1 // Copyright 2014 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_FACTORY_H_ 6 #define V8_FACTORY_H_ 7 8 #include "src/isolate.h" 9 #include "src/messages.h" 10 #include "src/type-feedback-vector.h" 11 12 namespace v8 { 13 namespace internal { 14 15 // Interface for handle based allocation. 16 class Factory final { 17 public: 18 Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string, 19 Handle<Object> to_number, const char* type_of, 20 byte kind); 21 22 // Allocates a fixed array initialized with undefined values. 23 Handle<FixedArray> NewFixedArray( 24 int size, 25 PretenureFlag pretenure = NOT_TENURED); 26 27 // Allocate a new fixed array with non-existing entries (the hole). 28 Handle<FixedArray> NewFixedArrayWithHoles( 29 int size, 30 PretenureFlag pretenure = NOT_TENURED); 31 32 // Allocates an uninitialized fixed array. It must be filled by the caller. 33 Handle<FixedArray> NewUninitializedFixedArray(int size); 34 35 // Allocate a new uninitialized fixed double array. 36 // The function returns a pre-allocated empty fixed array for capacity = 0, 37 // so the return type must be the general fixed array class. 38 Handle<FixedArrayBase> NewFixedDoubleArray( 39 int size, 40 PretenureFlag pretenure = NOT_TENURED); 41 42 // Allocate a new fixed double array with hole values. 43 Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles( 44 int size, 45 PretenureFlag pretenure = NOT_TENURED); 46 47 Handle<OrderedHashSet> NewOrderedHashSet(); 48 Handle<OrderedHashMap> NewOrderedHashMap(); 49 50 // Create a new boxed value. 51 Handle<Box> NewBox(Handle<Object> value); 52 53 // Create a new PrototypeInfo struct. 54 Handle<PrototypeInfo> NewPrototypeInfo(); 55 56 // Create a new SloppyBlockWithEvalContextExtension struct. 57 Handle<SloppyBlockWithEvalContextExtension> 58 NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info, 59 Handle<JSObject> extension); 60 61 // Create a pre-tenured empty AccessorPair. 62 Handle<AccessorPair> NewAccessorPair(); 63 64 // Create an empty TypeFeedbackInfo. 65 Handle<TypeFeedbackInfo> NewTypeFeedbackInfo(); 66 67 // Finds the internalized copy for string in the string table. 68 // If not found, a new string is added to the table and returned. 69 Handle<String> InternalizeUtf8String(Vector<const char> str); 70 Handle<String> InternalizeUtf8String(const char* str) { 71 return InternalizeUtf8String(CStrVector(str)); 72 } 73 Handle<String> InternalizeString(Handle<String> str); 74 Handle<String> InternalizeOneByteString(Vector<const uint8_t> str); 75 Handle<String> InternalizeOneByteString( 76 Handle<SeqOneByteString>, int from, int length); 77 78 Handle<String> InternalizeTwoByteString(Vector<const uc16> str); 79 80 template<class StringTableKey> 81 Handle<String> InternalizeStringWithKey(StringTableKey* key); 82 83 Handle<Name> InternalizeName(Handle<Name> name); 84 85 86 // String creation functions. Most of the string creation functions take 87 // a Heap::PretenureFlag argument to optionally request that they be 88 // allocated in the old generation. The pretenure flag defaults to 89 // DONT_TENURE. 90 // 91 // Creates a new String object. There are two String encodings: one-byte and 92 // two-byte. One should choose between the three string factory functions 93 // based on the encoding of the string buffer that the string is 94 // initialized from. 95 // - ...FromOneByte initializes the string from a buffer that is Latin1 96 // encoded (it does not check that the buffer is Latin1 encoded) and 97 // the result will be Latin1 encoded. 98 // - ...FromUtf8 initializes the string from a buffer that is UTF-8 99 // encoded. If the characters are all ASCII characters, the result 100 // will be Latin1 encoded, otherwise it will converted to two-byte. 101 // - ...FromTwoByte initializes the string from a buffer that is two-byte 102 // encoded. If the characters are all Latin1 characters, the result 103 // will be converted to Latin1, otherwise it will be left as two-byte. 104 // 105 // One-byte strings are pretenured when used as keys in the SourceCodeCache. 106 MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte( 107 Vector<const uint8_t> str, 108 PretenureFlag pretenure = NOT_TENURED); 109 110 template <size_t N> 111 inline Handle<String> NewStringFromStaticChars( 112 const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) { 113 DCHECK(N == StrLength(str) + 1); 114 return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure) 115 .ToHandleChecked(); 116 } 117 118 inline Handle<String> NewStringFromAsciiChecked( 119 const char* str, 120 PretenureFlag pretenure = NOT_TENURED) { 121 return NewStringFromOneByte( 122 OneByteVector(str), pretenure).ToHandleChecked(); 123 } 124 125 126 // Allocates and fully initializes a String. There are two String encodings: 127 // one-byte and two-byte. One should choose between the threestring 128 // allocation functions based on the encoding of the string buffer used to 129 // initialized the string. 130 // - ...FromOneByte initializes the string from a buffer that is Latin1 131 // encoded (it does not check that the buffer is Latin1 encoded) and the 132 // result will be Latin1 encoded. 133 // - ...FromUTF8 initializes the string from a buffer that is UTF-8 134 // encoded. If the characters are all ASCII characters, the result 135 // will be Latin1 encoded, otherwise it will converted to two-byte. 136 // - ...FromTwoByte initializes the string from a buffer that is two-byte 137 // encoded. If the characters are all Latin1 characters, the 138 // result will be converted to Latin1, otherwise it will be left as 139 // two-byte. 140 141 // TODO(dcarney): remove this function. 142 MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii( 143 Vector<const char> str, 144 PretenureFlag pretenure = NOT_TENURED) { 145 return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure); 146 } 147 148 // UTF8 strings are pretenured when used for regexp literal patterns and 149 // flags in the parser. 150 MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8( 151 Vector<const char> str, 152 PretenureFlag pretenure = NOT_TENURED); 153 154 MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte( 155 Vector<const uc16> str, 156 PretenureFlag pretenure = NOT_TENURED); 157 158 // Allocates an internalized string in old space based on the character 159 // stream. 160 Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str, 161 int chars, uint32_t hash_field); 162 163 Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str, 164 uint32_t hash_field); 165 166 Handle<String> NewOneByteInternalizedSubString( 167 Handle<SeqOneByteString> string, int offset, int length, 168 uint32_t hash_field); 169 170 Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str, 171 uint32_t hash_field); 172 173 Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars, 174 uint32_t hash_field); 175 176 // Compute the matching internalized string map for a string if possible. 177 // Empty handle is returned if string is in new space or not flattened. 178 MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString( 179 Handle<String> string); 180 181 // Allocates and partially initializes an one-byte or two-byte String. The 182 // characters of the string are uninitialized. Currently used in regexp code 183 // only, where they are pretenured. 184 MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString( 185 int length, 186 PretenureFlag pretenure = NOT_TENURED); 187 MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString( 188 int length, 189 PretenureFlag pretenure = NOT_TENURED); 190 191 // Creates a single character string where the character has given code. 192 // A cache is used for Latin1 codes. 193 Handle<String> LookupSingleCharacterStringFromCode(uint32_t code); 194 195 // Create a new cons string object which consists of a pair of strings. 196 MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left, 197 Handle<String> right); 198 199 // Create a new string object which holds a proper substring of a string. 200 Handle<String> NewProperSubString(Handle<String> str, 201 int begin, 202 int end); 203 204 // Create a new string object which holds a substring of a string. 205 Handle<String> NewSubString(Handle<String> str, int begin, int end) { 206 if (begin == 0 && end == str->length()) return str; 207 return NewProperSubString(str, begin, end); 208 } 209 210 // Creates a new external String object. There are two String encodings 211 // in the system: one-byte and two-byte. Unlike other String types, it does 212 // not make sense to have a UTF-8 factory function for external strings, 213 // because we cannot change the underlying buffer. Note that these strings 214 // are backed by a string resource that resides outside the V8 heap. 215 MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte( 216 const ExternalOneByteString::Resource* resource); 217 MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte( 218 const ExternalTwoByteString::Resource* resource); 219 220 // Create a symbol. 221 Handle<Symbol> NewSymbol(); 222 Handle<Symbol> NewPrivateSymbol(); 223 224 // Create a global (but otherwise uninitialized) context. 225 Handle<Context> NewNativeContext(); 226 227 // Create a script context. 228 Handle<Context> NewScriptContext(Handle<JSFunction> function, 229 Handle<ScopeInfo> scope_info); 230 231 // Create an empty script context table. 232 Handle<ScriptContextTable> NewScriptContextTable(); 233 234 // Create a module context. 235 Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info); 236 237 // Create a function context. 238 Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function); 239 240 // Create a catch context. 241 Handle<Context> NewCatchContext(Handle<JSFunction> function, 242 Handle<Context> previous, 243 Handle<String> name, 244 Handle<Object> thrown_object); 245 246 // Create a 'with' context. 247 Handle<Context> NewWithContext(Handle<JSFunction> function, 248 Handle<Context> previous, 249 Handle<JSReceiver> extension); 250 251 // Create a block context. 252 Handle<Context> NewBlockContext(Handle<JSFunction> function, 253 Handle<Context> previous, 254 Handle<ScopeInfo> scope_info); 255 256 // Allocate a new struct. The struct is pretenured (allocated directly in 257 // the old generation). 258 Handle<Struct> NewStruct(InstanceType type); 259 260 Handle<CodeCache> NewCodeCache(); 261 262 Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry( 263 int aliased_context_slot); 264 265 Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo(); 266 267 Handle<Script> NewScript(Handle<String> source); 268 269 // Foreign objects are pretenured when allocated by the bootstrapper. 270 Handle<Foreign> NewForeign(Address addr, 271 PretenureFlag pretenure = NOT_TENURED); 272 273 // Allocate a new foreign object. The foreign is pretenured (allocated 274 // directly in the old generation). 275 Handle<Foreign> NewForeign(const AccessorDescriptor* foreign); 276 277 Handle<ByteArray> NewByteArray(int length, 278 PretenureFlag pretenure = NOT_TENURED); 279 280 Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes, 281 int frame_size, int parameter_count, 282 Handle<FixedArray> constant_pool); 283 284 Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer( 285 int length, ExternalArrayType array_type, void* external_pointer, 286 PretenureFlag pretenure = NOT_TENURED); 287 288 Handle<FixedTypedArrayBase> NewFixedTypedArray( 289 int length, ExternalArrayType array_type, bool initialize, 290 PretenureFlag pretenure = NOT_TENURED); 291 292 Handle<Cell> NewCell(Handle<Object> value); 293 294 Handle<PropertyCell> NewPropertyCell(); 295 296 Handle<WeakCell> NewWeakCell(Handle<HeapObject> value); 297 298 Handle<TransitionArray> NewTransitionArray(int capacity); 299 300 // Allocate a tenured AllocationSite. It's payload is null. 301 Handle<AllocationSite> NewAllocationSite(); 302 303 Handle<Map> NewMap( 304 InstanceType type, 305 int instance_size, 306 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND); 307 308 Handle<HeapObject> NewFillerObject(int size, 309 bool double_align, 310 AllocationSpace space); 311 312 Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function); 313 314 Handle<JSObject> CopyJSObject(Handle<JSObject> object); 315 316 Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object, 317 Handle<AllocationSite> site); 318 319 Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array, 320 Handle<Map> map); 321 322 Handle<FixedArray> CopyFixedArrayAndGrow( 323 Handle<FixedArray> array, int grow_by, 324 PretenureFlag pretenure = NOT_TENURED); 325 326 Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array); 327 328 // This method expects a COW array in new space, and creates a copy 329 // of it in old space. 330 Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array); 331 332 Handle<FixedDoubleArray> CopyFixedDoubleArray( 333 Handle<FixedDoubleArray> array); 334 335 // Numbers (e.g. literals) are pretenured by the parser. 336 // The return value may be a smi or a heap number. 337 Handle<Object> NewNumber(double value, 338 PretenureFlag pretenure = NOT_TENURED); 339 340 Handle<Object> NewNumberFromInt(int32_t value, 341 PretenureFlag pretenure = NOT_TENURED); 342 Handle<Object> NewNumberFromUint(uint32_t value, 343 PretenureFlag pretenure = NOT_TENURED); 344 Handle<Object> NewNumberFromSize(size_t value, 345 PretenureFlag pretenure = NOT_TENURED) { 346 // We can't use Smi::IsValid() here because that operates on a signed 347 // intptr_t, and casting from size_t could create a bogus sign bit. 348 if (value <= static_cast<size_t>(Smi::kMaxValue)) { 349 return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)), 350 isolate()); 351 } 352 return NewNumber(static_cast<double>(value), pretenure); 353 } 354 Handle<HeapNumber> NewHeapNumber(double value, 355 MutableMode mode = IMMUTABLE, 356 PretenureFlag pretenure = NOT_TENURED); 357 358 #define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \ 359 Handle<Type> New##Type(lane_type lanes[lane_count], \ 360 PretenureFlag pretenure = NOT_TENURED); 361 SIMD128_TYPES(SIMD128_NEW_DECL) 362 #undef SIMD128_NEW_DECL 363 364 // These objects are used by the api to create env-independent data 365 // structures in the heap. 366 inline Handle<JSObject> NewNeanderObject() { 367 return NewJSObjectFromMap(neander_map()); 368 } 369 370 Handle<JSWeakMap> NewJSWeakMap(); 371 372 Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length); 373 374 // JS objects are pretenured when allocated by the bootstrapper and 375 // runtime. 376 Handle<JSObject> NewJSObject(Handle<JSFunction> constructor, 377 PretenureFlag pretenure = NOT_TENURED); 378 // JSObject that should have a memento pointing to the allocation site. 379 Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor, 380 Handle<AllocationSite> site); 381 382 // Global objects are pretenured and initialized based on a constructor. 383 Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor); 384 385 // JS objects are pretenured when allocated by the bootstrapper and 386 // runtime. 387 Handle<JSObject> NewJSObjectFromMap( 388 Handle<Map> map, 389 PretenureFlag pretenure = NOT_TENURED, 390 Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); 391 392 // JS modules are pretenured. 393 Handle<JSModule> NewJSModule(Handle<Context> context, 394 Handle<ScopeInfo> scope_info); 395 396 // JS arrays are pretenured when allocated by the parser. 397 398 // Create a JSArray with no elements. 399 Handle<JSArray> NewJSArray(ElementsKind elements_kind, 400 Strength strength = Strength::WEAK, 401 PretenureFlag pretenure = NOT_TENURED); 402 403 // Create a JSArray with a specified length and elements initialized 404 // according to the specified mode. 405 Handle<JSArray> NewJSArray( 406 ElementsKind elements_kind, int length, int capacity, 407 Strength strength = Strength::WEAK, 408 ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS, 409 PretenureFlag pretenure = NOT_TENURED); 410 411 Handle<JSArray> NewJSArray( 412 int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, 413 Strength strength = Strength::WEAK, 414 PretenureFlag pretenure = NOT_TENURED) { 415 if (capacity != 0) { 416 elements_kind = GetHoleyElementsKind(elements_kind); 417 } 418 return NewJSArray(elements_kind, 0, capacity, strength, 419 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure); 420 } 421 422 // Create a JSArray with the given elements. 423 Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements, 424 ElementsKind elements_kind, int length, 425 Strength strength = Strength::WEAK, 426 PretenureFlag pretenure = NOT_TENURED); 427 428 Handle<JSArray> NewJSArrayWithElements( 429 Handle<FixedArrayBase> elements, 430 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, 431 Strength strength = Strength::WEAK, 432 PretenureFlag pretenure = NOT_TENURED) { 433 return NewJSArrayWithElements(elements, elements_kind, elements->length(), 434 strength, pretenure); 435 } 436 437 void NewJSArrayStorage( 438 Handle<JSArray> array, 439 int length, 440 int capacity, 441 ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS); 442 443 Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function); 444 445 Handle<JSArrayBuffer> NewJSArrayBuffer( 446 SharedFlag shared = SharedFlag::kNotShared, 447 PretenureFlag pretenure = NOT_TENURED); 448 449 Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type, 450 PretenureFlag pretenure = NOT_TENURED); 451 452 Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind, 453 PretenureFlag pretenure = NOT_TENURED); 454 455 // Creates a new JSTypedArray with the specified buffer. 456 Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type, 457 Handle<JSArrayBuffer> buffer, 458 size_t byte_offset, size_t length, 459 PretenureFlag pretenure = NOT_TENURED); 460 461 // Creates a new on-heap JSTypedArray. 462 Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind, 463 size_t number_of_elements, 464 PretenureFlag pretenure = NOT_TENURED); 465 466 Handle<JSDataView> NewJSDataView(); 467 Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer, 468 size_t byte_offset, size_t byte_length); 469 470 Handle<JSMap> NewJSMap(); 471 Handle<JSSet> NewJSSet(); 472 473 // TODO(aandrey): Maybe these should take table, index and kind arguments. 474 Handle<JSMapIterator> NewJSMapIterator(); 475 Handle<JSSetIterator> NewJSSetIterator(); 476 477 // Creates a new JSIteratorResult object with the arguments {value} and 478 // {done}. Implemented according to ES6 section 7.4.7 CreateIterResultObject. 479 Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, 480 Handle<Object> done); 481 482 // Allocates a bound function. 483 MaybeHandle<JSBoundFunction> NewJSBoundFunction( 484 Handle<JSReceiver> target_function, Handle<Object> bound_this, 485 Vector<Handle<Object>> bound_args); 486 487 // Allocates a Harmony proxy. 488 Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target, 489 Handle<JSReceiver> handler); 490 491 // Reinitialize an JSGlobalProxy based on a constructor. The object 492 // must have the same size as objects allocated using the 493 // constructor. The object is reinitialized and behaves as an 494 // object that has been freshly allocated using the constructor. 495 void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global, 496 Handle<JSFunction> constructor); 497 498 Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(); 499 500 Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code, 501 Handle<Object> prototype, 502 bool read_only_prototype = false, 503 bool is_strict = false); 504 Handle<JSFunction> NewFunction(Handle<String> name); 505 Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name, 506 Handle<Code> code, 507 bool is_strict = false); 508 509 Handle<JSFunction> NewFunctionFromSharedFunctionInfo( 510 Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info, 511 Handle<Context> context, PretenureFlag pretenure = TENURED); 512 513 Handle<JSFunction> NewFunctionFromSharedFunctionInfo( 514 Handle<SharedFunctionInfo> function_info, Handle<Context> context, 515 PretenureFlag pretenure = TENURED); 516 517 Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code, 518 Handle<Object> prototype, InstanceType type, 519 int instance_size, 520 bool read_only_prototype = false, 521 bool install_constructor = false, 522 bool is_strict = false); 523 Handle<JSFunction> NewFunction(Handle<String> name, 524 Handle<Code> code, 525 InstanceType type, 526 int instance_size); 527 Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name, 528 MaybeHandle<Code> maybe_code); 529 530 // Create a serialized scope info. 531 Handle<ScopeInfo> NewScopeInfo(int length); 532 533 // Create an External object for V8's external API. 534 Handle<JSObject> NewExternal(void* value); 535 536 // The reference to the Code object is stored in self_reference. 537 // This allows generated code to reference its own Code object 538 // by containing this handle. 539 Handle<Code> NewCode(const CodeDesc& desc, 540 Code::Flags flags, 541 Handle<Object> self_reference, 542 bool immovable = false, 543 bool crankshafted = false, 544 int prologue_offset = Code::kPrologueOffsetNotSet, 545 bool is_debug = false); 546 547 Handle<Code> CopyCode(Handle<Code> code); 548 549 Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info); 550 551 // Interface for creating error objects. 552 Handle<Object> NewError(Handle<JSFunction> constructor, 553 Handle<String> message); 554 555 Handle<Object> NewInvalidStringLengthError() { 556 return NewRangeError(MessageTemplate::kInvalidStringLength); 557 } 558 559 Handle<Object> NewError(Handle<JSFunction> constructor, 560 MessageTemplate::Template template_index, 561 Handle<Object> arg0 = Handle<Object>(), 562 Handle<Object> arg1 = Handle<Object>(), 563 Handle<Object> arg2 = Handle<Object>()); 564 565 #define DECLARE_ERROR(NAME) \ 566 Handle<Object> New##NAME(MessageTemplate::Template template_index, \ 567 Handle<Object> arg0 = Handle<Object>(), \ 568 Handle<Object> arg1 = Handle<Object>(), \ 569 Handle<Object> arg2 = Handle<Object>()); 570 DECLARE_ERROR(Error) 571 DECLARE_ERROR(EvalError) 572 DECLARE_ERROR(RangeError) 573 DECLARE_ERROR(ReferenceError) 574 DECLARE_ERROR(SyntaxError) 575 DECLARE_ERROR(TypeError) 576 #undef DEFINE_ERROR 577 578 Handle<String> NumberToString(Handle<Object> number, 579 bool check_number_string_cache = true); 580 581 Handle<String> Uint32ToString(uint32_t value) { 582 return NumberToString(NewNumberFromUint(value)); 583 } 584 585 Handle<JSFunction> InstallMembers(Handle<JSFunction> function); 586 587 #define ROOT_ACCESSOR(type, name, camel_name) \ 588 inline Handle<type> name() { \ 589 return Handle<type>(bit_cast<type**>( \ 590 &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \ 591 } 592 ROOT_LIST(ROOT_ACCESSOR) 593 #undef ROOT_ACCESSOR 594 595 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ 596 inline Handle<Map> name##_map() { \ 597 return Handle<Map>(bit_cast<Map**>( \ 598 &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \ 599 } 600 STRUCT_LIST(STRUCT_MAP_ACCESSOR) 601 #undef STRUCT_MAP_ACCESSOR 602 603 #define STRING_ACCESSOR(name, str) \ 604 inline Handle<String> name() { \ 605 return Handle<String>(bit_cast<String**>( \ 606 &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ 607 } 608 INTERNALIZED_STRING_LIST(STRING_ACCESSOR) 609 #undef STRING_ACCESSOR 610 611 #define SYMBOL_ACCESSOR(name) \ 612 inline Handle<Symbol> name() { \ 613 return Handle<Symbol>(bit_cast<Symbol**>( \ 614 &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ 615 } 616 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) 617 #undef SYMBOL_ACCESSOR 618 619 #define SYMBOL_ACCESSOR(name, description) \ 620 inline Handle<Symbol> name() { \ 621 return Handle<Symbol>(bit_cast<Symbol**>( \ 622 &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ 623 } 624 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) 625 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) 626 #undef SYMBOL_ACCESSOR 627 628 // Allocates a new SharedFunctionInfo object. 629 Handle<SharedFunctionInfo> NewSharedFunctionInfo( 630 Handle<String> name, int number_of_literals, FunctionKind kind, 631 Handle<Code> code, Handle<ScopeInfo> scope_info, 632 Handle<TypeFeedbackVector> feedback_vector); 633 Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name, 634 MaybeHandle<Code> code, 635 bool is_constructor); 636 637 // Allocates a new JSMessageObject object. 638 Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message, 639 Handle<Object> argument, 640 int start_position, 641 int end_position, 642 Handle<Object> script, 643 Handle<Object> stack_frames); 644 645 Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared); 646 647 // Return a map for given number of properties using the map cache in the 648 // native context. 649 Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context, 650 int number_of_properties, 651 bool is_strong, 652 bool* is_result_from_cache); 653 654 // Creates a new FixedArray that holds the data associated with the 655 // atom regexp and stores it in the regexp. 656 void SetRegExpAtomData(Handle<JSRegExp> regexp, 657 JSRegExp::Type type, 658 Handle<String> source, 659 JSRegExp::Flags flags, 660 Handle<Object> match_pattern); 661 662 // Creates a new FixedArray that holds the data associated with the 663 // irregexp regexp and stores it in the regexp. 664 void SetRegExpIrregexpData(Handle<JSRegExp> regexp, 665 JSRegExp::Type type, 666 Handle<String> source, 667 JSRegExp::Flags flags, 668 int capture_count); 669 670 // Returns the value for a known global constant (a property of the global 671 // object which is neither configurable nor writable) like 'undefined'. 672 // Returns a null handle when the given name is unknown. 673 Handle<Object> GlobalConstantFor(Handle<Name> name); 674 675 // Converts the given boolean condition to JavaScript boolean value. 676 Handle<Object> ToBoolean(bool value); 677 678 private: 679 Isolate* isolate() { return reinterpret_cast<Isolate*>(this); } 680 681 // Creates a heap object based on the map. The fields of the heap object are 682 // not initialized by New<>() functions. It's the responsibility of the caller 683 // to do that. 684 template<typename T> 685 Handle<T> New(Handle<Map> map, AllocationSpace space); 686 687 template<typename T> 688 Handle<T> New(Handle<Map> map, 689 AllocationSpace space, 690 Handle<AllocationSite> allocation_site); 691 692 // Creates a code object that is not yet fully initialized yet. 693 inline Handle<Code> NewCodeRaw(int object_size, bool immovable); 694 695 // Attempt to find the number in a small cache. If we finds it, return 696 // the string representation of the number. Otherwise return undefined. 697 Handle<Object> GetNumberStringCache(Handle<Object> number); 698 699 // Update the cache with a new number-string pair. 700 void SetNumberStringCache(Handle<Object> number, Handle<String> string); 701 702 // Creates a function initialized with a shared part. 703 Handle<JSFunction> NewFunction(Handle<Map> map, 704 Handle<SharedFunctionInfo> info, 705 Handle<Context> context, 706 PretenureFlag pretenure = TENURED); 707 }; 708 709 } // namespace internal 710 } // namespace v8 711 712 #endif // V8_FACTORY_H_ 713