Seq.front(),
   2890       [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
   2891         return LHS.Address < RHS.Address;
   2892       });
   2893 
   2894   // FIXME: this only removes the unneeded end_sequence if the
   2895   // sequences have been inserted in order. using a global sort like
   2896   // described in patchLineTableForUnit() and delaying the end_sequene
   2897   // elimination to emitLineTableForUnit() we can get rid of all of them.
   2898   if (InsertPoint != Rows.end() &&
   2899       InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
   2900     *InsertPoint = Seq.front();
   2901     Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
   2902   } else {
   2903     Rows.insert(InsertPoint, Seq.begin(), Seq.end());
   2904   }
   2905 
   2906   Seq.clear();
   2907 }
   2908 
   2909 static void patchStmtList(DIE &Die, DIEInteger Offset) {
   2910   for (auto &V : Die.values())
   2911     if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
   2912       V = DIEValue(V.getAttribute(), V.getForm(), Offset);
   2913       return;
   2914     }
   2915 
   2916   llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
   2917 }
   2918 
   2919 /// \brief Extract the line table for \p Unit from \p OrigDwarf, and
   2920 /// recreate a relocated version of these for the address ranges that
   2921 /// are present in the binary.
   2922 void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
   2923                                         DWARFContext &OrigDwarf) {
   2924   const DWARFDebugInfoEntryMinimal *CUDie = Unit.getOrigUnit().getUnitDIE();
   2925   uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset(
   2926       &Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL);
   2927   if (StmtList == -1ULL)
   2928     return;
   2929 
   2930   // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
   2931   if (auto *OutputDIE = Unit.getOutputUnitDIE())
   2932     patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
   2933 
   2934   // Parse the original line info for the unit.
   2935   DWARFDebugLine::LineTable LineTable;
   2936   uint32_t StmtOffset = StmtList;
   2937   StringRef LineData = OrigDwarf.getLineSection().Data;
   2938   DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(),
   2939                               Unit.getOrigUnit().getAddressByteSize());
   2940   LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs,
   2941                   &StmtOffset);
   2942 
   2943   // This vector is the output line table.
   2944   std::vector<DWARFDebugLine::Row> NewRows;
   2945   NewRows.reserve(LineTable.Rows.size());
   2946 
   2947   // Current sequence of rows being extracted, before being inserted
   2948   // in NewRows.
   2949   std::vector<DWARFDebugLine::Row> Seq;
   2950   const auto &FunctionRanges = Unit.getFunctionRanges();
   2951   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
   2952 
   2953   // FIXME: This logic is meant to generate exactly the same output as
   2954   // Darwin's classic dsynutil. There is a nicer way to implement this
   2955   // by simply putting all the relocated line info in NewRows and simply
   2956   // sorting NewRows before passing it to emitLineTableForUnit. This
   2957   // should be correct as sequences for a function should stay
   2958   // together in the sorted output. There are a few corner cases that
   2959   // look suspicious though, and that required to implement the logic
   2960   // this way. Revisit that once initial validation is finished.
   2961 
   2962   // Iterate over the object file line info and extract the sequences
   2963   // that correspond to linked functions.
   2964   for (auto &Row : LineTable.Rows) {
   2965     // Check wether we stepped out of the range. The range is
   2966     // half-open, but consider accept the end address of the range if
   2967     // it is marked as end_sequence in the input (because in that
   2968     // case, the relocation offset is accurate and that entry won't
   2969     // serve as the start of another function).
   2970     if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
   2971         Row.Address > CurrRange.stop() ||
   2972         (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
   2973       // We just stepped out of a known range. Insert a end_sequence
   2974       // corresponding to the end of the range.
   2975       uint64_t StopAddress = CurrRange != InvalidRange
   2976                                  ? CurrRange.stop() + CurrRange.value()
   2977                                  : -1ULL;
   2978       CurrRange = FunctionRanges.find(Row.Address);
   2979       bool CurrRangeValid =
   2980           CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
   2981       if (!CurrRangeValid) {
   2982         CurrRange = InvalidRange;
   2983         if (StopAddress != -1ULL) {
   2984           // Try harder by looking in the DebugMapObject function
   2985           // ranges map. There are corner cases where this finds a
   2986           // valid entry. It's unclear if this is right or wrong, but
   2987           // for now do as dsymutil.
   2988           // FIXME: Understand exactly what cases this addresses and
   2989           // potentially remove it along with the Ranges map.
   2990           auto Range = Ranges.lower_bound(Row.Address);
   2991           if (Range != Ranges.begin() && Range != Ranges.end())
   2992             --Range;
   2993 
   2994           if (Range != Ranges.end() && Range->first <= Row.Address &&
   2995               Range->second.first >= Row.Address) {
   2996             StopAddress = Row.Address + Range->second.second;
   2997           }
   2998         }
   2999       }
   3000       if (StopAddress != -1ULL && !Seq.empty()) {
   3001         // Insert end sequence row with the computed end address, but
   3002         // the same line as the previous one.
   3003         auto NextLine = Seq.back();
   3004         NextLine.Address = StopAddress;
   3005         NextLine.EndSequence = 1;
   3006         NextLine.PrologueEnd = 0;
   3007         NextLine.BasicBlock = 0;
   3008         NextLine.EpilogueBegin = 0;
   3009         Seq.push_back(NextLine);
   3010         insertLineSequence(Seq, NewRows);
   3011       }
   3012 
   3013       if (!CurrRangeValid)
   3014         continue;
   3015     }
   3016 
   3017     // Ignore empty sequences.
   3018     if (Row.EndSequence && Seq.empty())
   3019       continue;
   3020 
   3021     // Relocate row address and add it to the current sequence.
   3022     Row.Address += CurrRange.value();
   3023     Seq.emplace_back(Row);
   3024 
   3025     if (Row.EndSequence)
   3026       insertLineSequence(Seq, NewRows);
   3027   }
   3028 
   3029   // Finished extracting, now emit the line tables.
   3030   uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength;
   3031   // FIXME: LLVM hardcodes it's prologue values. We just copy the
   3032   // prologue over and that works because we act as both producer and
   3033   // consumer. It would be nicer to have a real configurable line
   3034   // table emitter.
   3035   if (LineTable.Prologue.Version != 2 ||
   3036       LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
   3037       LineTable.Prologue.OpcodeBase > 13)
   3038     reportWarning("line table paramters mismatch. Cannot emit.");
   3039   else {
   3040     MCDwarfLineTableParams Params;
   3041     Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
   3042     Params.DWARF2LineBase = LineTable.Prologue.LineBase;
   3043     Params.DWARF2LineRange = LineTable.Prologue.LineRange;
   3044     Streamer->emitLineTableForUnit(Params,
   3045                                    LineData.slice(StmtList + 4, PrologueEnd),
   3046                                    LineTable.Prologue.MinInstLength, NewRows,
   3047                                    Unit.getOrigUnit().getAddressByteSize());
   3048   }
   3049 }
   3050 
   3051 void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
   3052   Streamer->emitPubNamesForUnit(Unit);
   3053   Streamer->emitPubTypesForUnit(Unit);
   3054 }
   3055 
   3056 /// \brief Read the frame info stored in the object, and emit the
   3057 /// patched frame descriptions for the linked binary.
   3058 ///
   3059 /// This is actually pretty easy as the data of the CIEs and FDEs can
   3060 /// be considered as black boxes and moved as is. The only thing to do
   3061 /// is to patch the addresses in the headers.
   3062 void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO,
   3063                                           DWARFContext &OrigDwarf,
   3064                                           unsigned AddrSize) {
   3065   StringRef FrameData = OrigDwarf.getDebugFrameSection();
   3066   if (FrameData.empty())
   3067     return;
   3068 
   3069   DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
   3070   uint32_t InputOffset = 0;
   3071 
   3072   // Store the data of the CIEs defined in this object, keyed by their
   3073   // offsets.
   3074   DenseMap<uint32_t, StringRef> LocalCIES;
   3075 
   3076   while (Data.isValidOffset(InputOffset)) {
   3077     uint32_t EntryOffset = InputOffset;
   3078     uint32_t InitialLength = Data.getU32(&InputOffset);
   3079     if (InitialLength == 0xFFFFFFFF)
   3080       return reportWarning("Dwarf64 bits no supported");
   3081 
   3082     uint32_t CIEId = Data.getU32(&InputOffset);
   3083     if (CIEId == 0xFFFFFFFF) {
   3084       // This is a CIE, store it.
   3085       StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
   3086       LocalCIES[EntryOffset] = CIEData;
   3087       // The -4 is to account for the CIEId we just read.
   3088       InputOffset += InitialLength - 4;
   3089       continue;
   3090     }
   3091 
   3092     uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
   3093 
   3094     // Some compilers seem to emit frame info that doesn't start at
   3095     // the function entry point, thus we can't just lookup the address
   3096     // in the debug map. Use the linker's range map to see if the FDE
   3097     // describes something that we can relocate.
   3098     auto Range = Ranges.upper_bound(Loc);
   3099     if (Range != Ranges.begin())
   3100       --Range;
   3101     if (Range == Ranges.end() || Range->first > Loc ||
   3102         Range->second.first <= Loc) {
   3103       // The +4 is to account for the size of the InitialLength field itself.
   3104       InputOffset = EntryOffset + InitialLength + 4;
   3105       continue;
   3106     }
   3107 
   3108     // This is an FDE, and we have a mapping.
   3109     // Have we already emitted a corresponding CIE?
   3110     StringRef CIEData = LocalCIES[CIEId];
   3111     if (CIEData.empty())
   3112       return reportWarning("Inconsistent debug_frame content. Dropping.");
   3113 
   3114     // Look if we already emitted a CIE that corresponds to the
   3115     // referenced one (the CIE data is the key of that lookup).
   3116     auto IteratorInserted = EmittedCIEs.insert(
   3117         std::make_pair(CIEData, Streamer->getFrameSectionSize()));
   3118     // If there is no CIE yet for this ID, emit it.
   3119     if (IteratorInserted.second ||
   3120         // FIXME: dsymutil-classic only caches the last used CIE for
   3121         // reuse. Mimic that behavior for now. Just removing that
   3122         // second half of the condition and the LastCIEOffset variable
   3123         // makes the code DTRT.
   3124         LastCIEOffset != IteratorInserted.first->getValue()) {
   3125       LastCIEOffset = Streamer->getFrameSectionSize();
   3126       IteratorInserted.first->getValue() = LastCIEOffset;
   3127       Streamer->emitCIE(CIEData);
   3128     }
   3129 
   3130     // Emit the FDE with updated address and CIE pointer.
   3131     // (4 + AddrSize) is the size of the CIEId + initial_location
   3132     // fields that will get reconstructed by emitFDE().
   3133     unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
   3134     Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
   3135                       Loc + Range->second.second,
   3136                       FrameData.substr(InputOffset, FDERemainingBytes));
   3137     InputOffset += FDERemainingBytes;
   3138   }
   3139 }
   3140 
   3141 void DwarfLinker::DIECloner::copyAbbrev(
   3142     const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) {
   3143   DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
   3144                  dwarf::Form(Abbrev.hasChildren()));
   3145 
   3146   for (const auto &Attr : Abbrev.attributes()) {
   3147     uint16_t Form = Attr.Form;
   3148     if (hasODR && isODRAttribute(Attr.Attr))
   3149       Form = dwarf::DW_FORM_ref_addr;
   3150     Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
   3151   }
   3152 
   3153   Linker.AssignAbbrev(Copy);
   3154 }
   3155 
   3156 static uint64_t getDwoId(const DWARFDebugInfoEntryMinimal &CUDie,
   3157                          const DWARFUnit &Unit) {
   3158   uint64_t DwoId =
   3159       CUDie.getAttributeValueAsUnsignedConstant(&Unit, dwarf::DW_AT_dwo_id, 0);
   3160   if (!DwoId)
   3161     DwoId = CUDie.getAttributeValueAsUnsignedConstant(&Unit,
   3162                                                       dwarf::DW_AT_GNU_dwo_id, 0);
   3163   return DwoId;
   3164 }
   3165 
   3166 bool DwarfLinker::registerModuleReference(
   3167     const DWARFDebugInfoEntryMinimal &CUDie, const DWARFUnit &Unit,
   3168     DebugMap &ModuleMap, unsigned Indent) {
   3169   std::string PCMfile =
   3170       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_dwo_name, "");
   3171   if (PCMfile.empty())
   3172     PCMfile =
   3173         CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_GNU_dwo_name, "");
   3174   if (PCMfile.empty())
   3175     return false;
   3176 
   3177   // Clang module DWARF skeleton CUs abuse this for the path to the module.
   3178   std::string PCMpath =
   3179       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_comp_dir, "");
   3180   uint64_t DwoId = getDwoId(CUDie, Unit);
   3181 
   3182   std::string Name =
   3183       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_name, "");
   3184   if (Name.empty()) {
   3185     reportWarning("Anonymous module skeleton CU for " + PCMfile);
   3186     return true;
   3187   }
   3188 
   3189   if (Options.Verbose) {
   3190     outs().indent(Indent);
   3191     outs() << "Found clang module reference " << PCMfile;
   3192   }
   3193 
   3194   auto Cached = ClangModules.find(PCMfile);
   3195   if (Cached != ClangModules.end()) {
   3196     if (Cached->second != DwoId)
   3197       reportWarning(Twine("hash mismatch: this object file was built against a "
   3198                           "different version of the module ") + PCMfile);
   3199     if (Options.Verbose)
   3200       outs() << " [cached].\n";
   3201     return true;
   3202   }
   3203   if (Options.Verbose)
   3204     outs() << " ...\n";
   3205 
   3206   // Cyclic dependencies are disallowed by Clang, but we still
   3207   // shouldn't run into an infinite loop, so mark it as processed now.
   3208   ClangModules.insert({PCMfile, DwoId});
   3209   loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, Indent + 2);
   3210   return true;
   3211 }
   3212 
   3213 ErrorOr<const object::ObjectFile &>
   3214 DwarfLinker::loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj,
   3215                         const DebugMap &Map) {
   3216   auto ErrOrObjs =
   3217       BinaryHolder.GetObjectFiles(Obj.getObjectFilename(), Obj.getTimestamp());
   3218   if (std::error_code EC = ErrOrObjs.getError()) {
   3219     reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
   3220     return EC;
   3221   }
   3222   auto ErrOrObj = BinaryHolder.Get(Map.getTriple());
   3223   if (std::error_code EC = ErrOrObj.getError())
   3224     reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
   3225   return ErrOrObj;
   3226 }
   3227 
   3228 void DwarfLinker::loadClangModule(StringRef Filename, StringRef ModulePath,
   3229                                   StringRef ModuleName, uint64_t DwoId,
   3230                                   DebugMap &ModuleMap, unsigned Indent) {
   3231   SmallString<80> Path(Options.PrependPath);
   3232   if (sys::path::is_relative(Filename))
   3233     sys::path::append(Path, ModulePath, Filename);
   3234   else
   3235     sys::path::append(Path, Filename);
   3236   BinaryHolder ObjHolder(Options.Verbose);
   3237   auto &Obj =
   3238       ModuleMap.addDebugMapObject(Path, sys::TimeValue::PosixZeroTime());
   3239   auto ErrOrObj = loadObject(ObjHolder, Obj, ModuleMap);
   3240   if (!ErrOrObj) {
   3241     ClangModules.erase(ClangModules.find(Filename));
   3242     return;
   3243   }
   3244 
   3245   std::unique_ptr<CompileUnit> Unit;
   3246 
   3247   // Setup access to the debug info.
   3248   DWARFContextInMemory DwarfContext(*ErrOrObj);
   3249   RelocationManager RelocMgr(*this);
   3250   for (const auto &CU : DwarfContext.compile_units()) {
   3251     auto *CUDie = CU->getUnitDIE(false);
   3252     // Recursively get all modules imported by this one.
   3253     if (!registerModuleReference(*CUDie, *CU, ModuleMap, Indent)) {
   3254       if (Unit) {
   3255         errs() << Filename << ": Clang modules are expected to have exactly"
   3256                << " 1 compile unit.\n";
   3257         exitDsymutil(1);
   3258       }
   3259       if (getDwoId(*CUDie, *CU) != DwoId)
   3260         reportWarning(
   3261             Twine("hash mismatch: this object file was built against a "
   3262                   "different version of the module ") + Filename);
   3263 
   3264       // Add this module.
   3265       Unit = llvm::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
   3266                                             ModuleName);
   3267       Unit->setHasInterestingContent();
   3268       analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), StringPool,
   3269                          ODRContexts);
   3270       // Keep everything.
   3271       Unit->markEverythingAsKept();
   3272     }
   3273   }
   3274   if (Options.Verbose) {
   3275     outs().indent(Indent);
   3276     outs() << "cloning .debug_info from " << Filename << "\n";
   3277   }
   3278 
   3279   DIECloner(*this, RelocMgr, DIEAlloc, MutableArrayRef<CompileUnit>(*Unit),
   3280             Options)
   3281       .cloneAllCompileUnits(DwarfContext);
   3282 }
   3283 
   3284 void DwarfLinker::DIECloner::cloneAllCompileUnits(
   3285     DWARFContextInMemory &DwarfContext) {
   3286   if (!Linker.Streamer)
   3287     return;
   3288 
   3289   for (auto &CurrentUnit : CompileUnits) {
   3290     const auto *InputDIE = CurrentUnit.getOrigUnit().getUnitDIE();
   3291     CurrentUnit.setStartOffset(Linker.OutputDebugInfoSize);
   3292     DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PC offset */,
   3293                               11 /* Unit Header size */, 0);
   3294     CurrentUnit.setOutputUnitDIE(OutputDIE);
   3295     Linker.OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset();
   3296     if (Linker.Options.NoOutput)
   3297       continue;
   3298     // FIXME: for compatibility with the classic dsymutil, we emit
   3299     // an empty line table for the unit, even if the unit doesn't
   3300     // actually exist in the DIE tree.
   3301     Linker.patchLineTableForUnit(CurrentUnit, DwarfContext);
   3302     if (!OutputDIE)
   3303       continue;
   3304     Linker.patchRangesForUnit(CurrentUnit, DwarfContext);
   3305     Linker.Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext);
   3306     Linker.emitAcceleratorEntriesForUnit(CurrentUnit);
   3307   }
   3308 
   3309   if (Linker.Options.NoOutput)
   3310     return;
   3311 
   3312   // Emit all the compile unit's debug information.
   3313   for (auto &CurrentUnit : CompileUnits) {
   3314     Linker.generateUnitRanges(CurrentUnit);
   3315     CurrentUnit.fixupForwardReferences();
   3316     Linker.Streamer->emitCompileUnitHeader(CurrentUnit);
   3317     if (!CurrentUnit.getOutputUnitDIE())
   3318       continue;
   3319     Linker.Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
   3320   }
   3321 }
   3322 
   3323 bool DwarfLinker::link(const DebugMap &Map) {
   3324 
   3325   if (!createStreamer(Map.getTriple(), OutputFilename))
   3326     return false;
   3327 
   3328   // Size of the DIEs (and headers) generated for the linked output.
   3329   OutputDebugInfoSize = 0;
   3330   // A unique ID that identifies each compile unit.
   3331   UnitID = 0;
   3332   DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
   3333 
   3334   for (const auto &Obj : Map.objects()) {
   3335     CurrentDebugObject = Obj.get();
   3336 
   3337     if (Options.Verbose)
   3338       outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
   3339     auto ErrOrObj = loadObject(BinHolder, *Obj, Map);
   3340     if (!ErrOrObj)
   3341       continue;
   3342 
   3343     // Look for relocations that correspond to debug map entries.
   3344     RelocationManager RelocMgr(*this);
   3345     if (!RelocMgr.findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
   3346       if (Options.Verbose)
   3347         outs() << "No valid relocations found. Skipping.\n";
   3348       continue;
   3349     }
   3350 
   3351     // Setup access to the debug info.
   3352     DWARFContextInMemory DwarfContext(*ErrOrObj);
   3353     startDebugObject(DwarfContext, *Obj);
   3354 
   3355     // In a first phase, just read in the debug info and load all clang modules.
   3356     for (const auto &CU : DwarfContext.compile_units()) {
   3357       auto *CUDie = CU->getUnitDIE(false);
   3358       if (Options.Verbose) {
   3359         outs() << "Input compilation unit:";
   3360         CUDie->dump(outs(), CU.get(), 0);
   3361       }
   3362 
   3363       if (!registerModuleReference(*CUDie, *CU, ModuleMap))
   3364         Units.emplace_back(*CU, UnitID++, !Options.NoODR, "");
   3365     }
   3366 
   3367     // Now build the DIE parent links that we will use during the next phase.
   3368     for (auto &CurrentUnit : Units)
   3369       analyzeContextInfo(CurrentUnit.getOrigUnit().getUnitDIE(), 0, CurrentUnit,
   3370                          &ODRContexts.getRoot(), StringPool, ODRContexts);
   3371 
   3372     // Then mark all the DIEs that need to be present in the linked
   3373     // output and collect some information about them. Note that this
   3374     // loop can not be merged with the previous one becaue cross-cu
   3375     // references require the ParentIdx to be setup for every CU in
   3376     // the object file before calling this.
   3377     for (auto &CurrentUnit : Units)
   3378       lookForDIEsToKeep(RelocMgr, *CurrentUnit.getOrigUnit().getUnitDIE(), *Obj,
   3379                         CurrentUnit, 0);
   3380 
   3381     // The calls to applyValidRelocs inside cloneDIE will walk the
   3382     // reloc array again (in the same way findValidRelocsInDebugInfo()
   3383     // did). We need to reset the NextValidReloc index to the beginning.
   3384     RelocMgr.resetValidRelocs();
   3385     if (RelocMgr.hasValidRelocs())
   3386       DIECloner(*this, RelocMgr, DIEAlloc, Units, Options)
   3387           .cloneAllCompileUnits(DwarfContext);
   3388     if (!Options.NoOutput && !Units.empty())
   3389       patchFrameInfoForObject(*Obj, DwarfContext,
   3390                               Units[0].getOrigUnit().getAddressByteSize());
   3391 
   3392     // Clean-up before starting working on the next object.
   3393     endDebugObject();
   3394   }
   3395 
   3396   // Emit everything that's global.
   3397   if (!Options.NoOutput) {
   3398     Streamer->emitAbbrevs(Abbreviations);
   3399     Streamer->emitStrings(StringPool);
   3400   }
   3401 
   3402   return Options.NoOutput ? true : Streamer->finish(Map);
   3403 }
   3404 }
   3405 
   3406 /// \brief Get the offset of string \p S in the string table. This
   3407 /// can insert a new element or return the offset of a preexisitng
   3408 /// one.
   3409 uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
   3410   if (S.empty() && !Strings.empty())
   3411     return 0;
   3412 
   3413   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
   3414   MapTy::iterator It;
   3415   bool Inserted;
   3416 
   3417   // A non-empty string can't be at offset 0, so if we have an entry
   3418   // with a 0 offset, it must be a previously interned string.
   3419   std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
   3420   if (Inserted || It->getValue().first == 0) {
   3421     // Set offset and chain at the end of the entries list.
   3422     It->getValue().first = CurrentEndOffset;
   3423     CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
   3424     Last->getValue().second = &*It;
   3425     Last = &*It;
   3426   }
   3427   return It->getValue().first;
   3428 }
   3429 
   3430 /// \brief Put \p S into the StringMap so that it gets permanent
   3431 /// storage, but do not actually link it in the chain of elements
   3432 /// that go into the output section. A latter call to
   3433 /// getStringOffset() with the same string will chain it though.
   3434 StringRef NonRelocatableStringpool::internString(StringRef S) {
   3435   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
   3436   auto InsertResult = Strings.insert(std::make_pair(S, Entry));
   3437   return InsertResult.first->getKey();
   3438 }
   3439 
   3440 void warn(const Twine &Warning, const Twine &Context) {
   3441   errs() << Twine("while processing ") + Context + ":\n";
   3442   errs() << Twine("warning: ") + Warning + "\n";
   3443 }
   3444 
   3445 bool error(const Twine &Error, const Twine &Context) {
   3446   errs() << Twine("while processing ") + Context + ":\n";
   3447   errs() << Twine("error: ") + Error + "\n";
   3448   return false;
   3449 }
   3450 
   3451 bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
   3452                const LinkOptions &Options) {
   3453   DwarfLinker Linker(OutputFilename, Options);
   3454   return Linker.link(DM);
   3455 }
   3456 }
   3457 }
   3458