1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Regex.h" 20 #include "llvm/TableGen/Error.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "subtarget-emitter" 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(ArrayRef<unsigned> V) { 28 for (unsigned Idx : V) 29 dbgs() << Idx << ", "; 30 } 31 #endif 32 33 namespace { 34 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 35 struct InstrsOp : public SetTheory::Operator { 36 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 37 ArrayRef<SMLoc> Loc) override { 38 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 39 } 40 }; 41 42 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 43 // 44 // TODO: Since this is a prefix match, perform a binary search over the 45 // instruction names using lower_bound. Note that the predefined instrs must be 46 // scanned linearly first. However, this is only safe if the regex pattern has 47 // no top-level bars. The DAG already has a list of patterns, so there's no 48 // reason to use top-level bars, but we need a way to verify they don't exist 49 // before implementing the optimization. 50 struct InstRegexOp : public SetTheory::Operator { 51 const CodeGenTarget &Target; 52 InstRegexOp(const CodeGenTarget &t): Target(t) {} 53 54 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 55 ArrayRef<SMLoc> Loc) override { 56 SmallVector<Regex, 4> RegexList; 57 for (DagInit::const_arg_iterator 58 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 59 StringInit *SI = dyn_cast<StringInit>(*AI); 60 if (!SI) 61 PrintFatalError(Loc, "instregex requires pattern string: " 62 + Expr->getAsString()); 63 std::string pat = SI->getValue(); 64 // Implement a python-style prefix match. 65 if (pat[0] != '^') { 66 pat.insert(0, "^("); 67 pat.insert(pat.end(), ')'); 68 } 69 RegexList.push_back(Regex(pat)); 70 } 71 for (const CodeGenInstruction *Inst : Target.instructions()) { 72 for (auto &R : RegexList) { 73 if (R.match(Inst->TheDef->getName())) 74 Elts.insert(Inst->TheDef); 75 } 76 } 77 } 78 }; 79 } // end anonymous namespace 80 81 /// CodeGenModels ctor interprets machine model records and populates maps. 82 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 83 const CodeGenTarget &TGT): 84 Records(RK), Target(TGT) { 85 86 Sets.addFieldExpander("InstRW", "Instrs"); 87 88 // Allow Set evaluation to recognize the dags used in InstRW records: 89 // (instrs Op1, Op1...) 90 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 91 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 92 93 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 94 // that are explicitly referenced in tablegen records. Resources associated 95 // with each processor will be derived later. Populate ProcModelMap with the 96 // CodeGenProcModel instances. 97 collectProcModels(); 98 99 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 100 // defined, and populate SchedReads and SchedWrites vectors. Implicit 101 // SchedReadWrites that represent sequences derived from expanded variant will 102 // be inferred later. 103 collectSchedRW(); 104 105 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 106 // required by an instruction definition, and populate SchedClassIdxMap. Set 107 // NumItineraryClasses to the number of explicit itinerary classes referenced 108 // by instructions. Set NumInstrSchedClasses to the number of itinerary 109 // classes plus any classes implied by instructions that derive from class 110 // Sched and provide SchedRW list. This does not infer any new classes from 111 // SchedVariant. 112 collectSchedClasses(); 113 114 // Find instruction itineraries for each processor. Sort and populate 115 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 116 // all itinerary classes to be discovered. 117 collectProcItins(); 118 119 // Find ItinRW records for each processor and itinerary class. 120 // (For per-operand resources mapped to itinerary classes). 121 collectProcItinRW(); 122 123 // Infer new SchedClasses from SchedVariant. 124 inferSchedClasses(); 125 126 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 127 // ProcResourceDefs. 128 collectProcResources(); 129 } 130 131 /// Gather all processor models. 132 void CodeGenSchedModels::collectProcModels() { 133 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 134 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 135 136 // Reserve space because we can. Reallocation would be ok. 137 ProcModels.reserve(ProcRecords.size()+1); 138 139 // Use idx=0 for NoModel/NoItineraries. 140 Record *NoModelDef = Records.getDef("NoSchedModel"); 141 Record *NoItinsDef = Records.getDef("NoItineraries"); 142 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 143 ProcModelMap[NoModelDef] = 0; 144 145 // For each processor, find a unique machine model. 146 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 147 addProcModel(ProcRecords[i]); 148 } 149 150 /// Get a unique processor model based on the defined MachineModel and 151 /// ProcessorItineraries. 152 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 153 Record *ModelKey = getModelOrItinDef(ProcDef); 154 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 155 return; 156 157 std::string Name = ModelKey->getName(); 158 if (ModelKey->isSubClassOf("SchedMachineModel")) { 159 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 160 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 161 } 162 else { 163 // An itinerary is defined without a machine model. Infer a new model. 164 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 165 Name = Name + "Model"; 166 ProcModels.emplace_back(ProcModels.size(), Name, 167 ProcDef->getValueAsDef("SchedModel"), ModelKey); 168 } 169 DEBUG(ProcModels.back().dump()); 170 } 171 172 // Recursively find all reachable SchedReadWrite records. 173 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 174 SmallPtrSet<Record*, 16> &RWSet) { 175 if (!RWSet.insert(RWDef).second) 176 return; 177 RWDefs.push_back(RWDef); 178 // Reads don't current have sequence records, but it can be added later. 179 if (RWDef->isSubClassOf("WriteSequence")) { 180 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 181 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 182 scanSchedRW(*I, RWDefs, RWSet); 183 } 184 else if (RWDef->isSubClassOf("SchedVariant")) { 185 // Visit each variant (guarded by a different predicate). 186 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 187 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 188 // Visit each RW in the sequence selected by the current variant. 189 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 190 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 191 scanSchedRW(*I, RWDefs, RWSet); 192 } 193 } 194 } 195 196 // Collect and sort all SchedReadWrites reachable via tablegen records. 197 // More may be inferred later when inferring new SchedClasses from variants. 198 void CodeGenSchedModels::collectSchedRW() { 199 // Reserve idx=0 for invalid writes/reads. 200 SchedWrites.resize(1); 201 SchedReads.resize(1); 202 203 SmallPtrSet<Record*, 16> RWSet; 204 205 // Find all SchedReadWrites referenced by instruction defs. 206 RecVec SWDefs, SRDefs; 207 for (const CodeGenInstruction *Inst : Target.instructions()) { 208 Record *SchedDef = Inst->TheDef; 209 if (SchedDef->isValueUnset("SchedRW")) 210 continue; 211 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 212 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 213 if ((*RWI)->isSubClassOf("SchedWrite")) 214 scanSchedRW(*RWI, SWDefs, RWSet); 215 else { 216 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 217 scanSchedRW(*RWI, SRDefs, RWSet); 218 } 219 } 220 } 221 // Find all ReadWrites referenced by InstRW. 222 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 223 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 224 // For all OperandReadWrites. 225 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 226 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 227 RWI != RWE; ++RWI) { 228 if ((*RWI)->isSubClassOf("SchedWrite")) 229 scanSchedRW(*RWI, SWDefs, RWSet); 230 else { 231 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 232 scanSchedRW(*RWI, SRDefs, RWSet); 233 } 234 } 235 } 236 // Find all ReadWrites referenced by ItinRW. 237 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 238 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 239 // For all OperandReadWrites. 240 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 241 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 242 RWI != RWE; ++RWI) { 243 if ((*RWI)->isSubClassOf("SchedWrite")) 244 scanSchedRW(*RWI, SWDefs, RWSet); 245 else { 246 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 247 scanSchedRW(*RWI, SRDefs, RWSet); 248 } 249 } 250 } 251 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 252 // for the loop below that initializes Alias vectors. 253 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 254 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 255 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 256 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 257 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 258 if (MatchDef->isSubClassOf("SchedWrite")) { 259 if (!AliasDef->isSubClassOf("SchedWrite")) 260 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 261 scanSchedRW(AliasDef, SWDefs, RWSet); 262 } 263 else { 264 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 265 if (!AliasDef->isSubClassOf("SchedRead")) 266 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 267 scanSchedRW(AliasDef, SRDefs, RWSet); 268 } 269 } 270 // Sort and add the SchedReadWrites directly referenced by instructions or 271 // itinerary resources. Index reads and writes in separate domains. 272 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 273 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 274 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 275 SchedWrites.emplace_back(SchedWrites.size(), *SWI); 276 } 277 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 278 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 279 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 280 SchedReads.emplace_back(SchedReads.size(), *SRI); 281 } 282 // Initialize WriteSequence vectors. 283 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 284 WE = SchedWrites.end(); WI != WE; ++WI) { 285 if (!WI->IsSequence) 286 continue; 287 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 288 /*IsRead=*/false); 289 } 290 // Initialize Aliases vectors. 291 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 292 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 293 getSchedRW(AliasDef).IsAlias = true; 294 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 295 CodeGenSchedRW &RW = getSchedRW(MatchDef); 296 if (RW.IsAlias) 297 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 298 RW.Aliases.push_back(*AI); 299 } 300 DEBUG( 301 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 302 dbgs() << WIdx << ": "; 303 SchedWrites[WIdx].dump(); 304 dbgs() << '\n'; 305 } 306 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 307 dbgs() << RIdx << ": "; 308 SchedReads[RIdx].dump(); 309 dbgs() << '\n'; 310 } 311 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 312 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 313 RI != RE; ++RI) { 314 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 315 const std::string &Name = (*RI)->getName(); 316 if (Name != "NoWrite" && Name != "ReadDefault") 317 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 318 } 319 }); 320 } 321 322 /// Compute a SchedWrite name from a sequence of writes. 323 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 324 std::string Name("("); 325 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 326 if (I != Seq.begin()) 327 Name += '_'; 328 Name += getSchedRW(*I, IsRead).Name; 329 } 330 Name += ')'; 331 return Name; 332 } 333 334 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 335 unsigned After) const { 336 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 337 assert(After < RWVec.size() && "start position out of bounds"); 338 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 339 E = RWVec.end(); I != E; ++I) { 340 if (I->TheDef == Def) 341 return I - RWVec.begin(); 342 } 343 return 0; 344 } 345 346 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 347 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 348 Record *ReadDef = SchedReads[i].TheDef; 349 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 350 continue; 351 352 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 353 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 354 != ValidWrites.end()) { 355 return true; 356 } 357 } 358 return false; 359 } 360 361 namespace llvm { 362 void splitSchedReadWrites(const RecVec &RWDefs, 363 RecVec &WriteDefs, RecVec &ReadDefs) { 364 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 365 if ((*RWI)->isSubClassOf("SchedWrite")) 366 WriteDefs.push_back(*RWI); 367 else { 368 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 369 ReadDefs.push_back(*RWI); 370 } 371 } 372 } 373 } // namespace llvm 374 375 // Split the SchedReadWrites defs and call findRWs for each list. 376 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 377 IdxVec &Writes, IdxVec &Reads) const { 378 RecVec WriteDefs; 379 RecVec ReadDefs; 380 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 381 findRWs(WriteDefs, Writes, false); 382 findRWs(ReadDefs, Reads, true); 383 } 384 385 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 386 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 387 bool IsRead) const { 388 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 389 unsigned Idx = getSchedRWIdx(*RI, IsRead); 390 assert(Idx && "failed to collect SchedReadWrite"); 391 RWs.push_back(Idx); 392 } 393 } 394 395 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 396 bool IsRead) const { 397 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 398 if (!SchedRW.IsSequence) { 399 RWSeq.push_back(RWIdx); 400 return; 401 } 402 int Repeat = 403 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 404 for (int i = 0; i < Repeat; ++i) { 405 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 406 I != E; ++I) { 407 expandRWSequence(*I, RWSeq, IsRead); 408 } 409 } 410 } 411 412 // Expand a SchedWrite as a sequence following any aliases that coincide with 413 // the given processor model. 414 void CodeGenSchedModels::expandRWSeqForProc( 415 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 416 const CodeGenProcModel &ProcModel) const { 417 418 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 419 Record *AliasDef = nullptr; 420 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 421 AI != AE; ++AI) { 422 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 423 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 424 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 425 if (&getProcModel(ModelDef) != &ProcModel) 426 continue; 427 } 428 if (AliasDef) 429 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 430 "defined for processor " + ProcModel.ModelName + 431 " Ensure only one SchedAlias exists per RW."); 432 AliasDef = AliasRW.TheDef; 433 } 434 if (AliasDef) { 435 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 436 RWSeq, IsRead,ProcModel); 437 return; 438 } 439 if (!SchedWrite.IsSequence) { 440 RWSeq.push_back(RWIdx); 441 return; 442 } 443 int Repeat = 444 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 445 for (int i = 0; i < Repeat; ++i) { 446 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 447 I != E; ++I) { 448 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 449 } 450 } 451 } 452 453 // Find the existing SchedWrite that models this sequence of writes. 454 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 455 bool IsRead) { 456 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 457 458 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 459 I != E; ++I) { 460 if (makeArrayRef(I->Sequence) == Seq) 461 return I - RWVec.begin(); 462 } 463 // Index zero reserved for invalid RW. 464 return 0; 465 } 466 467 /// Add this ReadWrite if it doesn't already exist. 468 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 469 bool IsRead) { 470 assert(!Seq.empty() && "cannot insert empty sequence"); 471 if (Seq.size() == 1) 472 return Seq.back(); 473 474 unsigned Idx = findRWForSequence(Seq, IsRead); 475 if (Idx) 476 return Idx; 477 478 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 479 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 480 if (IsRead) 481 SchedReads.push_back(SchedRW); 482 else 483 SchedWrites.push_back(SchedRW); 484 return RWIdx; 485 } 486 487 /// Visit all the instruction definitions for this target to gather and 488 /// enumerate the itinerary classes. These are the explicitly specified 489 /// SchedClasses. More SchedClasses may be inferred. 490 void CodeGenSchedModels::collectSchedClasses() { 491 492 // NoItinerary is always the first class at Idx=0 493 SchedClasses.resize(1); 494 SchedClasses.back().Index = 0; 495 SchedClasses.back().Name = "NoInstrModel"; 496 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 497 SchedClasses.back().ProcIndices.push_back(0); 498 499 // Create a SchedClass for each unique combination of itinerary class and 500 // SchedRW list. 501 for (const CodeGenInstruction *Inst : Target.instructions()) { 502 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 503 IdxVec Writes, Reads; 504 if (!Inst->TheDef->isValueUnset("SchedRW")) 505 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 506 507 // ProcIdx == 0 indicates the class applies to all processors. 508 IdxVec ProcIndices(1, 0); 509 510 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 511 InstrClassMap[Inst->TheDef] = SCIdx; 512 } 513 // Create classes for InstRW defs. 514 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 515 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 516 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 517 createInstRWClass(*OI); 518 519 NumInstrSchedClasses = SchedClasses.size(); 520 521 bool EnableDump = false; 522 DEBUG(EnableDump = true); 523 if (!EnableDump) 524 return; 525 526 for (const CodeGenInstruction *Inst : Target.instructions()) { 527 std::string InstName = Inst->TheDef->getName(); 528 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 529 if (!SCIdx) { 530 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 531 continue; 532 } 533 CodeGenSchedClass &SC = getSchedClass(SCIdx); 534 if (SC.ProcIndices[0] != 0) 535 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 536 "must not be subtarget specific."); 537 538 IdxVec ProcIndices; 539 if (SC.ItinClassDef->getName() != "NoItinerary") { 540 ProcIndices.push_back(0); 541 dbgs() << "Itinerary for " << InstName << ": " 542 << SC.ItinClassDef->getName() << '\n'; 543 } 544 if (!SC.Writes.empty()) { 545 ProcIndices.push_back(0); 546 dbgs() << "SchedRW machine model for " << InstName; 547 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 548 dbgs() << " " << SchedWrites[*WI].Name; 549 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 550 dbgs() << " " << SchedReads[*RI].Name; 551 dbgs() << '\n'; 552 } 553 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 554 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 555 RWI != RWE; ++RWI) { 556 const CodeGenProcModel &ProcModel = 557 getProcModel((*RWI)->getValueAsDef("SchedModel")); 558 ProcIndices.push_back(ProcModel.Index); 559 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 560 IdxVec Writes; 561 IdxVec Reads; 562 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 563 Writes, Reads); 564 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 565 dbgs() << " " << SchedWrites[*WI].Name; 566 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 567 dbgs() << " " << SchedReads[*RI].Name; 568 dbgs() << '\n'; 569 } 570 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 571 PE = ProcModels.end(); PI != PE; ++PI) { 572 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 573 dbgs() << "No machine model for " << Inst->TheDef->getName() 574 << " on processor " << PI->ModelName << '\n'; 575 } 576 } 577 } 578 579 /// Find an SchedClass that has been inferred from a per-operand list of 580 /// SchedWrites and SchedReads. 581 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 582 ArrayRef<unsigned> Writes, 583 ArrayRef<unsigned> Reads) const { 584 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 585 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 586 makeArrayRef(I->Reads) == Reads) { 587 return I - schedClassBegin(); 588 } 589 } 590 return 0; 591 } 592 593 // Get the SchedClass index for an instruction. 594 unsigned CodeGenSchedModels::getSchedClassIdx( 595 const CodeGenInstruction &Inst) const { 596 597 return InstrClassMap.lookup(Inst.TheDef); 598 } 599 600 std::string 601 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 602 ArrayRef<unsigned> OperWrites, 603 ArrayRef<unsigned> OperReads) { 604 605 std::string Name; 606 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 607 Name = ItinClassDef->getName(); 608 for (unsigned Idx : OperWrites) { 609 if (!Name.empty()) 610 Name += '_'; 611 Name += SchedWrites[Idx].Name; 612 } 613 for (unsigned Idx : OperReads) { 614 Name += '_'; 615 Name += SchedReads[Idx].Name; 616 } 617 return Name; 618 } 619 620 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 621 622 std::string Name; 623 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 624 if (I != InstDefs.begin()) 625 Name += '_'; 626 Name += (*I)->getName(); 627 } 628 return Name; 629 } 630 631 /// Add an inferred sched class from an itinerary class and per-operand list of 632 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 633 /// processors that may utilize this class. 634 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 635 ArrayRef<unsigned> OperWrites, 636 ArrayRef<unsigned> OperReads, 637 ArrayRef<unsigned> ProcIndices) { 638 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 639 640 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 641 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 642 IdxVec PI; 643 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 644 SchedClasses[Idx].ProcIndices.end(), 645 ProcIndices.begin(), ProcIndices.end(), 646 std::back_inserter(PI)); 647 SchedClasses[Idx].ProcIndices.swap(PI); 648 return Idx; 649 } 650 Idx = SchedClasses.size(); 651 SchedClasses.resize(Idx+1); 652 CodeGenSchedClass &SC = SchedClasses.back(); 653 SC.Index = Idx; 654 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 655 SC.ItinClassDef = ItinClassDef; 656 SC.Writes = OperWrites; 657 SC.Reads = OperReads; 658 SC.ProcIndices = ProcIndices; 659 660 return Idx; 661 } 662 663 // Create classes for each set of opcodes that are in the same InstReadWrite 664 // definition across all processors. 665 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 666 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 667 // intersects with an existing class via a previous InstRWDef. Instrs that do 668 // not intersect with an existing class refer back to their former class as 669 // determined from ItinDef or SchedRW. 670 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 671 // Sort Instrs into sets. 672 const RecVec *InstDefs = Sets.expand(InstRWDef); 673 if (InstDefs->empty()) 674 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 675 676 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 677 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 678 if (Pos == InstrClassMap.end()) 679 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 680 unsigned SCIdx = Pos->second; 681 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 682 for (; CIdx != CEnd; ++CIdx) { 683 if (ClassInstrs[CIdx].first == SCIdx) 684 break; 685 } 686 if (CIdx == CEnd) { 687 ClassInstrs.resize(CEnd + 1); 688 ClassInstrs[CIdx].first = SCIdx; 689 } 690 ClassInstrs[CIdx].second.push_back(*I); 691 } 692 // For each set of Instrs, create a new class if necessary, and map or remap 693 // the Instrs to it. 694 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 695 for (; CIdx != CEnd; ++CIdx) { 696 unsigned OldSCIdx = ClassInstrs[CIdx].first; 697 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 698 // If the all instrs in the current class are accounted for, then leave 699 // them mapped to their old class. 700 if (OldSCIdx) { 701 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 702 if (!RWDefs.empty()) { 703 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 704 unsigned OrigNumInstrs = 0; 705 for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); 706 I != E; ++I) { 707 if (InstrClassMap[*I] == OldSCIdx) 708 ++OrigNumInstrs; 709 } 710 if (OrigNumInstrs == InstDefs.size()) { 711 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 712 "expected a generic SchedClass"); 713 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 714 << SchedClasses[OldSCIdx].Name << " on " 715 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 716 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 717 continue; 718 } 719 } 720 } 721 unsigned SCIdx = SchedClasses.size(); 722 SchedClasses.resize(SCIdx+1); 723 CodeGenSchedClass &SC = SchedClasses.back(); 724 SC.Index = SCIdx; 725 SC.Name = createSchedClassName(InstDefs); 726 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 727 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 728 729 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 730 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 731 SC.Writes = SchedClasses[OldSCIdx].Writes; 732 SC.Reads = SchedClasses[OldSCIdx].Reads; 733 SC.ProcIndices.push_back(0); 734 // Map each Instr to this new class. 735 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 736 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 737 SmallSet<unsigned, 4> RemappedClassIDs; 738 for (ArrayRef<Record*>::const_iterator 739 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 740 unsigned OldSCIdx = InstrClassMap[*II]; 741 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 742 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 743 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 744 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 745 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 746 (*II)->getName() + " also matches " + 747 (*RI)->getValue("Instrs")->getValue()->getAsString()); 748 } 749 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 750 SC.InstRWs.push_back(*RI); 751 } 752 } 753 InstrClassMap[*II] = SCIdx; 754 } 755 SC.InstRWs.push_back(InstRWDef); 756 } 757 } 758 759 // True if collectProcItins found anything. 760 bool CodeGenSchedModels::hasItineraries() const { 761 for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); 762 PI != PE; ++PI) { 763 if (PI->hasItineraries()) 764 return true; 765 } 766 return false; 767 } 768 769 // Gather the processor itineraries. 770 void CodeGenSchedModels::collectProcItins() { 771 for (CodeGenProcModel &ProcModel : ProcModels) { 772 if (!ProcModel.hasItineraries()) 773 continue; 774 775 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 776 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 777 778 // Populate ItinDefList with Itinerary records. 779 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 780 781 // Insert each itinerary data record in the correct position within 782 // the processor model's ItinDefList. 783 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 784 Record *ItinData = ItinRecords[i]; 785 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 786 bool FoundClass = false; 787 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 788 SCI != SCE; ++SCI) { 789 // Multiple SchedClasses may share an itinerary. Update all of them. 790 if (SCI->ItinClassDef == ItinDef) { 791 ProcModel.ItinDefList[SCI->Index] = ItinData; 792 FoundClass = true; 793 } 794 } 795 if (!FoundClass) { 796 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 797 << " missing class for itinerary " << ItinDef->getName() << '\n'); 798 } 799 } 800 // Check for missing itinerary entries. 801 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 802 DEBUG( 803 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 804 if (!ProcModel.ItinDefList[i]) 805 dbgs() << ProcModel.ItinsDef->getName() 806 << " missing itinerary for class " 807 << SchedClasses[i].Name << '\n'; 808 }); 809 } 810 } 811 812 // Gather the read/write types for each itinerary class. 813 void CodeGenSchedModels::collectProcItinRW() { 814 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 815 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 816 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 817 if (!(*II)->getValueInit("SchedModel")->isComplete()) 818 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 819 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 820 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 821 if (I == ProcModelMap.end()) { 822 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 823 + ModelDef->getName()); 824 } 825 ProcModels[I->second].ItinRWDefs.push_back(*II); 826 } 827 } 828 829 /// Infer new classes from existing classes. In the process, this may create new 830 /// SchedWrites from sequences of existing SchedWrites. 831 void CodeGenSchedModels::inferSchedClasses() { 832 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 833 834 // Visit all existing classes and newly created classes. 835 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 836 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 837 838 if (SchedClasses[Idx].ItinClassDef) 839 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 840 if (!SchedClasses[Idx].InstRWs.empty()) 841 inferFromInstRWs(Idx); 842 if (!SchedClasses[Idx].Writes.empty()) { 843 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 844 Idx, SchedClasses[Idx].ProcIndices); 845 } 846 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 847 "too many SchedVariants"); 848 } 849 } 850 851 /// Infer classes from per-processor itinerary resources. 852 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 853 unsigned FromClassIdx) { 854 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 855 const CodeGenProcModel &PM = ProcModels[PIdx]; 856 // For all ItinRW entries. 857 bool HasMatch = false; 858 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 859 II != IE; ++II) { 860 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 861 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 862 continue; 863 if (HasMatch) 864 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 865 + ItinClassDef->getName() 866 + " in ItinResources for " + PM.ModelName); 867 HasMatch = true; 868 IdxVec Writes, Reads; 869 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 870 IdxVec ProcIndices(1, PIdx); 871 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 872 } 873 } 874 } 875 876 /// Infer classes from per-processor InstReadWrite definitions. 877 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 878 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 879 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 880 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 881 const RecVec *InstDefs = Sets.expand(Rec); 882 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 883 for (; II != IE; ++II) { 884 if (InstrClassMap[*II] == SCIdx) 885 break; 886 } 887 // If this class no longer has any instructions mapped to it, it has become 888 // irrelevant. 889 if (II == IE) 890 continue; 891 IdxVec Writes, Reads; 892 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 893 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 894 IdxVec ProcIndices(1, PIdx); 895 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 896 } 897 } 898 899 namespace { 900 // Helper for substituteVariantOperand. 901 struct TransVariant { 902 Record *VarOrSeqDef; // Variant or sequence. 903 unsigned RWIdx; // Index of this variant or sequence's matched type. 904 unsigned ProcIdx; // Processor model index or zero for any. 905 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 906 907 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 908 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 909 }; 910 911 // Associate a predicate with the SchedReadWrite that it guards. 912 // RWIdx is the index of the read/write variant. 913 struct PredCheck { 914 bool IsRead; 915 unsigned RWIdx; 916 Record *Predicate; 917 918 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 919 }; 920 921 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 922 struct PredTransition { 923 // A predicate term is a conjunction of PredChecks. 924 SmallVector<PredCheck, 4> PredTerm; 925 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 926 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 927 SmallVector<unsigned, 4> ProcIndices; 928 }; 929 930 // Encapsulate a set of partially constructed transitions. 931 // The results are built by repeated calls to substituteVariants. 932 class PredTransitions { 933 CodeGenSchedModels &SchedModels; 934 935 public: 936 std::vector<PredTransition> TransVec; 937 938 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 939 940 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 941 bool IsRead, unsigned StartIdx); 942 943 void substituteVariants(const PredTransition &Trans); 944 945 #ifndef NDEBUG 946 void dump() const; 947 #endif 948 949 private: 950 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 951 void getIntersectingVariants( 952 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 953 std::vector<TransVariant> &IntersectingVariants); 954 void pushVariant(const TransVariant &VInfo, bool IsRead); 955 }; 956 } // anonymous 957 958 // Return true if this predicate is mutually exclusive with a PredTerm. This 959 // degenerates into checking if the predicate is mutually exclusive with any 960 // predicate in the Term's conjunction. 961 // 962 // All predicates associated with a given SchedRW are considered mutually 963 // exclusive. This should work even if the conditions expressed by the 964 // predicates are not exclusive because the predicates for a given SchedWrite 965 // are always checked in the order they are defined in the .td file. Later 966 // conditions implicitly negate any prior condition. 967 bool PredTransitions::mutuallyExclusive(Record *PredDef, 968 ArrayRef<PredCheck> Term) { 969 970 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 971 I != E; ++I) { 972 if (I->Predicate == PredDef) 973 return false; 974 975 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 976 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 977 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 978 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 979 if ((*VI)->getValueAsDef("Predicate") == PredDef) 980 return true; 981 } 982 } 983 return false; 984 } 985 986 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 987 CodeGenSchedModels &SchedModels) { 988 if (RW.HasVariants) 989 return true; 990 991 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 992 const CodeGenSchedRW &AliasRW = 993 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 994 if (AliasRW.HasVariants) 995 return true; 996 if (AliasRW.IsSequence) { 997 IdxVec ExpandedRWs; 998 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 999 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1000 SI != SE; ++SI) { 1001 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1002 SchedModels)) { 1003 return true; 1004 } 1005 } 1006 } 1007 } 1008 return false; 1009 } 1010 1011 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1012 CodeGenSchedModels &SchedModels) { 1013 for (ArrayRef<PredTransition>::iterator 1014 PTI = Transitions.begin(), PTE = Transitions.end(); 1015 PTI != PTE; ++PTI) { 1016 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1017 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1018 WSI != WSE; ++WSI) { 1019 for (SmallVectorImpl<unsigned>::const_iterator 1020 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1021 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1022 return true; 1023 } 1024 } 1025 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1026 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1027 RSI != RSE; ++RSI) { 1028 for (SmallVectorImpl<unsigned>::const_iterator 1029 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1030 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1031 return true; 1032 } 1033 } 1034 } 1035 return false; 1036 } 1037 1038 // Populate IntersectingVariants with any variants or aliased sequences of the 1039 // given SchedRW whose processor indices and predicates are not mutually 1040 // exclusive with the given transition. 1041 void PredTransitions::getIntersectingVariants( 1042 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1043 std::vector<TransVariant> &IntersectingVariants) { 1044 1045 bool GenericRW = false; 1046 1047 std::vector<TransVariant> Variants; 1048 if (SchedRW.HasVariants) { 1049 unsigned VarProcIdx = 0; 1050 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1051 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1052 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1053 } 1054 // Push each variant. Assign TransVecIdx later. 1055 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1056 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1057 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1058 if (VarProcIdx == 0) 1059 GenericRW = true; 1060 } 1061 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1062 AI != AE; ++AI) { 1063 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1064 // to is defined within a processor model, constrain all variants to 1065 // that processor. 1066 unsigned AliasProcIdx = 0; 1067 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1068 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1069 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1070 } 1071 const CodeGenSchedRW &AliasRW = 1072 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1073 1074 if (AliasRW.HasVariants) { 1075 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1076 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1077 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1078 } 1079 if (AliasRW.IsSequence) { 1080 Variants.push_back( 1081 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1082 } 1083 if (AliasProcIdx == 0) 1084 GenericRW = true; 1085 } 1086 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1087 TransVariant &Variant = Variants[VIdx]; 1088 // Don't expand variants if the processor models don't intersect. 1089 // A zero processor index means any processor. 1090 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1091 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1092 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1093 Variant.ProcIdx); 1094 if (!Cnt) 1095 continue; 1096 if (Cnt > 1) { 1097 const CodeGenProcModel &PM = 1098 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1099 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1100 "Multiple variants defined for processor " + 1101 PM.ModelName + 1102 " Ensure only one SchedAlias exists per RW."); 1103 } 1104 } 1105 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1106 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1107 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1108 continue; 1109 } 1110 if (IntersectingVariants.empty()) { 1111 // The first variant builds on the existing transition. 1112 Variant.TransVecIdx = TransIdx; 1113 IntersectingVariants.push_back(Variant); 1114 } 1115 else { 1116 // Push another copy of the current transition for more variants. 1117 Variant.TransVecIdx = TransVec.size(); 1118 IntersectingVariants.push_back(Variant); 1119 TransVec.push_back(TransVec[TransIdx]); 1120 } 1121 } 1122 if (GenericRW && IntersectingVariants.empty()) { 1123 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1124 "a matching predicate on any processor"); 1125 } 1126 } 1127 1128 // Push the Reads/Writes selected by this variant onto the PredTransition 1129 // specified by VInfo. 1130 void PredTransitions:: 1131 pushVariant(const TransVariant &VInfo, bool IsRead) { 1132 1133 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1134 1135 // If this operand transition is reached through a processor-specific alias, 1136 // then the whole transition is specific to this processor. 1137 if (VInfo.ProcIdx != 0) 1138 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1139 1140 IdxVec SelectedRWs; 1141 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1142 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1143 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1144 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1145 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1146 } 1147 else { 1148 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1149 "variant must be a SchedVariant or aliased WriteSequence"); 1150 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1151 } 1152 1153 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1154 1155 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1156 ? Trans.ReadSequences : Trans.WriteSequences; 1157 if (SchedRW.IsVariadic) { 1158 unsigned OperIdx = RWSequences.size()-1; 1159 // Make N-1 copies of this transition's last sequence. 1160 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1161 // Create a temporary copy the vector could reallocate. 1162 RWSequences.reserve(RWSequences.size() + 1); 1163 RWSequences.push_back(RWSequences[OperIdx]); 1164 } 1165 // Push each of the N elements of the SelectedRWs onto a copy of the last 1166 // sequence (split the current operand into N operands). 1167 // Note that write sequences should be expanded within this loop--the entire 1168 // sequence belongs to a single operand. 1169 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1170 RWI != RWE; ++RWI, ++OperIdx) { 1171 IdxVec ExpandedRWs; 1172 if (IsRead) 1173 ExpandedRWs.push_back(*RWI); 1174 else 1175 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1176 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1177 ExpandedRWs.begin(), ExpandedRWs.end()); 1178 } 1179 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1180 } 1181 else { 1182 // Push this transition's expanded sequence onto this transition's last 1183 // sequence (add to the current operand's sequence). 1184 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1185 IdxVec ExpandedRWs; 1186 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1187 RWI != RWE; ++RWI) { 1188 if (IsRead) 1189 ExpandedRWs.push_back(*RWI); 1190 else 1191 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1192 } 1193 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1194 } 1195 } 1196 1197 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1198 // operand. StartIdx is an index into TransVec where partial results 1199 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1200 // of TransVec. 1201 void PredTransitions::substituteVariantOperand( 1202 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1203 1204 // Visit each original RW within the current sequence. 1205 for (SmallVectorImpl<unsigned>::const_iterator 1206 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1207 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1208 // Push this RW on all partial PredTransitions or distribute variants. 1209 // New PredTransitions may be pushed within this loop which should not be 1210 // revisited (TransEnd must be loop invariant). 1211 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1212 TransIdx != TransEnd; ++TransIdx) { 1213 // In the common case, push RW onto the current operand's sequence. 1214 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1215 if (IsRead) 1216 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1217 else 1218 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1219 continue; 1220 } 1221 // Distribute this partial PredTransition across intersecting variants. 1222 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1223 std::vector<TransVariant> IntersectingVariants; 1224 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1225 // Now expand each variant on top of its copy of the transition. 1226 for (std::vector<TransVariant>::const_iterator 1227 IVI = IntersectingVariants.begin(), 1228 IVE = IntersectingVariants.end(); 1229 IVI != IVE; ++IVI) { 1230 pushVariant(*IVI, IsRead); 1231 } 1232 } 1233 } 1234 } 1235 1236 // For each variant of a Read/Write in Trans, substitute the sequence of 1237 // Read/Writes guarded by the variant. This is exponential in the number of 1238 // variant Read/Writes, but in practice detection of mutually exclusive 1239 // predicates should result in linear growth in the total number variants. 1240 // 1241 // This is one step in a breadth-first search of nested variants. 1242 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1243 // Build up a set of partial results starting at the back of 1244 // PredTransitions. Remember the first new transition. 1245 unsigned StartIdx = TransVec.size(); 1246 TransVec.resize(TransVec.size() + 1); 1247 TransVec.back().PredTerm = Trans.PredTerm; 1248 TransVec.back().ProcIndices = Trans.ProcIndices; 1249 1250 // Visit each original write sequence. 1251 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1252 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1253 WSI != WSE; ++WSI) { 1254 // Push a new (empty) write sequence onto all partial Transitions. 1255 for (std::vector<PredTransition>::iterator I = 1256 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1257 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1258 } 1259 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1260 } 1261 // Visit each original read sequence. 1262 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1263 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1264 RSI != RSE; ++RSI) { 1265 // Push a new (empty) read sequence onto all partial Transitions. 1266 for (std::vector<PredTransition>::iterator I = 1267 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1268 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1269 } 1270 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1271 } 1272 } 1273 1274 // Create a new SchedClass for each variant found by inferFromRW. Pass 1275 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1276 unsigned FromClassIdx, 1277 CodeGenSchedModels &SchedModels) { 1278 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1279 // requires creating a new SchedClass. 1280 for (ArrayRef<PredTransition>::iterator 1281 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1282 IdxVec OperWritesVariant; 1283 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1284 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1285 WSI != WSE; ++WSI) { 1286 // Create a new write representing the expanded sequence. 1287 OperWritesVariant.push_back( 1288 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1289 } 1290 IdxVec OperReadsVariant; 1291 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1292 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1293 RSI != RSE; ++RSI) { 1294 // Create a new read representing the expanded sequence. 1295 OperReadsVariant.push_back( 1296 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1297 } 1298 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1299 CodeGenSchedTransition SCTrans; 1300 SCTrans.ToClassIdx = 1301 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1302 OperReadsVariant, ProcIndices); 1303 SCTrans.ProcIndices = ProcIndices; 1304 // The final PredTerm is unique set of predicates guarding the transition. 1305 RecVec Preds; 1306 for (SmallVectorImpl<PredCheck>::const_iterator 1307 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1308 Preds.push_back(PI->Predicate); 1309 } 1310 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1311 Preds.resize(PredsEnd - Preds.begin()); 1312 SCTrans.PredTerm = Preds; 1313 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1314 } 1315 } 1316 1317 // Create new SchedClasses for the given ReadWrite list. If any of the 1318 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1319 // of the ReadWrite list, following Aliases if necessary. 1320 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1321 ArrayRef<unsigned> OperReads, 1322 unsigned FromClassIdx, 1323 ArrayRef<unsigned> ProcIndices) { 1324 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1325 1326 // Create a seed transition with an empty PredTerm and the expanded sequences 1327 // of SchedWrites for the current SchedClass. 1328 std::vector<PredTransition> LastTransitions; 1329 LastTransitions.resize(1); 1330 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1331 ProcIndices.end()); 1332 1333 for (unsigned WriteIdx : OperWrites) { 1334 IdxVec WriteSeq; 1335 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1336 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1337 LastTransitions[0].WriteSequences.resize(Idx + 1); 1338 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1339 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1340 Seq.push_back(*WI); 1341 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1342 } 1343 DEBUG(dbgs() << " Reads: "); 1344 for (unsigned ReadIdx : OperReads) { 1345 IdxVec ReadSeq; 1346 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1347 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1348 LastTransitions[0].ReadSequences.resize(Idx + 1); 1349 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1350 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1351 Seq.push_back(*RI); 1352 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1353 } 1354 DEBUG(dbgs() << '\n'); 1355 1356 // Collect all PredTransitions for individual operands. 1357 // Iterate until no variant writes remain. 1358 while (hasVariant(LastTransitions, *this)) { 1359 PredTransitions Transitions(*this); 1360 for (std::vector<PredTransition>::const_iterator 1361 I = LastTransitions.begin(), E = LastTransitions.end(); 1362 I != E; ++I) { 1363 Transitions.substituteVariants(*I); 1364 } 1365 DEBUG(Transitions.dump()); 1366 LastTransitions.swap(Transitions.TransVec); 1367 } 1368 // If the first transition has no variants, nothing to do. 1369 if (LastTransitions[0].PredTerm.empty()) 1370 return; 1371 1372 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1373 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1374 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1375 } 1376 1377 // Check if any processor resource group contains all resource records in 1378 // SubUnits. 1379 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1380 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1381 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1382 continue; 1383 RecVec SuperUnits = 1384 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1385 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1386 for ( ; RI != RE; ++RI) { 1387 if (std::find(SuperUnits.begin(), SuperUnits.end(), *RI) 1388 == SuperUnits.end()) { 1389 break; 1390 } 1391 } 1392 if (RI == RE) 1393 return true; 1394 } 1395 return false; 1396 } 1397 1398 // Verify that overlapping groups have a common supergroup. 1399 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1400 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1401 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1402 continue; 1403 RecVec CheckUnits = 1404 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1405 for (unsigned j = i+1; j < e; ++j) { 1406 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1407 continue; 1408 RecVec OtherUnits = 1409 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1410 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1411 OtherUnits.begin(), OtherUnits.end()) 1412 != CheckUnits.end()) { 1413 // CheckUnits and OtherUnits overlap 1414 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1415 CheckUnits.end()); 1416 if (!hasSuperGroup(OtherUnits, PM)) { 1417 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1418 "proc resource group overlaps with " 1419 + PM.ProcResourceDefs[j]->getName() 1420 + " but no supergroup contains both."); 1421 } 1422 } 1423 } 1424 } 1425 } 1426 1427 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1428 void CodeGenSchedModels::collectProcResources() { 1429 // Add any subtarget-specific SchedReadWrites that are directly associated 1430 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1431 // determine which processors they apply to. 1432 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1433 SCI != SCE; ++SCI) { 1434 if (SCI->ItinClassDef) 1435 collectItinProcResources(SCI->ItinClassDef); 1436 else { 1437 // This class may have a default ReadWrite list which can be overriden by 1438 // InstRW definitions. 1439 if (!SCI->InstRWs.empty()) { 1440 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1441 RWI != RWE; ++RWI) { 1442 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1443 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1444 IdxVec Writes, Reads; 1445 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1446 Writes, Reads); 1447 collectRWResources(Writes, Reads, ProcIndices); 1448 } 1449 } 1450 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1451 } 1452 } 1453 // Add resources separately defined by each subtarget. 1454 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1455 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1456 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1457 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1458 } 1459 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1460 for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { 1461 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1462 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1463 } 1464 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1465 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1466 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1467 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1468 } 1469 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1470 for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { 1471 if ((*RAI)->getValueInit("SchedModel")->isComplete()) { 1472 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1473 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1474 } 1475 } 1476 // Add ProcResGroups that are defined within this processor model, which may 1477 // not be directly referenced but may directly specify a buffer size. 1478 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1479 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1480 RI != RE; ++RI) { 1481 if (!(*RI)->getValueInit("SchedModel")->isComplete()) 1482 continue; 1483 CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); 1484 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1485 PM.ProcResourceDefs.end(), *RI); 1486 if (I == PM.ProcResourceDefs.end()) 1487 PM.ProcResourceDefs.push_back(*RI); 1488 } 1489 // Finalize each ProcModel by sorting the record arrays. 1490 for (CodeGenProcModel &PM : ProcModels) { 1491 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1492 LessRecord()); 1493 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1494 LessRecord()); 1495 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1496 LessRecord()); 1497 DEBUG( 1498 PM.dump(); 1499 dbgs() << "WriteResDefs: "; 1500 for (RecIter RI = PM.WriteResDefs.begin(), 1501 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1502 if ((*RI)->isSubClassOf("WriteRes")) 1503 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1504 else 1505 dbgs() << (*RI)->getName() << " "; 1506 } 1507 dbgs() << "\nReadAdvanceDefs: "; 1508 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1509 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1510 if ((*RI)->isSubClassOf("ReadAdvance")) 1511 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1512 else 1513 dbgs() << (*RI)->getName() << " "; 1514 } 1515 dbgs() << "\nProcResourceDefs: "; 1516 for (RecIter RI = PM.ProcResourceDefs.begin(), 1517 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1518 dbgs() << (*RI)->getName() << " "; 1519 } 1520 dbgs() << '\n'); 1521 verifyProcResourceGroups(PM); 1522 } 1523 } 1524 1525 // Collect itinerary class resources for each processor. 1526 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1527 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1528 const CodeGenProcModel &PM = ProcModels[PIdx]; 1529 // For all ItinRW entries. 1530 bool HasMatch = false; 1531 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1532 II != IE; ++II) { 1533 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1534 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1535 continue; 1536 if (HasMatch) 1537 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1538 + ItinClassDef->getName() 1539 + " in ItinResources for " + PM.ModelName); 1540 HasMatch = true; 1541 IdxVec Writes, Reads; 1542 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1543 IdxVec ProcIndices(1, PIdx); 1544 collectRWResources(Writes, Reads, ProcIndices); 1545 } 1546 } 1547 } 1548 1549 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1550 ArrayRef<unsigned> ProcIndices) { 1551 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1552 if (SchedRW.TheDef) { 1553 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1554 for (unsigned Idx : ProcIndices) 1555 addWriteRes(SchedRW.TheDef, Idx); 1556 } 1557 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1558 for (unsigned Idx : ProcIndices) 1559 addReadAdvance(SchedRW.TheDef, Idx); 1560 } 1561 } 1562 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1563 AI != AE; ++AI) { 1564 IdxVec AliasProcIndices; 1565 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1566 AliasProcIndices.push_back( 1567 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1568 } 1569 else 1570 AliasProcIndices = ProcIndices; 1571 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1572 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1573 1574 IdxVec ExpandedRWs; 1575 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1576 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1577 SI != SE; ++SI) { 1578 collectRWResources(*SI, IsRead, AliasProcIndices); 1579 } 1580 } 1581 } 1582 1583 // Collect resources for a set of read/write types and processor indices. 1584 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1585 ArrayRef<unsigned> Reads, 1586 ArrayRef<unsigned> ProcIndices) { 1587 1588 for (unsigned Idx : Writes) 1589 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1590 1591 for (unsigned Idx : Reads) 1592 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1593 } 1594 1595 1596 // Find the processor's resource units for this kind of resource. 1597 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1598 const CodeGenProcModel &PM) const { 1599 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1600 return ProcResKind; 1601 1602 Record *ProcUnitDef = nullptr; 1603 RecVec ProcResourceDefs = 1604 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1605 1606 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1607 RI != RE; ++RI) { 1608 1609 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1610 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1611 if (ProcUnitDef) { 1612 PrintFatalError((*RI)->getLoc(), 1613 "Multiple ProcessorResourceUnits associated with " 1614 + ProcResKind->getName()); 1615 } 1616 ProcUnitDef = *RI; 1617 } 1618 } 1619 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1620 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1621 RI != RE; ++RI) { 1622 1623 if (*RI == ProcResKind 1624 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1625 if (ProcUnitDef) { 1626 PrintFatalError((*RI)->getLoc(), 1627 "Multiple ProcessorResourceUnits associated with " 1628 + ProcResKind->getName()); 1629 } 1630 ProcUnitDef = *RI; 1631 } 1632 } 1633 if (!ProcUnitDef) { 1634 PrintFatalError(ProcResKind->getLoc(), 1635 "No ProcessorResources associated with " 1636 + ProcResKind->getName()); 1637 } 1638 return ProcUnitDef; 1639 } 1640 1641 // Iteratively add a resource and its super resources. 1642 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1643 CodeGenProcModel &PM) { 1644 for (;;) { 1645 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1646 1647 // See if this ProcResource is already associated with this processor. 1648 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1649 PM.ProcResourceDefs.end(), ProcResUnits); 1650 if (I != PM.ProcResourceDefs.end()) 1651 return; 1652 1653 PM.ProcResourceDefs.push_back(ProcResUnits); 1654 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1655 return; 1656 1657 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1658 return; 1659 1660 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1661 } 1662 } 1663 1664 // Add resources for a SchedWrite to this processor if they don't exist. 1665 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1666 assert(PIdx && "don't add resources to an invalid Processor model"); 1667 1668 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1669 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1670 if (WRI != WRDefs.end()) 1671 return; 1672 WRDefs.push_back(ProcWriteResDef); 1673 1674 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1675 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1676 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1677 WritePRI != WritePRE; ++WritePRI) { 1678 addProcResource(*WritePRI, ProcModels[PIdx]); 1679 } 1680 } 1681 1682 // Add resources for a ReadAdvance to this processor if they don't exist. 1683 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1684 unsigned PIdx) { 1685 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1686 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1687 if (I != RADefs.end()) 1688 return; 1689 RADefs.push_back(ProcReadAdvanceDef); 1690 } 1691 1692 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1693 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1694 PRDef); 1695 if (PRPos == ProcResourceDefs.end()) 1696 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1697 "the ProcResources list for " + ModelName); 1698 // Idx=0 is reserved for invalid. 1699 return 1 + (PRPos - ProcResourceDefs.begin()); 1700 } 1701 1702 #ifndef NDEBUG 1703 void CodeGenProcModel::dump() const { 1704 dbgs() << Index << ": " << ModelName << " " 1705 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1706 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1707 } 1708 1709 void CodeGenSchedRW::dump() const { 1710 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1711 if (IsSequence) { 1712 dbgs() << "("; 1713 dumpIdxVec(Sequence); 1714 dbgs() << ")"; 1715 } 1716 } 1717 1718 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1719 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1720 << " Writes: "; 1721 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1722 SchedModels->getSchedWrite(Writes[i]).dump(); 1723 if (i < N-1) { 1724 dbgs() << '\n'; 1725 dbgs().indent(10); 1726 } 1727 } 1728 dbgs() << "\n Reads: "; 1729 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1730 SchedModels->getSchedRead(Reads[i]).dump(); 1731 if (i < N-1) { 1732 dbgs() << '\n'; 1733 dbgs().indent(10); 1734 } 1735 } 1736 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1737 if (!Transitions.empty()) { 1738 dbgs() << "\n Transitions for Proc "; 1739 for (std::vector<CodeGenSchedTransition>::const_iterator 1740 TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { 1741 dumpIdxVec(TI->ProcIndices); 1742 } 1743 } 1744 } 1745 1746 void PredTransitions::dump() const { 1747 dbgs() << "Expanded Variants:\n"; 1748 for (std::vector<PredTransition>::const_iterator 1749 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1750 dbgs() << "{"; 1751 for (SmallVectorImpl<PredCheck>::const_iterator 1752 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1753 PCI != PCE; ++PCI) { 1754 if (PCI != TI->PredTerm.begin()) 1755 dbgs() << ", "; 1756 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1757 << ":" << PCI->Predicate->getName(); 1758 } 1759 dbgs() << "},\n => {"; 1760 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1761 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1762 WSI != WSE; ++WSI) { 1763 dbgs() << "("; 1764 for (SmallVectorImpl<unsigned>::const_iterator 1765 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1766 if (WI != WSI->begin()) 1767 dbgs() << ", "; 1768 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1769 } 1770 dbgs() << "),"; 1771 } 1772 dbgs() << "}\n"; 1773 } 1774 } 1775 #endif // NDEBUG 1776