Home | History | Annotate | Download | only in Sema
      1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements semantic analysis for initializers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Initialization.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/ExprCXX.h"
     18 #include "clang/AST/ExprObjC.h"
     19 #include "clang/AST/TypeLoc.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "clang/Sema/Designator.h"
     22 #include "clang/Sema/Lookup.h"
     23 #include "clang/Sema/SemaInternal.h"
     24 #include "llvm/ADT/APInt.h"
     25 #include "llvm/ADT/SmallString.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <map>
     29 using namespace clang;
     30 
     31 //===----------------------------------------------------------------------===//
     32 // Sema Initialization Checking
     33 //===----------------------------------------------------------------------===//
     34 
     35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
     36 /// char16_t or char32_t).
     37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
     38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
     39     return true;
     40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
     41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
     42            Context.typesAreCompatible(Context.Char32Ty, T);
     43   }
     44   return false;
     45 }
     46 
     47 enum StringInitFailureKind {
     48   SIF_None,
     49   SIF_NarrowStringIntoWideChar,
     50   SIF_WideStringIntoChar,
     51   SIF_IncompatWideStringIntoWideChar,
     52   SIF_Other
     53 };
     54 
     55 /// \brief Check whether the array of type AT can be initialized by the Init
     56 /// expression by means of string initialization. Returns SIF_None if so,
     57 /// otherwise returns a StringInitFailureKind that describes why the
     58 /// initialization would not work.
     59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
     60                                           ASTContext &Context) {
     61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
     62     return SIF_Other;
     63 
     64   // See if this is a string literal or @encode.
     65   Init = Init->IgnoreParens();
     66 
     67   // Handle @encode, which is a narrow string.
     68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
     69     return SIF_None;
     70 
     71   // Otherwise we can only handle string literals.
     72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
     73   if (!SL)
     74     return SIF_Other;
     75 
     76   const QualType ElemTy =
     77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
     78 
     79   switch (SL->getKind()) {
     80   case StringLiteral::Ascii:
     81   case StringLiteral::UTF8:
     82     // char array can be initialized with a narrow string.
     83     // Only allow char x[] = "foo";  not char x[] = L"foo";
     84     if (ElemTy->isCharType())
     85       return SIF_None;
     86     if (IsWideCharCompatible(ElemTy, Context))
     87       return SIF_NarrowStringIntoWideChar;
     88     return SIF_Other;
     89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
     90   // "An array with element type compatible with a qualified or unqualified
     91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
     92   // string literal with the corresponding encoding prefix (L, u, or U,
     93   // respectively), optionally enclosed in braces.
     94   case StringLiteral::UTF16:
     95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
     96       return SIF_None;
     97     if (ElemTy->isCharType())
     98       return SIF_WideStringIntoChar;
     99     if (IsWideCharCompatible(ElemTy, Context))
    100       return SIF_IncompatWideStringIntoWideChar;
    101     return SIF_Other;
    102   case StringLiteral::UTF32:
    103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
    104       return SIF_None;
    105     if (ElemTy->isCharType())
    106       return SIF_WideStringIntoChar;
    107     if (IsWideCharCompatible(ElemTy, Context))
    108       return SIF_IncompatWideStringIntoWideChar;
    109     return SIF_Other;
    110   case StringLiteral::Wide:
    111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
    112       return SIF_None;
    113     if (ElemTy->isCharType())
    114       return SIF_WideStringIntoChar;
    115     if (IsWideCharCompatible(ElemTy, Context))
    116       return SIF_IncompatWideStringIntoWideChar;
    117     return SIF_Other;
    118   }
    119 
    120   llvm_unreachable("missed a StringLiteral kind?");
    121 }
    122 
    123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
    124                                           ASTContext &Context) {
    125   const ArrayType *arrayType = Context.getAsArrayType(declType);
    126   if (!arrayType)
    127     return SIF_Other;
    128   return IsStringInit(init, arrayType, Context);
    129 }
    130 
    131 /// Update the type of a string literal, including any surrounding parentheses,
    132 /// to match the type of the object which it is initializing.
    133 static void updateStringLiteralType(Expr *E, QualType Ty) {
    134   while (true) {
    135     E->setType(Ty);
    136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
    137       break;
    138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
    139       E = PE->getSubExpr();
    140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
    141       E = UO->getSubExpr();
    142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
    143       E = GSE->getResultExpr();
    144     else
    145       llvm_unreachable("unexpected expr in string literal init");
    146   }
    147 }
    148 
    149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
    150                             Sema &S) {
    151   // Get the length of the string as parsed.
    152   auto *ConstantArrayTy =
    153       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
    154   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
    155 
    156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
    157     // C99 6.7.8p14. We have an array of character type with unknown size
    158     // being initialized to a string literal.
    159     llvm::APInt ConstVal(32, StrLength);
    160     // Return a new array type (C99 6.7.8p22).
    161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
    162                                            ConstVal,
    163                                            ArrayType::Normal, 0);
    164     updateStringLiteralType(Str, DeclT);
    165     return;
    166   }
    167 
    168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
    169 
    170   // We have an array of character type with known size.  However,
    171   // the size may be smaller or larger than the string we are initializing.
    172   // FIXME: Avoid truncation for 64-bit length strings.
    173   if (S.getLangOpts().CPlusPlus) {
    174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
    175       // For Pascal strings it's OK to strip off the terminating null character,
    176       // so the example below is valid:
    177       //
    178       // unsigned char a[2] = "\pa";
    179       if (SL->isPascal())
    180         StrLength--;
    181     }
    182 
    183     // [dcl.init.string]p2
    184     if (StrLength > CAT->getSize().getZExtValue())
    185       S.Diag(Str->getLocStart(),
    186              diag::err_initializer_string_for_char_array_too_long)
    187         << Str->getSourceRange();
    188   } else {
    189     // C99 6.7.8p14.
    190     if (StrLength-1 > CAT->getSize().getZExtValue())
    191       S.Diag(Str->getLocStart(),
    192              diag::ext_initializer_string_for_char_array_too_long)
    193         << Str->getSourceRange();
    194   }
    195 
    196   // Set the type to the actual size that we are initializing.  If we have
    197   // something like:
    198   //   char x[1] = "foo";
    199   // then this will set the string literal's type to char[1].
    200   updateStringLiteralType(Str, DeclT);
    201 }
    202 
    203 //===----------------------------------------------------------------------===//
    204 // Semantic checking for initializer lists.
    205 //===----------------------------------------------------------------------===//
    206 
    207 /// @brief Semantic checking for initializer lists.
    208 ///
    209 /// The InitListChecker class contains a set of routines that each
    210 /// handle the initialization of a certain kind of entity, e.g.,
    211 /// arrays, vectors, struct/union types, scalars, etc. The
    212 /// InitListChecker itself performs a recursive walk of the subobject
    213 /// structure of the type to be initialized, while stepping through
    214 /// the initializer list one element at a time. The IList and Index
    215 /// parameters to each of the Check* routines contain the active
    216 /// (syntactic) initializer list and the index into that initializer
    217 /// list that represents the current initializer. Each routine is
    218 /// responsible for moving that Index forward as it consumes elements.
    219 ///
    220 /// Each Check* routine also has a StructuredList/StructuredIndex
    221 /// arguments, which contains the current "structured" (semantic)
    222 /// initializer list and the index into that initializer list where we
    223 /// are copying initializers as we map them over to the semantic
    224 /// list. Once we have completed our recursive walk of the subobject
    225 /// structure, we will have constructed a full semantic initializer
    226 /// list.
    227 ///
    228 /// C99 designators cause changes in the initializer list traversal,
    229 /// because they make the initialization "jump" into a specific
    230 /// subobject and then continue the initialization from that
    231 /// point. CheckDesignatedInitializer() recursively steps into the
    232 /// designated subobject and manages backing out the recursion to
    233 /// initialize the subobjects after the one designated.
    234 namespace {
    235 class InitListChecker {
    236   Sema &SemaRef;
    237   bool hadError;
    238   bool VerifyOnly; // no diagnostics, no structure building
    239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
    240   InitListExpr *FullyStructuredList;
    241 
    242   void CheckImplicitInitList(const InitializedEntity &Entity,
    243                              InitListExpr *ParentIList, QualType T,
    244                              unsigned &Index, InitListExpr *StructuredList,
    245                              unsigned &StructuredIndex);
    246   void CheckExplicitInitList(const InitializedEntity &Entity,
    247                              InitListExpr *IList, QualType &T,
    248                              InitListExpr *StructuredList,
    249                              bool TopLevelObject = false);
    250   void CheckListElementTypes(const InitializedEntity &Entity,
    251                              InitListExpr *IList, QualType &DeclType,
    252                              bool SubobjectIsDesignatorContext,
    253                              unsigned &Index,
    254                              InitListExpr *StructuredList,
    255                              unsigned &StructuredIndex,
    256                              bool TopLevelObject = false);
    257   void CheckSubElementType(const InitializedEntity &Entity,
    258                            InitListExpr *IList, QualType ElemType,
    259                            unsigned &Index,
    260                            InitListExpr *StructuredList,
    261                            unsigned &StructuredIndex);
    262   void CheckComplexType(const InitializedEntity &Entity,
    263                         InitListExpr *IList, QualType DeclType,
    264                         unsigned &Index,
    265                         InitListExpr *StructuredList,
    266                         unsigned &StructuredIndex);
    267   void CheckScalarType(const InitializedEntity &Entity,
    268                        InitListExpr *IList, QualType DeclType,
    269                        unsigned &Index,
    270                        InitListExpr *StructuredList,
    271                        unsigned &StructuredIndex);
    272   void CheckReferenceType(const InitializedEntity &Entity,
    273                           InitListExpr *IList, QualType DeclType,
    274                           unsigned &Index,
    275                           InitListExpr *StructuredList,
    276                           unsigned &StructuredIndex);
    277   void CheckVectorType(const InitializedEntity &Entity,
    278                        InitListExpr *IList, QualType DeclType, unsigned &Index,
    279                        InitListExpr *StructuredList,
    280                        unsigned &StructuredIndex);
    281   void CheckStructUnionTypes(const InitializedEntity &Entity,
    282                              InitListExpr *IList, QualType DeclType,
    283                              RecordDecl::field_iterator Field,
    284                              bool SubobjectIsDesignatorContext, unsigned &Index,
    285                              InitListExpr *StructuredList,
    286                              unsigned &StructuredIndex,
    287                              bool TopLevelObject = false);
    288   void CheckArrayType(const InitializedEntity &Entity,
    289                       InitListExpr *IList, QualType &DeclType,
    290                       llvm::APSInt elementIndex,
    291                       bool SubobjectIsDesignatorContext, unsigned &Index,
    292                       InitListExpr *StructuredList,
    293                       unsigned &StructuredIndex);
    294   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
    295                                   InitListExpr *IList, DesignatedInitExpr *DIE,
    296                                   unsigned DesigIdx,
    297                                   QualType &CurrentObjectType,
    298                                   RecordDecl::field_iterator *NextField,
    299                                   llvm::APSInt *NextElementIndex,
    300                                   unsigned &Index,
    301                                   InitListExpr *StructuredList,
    302                                   unsigned &StructuredIndex,
    303                                   bool FinishSubobjectInit,
    304                                   bool TopLevelObject);
    305   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
    306                                            QualType CurrentObjectType,
    307                                            InitListExpr *StructuredList,
    308                                            unsigned StructuredIndex,
    309                                            SourceRange InitRange,
    310                                            bool IsFullyOverwritten = false);
    311   void UpdateStructuredListElement(InitListExpr *StructuredList,
    312                                    unsigned &StructuredIndex,
    313                                    Expr *expr);
    314   int numArrayElements(QualType DeclType);
    315   int numStructUnionElements(QualType DeclType);
    316 
    317   static ExprResult PerformEmptyInit(Sema &SemaRef,
    318                                      SourceLocation Loc,
    319                                      const InitializedEntity &Entity,
    320                                      bool VerifyOnly);
    321 
    322   // Explanation on the "FillWithNoInit" mode:
    323   //
    324   // Assume we have the following definitions (Case#1):
    325   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
    326   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
    327   //
    328   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
    329   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
    330   //
    331   // But if we have (Case#2):
    332   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
    333   //
    334   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
    335   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
    336   //
    337   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
    338   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
    339   // initializers but with special "NoInitExpr" place holders, which tells the
    340   // CodeGen not to generate any initializers for these parts.
    341   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
    342                                const InitializedEntity &ParentEntity,
    343                                InitListExpr *ILE, bool &RequiresSecondPass,
    344                                bool FillWithNoInit = false);
    345   void FillInEmptyInitializations(const InitializedEntity &Entity,
    346                                   InitListExpr *ILE, bool &RequiresSecondPass,
    347                                   bool FillWithNoInit = false);
    348   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
    349                               Expr *InitExpr, FieldDecl *Field,
    350                               bool TopLevelObject);
    351   void CheckEmptyInitializable(const InitializedEntity &Entity,
    352                                SourceLocation Loc);
    353 
    354 public:
    355   InitListChecker(Sema &S, const InitializedEntity &Entity,
    356                   InitListExpr *IL, QualType &T, bool VerifyOnly);
    357   bool HadError() { return hadError; }
    358 
    359   // @brief Retrieves the fully-structured initializer list used for
    360   // semantic analysis and code generation.
    361   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
    362 };
    363 } // end anonymous namespace
    364 
    365 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
    366                                              SourceLocation Loc,
    367                                              const InitializedEntity &Entity,
    368                                              bool VerifyOnly) {
    369   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
    370                                                             true);
    371   MultiExprArg SubInit;
    372   Expr *InitExpr;
    373   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
    374 
    375   // C++ [dcl.init.aggr]p7:
    376   //   If there are fewer initializer-clauses in the list than there are
    377   //   members in the aggregate, then each member not explicitly initialized
    378   //   ...
    379   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
    380       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
    381   if (EmptyInitList) {
    382     // C++1y / DR1070:
    383     //   shall be initialized [...] from an empty initializer list.
    384     //
    385     // We apply the resolution of this DR to C++11 but not C++98, since C++98
    386     // does not have useful semantics for initialization from an init list.
    387     // We treat this as copy-initialization, because aggregate initialization
    388     // always performs copy-initialization on its elements.
    389     //
    390     // Only do this if we're initializing a class type, to avoid filling in
    391     // the initializer list where possible.
    392     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
    393                    InitListExpr(SemaRef.Context, Loc, None, Loc);
    394     InitExpr->setType(SemaRef.Context.VoidTy);
    395     SubInit = InitExpr;
    396     Kind = InitializationKind::CreateCopy(Loc, Loc);
    397   } else {
    398     // C++03:
    399     //   shall be value-initialized.
    400   }
    401 
    402   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
    403   // libstdc++4.6 marks the vector default constructor as explicit in
    404   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
    405   // stlport does so too. Look for std::__debug for libstdc++, and for
    406   // std:: for stlport.  This is effectively a compiler-side implementation of
    407   // LWG2193.
    408   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
    409           InitializationSequence::FK_ExplicitConstructor) {
    410     OverloadCandidateSet::iterator Best;
    411     OverloadingResult O =
    412         InitSeq.getFailedCandidateSet()
    413             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
    414     (void)O;
    415     assert(O == OR_Success && "Inconsistent overload resolution");
    416     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
    417     CXXRecordDecl *R = CtorDecl->getParent();
    418 
    419     if (CtorDecl->getMinRequiredArguments() == 0 &&
    420         CtorDecl->isExplicit() && R->getDeclName() &&
    421         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
    422 
    423 
    424       bool IsInStd = false;
    425       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
    426            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
    427         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
    428           IsInStd = true;
    429       }
    430 
    431       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
    432               .Cases("basic_string", "deque", "forward_list", true)
    433               .Cases("list", "map", "multimap", "multiset", true)
    434               .Cases("priority_queue", "queue", "set", "stack", true)
    435               .Cases("unordered_map", "unordered_set", "vector", true)
    436               .Default(false)) {
    437         InitSeq.InitializeFrom(
    438             SemaRef, Entity,
    439             InitializationKind::CreateValue(Loc, Loc, Loc, true),
    440             MultiExprArg(), /*TopLevelOfInitList=*/false);
    441         // Emit a warning for this.  System header warnings aren't shown
    442         // by default, but people working on system headers should see it.
    443         if (!VerifyOnly) {
    444           SemaRef.Diag(CtorDecl->getLocation(),
    445                        diag::warn_invalid_initializer_from_system_header);
    446           if (Entity.getKind() == InitializedEntity::EK_Member)
    447             SemaRef.Diag(Entity.getDecl()->getLocation(),
    448                          diag::note_used_in_initialization_here);
    449           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
    450             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
    451         }
    452       }
    453     }
    454   }
    455   if (!InitSeq) {
    456     if (!VerifyOnly) {
    457       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
    458       if (Entity.getKind() == InitializedEntity::EK_Member)
    459         SemaRef.Diag(Entity.getDecl()->getLocation(),
    460                      diag::note_in_omitted_aggregate_initializer)
    461           << /*field*/1 << Entity.getDecl();
    462       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
    463         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
    464           << /*array element*/0 << Entity.getElementIndex();
    465     }
    466     return ExprError();
    467   }
    468 
    469   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
    470                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
    471 }
    472 
    473 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
    474                                               SourceLocation Loc) {
    475   assert(VerifyOnly &&
    476          "CheckEmptyInitializable is only inteded for verification mode.");
    477   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
    478     hadError = true;
    479 }
    480 
    481 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
    482                                         const InitializedEntity &ParentEntity,
    483                                               InitListExpr *ILE,
    484                                               bool &RequiresSecondPass,
    485                                               bool FillWithNoInit) {
    486   SourceLocation Loc = ILE->getLocEnd();
    487   unsigned NumInits = ILE->getNumInits();
    488   InitializedEntity MemberEntity
    489     = InitializedEntity::InitializeMember(Field, &ParentEntity);
    490 
    491   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
    492     if (!RType->getDecl()->isUnion())
    493       assert(Init < NumInits && "This ILE should have been expanded");
    494 
    495   if (Init >= NumInits || !ILE->getInit(Init)) {
    496     if (FillWithNoInit) {
    497       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
    498       if (Init < NumInits)
    499         ILE->setInit(Init, Filler);
    500       else
    501         ILE->updateInit(SemaRef.Context, Init, Filler);
    502       return;
    503     }
    504     // C++1y [dcl.init.aggr]p7:
    505     //   If there are fewer initializer-clauses in the list than there are
    506     //   members in the aggregate, then each member not explicitly initialized
    507     //   shall be initialized from its brace-or-equal-initializer [...]
    508     if (Field->hasInClassInitializer()) {
    509       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
    510       if (DIE.isInvalid()) {
    511         hadError = true;
    512         return;
    513       }
    514       if (Init < NumInits)
    515         ILE->setInit(Init, DIE.get());
    516       else {
    517         ILE->updateInit(SemaRef.Context, Init, DIE.get());
    518         RequiresSecondPass = true;
    519       }
    520       return;
    521     }
    522 
    523     if (Field->getType()->isReferenceType()) {
    524       // C++ [dcl.init.aggr]p9:
    525       //   If an incomplete or empty initializer-list leaves a
    526       //   member of reference type uninitialized, the program is
    527       //   ill-formed.
    528       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
    529         << Field->getType()
    530         << ILE->getSyntacticForm()->getSourceRange();
    531       SemaRef.Diag(Field->getLocation(),
    532                    diag::note_uninit_reference_member);
    533       hadError = true;
    534       return;
    535     }
    536 
    537     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
    538                                              /*VerifyOnly*/false);
    539     if (MemberInit.isInvalid()) {
    540       hadError = true;
    541       return;
    542     }
    543 
    544     if (hadError) {
    545       // Do nothing
    546     } else if (Init < NumInits) {
    547       ILE->setInit(Init, MemberInit.getAs<Expr>());
    548     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
    549       // Empty initialization requires a constructor call, so
    550       // extend the initializer list to include the constructor
    551       // call and make a note that we'll need to take another pass
    552       // through the initializer list.
    553       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
    554       RequiresSecondPass = true;
    555     }
    556   } else if (InitListExpr *InnerILE
    557                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
    558     FillInEmptyInitializations(MemberEntity, InnerILE,
    559                                RequiresSecondPass, FillWithNoInit);
    560   else if (DesignatedInitUpdateExpr *InnerDIUE
    561                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
    562     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
    563                                RequiresSecondPass, /*FillWithNoInit =*/ true);
    564 }
    565 
    566 /// Recursively replaces NULL values within the given initializer list
    567 /// with expressions that perform value-initialization of the
    568 /// appropriate type.
    569 void
    570 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
    571                                             InitListExpr *ILE,
    572                                             bool &RequiresSecondPass,
    573                                             bool FillWithNoInit) {
    574   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
    575          "Should not have void type");
    576 
    577   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
    578     const RecordDecl *RDecl = RType->getDecl();
    579     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
    580       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
    581                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
    582     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
    583              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
    584       for (auto *Field : RDecl->fields()) {
    585         if (Field->hasInClassInitializer()) {
    586           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
    587                                   FillWithNoInit);
    588           break;
    589         }
    590       }
    591     } else {
    592       // The fields beyond ILE->getNumInits() are default initialized, so in
    593       // order to leave them uninitialized, the ILE is expanded and the extra
    594       // fields are then filled with NoInitExpr.
    595       unsigned NumFields = 0;
    596       for (auto *Field : RDecl->fields())
    597         if (!Field->isUnnamedBitfield())
    598           ++NumFields;
    599       if (ILE->getNumInits() < NumFields)
    600         ILE->resizeInits(SemaRef.Context, NumFields);
    601 
    602       unsigned Init = 0;
    603       for (auto *Field : RDecl->fields()) {
    604         if (Field->isUnnamedBitfield())
    605           continue;
    606 
    607         if (hadError)
    608           return;
    609 
    610         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
    611                                 FillWithNoInit);
    612         if (hadError)
    613           return;
    614 
    615         ++Init;
    616 
    617         // Only look at the first initialization of a union.
    618         if (RDecl->isUnion())
    619           break;
    620       }
    621     }
    622 
    623     return;
    624   }
    625 
    626   QualType ElementType;
    627 
    628   InitializedEntity ElementEntity = Entity;
    629   unsigned NumInits = ILE->getNumInits();
    630   unsigned NumElements = NumInits;
    631   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
    632     ElementType = AType->getElementType();
    633     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
    634       NumElements = CAType->getSize().getZExtValue();
    635     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
    636                                                          0, Entity);
    637   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
    638     ElementType = VType->getElementType();
    639     NumElements = VType->getNumElements();
    640     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
    641                                                          0, Entity);
    642   } else
    643     ElementType = ILE->getType();
    644 
    645   for (unsigned Init = 0; Init != NumElements; ++Init) {
    646     if (hadError)
    647       return;
    648 
    649     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
    650         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
    651       ElementEntity.setElementIndex(Init);
    652 
    653     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
    654     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
    655       ILE->setInit(Init, ILE->getArrayFiller());
    656     else if (!InitExpr && !ILE->hasArrayFiller()) {
    657       Expr *Filler = nullptr;
    658 
    659       if (FillWithNoInit)
    660         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
    661       else {
    662         ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
    663                                                   ElementEntity,
    664                                                   /*VerifyOnly*/false);
    665         if (ElementInit.isInvalid()) {
    666           hadError = true;
    667           return;
    668         }
    669 
    670         Filler = ElementInit.getAs<Expr>();
    671       }
    672 
    673       if (hadError) {
    674         // Do nothing
    675       } else if (Init < NumInits) {
    676         // For arrays, just set the expression used for value-initialization
    677         // of the "holes" in the array.
    678         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
    679           ILE->setArrayFiller(Filler);
    680         else
    681           ILE->setInit(Init, Filler);
    682       } else {
    683         // For arrays, just set the expression used for value-initialization
    684         // of the rest of elements and exit.
    685         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
    686           ILE->setArrayFiller(Filler);
    687           return;
    688         }
    689 
    690         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
    691           // Empty initialization requires a constructor call, so
    692           // extend the initializer list to include the constructor
    693           // call and make a note that we'll need to take another pass
    694           // through the initializer list.
    695           ILE->updateInit(SemaRef.Context, Init, Filler);
    696           RequiresSecondPass = true;
    697         }
    698       }
    699     } else if (InitListExpr *InnerILE
    700                  = dyn_cast_or_null<InitListExpr>(InitExpr))
    701       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
    702                                  FillWithNoInit);
    703     else if (DesignatedInitUpdateExpr *InnerDIUE
    704                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
    705       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
    706                                  RequiresSecondPass, /*FillWithNoInit =*/ true);
    707   }
    708 }
    709 
    710 
    711 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
    712                                  InitListExpr *IL, QualType &T,
    713                                  bool VerifyOnly)
    714   : SemaRef(S), VerifyOnly(VerifyOnly) {
    715   // FIXME: Check that IL isn't already the semantic form of some other
    716   // InitListExpr. If it is, we'd create a broken AST.
    717 
    718   hadError = false;
    719 
    720   FullyStructuredList =
    721       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
    722   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
    723                         /*TopLevelObject=*/true);
    724 
    725   if (!hadError && !VerifyOnly) {
    726     bool RequiresSecondPass = false;
    727     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
    728     if (RequiresSecondPass && !hadError)
    729       FillInEmptyInitializations(Entity, FullyStructuredList,
    730                                  RequiresSecondPass);
    731   }
    732 }
    733 
    734 int InitListChecker::numArrayElements(QualType DeclType) {
    735   // FIXME: use a proper constant
    736   int maxElements = 0x7FFFFFFF;
    737   if (const ConstantArrayType *CAT =
    738         SemaRef.Context.getAsConstantArrayType(DeclType)) {
    739     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
    740   }
    741   return maxElements;
    742 }
    743 
    744 int InitListChecker::numStructUnionElements(QualType DeclType) {
    745   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
    746   int InitializableMembers = 0;
    747   for (const auto *Field : structDecl->fields())
    748     if (!Field->isUnnamedBitfield())
    749       ++InitializableMembers;
    750 
    751   if (structDecl->isUnion())
    752     return std::min(InitializableMembers, 1);
    753   return InitializableMembers - structDecl->hasFlexibleArrayMember();
    754 }
    755 
    756 /// Check whether the range of the initializer \p ParentIList from element
    757 /// \p Index onwards can be used to initialize an object of type \p T. Update
    758 /// \p Index to indicate how many elements of the list were consumed.
    759 ///
    760 /// This also fills in \p StructuredList, from element \p StructuredIndex
    761 /// onwards, with the fully-braced, desugared form of the initialization.
    762 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
    763                                             InitListExpr *ParentIList,
    764                                             QualType T, unsigned &Index,
    765                                             InitListExpr *StructuredList,
    766                                             unsigned &StructuredIndex) {
    767   int maxElements = 0;
    768 
    769   if (T->isArrayType())
    770     maxElements = numArrayElements(T);
    771   else if (T->isRecordType())
    772     maxElements = numStructUnionElements(T);
    773   else if (T->isVectorType())
    774     maxElements = T->getAs<VectorType>()->getNumElements();
    775   else
    776     llvm_unreachable("CheckImplicitInitList(): Illegal type");
    777 
    778   if (maxElements == 0) {
    779     if (!VerifyOnly)
    780       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
    781                    diag::err_implicit_empty_initializer);
    782     ++Index;
    783     hadError = true;
    784     return;
    785   }
    786 
    787   // Build a structured initializer list corresponding to this subobject.
    788   InitListExpr *StructuredSubobjectInitList
    789     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
    790                                  StructuredIndex,
    791           SourceRange(ParentIList->getInit(Index)->getLocStart(),
    792                       ParentIList->getSourceRange().getEnd()));
    793   unsigned StructuredSubobjectInitIndex = 0;
    794 
    795   // Check the element types and build the structural subobject.
    796   unsigned StartIndex = Index;
    797   CheckListElementTypes(Entity, ParentIList, T,
    798                         /*SubobjectIsDesignatorContext=*/false, Index,
    799                         StructuredSubobjectInitList,
    800                         StructuredSubobjectInitIndex);
    801 
    802   if (!VerifyOnly) {
    803     StructuredSubobjectInitList->setType(T);
    804 
    805     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
    806     // Update the structured sub-object initializer so that it's ending
    807     // range corresponds with the end of the last initializer it used.
    808     if (EndIndex < ParentIList->getNumInits() &&
    809         ParentIList->getInit(EndIndex)) {
    810       SourceLocation EndLoc
    811         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
    812       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
    813     }
    814 
    815     // Complain about missing braces.
    816     if (T->isArrayType() || T->isRecordType()) {
    817       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
    818                    diag::warn_missing_braces)
    819           << StructuredSubobjectInitList->getSourceRange()
    820           << FixItHint::CreateInsertion(
    821                  StructuredSubobjectInitList->getLocStart(), "{")
    822           << FixItHint::CreateInsertion(
    823                  SemaRef.getLocForEndOfToken(
    824                      StructuredSubobjectInitList->getLocEnd()),
    825                  "}");
    826     }
    827   }
    828 }
    829 
    830 /// Warn that \p Entity was of scalar type and was initialized by a
    831 /// single-element braced initializer list.
    832 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
    833                                  SourceRange Braces) {
    834   // Don't warn during template instantiation. If the initialization was
    835   // non-dependent, we warned during the initial parse; otherwise, the
    836   // type might not be scalar in some uses of the template.
    837   if (!S.ActiveTemplateInstantiations.empty())
    838     return;
    839 
    840   unsigned DiagID = 0;
    841 
    842   switch (Entity.getKind()) {
    843   case InitializedEntity::EK_VectorElement:
    844   case InitializedEntity::EK_ComplexElement:
    845   case InitializedEntity::EK_ArrayElement:
    846   case InitializedEntity::EK_Parameter:
    847   case InitializedEntity::EK_Parameter_CF_Audited:
    848   case InitializedEntity::EK_Result:
    849     // Extra braces here are suspicious.
    850     DiagID = diag::warn_braces_around_scalar_init;
    851     break;
    852 
    853   case InitializedEntity::EK_Member:
    854     // Warn on aggregate initialization but not on ctor init list or
    855     // default member initializer.
    856     if (Entity.getParent())
    857       DiagID = diag::warn_braces_around_scalar_init;
    858     break;
    859 
    860   case InitializedEntity::EK_Variable:
    861   case InitializedEntity::EK_LambdaCapture:
    862     // No warning, might be direct-list-initialization.
    863     // FIXME: Should we warn for copy-list-initialization in these cases?
    864     break;
    865 
    866   case InitializedEntity::EK_New:
    867   case InitializedEntity::EK_Temporary:
    868   case InitializedEntity::EK_CompoundLiteralInit:
    869     // No warning, braces are part of the syntax of the underlying construct.
    870     break;
    871 
    872   case InitializedEntity::EK_RelatedResult:
    873     // No warning, we already warned when initializing the result.
    874     break;
    875 
    876   case InitializedEntity::EK_Exception:
    877   case InitializedEntity::EK_Base:
    878   case InitializedEntity::EK_Delegating:
    879   case InitializedEntity::EK_BlockElement:
    880     llvm_unreachable("unexpected braced scalar init");
    881   }
    882 
    883   if (DiagID) {
    884     S.Diag(Braces.getBegin(), DiagID)
    885       << Braces
    886       << FixItHint::CreateRemoval(Braces.getBegin())
    887       << FixItHint::CreateRemoval(Braces.getEnd());
    888   }
    889 }
    890 
    891 
    892 /// Check whether the initializer \p IList (that was written with explicit
    893 /// braces) can be used to initialize an object of type \p T.
    894 ///
    895 /// This also fills in \p StructuredList with the fully-braced, desugared
    896 /// form of the initialization.
    897 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
    898                                             InitListExpr *IList, QualType &T,
    899                                             InitListExpr *StructuredList,
    900                                             bool TopLevelObject) {
    901   if (!VerifyOnly) {
    902     SyntacticToSemantic[IList] = StructuredList;
    903     StructuredList->setSyntacticForm(IList);
    904   }
    905 
    906   unsigned Index = 0, StructuredIndex = 0;
    907   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
    908                         Index, StructuredList, StructuredIndex, TopLevelObject);
    909   if (!VerifyOnly) {
    910     QualType ExprTy = T;
    911     if (!ExprTy->isArrayType())
    912       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
    913     IList->setType(ExprTy);
    914     StructuredList->setType(ExprTy);
    915   }
    916   if (hadError)
    917     return;
    918 
    919   if (Index < IList->getNumInits()) {
    920     // We have leftover initializers
    921     if (VerifyOnly) {
    922       if (SemaRef.getLangOpts().CPlusPlus ||
    923           (SemaRef.getLangOpts().OpenCL &&
    924            IList->getType()->isVectorType())) {
    925         hadError = true;
    926       }
    927       return;
    928     }
    929 
    930     if (StructuredIndex == 1 &&
    931         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
    932             SIF_None) {
    933       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
    934       if (SemaRef.getLangOpts().CPlusPlus) {
    935         DK = diag::err_excess_initializers_in_char_array_initializer;
    936         hadError = true;
    937       }
    938       // Special-case
    939       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
    940         << IList->getInit(Index)->getSourceRange();
    941     } else if (!T->isIncompleteType()) {
    942       // Don't complain for incomplete types, since we'll get an error
    943       // elsewhere
    944       QualType CurrentObjectType = StructuredList->getType();
    945       int initKind =
    946         CurrentObjectType->isArrayType()? 0 :
    947         CurrentObjectType->isVectorType()? 1 :
    948         CurrentObjectType->isScalarType()? 2 :
    949         CurrentObjectType->isUnionType()? 3 :
    950         4;
    951 
    952       unsigned DK = diag::ext_excess_initializers;
    953       if (SemaRef.getLangOpts().CPlusPlus) {
    954         DK = diag::err_excess_initializers;
    955         hadError = true;
    956       }
    957       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
    958         DK = diag::err_excess_initializers;
    959         hadError = true;
    960       }
    961 
    962       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
    963         << initKind << IList->getInit(Index)->getSourceRange();
    964     }
    965   }
    966 
    967   if (!VerifyOnly && T->isScalarType() &&
    968       IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
    969     warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
    970 }
    971 
    972 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
    973                                             InitListExpr *IList,
    974                                             QualType &DeclType,
    975                                             bool SubobjectIsDesignatorContext,
    976                                             unsigned &Index,
    977                                             InitListExpr *StructuredList,
    978                                             unsigned &StructuredIndex,
    979                                             bool TopLevelObject) {
    980   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
    981     // Explicitly braced initializer for complex type can be real+imaginary
    982     // parts.
    983     CheckComplexType(Entity, IList, DeclType, Index,
    984                      StructuredList, StructuredIndex);
    985   } else if (DeclType->isScalarType()) {
    986     CheckScalarType(Entity, IList, DeclType, Index,
    987                     StructuredList, StructuredIndex);
    988   } else if (DeclType->isVectorType()) {
    989     CheckVectorType(Entity, IList, DeclType, Index,
    990                     StructuredList, StructuredIndex);
    991   } else if (DeclType->isRecordType()) {
    992     assert(DeclType->isAggregateType() &&
    993            "non-aggregate records should be handed in CheckSubElementType");
    994     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
    995     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
    996                           SubobjectIsDesignatorContext, Index,
    997                           StructuredList, StructuredIndex,
    998                           TopLevelObject);
    999   } else if (DeclType->isArrayType()) {
   1000     llvm::APSInt Zero(
   1001                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
   1002                     false);
   1003     CheckArrayType(Entity, IList, DeclType, Zero,
   1004                    SubobjectIsDesignatorContext, Index,
   1005                    StructuredList, StructuredIndex);
   1006   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
   1007     // This type is invalid, issue a diagnostic.
   1008     ++Index;
   1009     if (!VerifyOnly)
   1010       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
   1011         << DeclType;
   1012     hadError = true;
   1013   } else if (DeclType->isReferenceType()) {
   1014     CheckReferenceType(Entity, IList, DeclType, Index,
   1015                        StructuredList, StructuredIndex);
   1016   } else if (DeclType->isObjCObjectType()) {
   1017     if (!VerifyOnly)
   1018       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
   1019         << DeclType;
   1020     hadError = true;
   1021   } else {
   1022     if (!VerifyOnly)
   1023       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
   1024         << DeclType;
   1025     hadError = true;
   1026   }
   1027 }
   1028 
   1029 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
   1030                                           InitListExpr *IList,
   1031                                           QualType ElemType,
   1032                                           unsigned &Index,
   1033                                           InitListExpr *StructuredList,
   1034                                           unsigned &StructuredIndex) {
   1035   Expr *expr = IList->getInit(Index);
   1036 
   1037   if (ElemType->isReferenceType())
   1038     return CheckReferenceType(Entity, IList, ElemType, Index,
   1039                               StructuredList, StructuredIndex);
   1040 
   1041   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
   1042     if (SubInitList->getNumInits() == 1 &&
   1043         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
   1044         SIF_None) {
   1045       expr = SubInitList->getInit(0);
   1046     } else if (!SemaRef.getLangOpts().CPlusPlus) {
   1047       InitListExpr *InnerStructuredList
   1048         = getStructuredSubobjectInit(IList, Index, ElemType,
   1049                                      StructuredList, StructuredIndex,
   1050                                      SubInitList->getSourceRange(), true);
   1051       CheckExplicitInitList(Entity, SubInitList, ElemType,
   1052                             InnerStructuredList);
   1053 
   1054       if (!hadError && !VerifyOnly) {
   1055         bool RequiresSecondPass = false;
   1056         FillInEmptyInitializations(Entity, InnerStructuredList,
   1057                                    RequiresSecondPass);
   1058         if (RequiresSecondPass && !hadError)
   1059           FillInEmptyInitializations(Entity, InnerStructuredList,
   1060                                      RequiresSecondPass);
   1061       }
   1062       ++StructuredIndex;
   1063       ++Index;
   1064       return;
   1065     }
   1066     // C++ initialization is handled later.
   1067   } else if (isa<ImplicitValueInitExpr>(expr)) {
   1068     // This happens during template instantiation when we see an InitListExpr
   1069     // that we've already checked once.
   1070     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
   1071            "found implicit initialization for the wrong type");
   1072     if (!VerifyOnly)
   1073       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
   1074     ++Index;
   1075     return;
   1076   }
   1077 
   1078   if (SemaRef.getLangOpts().CPlusPlus) {
   1079     // C++ [dcl.init.aggr]p2:
   1080     //   Each member is copy-initialized from the corresponding
   1081     //   initializer-clause.
   1082 
   1083     // FIXME: Better EqualLoc?
   1084     InitializationKind Kind =
   1085       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
   1086     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
   1087                                /*TopLevelOfInitList*/ true);
   1088 
   1089     // C++14 [dcl.init.aggr]p13:
   1090     //   If the assignment-expression can initialize a member, the member is
   1091     //   initialized. Otherwise [...] brace elision is assumed
   1092     //
   1093     // Brace elision is never performed if the element is not an
   1094     // assignment-expression.
   1095     if (Seq || isa<InitListExpr>(expr)) {
   1096       if (!VerifyOnly) {
   1097         ExprResult Result =
   1098           Seq.Perform(SemaRef, Entity, Kind, expr);
   1099         if (Result.isInvalid())
   1100           hadError = true;
   1101 
   1102         UpdateStructuredListElement(StructuredList, StructuredIndex,
   1103                                     Result.getAs<Expr>());
   1104       } else if (!Seq)
   1105         hadError = true;
   1106       ++Index;
   1107       return;
   1108     }
   1109 
   1110     // Fall through for subaggregate initialization
   1111   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
   1112     // FIXME: Need to handle atomic aggregate types with implicit init lists.
   1113     return CheckScalarType(Entity, IList, ElemType, Index,
   1114                            StructuredList, StructuredIndex);
   1115   } else if (const ArrayType *arrayType =
   1116                  SemaRef.Context.getAsArrayType(ElemType)) {
   1117     // arrayType can be incomplete if we're initializing a flexible
   1118     // array member.  There's nothing we can do with the completed
   1119     // type here, though.
   1120 
   1121     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
   1122       if (!VerifyOnly) {
   1123         CheckStringInit(expr, ElemType, arrayType, SemaRef);
   1124         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
   1125       }
   1126       ++Index;
   1127       return;
   1128     }
   1129 
   1130     // Fall through for subaggregate initialization.
   1131 
   1132   } else {
   1133     assert((ElemType->isRecordType() || ElemType->isVectorType()) &&
   1134            "Unexpected type");
   1135 
   1136     // C99 6.7.8p13:
   1137     //
   1138     //   The initializer for a structure or union object that has
   1139     //   automatic storage duration shall be either an initializer
   1140     //   list as described below, or a single expression that has
   1141     //   compatible structure or union type. In the latter case, the
   1142     //   initial value of the object, including unnamed members, is
   1143     //   that of the expression.
   1144     ExprResult ExprRes = expr;
   1145     if (SemaRef.CheckSingleAssignmentConstraints(
   1146             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
   1147       if (ExprRes.isInvalid())
   1148         hadError = true;
   1149       else {
   1150         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
   1151           if (ExprRes.isInvalid())
   1152             hadError = true;
   1153       }
   1154       UpdateStructuredListElement(StructuredList, StructuredIndex,
   1155                                   ExprRes.getAs<Expr>());
   1156       ++Index;
   1157       return;
   1158     }
   1159     ExprRes.get();
   1160     // Fall through for subaggregate initialization
   1161   }
   1162 
   1163   // C++ [dcl.init.aggr]p12:
   1164   //
   1165   //   [...] Otherwise, if the member is itself a non-empty
   1166   //   subaggregate, brace elision is assumed and the initializer is
   1167   //   considered for the initialization of the first member of
   1168   //   the subaggregate.
   1169   if (!SemaRef.getLangOpts().OpenCL &&
   1170       (ElemType->isAggregateType() || ElemType->isVectorType())) {
   1171     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
   1172                           StructuredIndex);
   1173     ++StructuredIndex;
   1174   } else {
   1175     if (!VerifyOnly) {
   1176       // We cannot initialize this element, so let
   1177       // PerformCopyInitialization produce the appropriate diagnostic.
   1178       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
   1179                                         /*TopLevelOfInitList=*/true);
   1180     }
   1181     hadError = true;
   1182     ++Index;
   1183     ++StructuredIndex;
   1184   }
   1185 }
   1186 
   1187 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
   1188                                        InitListExpr *IList, QualType DeclType,
   1189                                        unsigned &Index,
   1190                                        InitListExpr *StructuredList,
   1191                                        unsigned &StructuredIndex) {
   1192   assert(Index == 0 && "Index in explicit init list must be zero");
   1193 
   1194   // As an extension, clang supports complex initializers, which initialize
   1195   // a complex number component-wise.  When an explicit initializer list for
   1196   // a complex number contains two two initializers, this extension kicks in:
   1197   // it exepcts the initializer list to contain two elements convertible to
   1198   // the element type of the complex type. The first element initializes
   1199   // the real part, and the second element intitializes the imaginary part.
   1200 
   1201   if (IList->getNumInits() != 2)
   1202     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
   1203                            StructuredIndex);
   1204 
   1205   // This is an extension in C.  (The builtin _Complex type does not exist
   1206   // in the C++ standard.)
   1207   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
   1208     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
   1209       << IList->getSourceRange();
   1210 
   1211   // Initialize the complex number.
   1212   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
   1213   InitializedEntity ElementEntity =
   1214     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1215 
   1216   for (unsigned i = 0; i < 2; ++i) {
   1217     ElementEntity.setElementIndex(Index);
   1218     CheckSubElementType(ElementEntity, IList, elementType, Index,
   1219                         StructuredList, StructuredIndex);
   1220   }
   1221 }
   1222 
   1223 
   1224 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
   1225                                       InitListExpr *IList, QualType DeclType,
   1226                                       unsigned &Index,
   1227                                       InitListExpr *StructuredList,
   1228                                       unsigned &StructuredIndex) {
   1229   if (Index >= IList->getNumInits()) {
   1230     if (!VerifyOnly)
   1231       SemaRef.Diag(IList->getLocStart(),
   1232                    SemaRef.getLangOpts().CPlusPlus11 ?
   1233                      diag::warn_cxx98_compat_empty_scalar_initializer :
   1234                      diag::err_empty_scalar_initializer)
   1235         << IList->getSourceRange();
   1236     hadError = !SemaRef.getLangOpts().CPlusPlus11;
   1237     ++Index;
   1238     ++StructuredIndex;
   1239     return;
   1240   }
   1241 
   1242   Expr *expr = IList->getInit(Index);
   1243   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
   1244     // FIXME: This is invalid, and accepting it causes overload resolution
   1245     // to pick the wrong overload in some corner cases.
   1246     if (!VerifyOnly)
   1247       SemaRef.Diag(SubIList->getLocStart(),
   1248                    diag::ext_many_braces_around_scalar_init)
   1249         << SubIList->getSourceRange();
   1250 
   1251     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
   1252                     StructuredIndex);
   1253     return;
   1254   } else if (isa<DesignatedInitExpr>(expr)) {
   1255     if (!VerifyOnly)
   1256       SemaRef.Diag(expr->getLocStart(),
   1257                    diag::err_designator_for_scalar_init)
   1258         << DeclType << expr->getSourceRange();
   1259     hadError = true;
   1260     ++Index;
   1261     ++StructuredIndex;
   1262     return;
   1263   }
   1264 
   1265   if (VerifyOnly) {
   1266     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
   1267       hadError = true;
   1268     ++Index;
   1269     return;
   1270   }
   1271 
   1272   ExprResult Result =
   1273     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
   1274                                       /*TopLevelOfInitList=*/true);
   1275 
   1276   Expr *ResultExpr = nullptr;
   1277 
   1278   if (Result.isInvalid())
   1279     hadError = true; // types weren't compatible.
   1280   else {
   1281     ResultExpr = Result.getAs<Expr>();
   1282 
   1283     if (ResultExpr != expr) {
   1284       // The type was promoted, update initializer list.
   1285       IList->setInit(Index, ResultExpr);
   1286     }
   1287   }
   1288   if (hadError)
   1289     ++StructuredIndex;
   1290   else
   1291     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
   1292   ++Index;
   1293 }
   1294 
   1295 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
   1296                                          InitListExpr *IList, QualType DeclType,
   1297                                          unsigned &Index,
   1298                                          InitListExpr *StructuredList,
   1299                                          unsigned &StructuredIndex) {
   1300   if (Index >= IList->getNumInits()) {
   1301     // FIXME: It would be wonderful if we could point at the actual member. In
   1302     // general, it would be useful to pass location information down the stack,
   1303     // so that we know the location (or decl) of the "current object" being
   1304     // initialized.
   1305     if (!VerifyOnly)
   1306       SemaRef.Diag(IList->getLocStart(),
   1307                     diag::err_init_reference_member_uninitialized)
   1308         << DeclType
   1309         << IList->getSourceRange();
   1310     hadError = true;
   1311     ++Index;
   1312     ++StructuredIndex;
   1313     return;
   1314   }
   1315 
   1316   Expr *expr = IList->getInit(Index);
   1317   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
   1318     if (!VerifyOnly)
   1319       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
   1320         << DeclType << IList->getSourceRange();
   1321     hadError = true;
   1322     ++Index;
   1323     ++StructuredIndex;
   1324     return;
   1325   }
   1326 
   1327   if (VerifyOnly) {
   1328     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
   1329       hadError = true;
   1330     ++Index;
   1331     return;
   1332   }
   1333 
   1334   ExprResult Result =
   1335       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
   1336                                         /*TopLevelOfInitList=*/true);
   1337 
   1338   if (Result.isInvalid())
   1339     hadError = true;
   1340 
   1341   expr = Result.getAs<Expr>();
   1342   IList->setInit(Index, expr);
   1343 
   1344   if (hadError)
   1345     ++StructuredIndex;
   1346   else
   1347     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
   1348   ++Index;
   1349 }
   1350 
   1351 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
   1352                                       InitListExpr *IList, QualType DeclType,
   1353                                       unsigned &Index,
   1354                                       InitListExpr *StructuredList,
   1355                                       unsigned &StructuredIndex) {
   1356   const VectorType *VT = DeclType->getAs<VectorType>();
   1357   unsigned maxElements = VT->getNumElements();
   1358   unsigned numEltsInit = 0;
   1359   QualType elementType = VT->getElementType();
   1360 
   1361   if (Index >= IList->getNumInits()) {
   1362     // Make sure the element type can be value-initialized.
   1363     if (VerifyOnly)
   1364       CheckEmptyInitializable(
   1365           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
   1366           IList->getLocEnd());
   1367     return;
   1368   }
   1369 
   1370   if (!SemaRef.getLangOpts().OpenCL) {
   1371     // If the initializing element is a vector, try to copy-initialize
   1372     // instead of breaking it apart (which is doomed to failure anyway).
   1373     Expr *Init = IList->getInit(Index);
   1374     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
   1375       if (VerifyOnly) {
   1376         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
   1377           hadError = true;
   1378         ++Index;
   1379         return;
   1380       }
   1381 
   1382   ExprResult Result =
   1383       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
   1384                                         /*TopLevelOfInitList=*/true);
   1385 
   1386       Expr *ResultExpr = nullptr;
   1387       if (Result.isInvalid())
   1388         hadError = true; // types weren't compatible.
   1389       else {
   1390         ResultExpr = Result.getAs<Expr>();
   1391 
   1392         if (ResultExpr != Init) {
   1393           // The type was promoted, update initializer list.
   1394           IList->setInit(Index, ResultExpr);
   1395         }
   1396       }
   1397       if (hadError)
   1398         ++StructuredIndex;
   1399       else
   1400         UpdateStructuredListElement(StructuredList, StructuredIndex,
   1401                                     ResultExpr);
   1402       ++Index;
   1403       return;
   1404     }
   1405 
   1406     InitializedEntity ElementEntity =
   1407       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1408 
   1409     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
   1410       // Don't attempt to go past the end of the init list
   1411       if (Index >= IList->getNumInits()) {
   1412         if (VerifyOnly)
   1413           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
   1414         break;
   1415       }
   1416 
   1417       ElementEntity.setElementIndex(Index);
   1418       CheckSubElementType(ElementEntity, IList, elementType, Index,
   1419                           StructuredList, StructuredIndex);
   1420     }
   1421 
   1422     if (VerifyOnly)
   1423       return;
   1424 
   1425     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
   1426     const VectorType *T = Entity.getType()->getAs<VectorType>();
   1427     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
   1428                         T->getVectorKind() == VectorType::NeonPolyVector)) {
   1429       // The ability to use vector initializer lists is a GNU vector extension
   1430       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
   1431       // endian machines it works fine, however on big endian machines it
   1432       // exhibits surprising behaviour:
   1433       //
   1434       //   uint32x2_t x = {42, 64};
   1435       //   return vget_lane_u32(x, 0); // Will return 64.
   1436       //
   1437       // Because of this, explicitly call out that it is non-portable.
   1438       //
   1439       SemaRef.Diag(IList->getLocStart(),
   1440                    diag::warn_neon_vector_initializer_non_portable);
   1441 
   1442       const char *typeCode;
   1443       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
   1444 
   1445       if (elementType->isFloatingType())
   1446         typeCode = "f";
   1447       else if (elementType->isSignedIntegerType())
   1448         typeCode = "s";
   1449       else if (elementType->isUnsignedIntegerType())
   1450         typeCode = "u";
   1451       else
   1452         llvm_unreachable("Invalid element type!");
   1453 
   1454       SemaRef.Diag(IList->getLocStart(),
   1455                    SemaRef.Context.getTypeSize(VT) > 64 ?
   1456                    diag::note_neon_vector_initializer_non_portable_q :
   1457                    diag::note_neon_vector_initializer_non_portable)
   1458         << typeCode << typeSize;
   1459     }
   1460 
   1461     return;
   1462   }
   1463 
   1464   InitializedEntity ElementEntity =
   1465     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1466 
   1467   // OpenCL initializers allows vectors to be constructed from vectors.
   1468   for (unsigned i = 0; i < maxElements; ++i) {
   1469     // Don't attempt to go past the end of the init list
   1470     if (Index >= IList->getNumInits())
   1471       break;
   1472 
   1473     ElementEntity.setElementIndex(Index);
   1474 
   1475     QualType IType = IList->getInit(Index)->getType();
   1476     if (!IType->isVectorType()) {
   1477       CheckSubElementType(ElementEntity, IList, elementType, Index,
   1478                           StructuredList, StructuredIndex);
   1479       ++numEltsInit;
   1480     } else {
   1481       QualType VecType;
   1482       const VectorType *IVT = IType->getAs<VectorType>();
   1483       unsigned numIElts = IVT->getNumElements();
   1484 
   1485       if (IType->isExtVectorType())
   1486         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
   1487       else
   1488         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
   1489                                                 IVT->getVectorKind());
   1490       CheckSubElementType(ElementEntity, IList, VecType, Index,
   1491                           StructuredList, StructuredIndex);
   1492       numEltsInit += numIElts;
   1493     }
   1494   }
   1495 
   1496   // OpenCL requires all elements to be initialized.
   1497   if (numEltsInit != maxElements) {
   1498     if (!VerifyOnly)
   1499       SemaRef.Diag(IList->getLocStart(),
   1500                    diag::err_vector_incorrect_num_initializers)
   1501         << (numEltsInit < maxElements) << maxElements << numEltsInit;
   1502     hadError = true;
   1503   }
   1504 }
   1505 
   1506 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
   1507                                      InitListExpr *IList, QualType &DeclType,
   1508                                      llvm::APSInt elementIndex,
   1509                                      bool SubobjectIsDesignatorContext,
   1510                                      unsigned &Index,
   1511                                      InitListExpr *StructuredList,
   1512                                      unsigned &StructuredIndex) {
   1513   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
   1514 
   1515   // Check for the special-case of initializing an array with a string.
   1516   if (Index < IList->getNumInits()) {
   1517     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
   1518         SIF_None) {
   1519       // We place the string literal directly into the resulting
   1520       // initializer list. This is the only place where the structure
   1521       // of the structured initializer list doesn't match exactly,
   1522       // because doing so would involve allocating one character
   1523       // constant for each string.
   1524       if (!VerifyOnly) {
   1525         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
   1526         UpdateStructuredListElement(StructuredList, StructuredIndex,
   1527                                     IList->getInit(Index));
   1528         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
   1529       }
   1530       ++Index;
   1531       return;
   1532     }
   1533   }
   1534   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
   1535     // Check for VLAs; in standard C it would be possible to check this
   1536     // earlier, but I don't know where clang accepts VLAs (gcc accepts
   1537     // them in all sorts of strange places).
   1538     if (!VerifyOnly)
   1539       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
   1540                     diag::err_variable_object_no_init)
   1541         << VAT->getSizeExpr()->getSourceRange();
   1542     hadError = true;
   1543     ++Index;
   1544     ++StructuredIndex;
   1545     return;
   1546   }
   1547 
   1548   // We might know the maximum number of elements in advance.
   1549   llvm::APSInt maxElements(elementIndex.getBitWidth(),
   1550                            elementIndex.isUnsigned());
   1551   bool maxElementsKnown = false;
   1552   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
   1553     maxElements = CAT->getSize();
   1554     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
   1555     elementIndex.setIsUnsigned(maxElements.isUnsigned());
   1556     maxElementsKnown = true;
   1557   }
   1558 
   1559   QualType elementType = arrayType->getElementType();
   1560   while (Index < IList->getNumInits()) {
   1561     Expr *Init = IList->getInit(Index);
   1562     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
   1563       // If we're not the subobject that matches up with the '{' for
   1564       // the designator, we shouldn't be handling the
   1565       // designator. Return immediately.
   1566       if (!SubobjectIsDesignatorContext)
   1567         return;
   1568 
   1569       // Handle this designated initializer. elementIndex will be
   1570       // updated to be the next array element we'll initialize.
   1571       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
   1572                                      DeclType, nullptr, &elementIndex, Index,
   1573                                      StructuredList, StructuredIndex, true,
   1574                                      false)) {
   1575         hadError = true;
   1576         continue;
   1577       }
   1578 
   1579       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
   1580         maxElements = maxElements.extend(elementIndex.getBitWidth());
   1581       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
   1582         elementIndex = elementIndex.extend(maxElements.getBitWidth());
   1583       elementIndex.setIsUnsigned(maxElements.isUnsigned());
   1584 
   1585       // If the array is of incomplete type, keep track of the number of
   1586       // elements in the initializer.
   1587       if (!maxElementsKnown && elementIndex > maxElements)
   1588         maxElements = elementIndex;
   1589 
   1590       continue;
   1591     }
   1592 
   1593     // If we know the maximum number of elements, and we've already
   1594     // hit it, stop consuming elements in the initializer list.
   1595     if (maxElementsKnown && elementIndex == maxElements)
   1596       break;
   1597 
   1598     InitializedEntity ElementEntity =
   1599       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
   1600                                            Entity);
   1601     // Check this element.
   1602     CheckSubElementType(ElementEntity, IList, elementType, Index,
   1603                         StructuredList, StructuredIndex);
   1604     ++elementIndex;
   1605 
   1606     // If the array is of incomplete type, keep track of the number of
   1607     // elements in the initializer.
   1608     if (!maxElementsKnown && elementIndex > maxElements)
   1609       maxElements = elementIndex;
   1610   }
   1611   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
   1612     // If this is an incomplete array type, the actual type needs to
   1613     // be calculated here.
   1614     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
   1615     if (maxElements == Zero) {
   1616       // Sizing an array implicitly to zero is not allowed by ISO C,
   1617       // but is supported by GNU.
   1618       SemaRef.Diag(IList->getLocStart(),
   1619                     diag::ext_typecheck_zero_array_size);
   1620     }
   1621 
   1622     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
   1623                                                      ArrayType::Normal, 0);
   1624   }
   1625   if (!hadError && VerifyOnly) {
   1626     // Check if there are any members of the array that get value-initialized.
   1627     // If so, check if doing that is possible.
   1628     // FIXME: This needs to detect holes left by designated initializers too.
   1629     if (maxElementsKnown && elementIndex < maxElements)
   1630       CheckEmptyInitializable(InitializedEntity::InitializeElement(
   1631                                                   SemaRef.Context, 0, Entity),
   1632                               IList->getLocEnd());
   1633   }
   1634 }
   1635 
   1636 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
   1637                                              Expr *InitExpr,
   1638                                              FieldDecl *Field,
   1639                                              bool TopLevelObject) {
   1640   // Handle GNU flexible array initializers.
   1641   unsigned FlexArrayDiag;
   1642   if (isa<InitListExpr>(InitExpr) &&
   1643       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
   1644     // Empty flexible array init always allowed as an extension
   1645     FlexArrayDiag = diag::ext_flexible_array_init;
   1646   } else if (SemaRef.getLangOpts().CPlusPlus) {
   1647     // Disallow flexible array init in C++; it is not required for gcc
   1648     // compatibility, and it needs work to IRGen correctly in general.
   1649     FlexArrayDiag = diag::err_flexible_array_init;
   1650   } else if (!TopLevelObject) {
   1651     // Disallow flexible array init on non-top-level object
   1652     FlexArrayDiag = diag::err_flexible_array_init;
   1653   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
   1654     // Disallow flexible array init on anything which is not a variable.
   1655     FlexArrayDiag = diag::err_flexible_array_init;
   1656   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
   1657     // Disallow flexible array init on local variables.
   1658     FlexArrayDiag = diag::err_flexible_array_init;
   1659   } else {
   1660     // Allow other cases.
   1661     FlexArrayDiag = diag::ext_flexible_array_init;
   1662   }
   1663 
   1664   if (!VerifyOnly) {
   1665     SemaRef.Diag(InitExpr->getLocStart(),
   1666                  FlexArrayDiag)
   1667       << InitExpr->getLocStart();
   1668     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   1669       << Field;
   1670   }
   1671 
   1672   return FlexArrayDiag != diag::ext_flexible_array_init;
   1673 }
   1674 
   1675 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
   1676                                             InitListExpr *IList,
   1677                                             QualType DeclType,
   1678                                             RecordDecl::field_iterator Field,
   1679                                             bool SubobjectIsDesignatorContext,
   1680                                             unsigned &Index,
   1681                                             InitListExpr *StructuredList,
   1682                                             unsigned &StructuredIndex,
   1683                                             bool TopLevelObject) {
   1684   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
   1685 
   1686   // If the record is invalid, some of it's members are invalid. To avoid
   1687   // confusion, we forgo checking the intializer for the entire record.
   1688   if (structDecl->isInvalidDecl()) {
   1689     // Assume it was supposed to consume a single initializer.
   1690     ++Index;
   1691     hadError = true;
   1692     return;
   1693   }
   1694 
   1695   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
   1696     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
   1697 
   1698     // If there's a default initializer, use it.
   1699     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
   1700       if (VerifyOnly)
   1701         return;
   1702       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
   1703            Field != FieldEnd; ++Field) {
   1704         if (Field->hasInClassInitializer()) {
   1705           StructuredList->setInitializedFieldInUnion(*Field);
   1706           // FIXME: Actually build a CXXDefaultInitExpr?
   1707           return;
   1708         }
   1709       }
   1710     }
   1711 
   1712     // Value-initialize the first member of the union that isn't an unnamed
   1713     // bitfield.
   1714     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
   1715          Field != FieldEnd; ++Field) {
   1716       if (!Field->isUnnamedBitfield()) {
   1717         if (VerifyOnly)
   1718           CheckEmptyInitializable(
   1719               InitializedEntity::InitializeMember(*Field, &Entity),
   1720               IList->getLocEnd());
   1721         else
   1722           StructuredList->setInitializedFieldInUnion(*Field);
   1723         break;
   1724       }
   1725     }
   1726     return;
   1727   }
   1728 
   1729   // If structDecl is a forward declaration, this loop won't do
   1730   // anything except look at designated initializers; That's okay,
   1731   // because an error should get printed out elsewhere. It might be
   1732   // worthwhile to skip over the rest of the initializer, though.
   1733   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
   1734   RecordDecl::field_iterator FieldEnd = RD->field_end();
   1735   bool InitializedSomething = false;
   1736   bool CheckForMissingFields = true;
   1737   while (Index < IList->getNumInits()) {
   1738     Expr *Init = IList->getInit(Index);
   1739 
   1740     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
   1741       // If we're not the subobject that matches up with the '{' for
   1742       // the designator, we shouldn't be handling the
   1743       // designator. Return immediately.
   1744       if (!SubobjectIsDesignatorContext)
   1745         return;
   1746 
   1747       // Handle this designated initializer. Field will be updated to
   1748       // the next field that we'll be initializing.
   1749       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
   1750                                      DeclType, &Field, nullptr, Index,
   1751                                      StructuredList, StructuredIndex,
   1752                                      true, TopLevelObject))
   1753         hadError = true;
   1754 
   1755       InitializedSomething = true;
   1756 
   1757       // Disable check for missing fields when designators are used.
   1758       // This matches gcc behaviour.
   1759       CheckForMissingFields = false;
   1760       continue;
   1761     }
   1762 
   1763     if (Field == FieldEnd) {
   1764       // We've run out of fields. We're done.
   1765       break;
   1766     }
   1767 
   1768     // We've already initialized a member of a union. We're done.
   1769     if (InitializedSomething && DeclType->isUnionType())
   1770       break;
   1771 
   1772     // If we've hit the flexible array member at the end, we're done.
   1773     if (Field->getType()->isIncompleteArrayType())
   1774       break;
   1775 
   1776     if (Field->isUnnamedBitfield()) {
   1777       // Don't initialize unnamed bitfields, e.g. "int : 20;"
   1778       ++Field;
   1779       continue;
   1780     }
   1781 
   1782     // Make sure we can use this declaration.
   1783     bool InvalidUse;
   1784     if (VerifyOnly)
   1785       InvalidUse = !SemaRef.CanUseDecl(*Field);
   1786     else
   1787       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
   1788                                           IList->getInit(Index)->getLocStart());
   1789     if (InvalidUse) {
   1790       ++Index;
   1791       ++Field;
   1792       hadError = true;
   1793       continue;
   1794     }
   1795 
   1796     InitializedEntity MemberEntity =
   1797       InitializedEntity::InitializeMember(*Field, &Entity);
   1798     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   1799                         StructuredList, StructuredIndex);
   1800     InitializedSomething = true;
   1801 
   1802     if (DeclType->isUnionType() && !VerifyOnly) {
   1803       // Initialize the first field within the union.
   1804       StructuredList->setInitializedFieldInUnion(*Field);
   1805     }
   1806 
   1807     ++Field;
   1808   }
   1809 
   1810   // Emit warnings for missing struct field initializers.
   1811   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
   1812       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
   1813       !DeclType->isUnionType()) {
   1814     // It is possible we have one or more unnamed bitfields remaining.
   1815     // Find first (if any) named field and emit warning.
   1816     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
   1817          it != end; ++it) {
   1818       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
   1819         SemaRef.Diag(IList->getSourceRange().getEnd(),
   1820                      diag::warn_missing_field_initializers) << *it;
   1821         break;
   1822       }
   1823     }
   1824   }
   1825 
   1826   // Check that any remaining fields can be value-initialized.
   1827   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
   1828       !Field->getType()->isIncompleteArrayType()) {
   1829     // FIXME: Should check for holes left by designated initializers too.
   1830     for (; Field != FieldEnd && !hadError; ++Field) {
   1831       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
   1832         CheckEmptyInitializable(
   1833             InitializedEntity::InitializeMember(*Field, &Entity),
   1834             IList->getLocEnd());
   1835     }
   1836   }
   1837 
   1838   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
   1839       Index >= IList->getNumInits())
   1840     return;
   1841 
   1842   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
   1843                              TopLevelObject)) {
   1844     hadError = true;
   1845     ++Index;
   1846     return;
   1847   }
   1848 
   1849   InitializedEntity MemberEntity =
   1850     InitializedEntity::InitializeMember(*Field, &Entity);
   1851 
   1852   if (isa<InitListExpr>(IList->getInit(Index)))
   1853     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   1854                         StructuredList, StructuredIndex);
   1855   else
   1856     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
   1857                           StructuredList, StructuredIndex);
   1858 }
   1859 
   1860 /// \brief Expand a field designator that refers to a member of an
   1861 /// anonymous struct or union into a series of field designators that
   1862 /// refers to the field within the appropriate subobject.
   1863 ///
   1864 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
   1865                                            DesignatedInitExpr *DIE,
   1866                                            unsigned DesigIdx,
   1867                                            IndirectFieldDecl *IndirectField) {
   1868   typedef DesignatedInitExpr::Designator Designator;
   1869 
   1870   // Build the replacement designators.
   1871   SmallVector<Designator, 4> Replacements;
   1872   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
   1873        PE = IndirectField->chain_end(); PI != PE; ++PI) {
   1874     if (PI + 1 == PE)
   1875       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
   1876                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
   1877                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
   1878     else
   1879       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
   1880                                         SourceLocation(), SourceLocation()));
   1881     assert(isa<FieldDecl>(*PI));
   1882     Replacements.back().setField(cast<FieldDecl>(*PI));
   1883   }
   1884 
   1885   // Expand the current designator into the set of replacement
   1886   // designators, so we have a full subobject path down to where the
   1887   // member of the anonymous struct/union is actually stored.
   1888   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
   1889                         &Replacements[0] + Replacements.size());
   1890 }
   1891 
   1892 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
   1893                                                    DesignatedInitExpr *DIE) {
   1894   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
   1895   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
   1896   for (unsigned I = 0; I < NumIndexExprs; ++I)
   1897     IndexExprs[I] = DIE->getSubExpr(I + 1);
   1898   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
   1899                                     DIE->size(), IndexExprs,
   1900                                     DIE->getEqualOrColonLoc(),
   1901                                     DIE->usesGNUSyntax(), DIE->getInit());
   1902 }
   1903 
   1904 namespace {
   1905 
   1906 // Callback to only accept typo corrections that are for field members of
   1907 // the given struct or union.
   1908 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
   1909  public:
   1910   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
   1911       : Record(RD) {}
   1912 
   1913   bool ValidateCandidate(const TypoCorrection &candidate) override {
   1914     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
   1915     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
   1916   }
   1917 
   1918  private:
   1919   RecordDecl *Record;
   1920 };
   1921 
   1922 }
   1923 
   1924 /// @brief Check the well-formedness of a C99 designated initializer.
   1925 ///
   1926 /// Determines whether the designated initializer @p DIE, which
   1927 /// resides at the given @p Index within the initializer list @p
   1928 /// IList, is well-formed for a current object of type @p DeclType
   1929 /// (C99 6.7.8). The actual subobject that this designator refers to
   1930 /// within the current subobject is returned in either
   1931 /// @p NextField or @p NextElementIndex (whichever is appropriate).
   1932 ///
   1933 /// @param IList  The initializer list in which this designated
   1934 /// initializer occurs.
   1935 ///
   1936 /// @param DIE The designated initializer expression.
   1937 ///
   1938 /// @param DesigIdx  The index of the current designator.
   1939 ///
   1940 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
   1941 /// into which the designation in @p DIE should refer.
   1942 ///
   1943 /// @param NextField  If non-NULL and the first designator in @p DIE is
   1944 /// a field, this will be set to the field declaration corresponding
   1945 /// to the field named by the designator.
   1946 ///
   1947 /// @param NextElementIndex  If non-NULL and the first designator in @p
   1948 /// DIE is an array designator or GNU array-range designator, this
   1949 /// will be set to the last index initialized by this designator.
   1950 ///
   1951 /// @param Index  Index into @p IList where the designated initializer
   1952 /// @p DIE occurs.
   1953 ///
   1954 /// @param StructuredList  The initializer list expression that
   1955 /// describes all of the subobject initializers in the order they'll
   1956 /// actually be initialized.
   1957 ///
   1958 /// @returns true if there was an error, false otherwise.
   1959 bool
   1960 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
   1961                                             InitListExpr *IList,
   1962                                             DesignatedInitExpr *DIE,
   1963                                             unsigned DesigIdx,
   1964                                             QualType &CurrentObjectType,
   1965                                           RecordDecl::field_iterator *NextField,
   1966                                             llvm::APSInt *NextElementIndex,
   1967                                             unsigned &Index,
   1968                                             InitListExpr *StructuredList,
   1969                                             unsigned &StructuredIndex,
   1970                                             bool FinishSubobjectInit,
   1971                                             bool TopLevelObject) {
   1972   if (DesigIdx == DIE->size()) {
   1973     // Check the actual initialization for the designated object type.
   1974     bool prevHadError = hadError;
   1975 
   1976     // Temporarily remove the designator expression from the
   1977     // initializer list that the child calls see, so that we don't try
   1978     // to re-process the designator.
   1979     unsigned OldIndex = Index;
   1980     IList->setInit(OldIndex, DIE->getInit());
   1981 
   1982     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
   1983                         StructuredList, StructuredIndex);
   1984 
   1985     // Restore the designated initializer expression in the syntactic
   1986     // form of the initializer list.
   1987     if (IList->getInit(OldIndex) != DIE->getInit())
   1988       DIE->setInit(IList->getInit(OldIndex));
   1989     IList->setInit(OldIndex, DIE);
   1990 
   1991     return hadError && !prevHadError;
   1992   }
   1993 
   1994   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
   1995   bool IsFirstDesignator = (DesigIdx == 0);
   1996   if (!VerifyOnly) {
   1997     assert((IsFirstDesignator || StructuredList) &&
   1998            "Need a non-designated initializer list to start from");
   1999 
   2000     // Determine the structural initializer list that corresponds to the
   2001     // current subobject.
   2002     if (IsFirstDesignator)
   2003       StructuredList = SyntacticToSemantic.lookup(IList);
   2004     else {
   2005       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
   2006           StructuredList->getInit(StructuredIndex) : nullptr;
   2007       if (!ExistingInit && StructuredList->hasArrayFiller())
   2008         ExistingInit = StructuredList->getArrayFiller();
   2009 
   2010       if (!ExistingInit)
   2011         StructuredList =
   2012           getStructuredSubobjectInit(IList, Index, CurrentObjectType,
   2013                                      StructuredList, StructuredIndex,
   2014                                      SourceRange(D->getLocStart(),
   2015                                                  DIE->getLocEnd()));
   2016       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
   2017         StructuredList = Result;
   2018       else {
   2019         if (DesignatedInitUpdateExpr *E =
   2020                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
   2021           StructuredList = E->getUpdater();
   2022         else {
   2023           DesignatedInitUpdateExpr *DIUE =
   2024               new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
   2025                                         D->getLocStart(), ExistingInit,
   2026                                         DIE->getLocEnd());
   2027           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
   2028           StructuredList = DIUE->getUpdater();
   2029         }
   2030 
   2031         // We need to check on source range validity because the previous
   2032         // initializer does not have to be an explicit initializer. e.g.,
   2033         //
   2034         // struct P { int a, b; };
   2035         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
   2036         //
   2037         // There is an overwrite taking place because the first braced initializer
   2038         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
   2039         if (ExistingInit->getSourceRange().isValid()) {
   2040           // We are creating an initializer list that initializes the
   2041           // subobjects of the current object, but there was already an
   2042           // initialization that completely initialized the current
   2043           // subobject, e.g., by a compound literal:
   2044           //
   2045           // struct X { int a, b; };
   2046           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
   2047           //
   2048           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
   2049           // designated initializer re-initializes the whole
   2050           // subobject [0], overwriting previous initializers.
   2051           SemaRef.Diag(D->getLocStart(),
   2052                        diag::warn_subobject_initializer_overrides)
   2053             << SourceRange(D->getLocStart(), DIE->getLocEnd());
   2054 
   2055           SemaRef.Diag(ExistingInit->getLocStart(),
   2056                        diag::note_previous_initializer)
   2057             << /*FIXME:has side effects=*/0
   2058             << ExistingInit->getSourceRange();
   2059         }
   2060       }
   2061     }
   2062     assert(StructuredList && "Expected a structured initializer list");
   2063   }
   2064 
   2065   if (D->isFieldDesignator()) {
   2066     // C99 6.7.8p7:
   2067     //
   2068     //   If a designator has the form
   2069     //
   2070     //      . identifier
   2071     //
   2072     //   then the current object (defined below) shall have
   2073     //   structure or union type and the identifier shall be the
   2074     //   name of a member of that type.
   2075     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
   2076     if (!RT) {
   2077       SourceLocation Loc = D->getDotLoc();
   2078       if (Loc.isInvalid())
   2079         Loc = D->getFieldLoc();
   2080       if (!VerifyOnly)
   2081         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
   2082           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
   2083       ++Index;
   2084       return true;
   2085     }
   2086 
   2087     FieldDecl *KnownField = D->getField();
   2088     if (!KnownField) {
   2089       IdentifierInfo *FieldName = D->getFieldName();
   2090       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
   2091       for (NamedDecl *ND : Lookup) {
   2092         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
   2093           KnownField = FD;
   2094           break;
   2095         }
   2096         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
   2097           // In verify mode, don't modify the original.
   2098           if (VerifyOnly)
   2099             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
   2100           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
   2101           D = DIE->getDesignator(DesigIdx);
   2102           KnownField = cast<FieldDecl>(*IFD->chain_begin());
   2103           break;
   2104         }
   2105       }
   2106       if (!KnownField) {
   2107         if (VerifyOnly) {
   2108           ++Index;
   2109           return true;  // No typo correction when just trying this out.
   2110         }
   2111 
   2112         // Name lookup found something, but it wasn't a field.
   2113         if (!Lookup.empty()) {
   2114           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
   2115             << FieldName;
   2116           SemaRef.Diag(Lookup.front()->getLocation(),
   2117                        diag::note_field_designator_found);
   2118           ++Index;
   2119           return true;
   2120         }
   2121 
   2122         // Name lookup didn't find anything.
   2123         // Determine whether this was a typo for another field name.
   2124         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
   2125                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
   2126                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
   2127                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
   2128                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
   2129           SemaRef.diagnoseTypo(
   2130               Corrected,
   2131               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
   2132                 << FieldName << CurrentObjectType);
   2133           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
   2134           hadError = true;
   2135         } else {
   2136           // Typo correction didn't find anything.
   2137           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
   2138             << FieldName << CurrentObjectType;
   2139           ++Index;
   2140           return true;
   2141         }
   2142       }
   2143     }
   2144 
   2145     unsigned FieldIndex = 0;
   2146     for (auto *FI : RT->getDecl()->fields()) {
   2147       if (FI->isUnnamedBitfield())
   2148         continue;
   2149       if (KnownField == FI)
   2150         break;
   2151       ++FieldIndex;
   2152     }
   2153 
   2154     RecordDecl::field_iterator Field =
   2155         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
   2156 
   2157     // All of the fields of a union are located at the same place in
   2158     // the initializer list.
   2159     if (RT->getDecl()->isUnion()) {
   2160       FieldIndex = 0;
   2161       if (!VerifyOnly) {
   2162         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
   2163         if (CurrentField && CurrentField != *Field) {
   2164           assert(StructuredList->getNumInits() == 1
   2165                  && "A union should never have more than one initializer!");
   2166 
   2167           // we're about to throw away an initializer, emit warning
   2168           SemaRef.Diag(D->getFieldLoc(),
   2169                        diag::warn_initializer_overrides)
   2170             << D->getSourceRange();
   2171           Expr *ExistingInit = StructuredList->getInit(0);
   2172           SemaRef.Diag(ExistingInit->getLocStart(),
   2173                        diag::note_previous_initializer)
   2174             << /*FIXME:has side effects=*/0
   2175             << ExistingInit->getSourceRange();
   2176 
   2177           // remove existing initializer
   2178           StructuredList->resizeInits(SemaRef.Context, 0);
   2179           StructuredList->setInitializedFieldInUnion(nullptr);
   2180         }
   2181 
   2182         StructuredList->setInitializedFieldInUnion(*Field);
   2183       }
   2184     }
   2185 
   2186     // Make sure we can use this declaration.
   2187     bool InvalidUse;
   2188     if (VerifyOnly)
   2189       InvalidUse = !SemaRef.CanUseDecl(*Field);
   2190     else
   2191       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
   2192     if (InvalidUse) {
   2193       ++Index;
   2194       return true;
   2195     }
   2196 
   2197     if (!VerifyOnly) {
   2198       // Update the designator with the field declaration.
   2199       D->setField(*Field);
   2200 
   2201       // Make sure that our non-designated initializer list has space
   2202       // for a subobject corresponding to this field.
   2203       if (FieldIndex >= StructuredList->getNumInits())
   2204         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
   2205     }
   2206 
   2207     // This designator names a flexible array member.
   2208     if (Field->getType()->isIncompleteArrayType()) {
   2209       bool Invalid = false;
   2210       if ((DesigIdx + 1) != DIE->size()) {
   2211         // We can't designate an object within the flexible array
   2212         // member (because GCC doesn't allow it).
   2213         if (!VerifyOnly) {
   2214           DesignatedInitExpr::Designator *NextD
   2215             = DIE->getDesignator(DesigIdx + 1);
   2216           SemaRef.Diag(NextD->getLocStart(),
   2217                         diag::err_designator_into_flexible_array_member)
   2218             << SourceRange(NextD->getLocStart(),
   2219                            DIE->getLocEnd());
   2220           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   2221             << *Field;
   2222         }
   2223         Invalid = true;
   2224       }
   2225 
   2226       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
   2227           !isa<StringLiteral>(DIE->getInit())) {
   2228         // The initializer is not an initializer list.
   2229         if (!VerifyOnly) {
   2230           SemaRef.Diag(DIE->getInit()->getLocStart(),
   2231                         diag::err_flexible_array_init_needs_braces)
   2232             << DIE->getInit()->getSourceRange();
   2233           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   2234             << *Field;
   2235         }
   2236         Invalid = true;
   2237       }
   2238 
   2239       // Check GNU flexible array initializer.
   2240       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
   2241                                              TopLevelObject))
   2242         Invalid = true;
   2243 
   2244       if (Invalid) {
   2245         ++Index;
   2246         return true;
   2247       }
   2248 
   2249       // Initialize the array.
   2250       bool prevHadError = hadError;
   2251       unsigned newStructuredIndex = FieldIndex;
   2252       unsigned OldIndex = Index;
   2253       IList->setInit(Index, DIE->getInit());
   2254 
   2255       InitializedEntity MemberEntity =
   2256         InitializedEntity::InitializeMember(*Field, &Entity);
   2257       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   2258                           StructuredList, newStructuredIndex);
   2259 
   2260       IList->setInit(OldIndex, DIE);
   2261       if (hadError && !prevHadError) {
   2262         ++Field;
   2263         ++FieldIndex;
   2264         if (NextField)
   2265           *NextField = Field;
   2266         StructuredIndex = FieldIndex;
   2267         return true;
   2268       }
   2269     } else {
   2270       // Recurse to check later designated subobjects.
   2271       QualType FieldType = Field->getType();
   2272       unsigned newStructuredIndex = FieldIndex;
   2273 
   2274       InitializedEntity MemberEntity =
   2275         InitializedEntity::InitializeMember(*Field, &Entity);
   2276       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
   2277                                      FieldType, nullptr, nullptr, Index,
   2278                                      StructuredList, newStructuredIndex,
   2279                                      true, false))
   2280         return true;
   2281     }
   2282 
   2283     // Find the position of the next field to be initialized in this
   2284     // subobject.
   2285     ++Field;
   2286     ++FieldIndex;
   2287 
   2288     // If this the first designator, our caller will continue checking
   2289     // the rest of this struct/class/union subobject.
   2290     if (IsFirstDesignator) {
   2291       if (NextField)
   2292         *NextField = Field;
   2293       StructuredIndex = FieldIndex;
   2294       return false;
   2295     }
   2296 
   2297     if (!FinishSubobjectInit)
   2298       return false;
   2299 
   2300     // We've already initialized something in the union; we're done.
   2301     if (RT->getDecl()->isUnion())
   2302       return hadError;
   2303 
   2304     // Check the remaining fields within this class/struct/union subobject.
   2305     bool prevHadError = hadError;
   2306 
   2307     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
   2308                           StructuredList, FieldIndex);
   2309     return hadError && !prevHadError;
   2310   }
   2311 
   2312   // C99 6.7.8p6:
   2313   //
   2314   //   If a designator has the form
   2315   //
   2316   //      [ constant-expression ]
   2317   //
   2318   //   then the current object (defined below) shall have array
   2319   //   type and the expression shall be an integer constant
   2320   //   expression. If the array is of unknown size, any
   2321   //   nonnegative value is valid.
   2322   //
   2323   // Additionally, cope with the GNU extension that permits
   2324   // designators of the form
   2325   //
   2326   //      [ constant-expression ... constant-expression ]
   2327   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
   2328   if (!AT) {
   2329     if (!VerifyOnly)
   2330       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
   2331         << CurrentObjectType;
   2332     ++Index;
   2333     return true;
   2334   }
   2335 
   2336   Expr *IndexExpr = nullptr;
   2337   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
   2338   if (D->isArrayDesignator()) {
   2339     IndexExpr = DIE->getArrayIndex(*D);
   2340     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
   2341     DesignatedEndIndex = DesignatedStartIndex;
   2342   } else {
   2343     assert(D->isArrayRangeDesignator() && "Need array-range designator");
   2344 
   2345     DesignatedStartIndex =
   2346       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
   2347     DesignatedEndIndex =
   2348       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
   2349     IndexExpr = DIE->getArrayRangeEnd(*D);
   2350 
   2351     // Codegen can't handle evaluating array range designators that have side
   2352     // effects, because we replicate the AST value for each initialized element.
   2353     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
   2354     // elements with something that has a side effect, so codegen can emit an
   2355     // "error unsupported" error instead of miscompiling the app.
   2356     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
   2357         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
   2358       FullyStructuredList->sawArrayRangeDesignator();
   2359   }
   2360 
   2361   if (isa<ConstantArrayType>(AT)) {
   2362     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
   2363     DesignatedStartIndex
   2364       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
   2365     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
   2366     DesignatedEndIndex
   2367       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
   2368     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
   2369     if (DesignatedEndIndex >= MaxElements) {
   2370       if (!VerifyOnly)
   2371         SemaRef.Diag(IndexExpr->getLocStart(),
   2372                       diag::err_array_designator_too_large)
   2373           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
   2374           << IndexExpr->getSourceRange();
   2375       ++Index;
   2376       return true;
   2377     }
   2378   } else {
   2379     unsigned DesignatedIndexBitWidth =
   2380       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
   2381     DesignatedStartIndex =
   2382       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
   2383     DesignatedEndIndex =
   2384       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
   2385     DesignatedStartIndex.setIsUnsigned(true);
   2386     DesignatedEndIndex.setIsUnsigned(true);
   2387   }
   2388 
   2389   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
   2390     // We're modifying a string literal init; we have to decompose the string
   2391     // so we can modify the individual characters.
   2392     ASTContext &Context = SemaRef.Context;
   2393     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
   2394 
   2395     // Compute the character type
   2396     QualType CharTy = AT->getElementType();
   2397 
   2398     // Compute the type of the integer literals.
   2399     QualType PromotedCharTy = CharTy;
   2400     if (CharTy->isPromotableIntegerType())
   2401       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
   2402     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
   2403 
   2404     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
   2405       // Get the length of the string.
   2406       uint64_t StrLen = SL->getLength();
   2407       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
   2408         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
   2409       StructuredList->resizeInits(Context, StrLen);
   2410 
   2411       // Build a literal for each character in the string, and put them into
   2412       // the init list.
   2413       for (unsigned i = 0, e = StrLen; i != e; ++i) {
   2414         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
   2415         Expr *Init = new (Context) IntegerLiteral(
   2416             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
   2417         if (CharTy != PromotedCharTy)
   2418           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
   2419                                           Init, nullptr, VK_RValue);
   2420         StructuredList->updateInit(Context, i, Init);
   2421       }
   2422     } else {
   2423       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
   2424       std::string Str;
   2425       Context.getObjCEncodingForType(E->getEncodedType(), Str);
   2426 
   2427       // Get the length of the string.
   2428       uint64_t StrLen = Str.size();
   2429       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
   2430         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
   2431       StructuredList->resizeInits(Context, StrLen);
   2432 
   2433       // Build a literal for each character in the string, and put them into
   2434       // the init list.
   2435       for (unsigned i = 0, e = StrLen; i != e; ++i) {
   2436         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
   2437         Expr *Init = new (Context) IntegerLiteral(
   2438             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
   2439         if (CharTy != PromotedCharTy)
   2440           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
   2441                                           Init, nullptr, VK_RValue);
   2442         StructuredList->updateInit(Context, i, Init);
   2443       }
   2444     }
   2445   }
   2446 
   2447   // Make sure that our non-designated initializer list has space
   2448   // for a subobject corresponding to this array element.
   2449   if (!VerifyOnly &&
   2450       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
   2451     StructuredList->resizeInits(SemaRef.Context,
   2452                                 DesignatedEndIndex.getZExtValue() + 1);
   2453 
   2454   // Repeatedly perform subobject initializations in the range
   2455   // [DesignatedStartIndex, DesignatedEndIndex].
   2456 
   2457   // Move to the next designator
   2458   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
   2459   unsigned OldIndex = Index;
   2460 
   2461   InitializedEntity ElementEntity =
   2462     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   2463 
   2464   while (DesignatedStartIndex <= DesignatedEndIndex) {
   2465     // Recurse to check later designated subobjects.
   2466     QualType ElementType = AT->getElementType();
   2467     Index = OldIndex;
   2468 
   2469     ElementEntity.setElementIndex(ElementIndex);
   2470     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
   2471                                    ElementType, nullptr, nullptr, Index,
   2472                                    StructuredList, ElementIndex,
   2473                                    (DesignatedStartIndex == DesignatedEndIndex),
   2474                                    false))
   2475       return true;
   2476 
   2477     // Move to the next index in the array that we'll be initializing.
   2478     ++DesignatedStartIndex;
   2479     ElementIndex = DesignatedStartIndex.getZExtValue();
   2480   }
   2481 
   2482   // If this the first designator, our caller will continue checking
   2483   // the rest of this array subobject.
   2484   if (IsFirstDesignator) {
   2485     if (NextElementIndex)
   2486       *NextElementIndex = DesignatedStartIndex;
   2487     StructuredIndex = ElementIndex;
   2488     return false;
   2489   }
   2490 
   2491   if (!FinishSubobjectInit)
   2492     return false;
   2493 
   2494   // Check the remaining elements within this array subobject.
   2495   bool prevHadError = hadError;
   2496   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
   2497                  /*SubobjectIsDesignatorContext=*/false, Index,
   2498                  StructuredList, ElementIndex);
   2499   return hadError && !prevHadError;
   2500 }
   2501 
   2502 // Get the structured initializer list for a subobject of type
   2503 // @p CurrentObjectType.
   2504 InitListExpr *
   2505 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
   2506                                             QualType CurrentObjectType,
   2507                                             InitListExpr *StructuredList,
   2508                                             unsigned StructuredIndex,
   2509                                             SourceRange InitRange,
   2510                                             bool IsFullyOverwritten) {
   2511   if (VerifyOnly)
   2512     return nullptr; // No structured list in verification-only mode.
   2513   Expr *ExistingInit = nullptr;
   2514   if (!StructuredList)
   2515     ExistingInit = SyntacticToSemantic.lookup(IList);
   2516   else if (StructuredIndex < StructuredList->getNumInits())
   2517     ExistingInit = StructuredList->getInit(StructuredIndex);
   2518 
   2519   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
   2520     // There might have already been initializers for subobjects of the current
   2521     // object, but a subsequent initializer list will overwrite the entirety
   2522     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
   2523     //
   2524     // struct P { char x[6]; };
   2525     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
   2526     //
   2527     // The first designated initializer is ignored, and l.x is just "f".
   2528     if (!IsFullyOverwritten)
   2529       return Result;
   2530 
   2531   if (ExistingInit) {
   2532     // We are creating an initializer list that initializes the
   2533     // subobjects of the current object, but there was already an
   2534     // initialization that completely initialized the current
   2535     // subobject, e.g., by a compound literal:
   2536     //
   2537     // struct X { int a, b; };
   2538     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
   2539     //
   2540     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
   2541     // designated initializer re-initializes the whole
   2542     // subobject [0], overwriting previous initializers.
   2543     SemaRef.Diag(InitRange.getBegin(),
   2544                  diag::warn_subobject_initializer_overrides)
   2545       << InitRange;
   2546     SemaRef.Diag(ExistingInit->getLocStart(),
   2547                   diag::note_previous_initializer)
   2548       << /*FIXME:has side effects=*/0
   2549       << ExistingInit->getSourceRange();
   2550   }
   2551 
   2552   InitListExpr *Result
   2553     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
   2554                                          InitRange.getBegin(), None,
   2555                                          InitRange.getEnd());
   2556 
   2557   QualType ResultType = CurrentObjectType;
   2558   if (!ResultType->isArrayType())
   2559     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
   2560   Result->setType(ResultType);
   2561 
   2562   // Pre-allocate storage for the structured initializer list.
   2563   unsigned NumElements = 0;
   2564   unsigned NumInits = 0;
   2565   bool GotNumInits = false;
   2566   if (!StructuredList) {
   2567     NumInits = IList->getNumInits();
   2568     GotNumInits = true;
   2569   } else if (Index < IList->getNumInits()) {
   2570     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
   2571       NumInits = SubList->getNumInits();
   2572       GotNumInits = true;
   2573     }
   2574   }
   2575 
   2576   if (const ArrayType *AType
   2577       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
   2578     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
   2579       NumElements = CAType->getSize().getZExtValue();
   2580       // Simple heuristic so that we don't allocate a very large
   2581       // initializer with many empty entries at the end.
   2582       if (GotNumInits && NumElements > NumInits)
   2583         NumElements = 0;
   2584     }
   2585   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
   2586     NumElements = VType->getNumElements();
   2587   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
   2588     RecordDecl *RDecl = RType->getDecl();
   2589     if (RDecl->isUnion())
   2590       NumElements = 1;
   2591     else
   2592       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
   2593   }
   2594 
   2595   Result->reserveInits(SemaRef.Context, NumElements);
   2596 
   2597   // Link this new initializer list into the structured initializer
   2598   // lists.
   2599   if (StructuredList)
   2600     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
   2601   else {
   2602     Result->setSyntacticForm(IList);
   2603     SyntacticToSemantic[IList] = Result;
   2604   }
   2605 
   2606   return Result;
   2607 }
   2608 
   2609 /// Update the initializer at index @p StructuredIndex within the
   2610 /// structured initializer list to the value @p expr.
   2611 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
   2612                                                   unsigned &StructuredIndex,
   2613                                                   Expr *expr) {
   2614   // No structured initializer list to update
   2615   if (!StructuredList)
   2616     return;
   2617 
   2618   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
   2619                                                   StructuredIndex, expr)) {
   2620     // This initializer overwrites a previous initializer. Warn.
   2621     // We need to check on source range validity because the previous
   2622     // initializer does not have to be an explicit initializer.
   2623     // struct P { int a, b; };
   2624     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
   2625     // There is an overwrite taking place because the first braced initializer
   2626     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
   2627     if (PrevInit->getSourceRange().isValid()) {
   2628       SemaRef.Diag(expr->getLocStart(),
   2629                    diag::warn_initializer_overrides)
   2630         << expr->getSourceRange();
   2631 
   2632       SemaRef.Diag(PrevInit->getLocStart(),
   2633                    diag::note_previous_initializer)
   2634         << /*FIXME:has side effects=*/0
   2635         << PrevInit->getSourceRange();
   2636     }
   2637   }
   2638 
   2639   ++StructuredIndex;
   2640 }
   2641 
   2642 /// Check that the given Index expression is a valid array designator
   2643 /// value. This is essentially just a wrapper around
   2644 /// VerifyIntegerConstantExpression that also checks for negative values
   2645 /// and produces a reasonable diagnostic if there is a
   2646 /// failure. Returns the index expression, possibly with an implicit cast
   2647 /// added, on success.  If everything went okay, Value will receive the
   2648 /// value of the constant expression.
   2649 static ExprResult
   2650 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
   2651   SourceLocation Loc = Index->getLocStart();
   2652 
   2653   // Make sure this is an integer constant expression.
   2654   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
   2655   if (Result.isInvalid())
   2656     return Result;
   2657 
   2658   if (Value.isSigned() && Value.isNegative())
   2659     return S.Diag(Loc, diag::err_array_designator_negative)
   2660       << Value.toString(10) << Index->getSourceRange();
   2661 
   2662   Value.setIsUnsigned(true);
   2663   return Result;
   2664 }
   2665 
   2666 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
   2667                                             SourceLocation Loc,
   2668                                             bool GNUSyntax,
   2669                                             ExprResult Init) {
   2670   typedef DesignatedInitExpr::Designator ASTDesignator;
   2671 
   2672   bool Invalid = false;
   2673   SmallVector<ASTDesignator, 32> Designators;
   2674   SmallVector<Expr *, 32> InitExpressions;
   2675 
   2676   // Build designators and check array designator expressions.
   2677   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
   2678     const Designator &D = Desig.getDesignator(Idx);
   2679     switch (D.getKind()) {
   2680     case Designator::FieldDesignator:
   2681       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
   2682                                           D.getFieldLoc()));
   2683       break;
   2684 
   2685     case Designator::ArrayDesignator: {
   2686       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
   2687       llvm::APSInt IndexValue;
   2688       if (!Index->isTypeDependent() && !Index->isValueDependent())
   2689         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
   2690       if (!Index)
   2691         Invalid = true;
   2692       else {
   2693         Designators.push_back(ASTDesignator(InitExpressions.size(),
   2694                                             D.getLBracketLoc(),
   2695                                             D.getRBracketLoc()));
   2696         InitExpressions.push_back(Index);
   2697       }
   2698       break;
   2699     }
   2700 
   2701     case Designator::ArrayRangeDesignator: {
   2702       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
   2703       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
   2704       llvm::APSInt StartValue;
   2705       llvm::APSInt EndValue;
   2706       bool StartDependent = StartIndex->isTypeDependent() ||
   2707                             StartIndex->isValueDependent();
   2708       bool EndDependent = EndIndex->isTypeDependent() ||
   2709                           EndIndex->isValueDependent();
   2710       if (!StartDependent)
   2711         StartIndex =
   2712             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
   2713       if (!EndDependent)
   2714         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
   2715 
   2716       if (!StartIndex || !EndIndex)
   2717         Invalid = true;
   2718       else {
   2719         // Make sure we're comparing values with the same bit width.
   2720         if (StartDependent || EndDependent) {
   2721           // Nothing to compute.
   2722         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
   2723           EndValue = EndValue.extend(StartValue.getBitWidth());
   2724         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
   2725           StartValue = StartValue.extend(EndValue.getBitWidth());
   2726 
   2727         if (!StartDependent && !EndDependent && EndValue < StartValue) {
   2728           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
   2729             << StartValue.toString(10) << EndValue.toString(10)
   2730             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
   2731           Invalid = true;
   2732         } else {
   2733           Designators.push_back(ASTDesignator(InitExpressions.size(),
   2734                                               D.getLBracketLoc(),
   2735                                               D.getEllipsisLoc(),
   2736                                               D.getRBracketLoc()));
   2737           InitExpressions.push_back(StartIndex);
   2738           InitExpressions.push_back(EndIndex);
   2739         }
   2740       }
   2741       break;
   2742     }
   2743     }
   2744   }
   2745 
   2746   if (Invalid || Init.isInvalid())
   2747     return ExprError();
   2748 
   2749   // Clear out the expressions within the designation.
   2750   Desig.ClearExprs(*this);
   2751 
   2752   DesignatedInitExpr *DIE
   2753     = DesignatedInitExpr::Create(Context,
   2754                                  Designators.data(), Designators.size(),
   2755                                  InitExpressions, Loc, GNUSyntax,
   2756                                  Init.getAs<Expr>());
   2757 
   2758   if (!getLangOpts().C99)
   2759     Diag(DIE->getLocStart(), diag::ext_designated_init)
   2760       << DIE->getSourceRange();
   2761 
   2762   return DIE;
   2763 }
   2764 
   2765 //===----------------------------------------------------------------------===//
   2766 // Initialization entity
   2767 //===----------------------------------------------------------------------===//
   2768 
   2769 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
   2770                                      const InitializedEntity &Parent)
   2771   : Parent(&Parent), Index(Index)
   2772 {
   2773   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
   2774     Kind = EK_ArrayElement;
   2775     Type = AT->getElementType();
   2776   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
   2777     Kind = EK_VectorElement;
   2778     Type = VT->getElementType();
   2779   } else {
   2780     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
   2781     assert(CT && "Unexpected type");
   2782     Kind = EK_ComplexElement;
   2783     Type = CT->getElementType();
   2784   }
   2785 }
   2786 
   2787 InitializedEntity
   2788 InitializedEntity::InitializeBase(ASTContext &Context,
   2789                                   const CXXBaseSpecifier *Base,
   2790                                   bool IsInheritedVirtualBase) {
   2791   InitializedEntity Result;
   2792   Result.Kind = EK_Base;
   2793   Result.Parent = nullptr;
   2794   Result.Base = reinterpret_cast<uintptr_t>(Base);
   2795   if (IsInheritedVirtualBase)
   2796     Result.Base |= 0x01;
   2797 
   2798   Result.Type = Base->getType();
   2799   return Result;
   2800 }
   2801 
   2802 DeclarationName InitializedEntity::getName() const {
   2803   switch (getKind()) {
   2804   case EK_Parameter:
   2805   case EK_Parameter_CF_Audited: {
   2806     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
   2807     return (D ? D->getDeclName() : DeclarationName());
   2808   }
   2809 
   2810   case EK_Variable:
   2811   case EK_Member:
   2812     return VariableOrMember->getDeclName();
   2813 
   2814   case EK_LambdaCapture:
   2815     return DeclarationName(Capture.VarID);
   2816 
   2817   case EK_Result:
   2818   case EK_Exception:
   2819   case EK_New:
   2820   case EK_Temporary:
   2821   case EK_Base:
   2822   case EK_Delegating:
   2823   case EK_ArrayElement:
   2824   case EK_VectorElement:
   2825   case EK_ComplexElement:
   2826   case EK_BlockElement:
   2827   case EK_CompoundLiteralInit:
   2828   case EK_RelatedResult:
   2829     return DeclarationName();
   2830   }
   2831 
   2832   llvm_unreachable("Invalid EntityKind!");
   2833 }
   2834 
   2835 DeclaratorDecl *InitializedEntity::getDecl() const {
   2836   switch (getKind()) {
   2837   case EK_Variable:
   2838   case EK_Member:
   2839     return VariableOrMember;
   2840 
   2841   case EK_Parameter:
   2842   case EK_Parameter_CF_Audited:
   2843     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
   2844 
   2845   case EK_Result:
   2846   case EK_Exception:
   2847   case EK_New:
   2848   case EK_Temporary:
   2849   case EK_Base:
   2850   case EK_Delegating:
   2851   case EK_ArrayElement:
   2852   case EK_VectorElement:
   2853   case EK_ComplexElement:
   2854   case EK_BlockElement:
   2855   case EK_LambdaCapture:
   2856   case EK_CompoundLiteralInit:
   2857   case EK_RelatedResult:
   2858     return nullptr;
   2859   }
   2860 
   2861   llvm_unreachable("Invalid EntityKind!");
   2862 }
   2863 
   2864 bool InitializedEntity::allowsNRVO() const {
   2865   switch (getKind()) {
   2866   case EK_Result:
   2867   case EK_Exception:
   2868     return LocAndNRVO.NRVO;
   2869 
   2870   case EK_Variable:
   2871   case EK_Parameter:
   2872   case EK_Parameter_CF_Audited:
   2873   case EK_Member:
   2874   case EK_New:
   2875   case EK_Temporary:
   2876   case EK_CompoundLiteralInit:
   2877   case EK_Base:
   2878   case EK_Delegating:
   2879   case EK_ArrayElement:
   2880   case EK_VectorElement:
   2881   case EK_ComplexElement:
   2882   case EK_BlockElement:
   2883   case EK_LambdaCapture:
   2884   case EK_RelatedResult:
   2885     break;
   2886   }
   2887 
   2888   return false;
   2889 }
   2890 
   2891 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
   2892   assert(getParent() != this);
   2893   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
   2894   for (unsigned I = 0; I != Depth; ++I)
   2895     OS << "`-";
   2896 
   2897   switch (getKind()) {
   2898   case EK_Variable: OS << "Variable"; break;
   2899   case EK_Parameter: OS << "Parameter"; break;
   2900   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
   2901     break;
   2902   case EK_Result: OS << "Result"; break;
   2903   case EK_Exception: OS << "Exception"; break;
   2904   case EK_Member: OS << "Member"; break;
   2905   case EK_New: OS << "New"; break;
   2906   case EK_Temporary: OS << "Temporary"; break;
   2907   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
   2908   case EK_RelatedResult: OS << "RelatedResult"; break;
   2909   case EK_Base: OS << "Base"; break;
   2910   case EK_Delegating: OS << "Delegating"; break;
   2911   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
   2912   case EK_VectorElement: OS << "VectorElement " << Index; break;
   2913   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
   2914   case EK_BlockElement: OS << "Block"; break;
   2915   case EK_LambdaCapture:
   2916     OS << "LambdaCapture ";
   2917     OS << DeclarationName(Capture.VarID);
   2918     break;
   2919   }
   2920 
   2921   if (Decl *D = getDecl()) {
   2922     OS << " ";
   2923     cast<NamedDecl>(D)->printQualifiedName(OS);
   2924   }
   2925 
   2926   OS << " '" << getType().getAsString() << "'\n";
   2927 
   2928   return Depth + 1;
   2929 }
   2930 
   2931 void InitializedEntity::dump() const {
   2932   dumpImpl(llvm::errs());
   2933 }
   2934 
   2935 //===----------------------------------------------------------------------===//
   2936 // Initialization sequence
   2937 //===----------------------------------------------------------------------===//
   2938 
   2939 void InitializationSequence::Step::Destroy() {
   2940   switch (Kind) {
   2941   case SK_ResolveAddressOfOverloadedFunction:
   2942   case SK_CastDerivedToBaseRValue:
   2943   case SK_CastDerivedToBaseXValue:
   2944   case SK_CastDerivedToBaseLValue:
   2945   case SK_BindReference:
   2946   case SK_BindReferenceToTemporary:
   2947   case SK_ExtraneousCopyToTemporary:
   2948   case SK_UserConversion:
   2949   case SK_QualificationConversionRValue:
   2950   case SK_QualificationConversionXValue:
   2951   case SK_QualificationConversionLValue:
   2952   case SK_AtomicConversion:
   2953   case SK_LValueToRValue:
   2954   case SK_ListInitialization:
   2955   case SK_UnwrapInitList:
   2956   case SK_RewrapInitList:
   2957   case SK_ConstructorInitialization:
   2958   case SK_ConstructorInitializationFromList:
   2959   case SK_ZeroInitialization:
   2960   case SK_CAssignment:
   2961   case SK_StringInit:
   2962   case SK_ObjCObjectConversion:
   2963   case SK_ArrayInit:
   2964   case SK_ParenthesizedArrayInit:
   2965   case SK_PassByIndirectCopyRestore:
   2966   case SK_PassByIndirectRestore:
   2967   case SK_ProduceObjCObject:
   2968   case SK_StdInitializerList:
   2969   case SK_StdInitializerListConstructorCall:
   2970   case SK_OCLSamplerInit:
   2971   case SK_OCLZeroEvent:
   2972     break;
   2973 
   2974   case SK_ConversionSequence:
   2975   case SK_ConversionSequenceNoNarrowing:
   2976     delete ICS;
   2977   }
   2978 }
   2979 
   2980 bool InitializationSequence::isDirectReferenceBinding() const {
   2981   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
   2982 }
   2983 
   2984 bool InitializationSequence::isAmbiguous() const {
   2985   if (!Failed())
   2986     return false;
   2987 
   2988   switch (getFailureKind()) {
   2989   case FK_TooManyInitsForReference:
   2990   case FK_ArrayNeedsInitList:
   2991   case FK_ArrayNeedsInitListOrStringLiteral:
   2992   case FK_ArrayNeedsInitListOrWideStringLiteral:
   2993   case FK_NarrowStringIntoWideCharArray:
   2994   case FK_WideStringIntoCharArray:
   2995   case FK_IncompatWideStringIntoWideChar:
   2996   case FK_AddressOfOverloadFailed: // FIXME: Could do better
   2997   case FK_NonConstLValueReferenceBindingToTemporary:
   2998   case FK_NonConstLValueReferenceBindingToUnrelated:
   2999   case FK_RValueReferenceBindingToLValue:
   3000   case FK_ReferenceInitDropsQualifiers:
   3001   case FK_ReferenceInitFailed:
   3002   case FK_ConversionFailed:
   3003   case FK_ConversionFromPropertyFailed:
   3004   case FK_TooManyInitsForScalar:
   3005   case FK_ReferenceBindingToInitList:
   3006   case FK_InitListBadDestinationType:
   3007   case FK_DefaultInitOfConst:
   3008   case FK_Incomplete:
   3009   case FK_ArrayTypeMismatch:
   3010   case FK_NonConstantArrayInit:
   3011   case FK_ListInitializationFailed:
   3012   case FK_VariableLengthArrayHasInitializer:
   3013   case FK_PlaceholderType:
   3014   case FK_ExplicitConstructor:
   3015   case FK_AddressOfUnaddressableFunction:
   3016     return false;
   3017 
   3018   case FK_ReferenceInitOverloadFailed:
   3019   case FK_UserConversionOverloadFailed:
   3020   case FK_ConstructorOverloadFailed:
   3021   case FK_ListConstructorOverloadFailed:
   3022     return FailedOverloadResult == OR_Ambiguous;
   3023   }
   3024 
   3025   llvm_unreachable("Invalid EntityKind!");
   3026 }
   3027 
   3028 bool InitializationSequence::isConstructorInitialization() const {
   3029   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
   3030 }
   3031 
   3032 void
   3033 InitializationSequence
   3034 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
   3035                                    DeclAccessPair Found,
   3036                                    bool HadMultipleCandidates) {
   3037   Step S;
   3038   S.Kind = SK_ResolveAddressOfOverloadedFunction;
   3039   S.Type = Function->getType();
   3040   S.Function.HadMultipleCandidates = HadMultipleCandidates;
   3041   S.Function.Function = Function;
   3042   S.Function.FoundDecl = Found;
   3043   Steps.push_back(S);
   3044 }
   3045 
   3046 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
   3047                                                       ExprValueKind VK) {
   3048   Step S;
   3049   switch (VK) {
   3050   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
   3051   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
   3052   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
   3053   }
   3054   S.Type = BaseType;
   3055   Steps.push_back(S);
   3056 }
   3057 
   3058 void InitializationSequence::AddReferenceBindingStep(QualType T,
   3059                                                      bool BindingTemporary) {
   3060   Step S;
   3061   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
   3062   S.Type = T;
   3063   Steps.push_back(S);
   3064 }
   3065 
   3066 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
   3067   Step S;
   3068   S.Kind = SK_ExtraneousCopyToTemporary;
   3069   S.Type = T;
   3070   Steps.push_back(S);
   3071 }
   3072 
   3073 void
   3074 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
   3075                                               DeclAccessPair FoundDecl,
   3076                                               QualType T,
   3077                                               bool HadMultipleCandidates) {
   3078   Step S;
   3079   S.Kind = SK_UserConversion;
   3080   S.Type = T;
   3081   S.Function.HadMultipleCandidates = HadMultipleCandidates;
   3082   S.Function.Function = Function;
   3083   S.Function.FoundDecl = FoundDecl;
   3084   Steps.push_back(S);
   3085 }
   3086 
   3087 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
   3088                                                             ExprValueKind VK) {
   3089   Step S;
   3090   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
   3091   switch (VK) {
   3092   case VK_RValue:
   3093     S.Kind = SK_QualificationConversionRValue;
   3094     break;
   3095   case VK_XValue:
   3096     S.Kind = SK_QualificationConversionXValue;
   3097     break;
   3098   case VK_LValue:
   3099     S.Kind = SK_QualificationConversionLValue;
   3100     break;
   3101   }
   3102   S.Type = Ty;
   3103   Steps.push_back(S);
   3104 }
   3105 
   3106 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
   3107   Step S;
   3108   S.Kind = SK_AtomicConversion;
   3109   S.Type = Ty;
   3110   Steps.push_back(S);
   3111 }
   3112 
   3113 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
   3114   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
   3115 
   3116   Step S;
   3117   S.Kind = SK_LValueToRValue;
   3118   S.Type = Ty;
   3119   Steps.push_back(S);
   3120 }
   3121 
   3122 void InitializationSequence::AddConversionSequenceStep(
   3123     const ImplicitConversionSequence &ICS, QualType T,
   3124     bool TopLevelOfInitList) {
   3125   Step S;
   3126   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
   3127                               : SK_ConversionSequence;
   3128   S.Type = T;
   3129   S.ICS = new ImplicitConversionSequence(ICS);
   3130   Steps.push_back(S);
   3131 }
   3132 
   3133 void InitializationSequence::AddListInitializationStep(QualType T) {
   3134   Step S;
   3135   S.Kind = SK_ListInitialization;
   3136   S.Type = T;
   3137   Steps.push_back(S);
   3138 }
   3139 
   3140 void
   3141 InitializationSequence
   3142 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
   3143                                    AccessSpecifier Access,
   3144                                    QualType T,
   3145                                    bool HadMultipleCandidates,
   3146                                    bool FromInitList, bool AsInitList) {
   3147   Step S;
   3148   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
   3149                                      : SK_ConstructorInitializationFromList
   3150                         : SK_ConstructorInitialization;
   3151   S.Type = T;
   3152   S.Function.HadMultipleCandidates = HadMultipleCandidates;
   3153   S.Function.Function = Constructor;
   3154   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
   3155   Steps.push_back(S);
   3156 }
   3157 
   3158 void InitializationSequence::AddZeroInitializationStep(QualType T) {
   3159   Step S;
   3160   S.Kind = SK_ZeroInitialization;
   3161   S.Type = T;
   3162   Steps.push_back(S);
   3163 }
   3164 
   3165 void InitializationSequence::AddCAssignmentStep(QualType T) {
   3166   Step S;
   3167   S.Kind = SK_CAssignment;
   3168   S.Type = T;
   3169   Steps.push_back(S);
   3170 }
   3171 
   3172 void InitializationSequence::AddStringInitStep(QualType T) {
   3173   Step S;
   3174   S.Kind = SK_StringInit;
   3175   S.Type = T;
   3176   Steps.push_back(S);
   3177 }
   3178 
   3179 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
   3180   Step S;
   3181   S.Kind = SK_ObjCObjectConversion;
   3182   S.Type = T;
   3183   Steps.push_back(S);
   3184 }
   3185 
   3186 void InitializationSequence::AddArrayInitStep(QualType T) {
   3187   Step S;
   3188   S.Kind = SK_ArrayInit;
   3189   S.Type = T;
   3190   Steps.push_back(S);
   3191 }
   3192 
   3193 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
   3194   Step S;
   3195   S.Kind = SK_ParenthesizedArrayInit;
   3196   S.Type = T;
   3197   Steps.push_back(S);
   3198 }
   3199 
   3200 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
   3201                                                               bool shouldCopy) {
   3202   Step s;
   3203   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
   3204                        : SK_PassByIndirectRestore);
   3205   s.Type = type;
   3206   Steps.push_back(s);
   3207 }
   3208 
   3209 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
   3210   Step S;
   3211   S.Kind = SK_ProduceObjCObject;
   3212   S.Type = T;
   3213   Steps.push_back(S);
   3214 }
   3215 
   3216 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
   3217   Step S;
   3218   S.Kind = SK_StdInitializerList;
   3219   S.Type = T;
   3220   Steps.push_back(S);
   3221 }
   3222 
   3223 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
   3224   Step S;
   3225   S.Kind = SK_OCLSamplerInit;
   3226   S.Type = T;
   3227   Steps.push_back(S);
   3228 }
   3229 
   3230 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
   3231   Step S;
   3232   S.Kind = SK_OCLZeroEvent;
   3233   S.Type = T;
   3234   Steps.push_back(S);
   3235 }
   3236 
   3237 void InitializationSequence::RewrapReferenceInitList(QualType T,
   3238                                                      InitListExpr *Syntactic) {
   3239   assert(Syntactic->getNumInits() == 1 &&
   3240          "Can only rewrap trivial init lists.");
   3241   Step S;
   3242   S.Kind = SK_UnwrapInitList;
   3243   S.Type = Syntactic->getInit(0)->getType();
   3244   Steps.insert(Steps.begin(), S);
   3245 
   3246   S.Kind = SK_RewrapInitList;
   3247   S.Type = T;
   3248   S.WrappingSyntacticList = Syntactic;
   3249   Steps.push_back(S);
   3250 }
   3251 
   3252 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
   3253                                                 OverloadingResult Result) {
   3254   setSequenceKind(FailedSequence);
   3255   this->Failure = Failure;
   3256   this->FailedOverloadResult = Result;
   3257 }
   3258 
   3259 //===----------------------------------------------------------------------===//
   3260 // Attempt initialization
   3261 //===----------------------------------------------------------------------===//
   3262 
   3263 /// Tries to add a zero initializer. Returns true if that worked.
   3264 static bool
   3265 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
   3266                                    const InitializedEntity &Entity) {
   3267   if (Entity.getKind() != InitializedEntity::EK_Variable)
   3268     return false;
   3269 
   3270   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
   3271   if (VD->getInit() || VD->getLocEnd().isMacroID())
   3272     return false;
   3273 
   3274   QualType VariableTy = VD->getType().getCanonicalType();
   3275   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
   3276   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
   3277   if (!Init.empty()) {
   3278     Sequence.AddZeroInitializationStep(Entity.getType());
   3279     Sequence.SetZeroInitializationFixit(Init, Loc);
   3280     return true;
   3281   }
   3282   return false;
   3283 }
   3284 
   3285 static void MaybeProduceObjCObject(Sema &S,
   3286                                    InitializationSequence &Sequence,
   3287                                    const InitializedEntity &Entity) {
   3288   if (!S.getLangOpts().ObjCAutoRefCount) return;
   3289 
   3290   /// When initializing a parameter, produce the value if it's marked
   3291   /// __attribute__((ns_consumed)).
   3292   if (Entity.isParameterKind()) {
   3293     if (!Entity.isParameterConsumed())
   3294       return;
   3295 
   3296     assert(Entity.getType()->isObjCRetainableType() &&
   3297            "consuming an object of unretainable type?");
   3298     Sequence.AddProduceObjCObjectStep(Entity.getType());
   3299 
   3300   /// When initializing a return value, if the return type is a
   3301   /// retainable type, then returns need to immediately retain the
   3302   /// object.  If an autorelease is required, it will be done at the
   3303   /// last instant.
   3304   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
   3305     if (!Entity.getType()->isObjCRetainableType())
   3306       return;
   3307 
   3308     Sequence.AddProduceObjCObjectStep(Entity.getType());
   3309   }
   3310 }
   3311 
   3312 static void TryListInitialization(Sema &S,
   3313                                   const InitializedEntity &Entity,
   3314                                   const InitializationKind &Kind,
   3315                                   InitListExpr *InitList,
   3316                                   InitializationSequence &Sequence);
   3317 
   3318 /// \brief When initializing from init list via constructor, handle
   3319 /// initialization of an object of type std::initializer_list<T>.
   3320 ///
   3321 /// \return true if we have handled initialization of an object of type
   3322 /// std::initializer_list<T>, false otherwise.
   3323 static bool TryInitializerListConstruction(Sema &S,
   3324                                            InitListExpr *List,
   3325                                            QualType DestType,
   3326                                            InitializationSequence &Sequence) {
   3327   QualType E;
   3328   if (!S.isStdInitializerList(DestType, &E))
   3329     return false;
   3330 
   3331   if (!S.isCompleteType(List->getExprLoc(), E)) {
   3332     Sequence.setIncompleteTypeFailure(E);
   3333     return true;
   3334   }
   3335 
   3336   // Try initializing a temporary array from the init list.
   3337   QualType ArrayType = S.Context.getConstantArrayType(
   3338       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
   3339                                  List->getNumInits()),
   3340       clang::ArrayType::Normal, 0);
   3341   InitializedEntity HiddenArray =
   3342       InitializedEntity::InitializeTemporary(ArrayType);
   3343   InitializationKind Kind =
   3344       InitializationKind::CreateDirectList(List->getExprLoc());
   3345   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
   3346   if (Sequence)
   3347     Sequence.AddStdInitializerListConstructionStep(DestType);
   3348   return true;
   3349 }
   3350 
   3351 static OverloadingResult
   3352 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
   3353                            MultiExprArg Args,
   3354                            OverloadCandidateSet &CandidateSet,
   3355                            DeclContext::lookup_result Ctors,
   3356                            OverloadCandidateSet::iterator &Best,
   3357                            bool CopyInitializing, bool AllowExplicit,
   3358                            bool OnlyListConstructors, bool IsListInit) {
   3359   CandidateSet.clear();
   3360 
   3361   for (NamedDecl *D : Ctors) {
   3362     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3363     bool SuppressUserConversions = false;
   3364 
   3365     // Find the constructor (which may be a template).
   3366     CXXConstructorDecl *Constructor = nullptr;
   3367     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
   3368     if (ConstructorTmpl)
   3369       Constructor = cast<CXXConstructorDecl>(
   3370                                            ConstructorTmpl->getTemplatedDecl());
   3371     else {
   3372       Constructor = cast<CXXConstructorDecl>(D);
   3373 
   3374       // C++11 [over.best.ics]p4:
   3375       //   ... and the constructor or user-defined conversion function is a
   3376       //   candidate by
   3377       //   - 13.3.1.3, when the argument is the temporary in the second step
   3378       //     of a class copy-initialization, or
   3379       //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
   3380       //   user-defined conversion sequences are not considered.
   3381       // FIXME: This breaks backward compatibility, e.g. PR12117. As a
   3382       //        temporary fix, let's re-instate the third bullet above until
   3383       //        there is a resolution in the standard, i.e.,
   3384       //   - 13.3.1.7 when the initializer list has exactly one element that is
   3385       //     itself an initializer list and a conversion to some class X or
   3386       //     reference to (possibly cv-qualified) X is considered for the first
   3387       //     parameter of a constructor of X.
   3388       if ((CopyInitializing ||
   3389            (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
   3390           Constructor->isCopyOrMoveConstructor())
   3391         SuppressUserConversions = true;
   3392     }
   3393 
   3394     if (!Constructor->isInvalidDecl() &&
   3395         (AllowExplicit || !Constructor->isExplicit()) &&
   3396         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
   3397       if (ConstructorTmpl)
   3398         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3399                                        /*ExplicitArgs*/ nullptr, Args,
   3400                                        CandidateSet, SuppressUserConversions);
   3401       else {
   3402         // C++ [over.match.copy]p1:
   3403         //   - When initializing a temporary to be bound to the first parameter
   3404         //     of a constructor that takes a reference to possibly cv-qualified
   3405         //     T as its first argument, called with a single argument in the
   3406         //     context of direct-initialization, explicit conversion functions
   3407         //     are also considered.
   3408         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
   3409                                  Args.size() == 1 &&
   3410                                  Constructor->isCopyOrMoveConstructor();
   3411         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
   3412                                SuppressUserConversions,
   3413                                /*PartialOverloading=*/false,
   3414                                /*AllowExplicit=*/AllowExplicitConv);
   3415       }
   3416     }
   3417   }
   3418 
   3419   // Perform overload resolution and return the result.
   3420   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
   3421 }
   3422 
   3423 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
   3424 /// enumerates the constructors of the initialized entity and performs overload
   3425 /// resolution to select the best.
   3426 /// \param IsListInit     Is this list-initialization?
   3427 /// \param IsInitListCopy Is this non-list-initialization resulting from a
   3428 ///                       list-initialization from {x} where x is the same
   3429 ///                       type as the entity?
   3430 static void TryConstructorInitialization(Sema &S,
   3431                                          const InitializedEntity &Entity,
   3432                                          const InitializationKind &Kind,
   3433                                          MultiExprArg Args, QualType DestType,
   3434                                          InitializationSequence &Sequence,
   3435                                          bool IsListInit = false,
   3436                                          bool IsInitListCopy = false) {
   3437   assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
   3438          "IsListInit must come with a single initializer list argument.");
   3439 
   3440   // The type we're constructing needs to be complete.
   3441   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
   3442     Sequence.setIncompleteTypeFailure(DestType);
   3443     return;
   3444   }
   3445 
   3446   const RecordType *DestRecordType = DestType->getAs<RecordType>();
   3447   assert(DestRecordType && "Constructor initialization requires record type");
   3448   CXXRecordDecl *DestRecordDecl
   3449     = cast<CXXRecordDecl>(DestRecordType->getDecl());
   3450 
   3451   // Build the candidate set directly in the initialization sequence
   3452   // structure, so that it will persist if we fail.
   3453   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   3454 
   3455   // Determine whether we are allowed to call explicit constructors or
   3456   // explicit conversion operators.
   3457   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
   3458   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
   3459 
   3460   //   - Otherwise, if T is a class type, constructors are considered. The
   3461   //     applicable constructors are enumerated, and the best one is chosen
   3462   //     through overload resolution.
   3463   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
   3464 
   3465   OverloadingResult Result = OR_No_Viable_Function;
   3466   OverloadCandidateSet::iterator Best;
   3467   bool AsInitializerList = false;
   3468 
   3469   // C++11 [over.match.list]p1, per DR1467:
   3470   //   When objects of non-aggregate type T are list-initialized, such that
   3471   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
   3472   //   according to the rules in this section, overload resolution selects
   3473   //   the constructor in two phases:
   3474   //
   3475   //   - Initially, the candidate functions are the initializer-list
   3476   //     constructors of the class T and the argument list consists of the
   3477   //     initializer list as a single argument.
   3478   if (IsListInit) {
   3479     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
   3480     AsInitializerList = true;
   3481 
   3482     // If the initializer list has no elements and T has a default constructor,
   3483     // the first phase is omitted.
   3484     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
   3485       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
   3486                                           CandidateSet, Ctors, Best,
   3487                                           CopyInitialization, AllowExplicit,
   3488                                           /*OnlyListConstructor=*/true,
   3489                                           IsListInit);
   3490 
   3491     // Time to unwrap the init list.
   3492     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
   3493   }
   3494 
   3495   // C++11 [over.match.list]p1:
   3496   //   - If no viable initializer-list constructor is found, overload resolution
   3497   //     is performed again, where the candidate functions are all the
   3498   //     constructors of the class T and the argument list consists of the
   3499   //     elements of the initializer list.
   3500   if (Result == OR_No_Viable_Function) {
   3501     AsInitializerList = false;
   3502     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
   3503                                         CandidateSet, Ctors, Best,
   3504                                         CopyInitialization, AllowExplicit,
   3505                                         /*OnlyListConstructors=*/false,
   3506                                         IsListInit);
   3507   }
   3508   if (Result) {
   3509     Sequence.SetOverloadFailure(IsListInit ?
   3510                       InitializationSequence::FK_ListConstructorOverloadFailed :
   3511                       InitializationSequence::FK_ConstructorOverloadFailed,
   3512                                 Result);
   3513     return;
   3514   }
   3515 
   3516   // C++11 [dcl.init]p6:
   3517   //   If a program calls for the default initialization of an object
   3518   //   of a const-qualified type T, T shall be a class type with a
   3519   //   user-provided default constructor.
   3520   if (Kind.getKind() == InitializationKind::IK_Default &&
   3521       Entity.getType().isConstQualified() &&
   3522       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
   3523     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
   3524       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
   3525     return;
   3526   }
   3527 
   3528   // C++11 [over.match.list]p1:
   3529   //   In copy-list-initialization, if an explicit constructor is chosen, the
   3530   //   initializer is ill-formed.
   3531   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
   3532   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
   3533     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
   3534     return;
   3535   }
   3536 
   3537   // Add the constructor initialization step. Any cv-qualification conversion is
   3538   // subsumed by the initialization.
   3539   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3540   Sequence.AddConstructorInitializationStep(
   3541       CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
   3542       IsListInit | IsInitListCopy, AsInitializerList);
   3543 }
   3544 
   3545 static bool
   3546 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
   3547                                              Expr *Initializer,
   3548                                              QualType &SourceType,
   3549                                              QualType &UnqualifiedSourceType,
   3550                                              QualType UnqualifiedTargetType,
   3551                                              InitializationSequence &Sequence) {
   3552   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
   3553         S.Context.OverloadTy) {
   3554     DeclAccessPair Found;
   3555     bool HadMultipleCandidates = false;
   3556     if (FunctionDecl *Fn
   3557         = S.ResolveAddressOfOverloadedFunction(Initializer,
   3558                                                UnqualifiedTargetType,
   3559                                                false, Found,
   3560                                                &HadMultipleCandidates)) {
   3561       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
   3562                                                 HadMultipleCandidates);
   3563       SourceType = Fn->getType();
   3564       UnqualifiedSourceType = SourceType.getUnqualifiedType();
   3565     } else if (!UnqualifiedTargetType->isRecordType()) {
   3566       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   3567       return true;
   3568     }
   3569   }
   3570   return false;
   3571 }
   3572 
   3573 static void TryReferenceInitializationCore(Sema &S,
   3574                                            const InitializedEntity &Entity,
   3575                                            const InitializationKind &Kind,
   3576                                            Expr *Initializer,
   3577                                            QualType cv1T1, QualType T1,
   3578                                            Qualifiers T1Quals,
   3579                                            QualType cv2T2, QualType T2,
   3580                                            Qualifiers T2Quals,
   3581                                            InitializationSequence &Sequence);
   3582 
   3583 static void TryValueInitialization(Sema &S,
   3584                                    const InitializedEntity &Entity,
   3585                                    const InitializationKind &Kind,
   3586                                    InitializationSequence &Sequence,
   3587                                    InitListExpr *InitList = nullptr);
   3588 
   3589 /// \brief Attempt list initialization of a reference.
   3590 static void TryReferenceListInitialization(Sema &S,
   3591                                            const InitializedEntity &Entity,
   3592                                            const InitializationKind &Kind,
   3593                                            InitListExpr *InitList,
   3594                                            InitializationSequence &Sequence) {
   3595   // First, catch C++03 where this isn't possible.
   3596   if (!S.getLangOpts().CPlusPlus11) {
   3597     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
   3598     return;
   3599   }
   3600   // Can't reference initialize a compound literal.
   3601   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
   3602     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
   3603     return;
   3604   }
   3605 
   3606   QualType DestType = Entity.getType();
   3607   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
   3608   Qualifiers T1Quals;
   3609   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
   3610 
   3611   // Reference initialization via an initializer list works thus:
   3612   // If the initializer list consists of a single element that is
   3613   // reference-related to the referenced type, bind directly to that element
   3614   // (possibly creating temporaries).
   3615   // Otherwise, initialize a temporary with the initializer list and
   3616   // bind to that.
   3617   if (InitList->getNumInits() == 1) {
   3618     Expr *Initializer = InitList->getInit(0);
   3619     QualType cv2T2 = Initializer->getType();
   3620     Qualifiers T2Quals;
   3621     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
   3622 
   3623     // If this fails, creating a temporary wouldn't work either.
   3624     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
   3625                                                      T1, Sequence))
   3626       return;
   3627 
   3628     SourceLocation DeclLoc = Initializer->getLocStart();
   3629     bool dummy1, dummy2, dummy3;
   3630     Sema::ReferenceCompareResult RefRelationship
   3631       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
   3632                                        dummy2, dummy3);
   3633     if (RefRelationship >= Sema::Ref_Related) {
   3634       // Try to bind the reference here.
   3635       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
   3636                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
   3637       if (Sequence)
   3638         Sequence.RewrapReferenceInitList(cv1T1, InitList);
   3639       return;
   3640     }
   3641 
   3642     // Update the initializer if we've resolved an overloaded function.
   3643     if (Sequence.step_begin() != Sequence.step_end())
   3644       Sequence.RewrapReferenceInitList(cv1T1, InitList);
   3645   }
   3646 
   3647   // Not reference-related. Create a temporary and bind to that.
   3648   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
   3649 
   3650   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
   3651   if (Sequence) {
   3652     if (DestType->isRValueReferenceType() ||
   3653         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
   3654       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
   3655     else
   3656       Sequence.SetFailed(
   3657           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
   3658   }
   3659 }
   3660 
   3661 /// \brief Attempt list initialization (C++0x [dcl.init.list])
   3662 static void TryListInitialization(Sema &S,
   3663                                   const InitializedEntity &Entity,
   3664                                   const InitializationKind &Kind,
   3665                                   InitListExpr *InitList,
   3666                                   InitializationSequence &Sequence) {
   3667   QualType DestType = Entity.getType();
   3668 
   3669   // C++ doesn't allow scalar initialization with more than one argument.
   3670   // But C99 complex numbers are scalars and it makes sense there.
   3671   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
   3672       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
   3673     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
   3674     return;
   3675   }
   3676   if (DestType->isReferenceType()) {
   3677     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
   3678     return;
   3679   }
   3680 
   3681   if (DestType->isRecordType() &&
   3682       !S.isCompleteType(InitList->getLocStart(), DestType)) {
   3683     Sequence.setIncompleteTypeFailure(DestType);
   3684     return;
   3685   }
   3686 
   3687   // C++11 [dcl.init.list]p3, per DR1467:
   3688   // - If T is a class type and the initializer list has a single element of
   3689   //   type cv U, where U is T or a class derived from T, the object is
   3690   //   initialized from that element (by copy-initialization for
   3691   //   copy-list-initialization, or by direct-initialization for
   3692   //   direct-list-initialization).
   3693   // - Otherwise, if T is a character array and the initializer list has a
   3694   //   single element that is an appropriately-typed string literal
   3695   //   (8.5.2 [dcl.init.string]), initialization is performed as described
   3696   //   in that section.
   3697   // - Otherwise, if T is an aggregate, [...] (continue below).
   3698   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
   3699     if (DestType->isRecordType()) {
   3700       QualType InitType = InitList->getInit(0)->getType();
   3701       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
   3702           S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
   3703         Expr *InitAsExpr = InitList->getInit(0);
   3704         TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
   3705                                      Sequence, /*InitListSyntax*/ false,
   3706                                      /*IsInitListCopy*/ true);
   3707         return;
   3708       }
   3709     }
   3710     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
   3711       Expr *SubInit[1] = {InitList->getInit(0)};
   3712       if (!isa<VariableArrayType>(DestAT) &&
   3713           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
   3714         InitializationKind SubKind =
   3715             Kind.getKind() == InitializationKind::IK_DirectList
   3716                 ? InitializationKind::CreateDirect(Kind.getLocation(),
   3717                                                    InitList->getLBraceLoc(),
   3718                                                    InitList->getRBraceLoc())
   3719                 : Kind;
   3720         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
   3721                                 /*TopLevelOfInitList*/ true);
   3722 
   3723         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
   3724         // the element is not an appropriately-typed string literal, in which
   3725         // case we should proceed as in C++11 (below).
   3726         if (Sequence) {
   3727           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
   3728           return;
   3729         }
   3730       }
   3731     }
   3732   }
   3733 
   3734   // C++11 [dcl.init.list]p3:
   3735   //   - If T is an aggregate, aggregate initialization is performed.
   3736   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
   3737       (S.getLangOpts().CPlusPlus11 &&
   3738        S.isStdInitializerList(DestType, nullptr))) {
   3739     if (S.getLangOpts().CPlusPlus11) {
   3740       //   - Otherwise, if the initializer list has no elements and T is a
   3741       //     class type with a default constructor, the object is
   3742       //     value-initialized.
   3743       if (InitList->getNumInits() == 0) {
   3744         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
   3745         if (RD->hasDefaultConstructor()) {
   3746           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
   3747           return;
   3748         }
   3749       }
   3750 
   3751       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
   3752       //     an initializer_list object constructed [...]
   3753       if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
   3754         return;
   3755 
   3756       //   - Otherwise, if T is a class type, constructors are considered.
   3757       Expr *InitListAsExpr = InitList;
   3758       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
   3759                                    Sequence, /*InitListSyntax*/ true);
   3760     } else
   3761       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
   3762     return;
   3763   }
   3764 
   3765   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
   3766       InitList->getNumInits() == 1 &&
   3767       InitList->getInit(0)->getType()->isRecordType()) {
   3768     //   - Otherwise, if the initializer list has a single element of type E
   3769     //     [...references are handled above...], the object or reference is
   3770     //     initialized from that element (by copy-initialization for
   3771     //     copy-list-initialization, or by direct-initialization for
   3772     //     direct-list-initialization); if a narrowing conversion is required
   3773     //     to convert the element to T, the program is ill-formed.
   3774     //
   3775     // Per core-24034, this is direct-initialization if we were performing
   3776     // direct-list-initialization and copy-initialization otherwise.
   3777     // We can't use InitListChecker for this, because it always performs
   3778     // copy-initialization. This only matters if we might use an 'explicit'
   3779     // conversion operator, so we only need to handle the cases where the source
   3780     // is of record type.
   3781     InitializationKind SubKind =
   3782         Kind.getKind() == InitializationKind::IK_DirectList
   3783             ? InitializationKind::CreateDirect(Kind.getLocation(),
   3784                                                InitList->getLBraceLoc(),
   3785                                                InitList->getRBraceLoc())
   3786             : Kind;
   3787     Expr *SubInit[1] = { InitList->getInit(0) };
   3788     Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
   3789                             /*TopLevelOfInitList*/true);
   3790     if (Sequence)
   3791       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
   3792     return;
   3793   }
   3794 
   3795   InitListChecker CheckInitList(S, Entity, InitList,
   3796           DestType, /*VerifyOnly=*/true);
   3797   if (CheckInitList.HadError()) {
   3798     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
   3799     return;
   3800   }
   3801 
   3802   // Add the list initialization step with the built init list.
   3803   Sequence.AddListInitializationStep(DestType);
   3804 }
   3805 
   3806 /// \brief Try a reference initialization that involves calling a conversion
   3807 /// function.
   3808 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
   3809                                              const InitializedEntity &Entity,
   3810                                              const InitializationKind &Kind,
   3811                                              Expr *Initializer,
   3812                                              bool AllowRValues,
   3813                                              InitializationSequence &Sequence) {
   3814   QualType DestType = Entity.getType();
   3815   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
   3816   QualType T1 = cv1T1.getUnqualifiedType();
   3817   QualType cv2T2 = Initializer->getType();
   3818   QualType T2 = cv2T2.getUnqualifiedType();
   3819 
   3820   bool DerivedToBase;
   3821   bool ObjCConversion;
   3822   bool ObjCLifetimeConversion;
   3823   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
   3824                                          T1, T2, DerivedToBase,
   3825                                          ObjCConversion,
   3826                                          ObjCLifetimeConversion) &&
   3827          "Must have incompatible references when binding via conversion");
   3828   (void)DerivedToBase;
   3829   (void)ObjCConversion;
   3830   (void)ObjCLifetimeConversion;
   3831 
   3832   // Build the candidate set directly in the initialization sequence
   3833   // structure, so that it will persist if we fail.
   3834   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   3835   CandidateSet.clear();
   3836 
   3837   // Determine whether we are allowed to call explicit constructors or
   3838   // explicit conversion operators.
   3839   bool AllowExplicit = Kind.AllowExplicit();
   3840   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
   3841 
   3842   const RecordType *T1RecordType = nullptr;
   3843   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
   3844       S.isCompleteType(Kind.getLocation(), T1)) {
   3845     // The type we're converting to is a class type. Enumerate its constructors
   3846     // to see if there is a suitable conversion.
   3847     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
   3848 
   3849     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
   3850       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3851 
   3852       // Find the constructor (which may be a template).
   3853       CXXConstructorDecl *Constructor = nullptr;
   3854       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
   3855       if (ConstructorTmpl)
   3856         Constructor = cast<CXXConstructorDecl>(
   3857                                          ConstructorTmpl->getTemplatedDecl());
   3858       else
   3859         Constructor = cast<CXXConstructorDecl>(D);
   3860 
   3861       if (!Constructor->isInvalidDecl() &&
   3862           Constructor->isConvertingConstructor(AllowExplicit)) {
   3863         if (ConstructorTmpl)
   3864           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3865                                          /*ExplicitArgs*/ nullptr,
   3866                                          Initializer, CandidateSet,
   3867                                          /*SuppressUserConversions=*/true);
   3868         else
   3869           S.AddOverloadCandidate(Constructor, FoundDecl,
   3870                                  Initializer, CandidateSet,
   3871                                  /*SuppressUserConversions=*/true);
   3872       }
   3873     }
   3874   }
   3875   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
   3876     return OR_No_Viable_Function;
   3877 
   3878   const RecordType *T2RecordType = nullptr;
   3879   if ((T2RecordType = T2->getAs<RecordType>()) &&
   3880       S.isCompleteType(Kind.getLocation(), T2)) {
   3881     // The type we're converting from is a class type, enumerate its conversion
   3882     // functions.
   3883     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
   3884 
   3885     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
   3886     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   3887       NamedDecl *D = *I;
   3888       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   3889       if (isa<UsingShadowDecl>(D))
   3890         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3891 
   3892       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   3893       CXXConversionDecl *Conv;
   3894       if (ConvTemplate)
   3895         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3896       else
   3897         Conv = cast<CXXConversionDecl>(D);
   3898 
   3899       // If the conversion function doesn't return a reference type,
   3900       // it can't be considered for this conversion unless we're allowed to
   3901       // consider rvalues.
   3902       // FIXME: Do we need to make sure that we only consider conversion
   3903       // candidates with reference-compatible results? That might be needed to
   3904       // break recursion.
   3905       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
   3906           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
   3907         if (ConvTemplate)
   3908           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
   3909                                            ActingDC, Initializer,
   3910                                            DestType, CandidateSet,
   3911                                            /*AllowObjCConversionOnExplicit=*/
   3912                                              false);
   3913         else
   3914           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
   3915                                    Initializer, DestType, CandidateSet,
   3916                                    /*AllowObjCConversionOnExplicit=*/false);
   3917       }
   3918     }
   3919   }
   3920   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
   3921     return OR_No_Viable_Function;
   3922 
   3923   SourceLocation DeclLoc = Initializer->getLocStart();
   3924 
   3925   // Perform overload resolution. If it fails, return the failed result.
   3926   OverloadCandidateSet::iterator Best;
   3927   if (OverloadingResult Result
   3928         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
   3929     return Result;
   3930 
   3931   FunctionDecl *Function = Best->Function;
   3932   // This is the overload that will be used for this initialization step if we
   3933   // use this initialization. Mark it as referenced.
   3934   Function->setReferenced();
   3935 
   3936   // Compute the returned type of the conversion.
   3937   if (isa<CXXConversionDecl>(Function))
   3938     T2 = Function->getReturnType();
   3939   else
   3940     T2 = cv1T1;
   3941 
   3942   // Add the user-defined conversion step.
   3943   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3944   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
   3945                                  T2.getNonLValueExprType(S.Context),
   3946                                  HadMultipleCandidates);
   3947 
   3948   // Determine whether we need to perform derived-to-base or
   3949   // cv-qualification adjustments.
   3950   ExprValueKind VK = VK_RValue;
   3951   if (T2->isLValueReferenceType())
   3952     VK = VK_LValue;
   3953   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
   3954     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
   3955 
   3956   bool NewDerivedToBase = false;
   3957   bool NewObjCConversion = false;
   3958   bool NewObjCLifetimeConversion = false;
   3959   Sema::ReferenceCompareResult NewRefRelationship
   3960     = S.CompareReferenceRelationship(DeclLoc, T1,
   3961                                      T2.getNonLValueExprType(S.Context),
   3962                                      NewDerivedToBase, NewObjCConversion,
   3963                                      NewObjCLifetimeConversion);
   3964   if (NewRefRelationship == Sema::Ref_Incompatible) {
   3965     // If the type we've converted to is not reference-related to the
   3966     // type we're looking for, then there is another conversion step
   3967     // we need to perform to produce a temporary of the right type
   3968     // that we'll be binding to.
   3969     ImplicitConversionSequence ICS;
   3970     ICS.setStandard();
   3971     ICS.Standard = Best->FinalConversion;
   3972     T2 = ICS.Standard.getToType(2);
   3973     Sequence.AddConversionSequenceStep(ICS, T2);
   3974   } else if (NewDerivedToBase)
   3975     Sequence.AddDerivedToBaseCastStep(
   3976                                 S.Context.getQualifiedType(T1,
   3977                                   T2.getNonReferenceType().getQualifiers()),
   3978                                       VK);
   3979   else if (NewObjCConversion)
   3980     Sequence.AddObjCObjectConversionStep(
   3981                                 S.Context.getQualifiedType(T1,
   3982                                   T2.getNonReferenceType().getQualifiers()));
   3983 
   3984   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
   3985     Sequence.AddQualificationConversionStep(cv1T1, VK);
   3986 
   3987   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
   3988   return OR_Success;
   3989 }
   3990 
   3991 static void CheckCXX98CompatAccessibleCopy(Sema &S,
   3992                                            const InitializedEntity &Entity,
   3993                                            Expr *CurInitExpr);
   3994 
   3995 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
   3996 static void TryReferenceInitialization(Sema &S,
   3997                                        const InitializedEntity &Entity,
   3998                                        const InitializationKind &Kind,
   3999                                        Expr *Initializer,
   4000                                        InitializationSequence &Sequence) {
   4001   QualType DestType = Entity.getType();
   4002   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
   4003   Qualifiers T1Quals;
   4004   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
   4005   QualType cv2T2 = Initializer->getType();
   4006   Qualifiers T2Quals;
   4007   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
   4008 
   4009   // If the initializer is the address of an overloaded function, try
   4010   // to resolve the overloaded function. If all goes well, T2 is the
   4011   // type of the resulting function.
   4012   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
   4013                                                    T1, Sequence))
   4014     return;
   4015 
   4016   // Delegate everything else to a subfunction.
   4017   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
   4018                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
   4019 }
   4020 
   4021 /// Converts the target of reference initialization so that it has the
   4022 /// appropriate qualifiers and value kind.
   4023 ///
   4024 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
   4025 /// \code
   4026 ///   int x;
   4027 ///   const int &r = x;
   4028 /// \endcode
   4029 ///
   4030 /// In this case the reference is binding to a bitfield lvalue, which isn't
   4031 /// valid. Perform a load to create a lifetime-extended temporary instead.
   4032 /// \code
   4033 ///   const int &r = someStruct.bitfield;
   4034 /// \endcode
   4035 static ExprValueKind
   4036 convertQualifiersAndValueKindIfNecessary(Sema &S,
   4037                                          InitializationSequence &Sequence,
   4038                                          Expr *Initializer,
   4039                                          QualType cv1T1,
   4040                                          Qualifiers T1Quals,
   4041                                          Qualifiers T2Quals,
   4042                                          bool IsLValueRef) {
   4043   bool IsNonAddressableType = Initializer->refersToBitField() ||
   4044                               Initializer->refersToVectorElement();
   4045 
   4046   if (IsNonAddressableType) {
   4047     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
   4048     // lvalue reference to a non-volatile const type, or the reference shall be
   4049     // an rvalue reference.
   4050     //
   4051     // If not, we can't make a temporary and bind to that. Give up and allow the
   4052     // error to be diagnosed later.
   4053     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
   4054       assert(Initializer->isGLValue());
   4055       return Initializer->getValueKind();
   4056     }
   4057 
   4058     // Force a load so we can materialize a temporary.
   4059     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
   4060     return VK_RValue;
   4061   }
   4062 
   4063   if (T1Quals != T2Quals) {
   4064     Sequence.AddQualificationConversionStep(cv1T1,
   4065                                             Initializer->getValueKind());
   4066   }
   4067 
   4068   return Initializer->getValueKind();
   4069 }
   4070 
   4071 
   4072 /// \brief Reference initialization without resolving overloaded functions.
   4073 static void TryReferenceInitializationCore(Sema &S,
   4074                                            const InitializedEntity &Entity,
   4075                                            const InitializationKind &Kind,
   4076                                            Expr *Initializer,
   4077                                            QualType cv1T1, QualType T1,
   4078                                            Qualifiers T1Quals,
   4079                                            QualType cv2T2, QualType T2,
   4080                                            Qualifiers T2Quals,
   4081                                            InitializationSequence &Sequence) {
   4082   QualType DestType = Entity.getType();
   4083   SourceLocation DeclLoc = Initializer->getLocStart();
   4084   // Compute some basic properties of the types and the initializer.
   4085   bool isLValueRef = DestType->isLValueReferenceType();
   4086   bool isRValueRef = !isLValueRef;
   4087   bool DerivedToBase = false;
   4088   bool ObjCConversion = false;
   4089   bool ObjCLifetimeConversion = false;
   4090   Expr::Classification InitCategory = Initializer->Classify(S.Context);
   4091   Sema::ReferenceCompareResult RefRelationship
   4092     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
   4093                                      ObjCConversion, ObjCLifetimeConversion);
   4094 
   4095   // C++0x [dcl.init.ref]p5:
   4096   //   A reference to type "cv1 T1" is initialized by an expression of type
   4097   //   "cv2 T2" as follows:
   4098   //
   4099   //     - If the reference is an lvalue reference and the initializer
   4100   //       expression
   4101   // Note the analogous bullet points for rvalue refs to functions. Because
   4102   // there are no function rvalues in C++, rvalue refs to functions are treated
   4103   // like lvalue refs.
   4104   OverloadingResult ConvOvlResult = OR_Success;
   4105   bool T1Function = T1->isFunctionType();
   4106   if (isLValueRef || T1Function) {
   4107     if (InitCategory.isLValue() &&
   4108         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
   4109          (Kind.isCStyleOrFunctionalCast() &&
   4110           RefRelationship == Sema::Ref_Related))) {
   4111       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
   4112       //     reference-compatible with "cv2 T2," or
   4113       //
   4114       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
   4115       // bit-field when we're determining whether the reference initialization
   4116       // can occur. However, we do pay attention to whether it is a bit-field
   4117       // to decide whether we're actually binding to a temporary created from
   4118       // the bit-field.
   4119       if (DerivedToBase)
   4120         Sequence.AddDerivedToBaseCastStep(
   4121                          S.Context.getQualifiedType(T1, T2Quals),
   4122                          VK_LValue);
   4123       else if (ObjCConversion)
   4124         Sequence.AddObjCObjectConversionStep(
   4125                                      S.Context.getQualifiedType(T1, T2Quals));
   4126 
   4127       ExprValueKind ValueKind =
   4128         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
   4129                                                  cv1T1, T1Quals, T2Quals,
   4130                                                  isLValueRef);
   4131       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
   4132       return;
   4133     }
   4134 
   4135     //     - has a class type (i.e., T2 is a class type), where T1 is not
   4136     //       reference-related to T2, and can be implicitly converted to an
   4137     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
   4138     //       with "cv3 T3" (this conversion is selected by enumerating the
   4139     //       applicable conversion functions (13.3.1.6) and choosing the best
   4140     //       one through overload resolution (13.3)),
   4141     // If we have an rvalue ref to function type here, the rhs must be
   4142     // an rvalue. DR1287 removed the "implicitly" here.
   4143     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
   4144         (isLValueRef || InitCategory.isRValue())) {
   4145       ConvOvlResult = TryRefInitWithConversionFunction(
   4146           S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
   4147       if (ConvOvlResult == OR_Success)
   4148         return;
   4149       if (ConvOvlResult != OR_No_Viable_Function)
   4150         Sequence.SetOverloadFailure(
   4151             InitializationSequence::FK_ReferenceInitOverloadFailed,
   4152             ConvOvlResult);
   4153     }
   4154   }
   4155 
   4156   //     - Otherwise, the reference shall be an lvalue reference to a
   4157   //       non-volatile const type (i.e., cv1 shall be const), or the reference
   4158   //       shall be an rvalue reference.
   4159   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
   4160     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
   4161       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   4162     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
   4163       Sequence.SetOverloadFailure(
   4164                         InitializationSequence::FK_ReferenceInitOverloadFailed,
   4165                                   ConvOvlResult);
   4166     else
   4167       Sequence.SetFailed(InitCategory.isLValue()
   4168         ? (RefRelationship == Sema::Ref_Related
   4169              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
   4170              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
   4171         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
   4172 
   4173     return;
   4174   }
   4175 
   4176   //    - If the initializer expression
   4177   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
   4178   //        "cv1 T1" is reference-compatible with "cv2 T2"
   4179   // Note: functions are handled below.
   4180   if (!T1Function &&
   4181       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
   4182        (Kind.isCStyleOrFunctionalCast() &&
   4183         RefRelationship == Sema::Ref_Related)) &&
   4184       (InitCategory.isXValue() ||
   4185        (InitCategory.isPRValue() && T2->isRecordType()) ||
   4186        (InitCategory.isPRValue() && T2->isArrayType()))) {
   4187     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
   4188     if (InitCategory.isPRValue() && T2->isRecordType()) {
   4189       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
   4190       // compiler the freedom to perform a copy here or bind to the
   4191       // object, while C++0x requires that we bind directly to the
   4192       // object. Hence, we always bind to the object without making an
   4193       // extra copy. However, in C++03 requires that we check for the
   4194       // presence of a suitable copy constructor:
   4195       //
   4196       //   The constructor that would be used to make the copy shall
   4197       //   be callable whether or not the copy is actually done.
   4198       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
   4199         Sequence.AddExtraneousCopyToTemporary(cv2T2);
   4200       else if (S.getLangOpts().CPlusPlus11)
   4201         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
   4202     }
   4203 
   4204     if (DerivedToBase)
   4205       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
   4206                                         ValueKind);
   4207     else if (ObjCConversion)
   4208       Sequence.AddObjCObjectConversionStep(
   4209                                        S.Context.getQualifiedType(T1, T2Quals));
   4210 
   4211     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
   4212                                                          Initializer, cv1T1,
   4213                                                          T1Quals, T2Quals,
   4214                                                          isLValueRef);
   4215 
   4216     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
   4217     return;
   4218   }
   4219 
   4220   //       - has a class type (i.e., T2 is a class type), where T1 is not
   4221   //         reference-related to T2, and can be implicitly converted to an
   4222   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
   4223   //         where "cv1 T1" is reference-compatible with "cv3 T3",
   4224   //
   4225   // DR1287 removes the "implicitly" here.
   4226   if (T2->isRecordType()) {
   4227     if (RefRelationship == Sema::Ref_Incompatible) {
   4228       ConvOvlResult = TryRefInitWithConversionFunction(
   4229           S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
   4230       if (ConvOvlResult)
   4231         Sequence.SetOverloadFailure(
   4232             InitializationSequence::FK_ReferenceInitOverloadFailed,
   4233             ConvOvlResult);
   4234 
   4235       return;
   4236     }
   4237 
   4238     if ((RefRelationship == Sema::Ref_Compatible ||
   4239          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
   4240         isRValueRef && InitCategory.isLValue()) {
   4241       Sequence.SetFailed(
   4242         InitializationSequence::FK_RValueReferenceBindingToLValue);
   4243       return;
   4244     }
   4245 
   4246     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
   4247     return;
   4248   }
   4249 
   4250   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
   4251   //        from the initializer expression using the rules for a non-reference
   4252   //        copy-initialization (8.5). The reference is then bound to the
   4253   //        temporary. [...]
   4254 
   4255   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
   4256 
   4257   // FIXME: Why do we use an implicit conversion here rather than trying
   4258   // copy-initialization?
   4259   ImplicitConversionSequence ICS
   4260     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
   4261                               /*SuppressUserConversions=*/false,
   4262                               /*AllowExplicit=*/false,
   4263                               /*FIXME:InOverloadResolution=*/false,
   4264                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
   4265                               /*AllowObjCWritebackConversion=*/false);
   4266 
   4267   if (ICS.isBad()) {
   4268     // FIXME: Use the conversion function set stored in ICS to turn
   4269     // this into an overloading ambiguity diagnostic. However, we need
   4270     // to keep that set as an OverloadCandidateSet rather than as some
   4271     // other kind of set.
   4272     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
   4273       Sequence.SetOverloadFailure(
   4274                         InitializationSequence::FK_ReferenceInitOverloadFailed,
   4275                                   ConvOvlResult);
   4276     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
   4277       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   4278     else
   4279       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
   4280     return;
   4281   } else {
   4282     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
   4283   }
   4284 
   4285   //        [...] If T1 is reference-related to T2, cv1 must be the
   4286   //        same cv-qualification as, or greater cv-qualification
   4287   //        than, cv2; otherwise, the program is ill-formed.
   4288   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
   4289   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
   4290   if (RefRelationship == Sema::Ref_Related &&
   4291       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
   4292     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
   4293     return;
   4294   }
   4295 
   4296   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
   4297   //   reference, the initializer expression shall not be an lvalue.
   4298   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
   4299       InitCategory.isLValue()) {
   4300     Sequence.SetFailed(
   4301                     InitializationSequence::FK_RValueReferenceBindingToLValue);
   4302     return;
   4303   }
   4304 
   4305   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
   4306   return;
   4307 }
   4308 
   4309 /// \brief Attempt character array initialization from a string literal
   4310 /// (C++ [dcl.init.string], C99 6.7.8).
   4311 static void TryStringLiteralInitialization(Sema &S,
   4312                                            const InitializedEntity &Entity,
   4313                                            const InitializationKind &Kind,
   4314                                            Expr *Initializer,
   4315                                        InitializationSequence &Sequence) {
   4316   Sequence.AddStringInitStep(Entity.getType());
   4317 }
   4318 
   4319 /// \brief Attempt value initialization (C++ [dcl.init]p7).
   4320 static void TryValueInitialization(Sema &S,
   4321                                    const InitializedEntity &Entity,
   4322                                    const InitializationKind &Kind,
   4323                                    InitializationSequence &Sequence,
   4324                                    InitListExpr *InitList) {
   4325   assert((!InitList || InitList->getNumInits() == 0) &&
   4326          "Shouldn't use value-init for non-empty init lists");
   4327 
   4328   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
   4329   //
   4330   //   To value-initialize an object of type T means:
   4331   QualType T = Entity.getType();
   4332 
   4333   //     -- if T is an array type, then each element is value-initialized;
   4334   T = S.Context.getBaseElementType(T);
   4335 
   4336   if (const RecordType *RT = T->getAs<RecordType>()) {
   4337     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   4338       bool NeedZeroInitialization = true;
   4339       if (!S.getLangOpts().CPlusPlus11) {
   4340         // C++98:
   4341         // -- if T is a class type (clause 9) with a user-declared constructor
   4342         //    (12.1), then the default constructor for T is called (and the
   4343         //    initialization is ill-formed if T has no accessible default
   4344         //    constructor);
   4345         if (ClassDecl->hasUserDeclaredConstructor())
   4346           NeedZeroInitialization = false;
   4347       } else {
   4348         // C++11:
   4349         // -- if T is a class type (clause 9) with either no default constructor
   4350         //    (12.1 [class.ctor]) or a default constructor that is user-provided
   4351         //    or deleted, then the object is default-initialized;
   4352         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
   4353         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
   4354           NeedZeroInitialization = false;
   4355       }
   4356 
   4357       // -- if T is a (possibly cv-qualified) non-union class type without a
   4358       //    user-provided or deleted default constructor, then the object is
   4359       //    zero-initialized and, if T has a non-trivial default constructor,
   4360       //    default-initialized;
   4361       // The 'non-union' here was removed by DR1502. The 'non-trivial default
   4362       // constructor' part was removed by DR1507.
   4363       if (NeedZeroInitialization)
   4364         Sequence.AddZeroInitializationStep(Entity.getType());
   4365 
   4366       // C++03:
   4367       // -- if T is a non-union class type without a user-declared constructor,
   4368       //    then every non-static data member and base class component of T is
   4369       //    value-initialized;
   4370       // [...] A program that calls for [...] value-initialization of an
   4371       // entity of reference type is ill-formed.
   4372       //
   4373       // C++11 doesn't need this handling, because value-initialization does not
   4374       // occur recursively there, and the implicit default constructor is
   4375       // defined as deleted in the problematic cases.
   4376       if (!S.getLangOpts().CPlusPlus11 &&
   4377           ClassDecl->hasUninitializedReferenceMember()) {
   4378         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
   4379         return;
   4380       }
   4381 
   4382       // If this is list-value-initialization, pass the empty init list on when
   4383       // building the constructor call. This affects the semantics of a few
   4384       // things (such as whether an explicit default constructor can be called).
   4385       Expr *InitListAsExpr = InitList;
   4386       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
   4387       bool InitListSyntax = InitList;
   4388 
   4389       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
   4390                                           InitListSyntax);
   4391     }
   4392   }
   4393 
   4394   Sequence.AddZeroInitializationStep(Entity.getType());
   4395 }
   4396 
   4397 /// \brief Attempt default initialization (C++ [dcl.init]p6).
   4398 static void TryDefaultInitialization(Sema &S,
   4399                                      const InitializedEntity &Entity,
   4400                                      const InitializationKind &Kind,
   4401                                      InitializationSequence &Sequence) {
   4402   assert(Kind.getKind() == InitializationKind::IK_Default);
   4403 
   4404   // C++ [dcl.init]p6:
   4405   //   To default-initialize an object of type T means:
   4406   //     - if T is an array type, each element is default-initialized;
   4407   QualType DestType = S.Context.getBaseElementType(Entity.getType());
   4408 
   4409   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
   4410   //       constructor for T is called (and the initialization is ill-formed if
   4411   //       T has no accessible default constructor);
   4412   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
   4413     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
   4414     return;
   4415   }
   4416 
   4417   //     - otherwise, no initialization is performed.
   4418 
   4419   //   If a program calls for the default initialization of an object of
   4420   //   a const-qualified type T, T shall be a class type with a user-provided
   4421   //   default constructor.
   4422   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
   4423     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
   4424       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
   4425     return;
   4426   }
   4427 
   4428   // If the destination type has a lifetime property, zero-initialize it.
   4429   if (DestType.getQualifiers().hasObjCLifetime()) {
   4430     Sequence.AddZeroInitializationStep(Entity.getType());
   4431     return;
   4432   }
   4433 }
   4434 
   4435 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
   4436 /// which enumerates all conversion functions and performs overload resolution
   4437 /// to select the best.
   4438 static void TryUserDefinedConversion(Sema &S,
   4439                                      QualType DestType,
   4440                                      const InitializationKind &Kind,
   4441                                      Expr *Initializer,
   4442                                      InitializationSequence &Sequence,
   4443                                      bool TopLevelOfInitList) {
   4444   assert(!DestType->isReferenceType() && "References are handled elsewhere");
   4445   QualType SourceType = Initializer->getType();
   4446   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
   4447          "Must have a class type to perform a user-defined conversion");
   4448 
   4449   // Build the candidate set directly in the initialization sequence
   4450   // structure, so that it will persist if we fail.
   4451   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   4452   CandidateSet.clear();
   4453 
   4454   // Determine whether we are allowed to call explicit constructors or
   4455   // explicit conversion operators.
   4456   bool AllowExplicit = Kind.AllowExplicit();
   4457 
   4458   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
   4459     // The type we're converting to is a class type. Enumerate its constructors
   4460     // to see if there is a suitable conversion.
   4461     CXXRecordDecl *DestRecordDecl
   4462       = cast<CXXRecordDecl>(DestRecordType->getDecl());
   4463 
   4464     // Try to complete the type we're converting to.
   4465     if (S.isCompleteType(Kind.getLocation(), DestType)) {
   4466       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
   4467       // The container holding the constructors can under certain conditions
   4468       // be changed while iterating. To be safe we copy the lookup results
   4469       // to a new container.
   4470       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
   4471       for (SmallVectorImpl<NamedDecl *>::iterator
   4472              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
   4473            Con != ConEnd; ++Con) {
   4474         NamedDecl *D = *Con;
   4475         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   4476 
   4477         // Find the constructor (which may be a template).
   4478         CXXConstructorDecl *Constructor = nullptr;
   4479         FunctionTemplateDecl *ConstructorTmpl
   4480           = dyn_cast<FunctionTemplateDecl>(D);
   4481         if (ConstructorTmpl)
   4482           Constructor = cast<CXXConstructorDecl>(
   4483                                            ConstructorTmpl->getTemplatedDecl());
   4484         else
   4485           Constructor = cast<CXXConstructorDecl>(D);
   4486 
   4487         if (!Constructor->isInvalidDecl() &&
   4488             Constructor->isConvertingConstructor(AllowExplicit)) {
   4489           if (ConstructorTmpl)
   4490             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   4491                                            /*ExplicitArgs*/ nullptr,
   4492                                            Initializer, CandidateSet,
   4493                                            /*SuppressUserConversions=*/true);
   4494           else
   4495             S.AddOverloadCandidate(Constructor, FoundDecl,
   4496                                    Initializer, CandidateSet,
   4497                                    /*SuppressUserConversions=*/true);
   4498         }
   4499       }
   4500     }
   4501   }
   4502 
   4503   SourceLocation DeclLoc = Initializer->getLocStart();
   4504 
   4505   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
   4506     // The type we're converting from is a class type, enumerate its conversion
   4507     // functions.
   4508 
   4509     // We can only enumerate the conversion functions for a complete type; if
   4510     // the type isn't complete, simply skip this step.
   4511     if (S.isCompleteType(DeclLoc, SourceType)) {
   4512       CXXRecordDecl *SourceRecordDecl
   4513         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
   4514 
   4515       const auto &Conversions =
   4516           SourceRecordDecl->getVisibleConversionFunctions();
   4517       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   4518         NamedDecl *D = *I;
   4519         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   4520         if (isa<UsingShadowDecl>(D))
   4521           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   4522 
   4523         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   4524         CXXConversionDecl *Conv;
   4525         if (ConvTemplate)
   4526           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   4527         else
   4528           Conv = cast<CXXConversionDecl>(D);
   4529 
   4530         if (AllowExplicit || !Conv->isExplicit()) {
   4531           if (ConvTemplate)
   4532             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
   4533                                              ActingDC, Initializer, DestType,
   4534                                              CandidateSet, AllowExplicit);
   4535           else
   4536             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
   4537                                      Initializer, DestType, CandidateSet,
   4538                                      AllowExplicit);
   4539         }
   4540       }
   4541     }
   4542   }
   4543 
   4544   // Perform overload resolution. If it fails, return the failed result.
   4545   OverloadCandidateSet::iterator Best;
   4546   if (OverloadingResult Result
   4547         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   4548     Sequence.SetOverloadFailure(
   4549                         InitializationSequence::FK_UserConversionOverloadFailed,
   4550                                 Result);
   4551     return;
   4552   }
   4553 
   4554   FunctionDecl *Function = Best->Function;
   4555   Function->setReferenced();
   4556   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4557 
   4558   if (isa<CXXConstructorDecl>(Function)) {
   4559     // Add the user-defined conversion step. Any cv-qualification conversion is
   4560     // subsumed by the initialization. Per DR5, the created temporary is of the
   4561     // cv-unqualified type of the destination.
   4562     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
   4563                                    DestType.getUnqualifiedType(),
   4564                                    HadMultipleCandidates);
   4565     return;
   4566   }
   4567 
   4568   // Add the user-defined conversion step that calls the conversion function.
   4569   QualType ConvType = Function->getCallResultType();
   4570   if (ConvType->getAs<RecordType>()) {
   4571     // If we're converting to a class type, there may be an copy of
   4572     // the resulting temporary object (possible to create an object of
   4573     // a base class type). That copy is not a separate conversion, so
   4574     // we just make a note of the actual destination type (possibly a
   4575     // base class of the type returned by the conversion function) and
   4576     // let the user-defined conversion step handle the conversion.
   4577     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
   4578                                    HadMultipleCandidates);
   4579     return;
   4580   }
   4581 
   4582   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
   4583                                  HadMultipleCandidates);
   4584 
   4585   // If the conversion following the call to the conversion function
   4586   // is interesting, add it as a separate step.
   4587   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
   4588       Best->FinalConversion.Third) {
   4589     ImplicitConversionSequence ICS;
   4590     ICS.setStandard();
   4591     ICS.Standard = Best->FinalConversion;
   4592     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
   4593   }
   4594 }
   4595 
   4596 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
   4597 /// a function with a pointer return type contains a 'return false;' statement.
   4598 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
   4599 /// code using that header.
   4600 ///
   4601 /// Work around this by treating 'return false;' as zero-initializing the result
   4602 /// if it's used in a pointer-returning function in a system header.
   4603 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
   4604                                               const InitializedEntity &Entity,
   4605                                               const Expr *Init) {
   4606   return S.getLangOpts().CPlusPlus11 &&
   4607          Entity.getKind() == InitializedEntity::EK_Result &&
   4608          Entity.getType()->isPointerType() &&
   4609          isa<CXXBoolLiteralExpr>(Init) &&
   4610          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
   4611          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
   4612 }
   4613 
   4614 /// The non-zero enum values here are indexes into diagnostic alternatives.
   4615 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
   4616 
   4617 /// Determines whether this expression is an acceptable ICR source.
   4618 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
   4619                                          bool isAddressOf, bool &isWeakAccess) {
   4620   // Skip parens.
   4621   e = e->IgnoreParens();
   4622 
   4623   // Skip address-of nodes.
   4624   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   4625     if (op->getOpcode() == UO_AddrOf)
   4626       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
   4627                                 isWeakAccess);
   4628 
   4629   // Skip certain casts.
   4630   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
   4631     switch (ce->getCastKind()) {
   4632     case CK_Dependent:
   4633     case CK_BitCast:
   4634     case CK_LValueBitCast:
   4635     case CK_NoOp:
   4636       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
   4637 
   4638     case CK_ArrayToPointerDecay:
   4639       return IIK_nonscalar;
   4640 
   4641     case CK_NullToPointer:
   4642       return IIK_okay;
   4643 
   4644     default:
   4645       break;
   4646     }
   4647 
   4648   // If we have a declaration reference, it had better be a local variable.
   4649   } else if (isa<DeclRefExpr>(e)) {
   4650     // set isWeakAccess to true, to mean that there will be an implicit
   4651     // load which requires a cleanup.
   4652     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
   4653       isWeakAccess = true;
   4654 
   4655     if (!isAddressOf) return IIK_nonlocal;
   4656 
   4657     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
   4658     if (!var) return IIK_nonlocal;
   4659 
   4660     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
   4661 
   4662   // If we have a conditional operator, check both sides.
   4663   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
   4664     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
   4665                                                 isWeakAccess))
   4666       return iik;
   4667 
   4668     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
   4669 
   4670   // These are never scalar.
   4671   } else if (isa<ArraySubscriptExpr>(e)) {
   4672     return IIK_nonscalar;
   4673 
   4674   // Otherwise, it needs to be a null pointer constant.
   4675   } else {
   4676     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
   4677             ? IIK_okay : IIK_nonlocal);
   4678   }
   4679 
   4680   return IIK_nonlocal;
   4681 }
   4682 
   4683 /// Check whether the given expression is a valid operand for an
   4684 /// indirect copy/restore.
   4685 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
   4686   assert(src->isRValue());
   4687   bool isWeakAccess = false;
   4688   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
   4689   // If isWeakAccess to true, there will be an implicit
   4690   // load which requires a cleanup.
   4691   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
   4692     S.ExprNeedsCleanups = true;
   4693 
   4694   if (iik == IIK_okay) return;
   4695 
   4696   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
   4697     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
   4698     << src->getSourceRange();
   4699 }
   4700 
   4701 /// \brief Determine whether we have compatible array types for the
   4702 /// purposes of GNU by-copy array initialization.
   4703 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
   4704                                     const ArrayType *Source) {
   4705   // If the source and destination array types are equivalent, we're
   4706   // done.
   4707   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
   4708     return true;
   4709 
   4710   // Make sure that the element types are the same.
   4711   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
   4712     return false;
   4713 
   4714   // The only mismatch we allow is when the destination is an
   4715   // incomplete array type and the source is a constant array type.
   4716   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
   4717 }
   4718 
   4719 static bool tryObjCWritebackConversion(Sema &S,
   4720                                        InitializationSequence &Sequence,
   4721                                        const InitializedEntity &Entity,
   4722                                        Expr *Initializer) {
   4723   bool ArrayDecay = false;
   4724   QualType ArgType = Initializer->getType();
   4725   QualType ArgPointee;
   4726   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
   4727     ArrayDecay = true;
   4728     ArgPointee = ArgArrayType->getElementType();
   4729     ArgType = S.Context.getPointerType(ArgPointee);
   4730   }
   4731 
   4732   // Handle write-back conversion.
   4733   QualType ConvertedArgType;
   4734   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
   4735                                    ConvertedArgType))
   4736     return false;
   4737 
   4738   // We should copy unless we're passing to an argument explicitly
   4739   // marked 'out'.
   4740   bool ShouldCopy = true;
   4741   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
   4742     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
   4743 
   4744   // Do we need an lvalue conversion?
   4745   if (ArrayDecay || Initializer->isGLValue()) {
   4746     ImplicitConversionSequence ICS;
   4747     ICS.setStandard();
   4748     ICS.Standard.setAsIdentityConversion();
   4749 
   4750     QualType ResultType;
   4751     if (ArrayDecay) {
   4752       ICS.Standard.First = ICK_Array_To_Pointer;
   4753       ResultType = S.Context.getPointerType(ArgPointee);
   4754     } else {
   4755       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
   4756       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
   4757     }
   4758 
   4759     Sequence.AddConversionSequenceStep(ICS, ResultType);
   4760   }
   4761 
   4762   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
   4763   return true;
   4764 }
   4765 
   4766 static bool TryOCLSamplerInitialization(Sema &S,
   4767                                         InitializationSequence &Sequence,
   4768                                         QualType DestType,
   4769                                         Expr *Initializer) {
   4770   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
   4771     !Initializer->isIntegerConstantExpr(S.getASTContext()))
   4772     return false;
   4773 
   4774   Sequence.AddOCLSamplerInitStep(DestType);
   4775   return true;
   4776 }
   4777 
   4778 //
   4779 // OpenCL 1.2 spec, s6.12.10
   4780 //
   4781 // The event argument can also be used to associate the
   4782 // async_work_group_copy with a previous async copy allowing
   4783 // an event to be shared by multiple async copies; otherwise
   4784 // event should be zero.
   4785 //
   4786 static bool TryOCLZeroEventInitialization(Sema &S,
   4787                                           InitializationSequence &Sequence,
   4788                                           QualType DestType,
   4789                                           Expr *Initializer) {
   4790   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
   4791       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
   4792       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
   4793     return false;
   4794 
   4795   Sequence.AddOCLZeroEventStep(DestType);
   4796   return true;
   4797 }
   4798 
   4799 InitializationSequence::InitializationSequence(Sema &S,
   4800                                                const InitializedEntity &Entity,
   4801                                                const InitializationKind &Kind,
   4802                                                MultiExprArg Args,
   4803                                                bool TopLevelOfInitList)
   4804     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
   4805   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
   4806 }
   4807 
   4808 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
   4809 /// address of that function, this returns true. Otherwise, it returns false.
   4810 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
   4811   auto *DRE = dyn_cast<DeclRefExpr>(E);
   4812   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
   4813     return false;
   4814 
   4815   return !S.checkAddressOfFunctionIsAvailable(
   4816       cast<FunctionDecl>(DRE->getDecl()));
   4817 }
   4818 
   4819 void InitializationSequence::InitializeFrom(Sema &S,
   4820                                             const InitializedEntity &Entity,
   4821                                             const InitializationKind &Kind,
   4822                                             MultiExprArg Args,
   4823                                             bool TopLevelOfInitList) {
   4824   ASTContext &Context = S.Context;
   4825 
   4826   // Eliminate non-overload placeholder types in the arguments.  We
   4827   // need to do this before checking whether types are dependent
   4828   // because lowering a pseudo-object expression might well give us
   4829   // something of dependent type.
   4830   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   4831     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
   4832       // FIXME: should we be doing this here?
   4833       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
   4834       if (result.isInvalid()) {
   4835         SetFailed(FK_PlaceholderType);
   4836         return;
   4837       }
   4838       Args[I] = result.get();
   4839     }
   4840 
   4841   // C++0x [dcl.init]p16:
   4842   //   The semantics of initializers are as follows. The destination type is
   4843   //   the type of the object or reference being initialized and the source
   4844   //   type is the type of the initializer expression. The source type is not
   4845   //   defined when the initializer is a braced-init-list or when it is a
   4846   //   parenthesized list of expressions.
   4847   QualType DestType = Entity.getType();
   4848 
   4849   if (DestType->isDependentType() ||
   4850       Expr::hasAnyTypeDependentArguments(Args)) {
   4851     SequenceKind = DependentSequence;
   4852     return;
   4853   }
   4854 
   4855   // Almost everything is a normal sequence.
   4856   setSequenceKind(NormalSequence);
   4857 
   4858   QualType SourceType;
   4859   Expr *Initializer = nullptr;
   4860   if (Args.size() == 1) {
   4861     Initializer = Args[0];
   4862     if (S.getLangOpts().ObjC1) {
   4863       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
   4864                                               DestType, Initializer->getType(),
   4865                                               Initializer) ||
   4866           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
   4867         Args[0] = Initializer;
   4868     }
   4869     if (!isa<InitListExpr>(Initializer))
   4870       SourceType = Initializer->getType();
   4871   }
   4872 
   4873   //     - If the initializer is a (non-parenthesized) braced-init-list, the
   4874   //       object is list-initialized (8.5.4).
   4875   if (Kind.getKind() != InitializationKind::IK_Direct) {
   4876     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
   4877       TryListInitialization(S, Entity, Kind, InitList, *this);
   4878       return;
   4879     }
   4880   }
   4881 
   4882   //     - If the destination type is a reference type, see 8.5.3.
   4883   if (DestType->isReferenceType()) {
   4884     // C++0x [dcl.init.ref]p1:
   4885     //   A variable declared to be a T& or T&&, that is, "reference to type T"
   4886     //   (8.3.2), shall be initialized by an object, or function, of type T or
   4887     //   by an object that can be converted into a T.
   4888     // (Therefore, multiple arguments are not permitted.)
   4889     if (Args.size() != 1)
   4890       SetFailed(FK_TooManyInitsForReference);
   4891     else
   4892       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
   4893     return;
   4894   }
   4895 
   4896   //     - If the initializer is (), the object is value-initialized.
   4897   if (Kind.getKind() == InitializationKind::IK_Value ||
   4898       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
   4899     TryValueInitialization(S, Entity, Kind, *this);
   4900     return;
   4901   }
   4902 
   4903   // Handle default initialization.
   4904   if (Kind.getKind() == InitializationKind::IK_Default) {
   4905     TryDefaultInitialization(S, Entity, Kind, *this);
   4906     return;
   4907   }
   4908 
   4909   //     - If the destination type is an array of characters, an array of
   4910   //       char16_t, an array of char32_t, or an array of wchar_t, and the
   4911   //       initializer is a string literal, see 8.5.2.
   4912   //     - Otherwise, if the destination type is an array, the program is
   4913   //       ill-formed.
   4914   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
   4915     if (Initializer && isa<VariableArrayType>(DestAT)) {
   4916       SetFailed(FK_VariableLengthArrayHasInitializer);
   4917       return;
   4918     }
   4919 
   4920     if (Initializer) {
   4921       switch (IsStringInit(Initializer, DestAT, Context)) {
   4922       case SIF_None:
   4923         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
   4924         return;
   4925       case SIF_NarrowStringIntoWideChar:
   4926         SetFailed(FK_NarrowStringIntoWideCharArray);
   4927         return;
   4928       case SIF_WideStringIntoChar:
   4929         SetFailed(FK_WideStringIntoCharArray);
   4930         return;
   4931       case SIF_IncompatWideStringIntoWideChar:
   4932         SetFailed(FK_IncompatWideStringIntoWideChar);
   4933         return;
   4934       case SIF_Other:
   4935         break;
   4936       }
   4937     }
   4938 
   4939     // Note: as an GNU C extension, we allow initialization of an
   4940     // array from a compound literal that creates an array of the same
   4941     // type, so long as the initializer has no side effects.
   4942     if (!S.getLangOpts().CPlusPlus && Initializer &&
   4943         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
   4944         Initializer->getType()->isArrayType()) {
   4945       const ArrayType *SourceAT
   4946         = Context.getAsArrayType(Initializer->getType());
   4947       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
   4948         SetFailed(FK_ArrayTypeMismatch);
   4949       else if (Initializer->HasSideEffects(S.Context))
   4950         SetFailed(FK_NonConstantArrayInit);
   4951       else {
   4952         AddArrayInitStep(DestType);
   4953       }
   4954     }
   4955     // Note: as a GNU C++ extension, we allow list-initialization of a
   4956     // class member of array type from a parenthesized initializer list.
   4957     else if (S.getLangOpts().CPlusPlus &&
   4958              Entity.getKind() == InitializedEntity::EK_Member &&
   4959              Initializer && isa<InitListExpr>(Initializer)) {
   4960       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
   4961                             *this);
   4962       AddParenthesizedArrayInitStep(DestType);
   4963     } else if (DestAT->getElementType()->isCharType())
   4964       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
   4965     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
   4966       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
   4967     else
   4968       SetFailed(FK_ArrayNeedsInitList);
   4969 
   4970     return;
   4971   }
   4972 
   4973   // Determine whether we should consider writeback conversions for
   4974   // Objective-C ARC.
   4975   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
   4976          Entity.isParameterKind();
   4977 
   4978   // We're at the end of the line for C: it's either a write-back conversion
   4979   // or it's a C assignment. There's no need to check anything else.
   4980   if (!S.getLangOpts().CPlusPlus) {
   4981     // If allowed, check whether this is an Objective-C writeback conversion.
   4982     if (allowObjCWritebackConversion &&
   4983         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
   4984       return;
   4985     }
   4986 
   4987     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
   4988       return;
   4989 
   4990     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
   4991       return;
   4992 
   4993     // Handle initialization in C
   4994     AddCAssignmentStep(DestType);
   4995     MaybeProduceObjCObject(S, *this, Entity);
   4996     return;
   4997   }
   4998 
   4999   assert(S.getLangOpts().CPlusPlus);
   5000 
   5001   //     - If the destination type is a (possibly cv-qualified) class type:
   5002   if (DestType->isRecordType()) {
   5003     //     - If the initialization is direct-initialization, or if it is
   5004     //       copy-initialization where the cv-unqualified version of the
   5005     //       source type is the same class as, or a derived class of, the
   5006     //       class of the destination, constructors are considered. [...]
   5007     if (Kind.getKind() == InitializationKind::IK_Direct ||
   5008         (Kind.getKind() == InitializationKind::IK_Copy &&
   5009          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
   5010           S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
   5011       TryConstructorInitialization(S, Entity, Kind, Args,
   5012                                    DestType, *this);
   5013     //     - Otherwise (i.e., for the remaining copy-initialization cases),
   5014     //       user-defined conversion sequences that can convert from the source
   5015     //       type to the destination type or (when a conversion function is
   5016     //       used) to a derived class thereof are enumerated as described in
   5017     //       13.3.1.4, and the best one is chosen through overload resolution
   5018     //       (13.3).
   5019     else
   5020       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
   5021                                TopLevelOfInitList);
   5022     return;
   5023   }
   5024 
   5025   if (Args.size() > 1) {
   5026     SetFailed(FK_TooManyInitsForScalar);
   5027     return;
   5028   }
   5029   assert(Args.size() == 1 && "Zero-argument case handled above");
   5030 
   5031   //    - Otherwise, if the source type is a (possibly cv-qualified) class
   5032   //      type, conversion functions are considered.
   5033   if (!SourceType.isNull() && SourceType->isRecordType()) {
   5034     // For a conversion to _Atomic(T) from either T or a class type derived
   5035     // from T, initialize the T object then convert to _Atomic type.
   5036     bool NeedAtomicConversion = false;
   5037     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
   5038       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
   5039           S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
   5040                           Atomic->getValueType())) {
   5041         DestType = Atomic->getValueType();
   5042         NeedAtomicConversion = true;
   5043       }
   5044     }
   5045 
   5046     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
   5047                              TopLevelOfInitList);
   5048     MaybeProduceObjCObject(S, *this, Entity);
   5049     if (!Failed() && NeedAtomicConversion)
   5050       AddAtomicConversionStep(Entity.getType());
   5051     return;
   5052   }
   5053 
   5054   //    - Otherwise, the initial value of the object being initialized is the
   5055   //      (possibly converted) value of the initializer expression. Standard
   5056   //      conversions (Clause 4) will be used, if necessary, to convert the
   5057   //      initializer expression to the cv-unqualified version of the
   5058   //      destination type; no user-defined conversions are considered.
   5059 
   5060   ImplicitConversionSequence ICS
   5061     = S.TryImplicitConversion(Initializer, DestType,
   5062                               /*SuppressUserConversions*/true,
   5063                               /*AllowExplicitConversions*/ false,
   5064                               /*InOverloadResolution*/ false,
   5065                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
   5066                               allowObjCWritebackConversion);
   5067 
   5068   if (ICS.isStandard() &&
   5069       ICS.Standard.Second == ICK_Writeback_Conversion) {
   5070     // Objective-C ARC writeback conversion.
   5071 
   5072     // We should copy unless we're passing to an argument explicitly
   5073     // marked 'out'.
   5074     bool ShouldCopy = true;
   5075     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
   5076       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
   5077 
   5078     // If there was an lvalue adjustment, add it as a separate conversion.
   5079     if (ICS.Standard.First == ICK_Array_To_Pointer ||
   5080         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   5081       ImplicitConversionSequence LvalueICS;
   5082       LvalueICS.setStandard();
   5083       LvalueICS.Standard.setAsIdentityConversion();
   5084       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
   5085       LvalueICS.Standard.First = ICS.Standard.First;
   5086       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
   5087     }
   5088 
   5089     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
   5090   } else if (ICS.isBad()) {
   5091     DeclAccessPair dap;
   5092     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
   5093       AddZeroInitializationStep(Entity.getType());
   5094     } else if (Initializer->getType() == Context.OverloadTy &&
   5095                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
   5096                                                      false, dap))
   5097       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   5098     else if (Initializer->getType()->isFunctionType() &&
   5099              isExprAnUnaddressableFunction(S, Initializer))
   5100       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
   5101     else
   5102       SetFailed(InitializationSequence::FK_ConversionFailed);
   5103   } else {
   5104     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
   5105 
   5106     MaybeProduceObjCObject(S, *this, Entity);
   5107   }
   5108 }
   5109 
   5110 InitializationSequence::~InitializationSequence() {
   5111   for (auto &S : Steps)
   5112     S.Destroy();
   5113 }
   5114 
   5115 //===----------------------------------------------------------------------===//
   5116 // Perform initialization
   5117 //===----------------------------------------------------------------------===//
   5118 static Sema::AssignmentAction
   5119 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
   5120   switch(Entity.getKind()) {
   5121   case InitializedEntity::EK_Variable:
   5122   case InitializedEntity::EK_New:
   5123   case InitializedEntity::EK_Exception:
   5124   case InitializedEntity::EK_Base:
   5125   case InitializedEntity::EK_Delegating:
   5126     return Sema::AA_Initializing;
   5127 
   5128   case InitializedEntity::EK_Parameter:
   5129     if (Entity.getDecl() &&
   5130         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
   5131       return Sema::AA_Sending;
   5132 
   5133     return Sema::AA_Passing;
   5134 
   5135   case InitializedEntity::EK_Parameter_CF_Audited:
   5136     if (Entity.getDecl() &&
   5137       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
   5138       return Sema::AA_Sending;
   5139 
   5140     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
   5141 
   5142   case InitializedEntity::EK_Result:
   5143     return Sema::AA_Returning;
   5144 
   5145   case InitializedEntity::EK_Temporary:
   5146   case InitializedEntity::EK_RelatedResult:
   5147     // FIXME: Can we tell apart casting vs. converting?
   5148     return Sema::AA_Casting;
   5149 
   5150   case InitializedEntity::EK_Member:
   5151   case InitializedEntity::EK_ArrayElement:
   5152   case InitializedEntity::EK_VectorElement:
   5153   case InitializedEntity::EK_ComplexElement:
   5154   case InitializedEntity::EK_BlockElement:
   5155   case InitializedEntity::EK_LambdaCapture:
   5156   case InitializedEntity::EK_CompoundLiteralInit:
   5157     return Sema::AA_Initializing;
   5158   }
   5159 
   5160   llvm_unreachable("Invalid EntityKind!");
   5161 }
   5162 
   5163 /// \brief Whether we should bind a created object as a temporary when
   5164 /// initializing the given entity.
   5165 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
   5166   switch (Entity.getKind()) {
   5167   case InitializedEntity::EK_ArrayElement:
   5168   case InitializedEntity::EK_Member:
   5169   case InitializedEntity::EK_Result:
   5170   case InitializedEntity::EK_New:
   5171   case InitializedEntity::EK_Variable:
   5172   case InitializedEntity::EK_Base:
   5173   case InitializedEntity::EK_Delegating:
   5174   case InitializedEntity::EK_VectorElement:
   5175   case InitializedEntity::EK_ComplexElement:
   5176   case InitializedEntity::EK_Exception:
   5177   case InitializedEntity::EK_BlockElement:
   5178   case InitializedEntity::EK_LambdaCapture:
   5179   case InitializedEntity::EK_CompoundLiteralInit:
   5180     return false;
   5181 
   5182   case InitializedEntity::EK_Parameter:
   5183   case InitializedEntity::EK_Parameter_CF_Audited:
   5184   case InitializedEntity::EK_Temporary:
   5185   case InitializedEntity::EK_RelatedResult:
   5186     return true;
   5187   }
   5188 
   5189   llvm_unreachable("missed an InitializedEntity kind?");
   5190 }
   5191 
   5192 /// \brief Whether the given entity, when initialized with an object
   5193 /// created for that initialization, requires destruction.
   5194 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
   5195   switch (Entity.getKind()) {
   5196     case InitializedEntity::EK_Result:
   5197     case InitializedEntity::EK_New:
   5198     case InitializedEntity::EK_Base:
   5199     case InitializedEntity::EK_Delegating:
   5200     case InitializedEntity::EK_VectorElement:
   5201     case InitializedEntity::EK_ComplexElement:
   5202     case InitializedEntity::EK_BlockElement:
   5203     case InitializedEntity::EK_LambdaCapture:
   5204       return false;
   5205 
   5206     case InitializedEntity::EK_Member:
   5207     case InitializedEntity::EK_Variable:
   5208     case InitializedEntity::EK_Parameter:
   5209     case InitializedEntity::EK_Parameter_CF_Audited:
   5210     case InitializedEntity::EK_Temporary:
   5211     case InitializedEntity::EK_ArrayElement:
   5212     case InitializedEntity::EK_Exception:
   5213     case InitializedEntity::EK_CompoundLiteralInit:
   5214     case InitializedEntity::EK_RelatedResult:
   5215       return true;
   5216   }
   5217 
   5218   llvm_unreachable("missed an InitializedEntity kind?");
   5219 }
   5220 
   5221 /// \brief Look for copy and move constructors and constructor templates, for
   5222 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
   5223 static void LookupCopyAndMoveConstructors(Sema &S,
   5224                                           OverloadCandidateSet &CandidateSet,
   5225                                           CXXRecordDecl *Class,
   5226                                           Expr *CurInitExpr) {
   5227   DeclContext::lookup_result R = S.LookupConstructors(Class);
   5228   // The container holding the constructors can under certain conditions
   5229   // be changed while iterating (e.g. because of deserialization).
   5230   // To be safe we copy the lookup results to a new container.
   5231   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
   5232   for (SmallVectorImpl<NamedDecl *>::iterator
   5233          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
   5234     NamedDecl *D = *CI;
   5235     CXXConstructorDecl *Constructor = nullptr;
   5236 
   5237     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
   5238       // Handle copy/moveconstructors, only.
   5239       if (!Constructor || Constructor->isInvalidDecl() ||
   5240           !Constructor->isCopyOrMoveConstructor() ||
   5241           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
   5242         continue;
   5243 
   5244       DeclAccessPair FoundDecl
   5245         = DeclAccessPair::make(Constructor, Constructor->getAccess());
   5246       S.AddOverloadCandidate(Constructor, FoundDecl,
   5247                              CurInitExpr, CandidateSet);
   5248       continue;
   5249     }
   5250 
   5251     // Handle constructor templates.
   5252     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
   5253     if (ConstructorTmpl->isInvalidDecl())
   5254       continue;
   5255 
   5256     Constructor = cast<CXXConstructorDecl>(
   5257                                          ConstructorTmpl->getTemplatedDecl());
   5258     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
   5259       continue;
   5260 
   5261     // FIXME: Do we need to limit this to copy-constructor-like
   5262     // candidates?
   5263     DeclAccessPair FoundDecl
   5264       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
   5265     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
   5266                                    CurInitExpr, CandidateSet, true);
   5267   }
   5268 }
   5269 
   5270 /// \brief Get the location at which initialization diagnostics should appear.
   5271 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
   5272                                            Expr *Initializer) {
   5273   switch (Entity.getKind()) {
   5274   case InitializedEntity::EK_Result:
   5275     return Entity.getReturnLoc();
   5276 
   5277   case InitializedEntity::EK_Exception:
   5278     return Entity.getThrowLoc();
   5279 
   5280   case InitializedEntity::EK_Variable:
   5281     return Entity.getDecl()->getLocation();
   5282 
   5283   case InitializedEntity::EK_LambdaCapture:
   5284     return Entity.getCaptureLoc();
   5285 
   5286   case InitializedEntity::EK_ArrayElement:
   5287   case InitializedEntity::EK_Member:
   5288   case InitializedEntity::EK_Parameter:
   5289   case InitializedEntity::EK_Parameter_CF_Audited:
   5290   case InitializedEntity::EK_Temporary:
   5291   case InitializedEntity::EK_New:
   5292   case InitializedEntity::EK_Base:
   5293   case InitializedEntity::EK_Delegating:
   5294   case InitializedEntity::EK_VectorElement:
   5295   case InitializedEntity::EK_ComplexElement:
   5296   case InitializedEntity::EK_BlockElement:
   5297   case InitializedEntity::EK_CompoundLiteralInit:
   5298   case InitializedEntity::EK_RelatedResult:
   5299     return Initializer->getLocStart();
   5300   }
   5301   llvm_unreachable("missed an InitializedEntity kind?");
   5302 }
   5303 
   5304 /// \brief Make a (potentially elidable) temporary copy of the object
   5305 /// provided by the given initializer by calling the appropriate copy
   5306 /// constructor.
   5307 ///
   5308 /// \param S The Sema object used for type-checking.
   5309 ///
   5310 /// \param T The type of the temporary object, which must either be
   5311 /// the type of the initializer expression or a superclass thereof.
   5312 ///
   5313 /// \param Entity The entity being initialized.
   5314 ///
   5315 /// \param CurInit The initializer expression.
   5316 ///
   5317 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
   5318 /// is permitted in C++03 (but not C++0x) when binding a reference to
   5319 /// an rvalue.
   5320 ///
   5321 /// \returns An expression that copies the initializer expression into
   5322 /// a temporary object, or an error expression if a copy could not be
   5323 /// created.
   5324 static ExprResult CopyObject(Sema &S,
   5325                              QualType T,
   5326                              const InitializedEntity &Entity,
   5327                              ExprResult CurInit,
   5328                              bool IsExtraneousCopy) {
   5329   if (CurInit.isInvalid())
   5330     return CurInit;
   5331   // Determine which class type we're copying to.
   5332   Expr *CurInitExpr = (Expr *)CurInit.get();
   5333   CXXRecordDecl *Class = nullptr;
   5334   if (const RecordType *Record = T->getAs<RecordType>())
   5335     Class = cast<CXXRecordDecl>(Record->getDecl());
   5336   if (!Class)
   5337     return CurInit;
   5338 
   5339   // C++0x [class.copy]p32:
   5340   //   When certain criteria are met, an implementation is allowed to
   5341   //   omit the copy/move construction of a class object, even if the
   5342   //   copy/move constructor and/or destructor for the object have
   5343   //   side effects. [...]
   5344   //     - when a temporary class object that has not been bound to a
   5345   //       reference (12.2) would be copied/moved to a class object
   5346   //       with the same cv-unqualified type, the copy/move operation
   5347   //       can be omitted by constructing the temporary object
   5348   //       directly into the target of the omitted copy/move
   5349   //
   5350   // Note that the other three bullets are handled elsewhere. Copy
   5351   // elision for return statements and throw expressions are handled as part
   5352   // of constructor initialization, while copy elision for exception handlers
   5353   // is handled by the run-time.
   5354   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
   5355   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
   5356 
   5357   // Make sure that the type we are copying is complete.
   5358   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
   5359     return CurInit;
   5360 
   5361   // Perform overload resolution using the class's copy/move constructors.
   5362   // Only consider constructors and constructor templates. Per
   5363   // C++0x [dcl.init]p16, second bullet to class types, this initialization
   5364   // is direct-initialization.
   5365   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5366   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
   5367 
   5368   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   5369 
   5370   OverloadCandidateSet::iterator Best;
   5371   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
   5372   case OR_Success:
   5373     break;
   5374 
   5375   case OR_No_Viable_Function:
   5376     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
   5377            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
   5378            : diag::err_temp_copy_no_viable)
   5379       << (int)Entity.getKind() << CurInitExpr->getType()
   5380       << CurInitExpr->getSourceRange();
   5381     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
   5382     if (!IsExtraneousCopy || S.isSFINAEContext())
   5383       return ExprError();
   5384     return CurInit;
   5385 
   5386   case OR_Ambiguous:
   5387     S.Diag(Loc, diag::err_temp_copy_ambiguous)
   5388       << (int)Entity.getKind() << CurInitExpr->getType()
   5389       << CurInitExpr->getSourceRange();
   5390     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
   5391     return ExprError();
   5392 
   5393   case OR_Deleted:
   5394     S.Diag(Loc, diag::err_temp_copy_deleted)
   5395       << (int)Entity.getKind() << CurInitExpr->getType()
   5396       << CurInitExpr->getSourceRange();
   5397     S.NoteDeletedFunction(Best->Function);
   5398     return ExprError();
   5399   }
   5400 
   5401   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   5402   SmallVector<Expr*, 8> ConstructorArgs;
   5403   CurInit.get(); // Ownership transferred into MultiExprArg, below.
   5404 
   5405   S.CheckConstructorAccess(Loc, Constructor, Entity,
   5406                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
   5407 
   5408   if (IsExtraneousCopy) {
   5409     // If this is a totally extraneous copy for C++03 reference
   5410     // binding purposes, just return the original initialization
   5411     // expression. We don't generate an (elided) copy operation here
   5412     // because doing so would require us to pass down a flag to avoid
   5413     // infinite recursion, where each step adds another extraneous,
   5414     // elidable copy.
   5415 
   5416     // Instantiate the default arguments of any extra parameters in
   5417     // the selected copy constructor, as if we were going to create a
   5418     // proper call to the copy constructor.
   5419     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
   5420       ParmVarDecl *Parm = Constructor->getParamDecl(I);
   5421       if (S.RequireCompleteType(Loc, Parm->getType(),
   5422                                 diag::err_call_incomplete_argument))
   5423         break;
   5424 
   5425       // Build the default argument expression; we don't actually care
   5426       // if this succeeds or not, because this routine will complain
   5427       // if there was a problem.
   5428       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
   5429     }
   5430 
   5431     return CurInitExpr;
   5432   }
   5433 
   5434   // Determine the arguments required to actually perform the
   5435   // constructor call (we might have derived-to-base conversions, or
   5436   // the copy constructor may have default arguments).
   5437   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
   5438     return ExprError();
   5439 
   5440   // Actually perform the constructor call.
   5441   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
   5442                                     ConstructorArgs,
   5443                                     HadMultipleCandidates,
   5444                                     /*ListInit*/ false,
   5445                                     /*StdInitListInit*/ false,
   5446                                     /*ZeroInit*/ false,
   5447                                     CXXConstructExpr::CK_Complete,
   5448                                     SourceRange());
   5449 
   5450   // If we're supposed to bind temporaries, do so.
   5451   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
   5452     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
   5453   return CurInit;
   5454 }
   5455 
   5456 /// \brief Check whether elidable copy construction for binding a reference to
   5457 /// a temporary would have succeeded if we were building in C++98 mode, for
   5458 /// -Wc++98-compat.
   5459 static void CheckCXX98CompatAccessibleCopy(Sema &S,
   5460                                            const InitializedEntity &Entity,
   5461                                            Expr *CurInitExpr) {
   5462   assert(S.getLangOpts().CPlusPlus11);
   5463 
   5464   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
   5465   if (!Record)
   5466     return;
   5467 
   5468   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
   5469   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
   5470     return;
   5471 
   5472   // Find constructors which would have been considered.
   5473   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5474   LookupCopyAndMoveConstructors(
   5475       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
   5476 
   5477   // Perform overload resolution.
   5478   OverloadCandidateSet::iterator Best;
   5479   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
   5480 
   5481   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
   5482     << OR << (int)Entity.getKind() << CurInitExpr->getType()
   5483     << CurInitExpr->getSourceRange();
   5484 
   5485   switch (OR) {
   5486   case OR_Success:
   5487     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
   5488                              Entity, Best->FoundDecl.getAccess(), Diag);
   5489     // FIXME: Check default arguments as far as that's possible.
   5490     break;
   5491 
   5492   case OR_No_Viable_Function:
   5493     S.Diag(Loc, Diag);
   5494     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
   5495     break;
   5496 
   5497   case OR_Ambiguous:
   5498     S.Diag(Loc, Diag);
   5499     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
   5500     break;
   5501 
   5502   case OR_Deleted:
   5503     S.Diag(Loc, Diag);
   5504     S.NoteDeletedFunction(Best->Function);
   5505     break;
   5506   }
   5507 }
   5508 
   5509 void InitializationSequence::PrintInitLocationNote(Sema &S,
   5510                                               const InitializedEntity &Entity) {
   5511   if (Entity.isParameterKind() && Entity.getDecl()) {
   5512     if (Entity.getDecl()->getLocation().isInvalid())
   5513       return;
   5514 
   5515     if (Entity.getDecl()->getDeclName())
   5516       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
   5517         << Entity.getDecl()->getDeclName();
   5518     else
   5519       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
   5520   }
   5521   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
   5522            Entity.getMethodDecl())
   5523     S.Diag(Entity.getMethodDecl()->getLocation(),
   5524            diag::note_method_return_type_change)
   5525       << Entity.getMethodDecl()->getDeclName();
   5526 }
   5527 
   5528 static bool isReferenceBinding(const InitializationSequence::Step &s) {
   5529   return s.Kind == InitializationSequence::SK_BindReference ||
   5530          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
   5531 }
   5532 
   5533 /// Returns true if the parameters describe a constructor initialization of
   5534 /// an explicit temporary object, e.g. "Point(x, y)".
   5535 static bool isExplicitTemporary(const InitializedEntity &Entity,
   5536                                 const InitializationKind &Kind,
   5537                                 unsigned NumArgs) {
   5538   switch (Entity.getKind()) {
   5539   case InitializedEntity::EK_Temporary:
   5540   case InitializedEntity::EK_CompoundLiteralInit:
   5541   case InitializedEntity::EK_RelatedResult:
   5542     break;
   5543   default:
   5544     return false;
   5545   }
   5546 
   5547   switch (Kind.getKind()) {
   5548   case InitializationKind::IK_DirectList:
   5549     return true;
   5550   // FIXME: Hack to work around cast weirdness.
   5551   case InitializationKind::IK_Direct:
   5552   case InitializationKind::IK_Value:
   5553     return NumArgs != 1;
   5554   default:
   5555     return false;
   5556   }
   5557 }
   5558 
   5559 static ExprResult
   5560 PerformConstructorInitialization(Sema &S,
   5561                                  const InitializedEntity &Entity,
   5562                                  const InitializationKind &Kind,
   5563                                  MultiExprArg Args,
   5564                                  const InitializationSequence::Step& Step,
   5565                                  bool &ConstructorInitRequiresZeroInit,
   5566                                  bool IsListInitialization,
   5567                                  bool IsStdInitListInitialization,
   5568                                  SourceLocation LBraceLoc,
   5569                                  SourceLocation RBraceLoc) {
   5570   unsigned NumArgs = Args.size();
   5571   CXXConstructorDecl *Constructor
   5572     = cast<CXXConstructorDecl>(Step.Function.Function);
   5573   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
   5574 
   5575   // Build a call to the selected constructor.
   5576   SmallVector<Expr*, 8> ConstructorArgs;
   5577   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
   5578                          ? Kind.getEqualLoc()
   5579                          : Kind.getLocation();
   5580 
   5581   if (Kind.getKind() == InitializationKind::IK_Default) {
   5582     // Force even a trivial, implicit default constructor to be
   5583     // semantically checked. We do this explicitly because we don't build
   5584     // the definition for completely trivial constructors.
   5585     assert(Constructor->getParent() && "No parent class for constructor.");
   5586     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
   5587         Constructor->isTrivial() && !Constructor->isUsed(false))
   5588       S.DefineImplicitDefaultConstructor(Loc, Constructor);
   5589   }
   5590 
   5591   ExprResult CurInit((Expr *)nullptr);
   5592 
   5593   // C++ [over.match.copy]p1:
   5594   //   - When initializing a temporary to be bound to the first parameter
   5595   //     of a constructor that takes a reference to possibly cv-qualified
   5596   //     T as its first argument, called with a single argument in the
   5597   //     context of direct-initialization, explicit conversion functions
   5598   //     are also considered.
   5599   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
   5600                            Args.size() == 1 &&
   5601                            Constructor->isCopyOrMoveConstructor();
   5602 
   5603   // Determine the arguments required to actually perform the constructor
   5604   // call.
   5605   if (S.CompleteConstructorCall(Constructor, Args,
   5606                                 Loc, ConstructorArgs,
   5607                                 AllowExplicitConv,
   5608                                 IsListInitialization))
   5609     return ExprError();
   5610 
   5611 
   5612   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
   5613     // An explicitly-constructed temporary, e.g., X(1, 2).
   5614     S.MarkFunctionReferenced(Loc, Constructor);
   5615     if (S.DiagnoseUseOfDecl(Constructor, Loc))
   5616       return ExprError();
   5617 
   5618     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
   5619     if (!TSInfo)
   5620       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
   5621     SourceRange ParenOrBraceRange =
   5622       (Kind.getKind() == InitializationKind::IK_DirectList)
   5623       ? SourceRange(LBraceLoc, RBraceLoc)
   5624       : Kind.getParenRange();
   5625 
   5626     CurInit = new (S.Context) CXXTemporaryObjectExpr(
   5627         S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
   5628         HadMultipleCandidates, IsListInitialization,
   5629         IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
   5630   } else {
   5631     CXXConstructExpr::ConstructionKind ConstructKind =
   5632       CXXConstructExpr::CK_Complete;
   5633 
   5634     if (Entity.getKind() == InitializedEntity::EK_Base) {
   5635       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
   5636         CXXConstructExpr::CK_VirtualBase :
   5637         CXXConstructExpr::CK_NonVirtualBase;
   5638     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
   5639       ConstructKind = CXXConstructExpr::CK_Delegating;
   5640     }
   5641 
   5642     // Only get the parenthesis or brace range if it is a list initialization or
   5643     // direct construction.
   5644     SourceRange ParenOrBraceRange;
   5645     if (IsListInitialization)
   5646       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
   5647     else if (Kind.getKind() == InitializationKind::IK_Direct)
   5648       ParenOrBraceRange = Kind.getParenRange();
   5649 
   5650     // If the entity allows NRVO, mark the construction as elidable
   5651     // unconditionally.
   5652     if (Entity.allowsNRVO())
   5653       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
   5654                                         Constructor, /*Elidable=*/true,
   5655                                         ConstructorArgs,
   5656                                         HadMultipleCandidates,
   5657                                         IsListInitialization,
   5658                                         IsStdInitListInitialization,
   5659                                         ConstructorInitRequiresZeroInit,
   5660                                         ConstructKind,
   5661                                         ParenOrBraceRange);
   5662     else
   5663       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
   5664                                         Constructor,
   5665                                         ConstructorArgs,
   5666                                         HadMultipleCandidates,
   5667                                         IsListInitialization,
   5668                                         IsStdInitListInitialization,
   5669                                         ConstructorInitRequiresZeroInit,
   5670                                         ConstructKind,
   5671                                         ParenOrBraceRange);
   5672   }
   5673   if (CurInit.isInvalid())
   5674     return ExprError();
   5675 
   5676   // Only check access if all of that succeeded.
   5677   S.CheckConstructorAccess(Loc, Constructor, Entity,
   5678                            Step.Function.FoundDecl.getAccess());
   5679   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
   5680     return ExprError();
   5681 
   5682   if (shouldBindAsTemporary(Entity))
   5683     CurInit = S.MaybeBindToTemporary(CurInit.get());
   5684 
   5685   return CurInit;
   5686 }
   5687 
   5688 /// Determine whether the specified InitializedEntity definitely has a lifetime
   5689 /// longer than the current full-expression. Conservatively returns false if
   5690 /// it's unclear.
   5691 static bool
   5692 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
   5693   const InitializedEntity *Top = &Entity;
   5694   while (Top->getParent())
   5695     Top = Top->getParent();
   5696 
   5697   switch (Top->getKind()) {
   5698   case InitializedEntity::EK_Variable:
   5699   case InitializedEntity::EK_Result:
   5700   case InitializedEntity::EK_Exception:
   5701   case InitializedEntity::EK_Member:
   5702   case InitializedEntity::EK_New:
   5703   case InitializedEntity::EK_Base:
   5704   case InitializedEntity::EK_Delegating:
   5705     return true;
   5706 
   5707   case InitializedEntity::EK_ArrayElement:
   5708   case InitializedEntity::EK_VectorElement:
   5709   case InitializedEntity::EK_BlockElement:
   5710   case InitializedEntity::EK_ComplexElement:
   5711     // Could not determine what the full initialization is. Assume it might not
   5712     // outlive the full-expression.
   5713     return false;
   5714 
   5715   case InitializedEntity::EK_Parameter:
   5716   case InitializedEntity::EK_Parameter_CF_Audited:
   5717   case InitializedEntity::EK_Temporary:
   5718   case InitializedEntity::EK_LambdaCapture:
   5719   case InitializedEntity::EK_CompoundLiteralInit:
   5720   case InitializedEntity::EK_RelatedResult:
   5721     // The entity being initialized might not outlive the full-expression.
   5722     return false;
   5723   }
   5724 
   5725   llvm_unreachable("unknown entity kind");
   5726 }
   5727 
   5728 /// Determine the declaration which an initialized entity ultimately refers to,
   5729 /// for the purpose of lifetime-extending a temporary bound to a reference in
   5730 /// the initialization of \p Entity.
   5731 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
   5732     const InitializedEntity *Entity,
   5733     const InitializedEntity *FallbackDecl = nullptr) {
   5734   // C++11 [class.temporary]p5:
   5735   switch (Entity->getKind()) {
   5736   case InitializedEntity::EK_Variable:
   5737     //   The temporary [...] persists for the lifetime of the reference
   5738     return Entity;
   5739 
   5740   case InitializedEntity::EK_Member:
   5741     // For subobjects, we look at the complete object.
   5742     if (Entity->getParent())
   5743       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
   5744                                                     Entity);
   5745 
   5746     //   except:
   5747     //   -- A temporary bound to a reference member in a constructor's
   5748     //      ctor-initializer persists until the constructor exits.
   5749     return Entity;
   5750 
   5751   case InitializedEntity::EK_Parameter:
   5752   case InitializedEntity::EK_Parameter_CF_Audited:
   5753     //   -- A temporary bound to a reference parameter in a function call
   5754     //      persists until the completion of the full-expression containing
   5755     //      the call.
   5756   case InitializedEntity::EK_Result:
   5757     //   -- The lifetime of a temporary bound to the returned value in a
   5758     //      function return statement is not extended; the temporary is
   5759     //      destroyed at the end of the full-expression in the return statement.
   5760   case InitializedEntity::EK_New:
   5761     //   -- A temporary bound to a reference in a new-initializer persists
   5762     //      until the completion of the full-expression containing the
   5763     //      new-initializer.
   5764     return nullptr;
   5765 
   5766   case InitializedEntity::EK_Temporary:
   5767   case InitializedEntity::EK_CompoundLiteralInit:
   5768   case InitializedEntity::EK_RelatedResult:
   5769     // We don't yet know the storage duration of the surrounding temporary.
   5770     // Assume it's got full-expression duration for now, it will patch up our
   5771     // storage duration if that's not correct.
   5772     return nullptr;
   5773 
   5774   case InitializedEntity::EK_ArrayElement:
   5775     // For subobjects, we look at the complete object.
   5776     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
   5777                                                   FallbackDecl);
   5778 
   5779   case InitializedEntity::EK_Base:
   5780   case InitializedEntity::EK_Delegating:
   5781     // We can reach this case for aggregate initialization in a constructor:
   5782     //   struct A { int &&r; };
   5783     //   struct B : A { B() : A{0} {} };
   5784     // In this case, use the innermost field decl as the context.
   5785     return FallbackDecl;
   5786 
   5787   case InitializedEntity::EK_BlockElement:
   5788   case InitializedEntity::EK_LambdaCapture:
   5789   case InitializedEntity::EK_Exception:
   5790   case InitializedEntity::EK_VectorElement:
   5791   case InitializedEntity::EK_ComplexElement:
   5792     return nullptr;
   5793   }
   5794   llvm_unreachable("unknown entity kind");
   5795 }
   5796 
   5797 static void performLifetimeExtension(Expr *Init,
   5798                                      const InitializedEntity *ExtendingEntity);
   5799 
   5800 /// Update a glvalue expression that is used as the initializer of a reference
   5801 /// to note that its lifetime is extended.
   5802 /// \return \c true if any temporary had its lifetime extended.
   5803 static bool
   5804 performReferenceExtension(Expr *Init,
   5805                           const InitializedEntity *ExtendingEntity) {
   5806   // Walk past any constructs which we can lifetime-extend across.
   5807   Expr *Old;
   5808   do {
   5809     Old = Init;
   5810 
   5811     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
   5812       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
   5813         // This is just redundant braces around an initializer. Step over it.
   5814         Init = ILE->getInit(0);
   5815       }
   5816     }
   5817 
   5818     // Step over any subobject adjustments; we may have a materialized
   5819     // temporary inside them.
   5820     SmallVector<const Expr *, 2> CommaLHSs;
   5821     SmallVector<SubobjectAdjustment, 2> Adjustments;
   5822     Init = const_cast<Expr *>(
   5823         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
   5824 
   5825     // Per current approach for DR1376, look through casts to reference type
   5826     // when performing lifetime extension.
   5827     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
   5828       if (CE->getSubExpr()->isGLValue())
   5829         Init = CE->getSubExpr();
   5830 
   5831     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
   5832     // It's unclear if binding a reference to that xvalue extends the array
   5833     // temporary.
   5834   } while (Init != Old);
   5835 
   5836   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
   5837     // Update the storage duration of the materialized temporary.
   5838     // FIXME: Rebuild the expression instead of mutating it.
   5839     ME->setExtendingDecl(ExtendingEntity->getDecl(),
   5840                          ExtendingEntity->allocateManglingNumber());
   5841     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
   5842     return true;
   5843   }
   5844 
   5845   return false;
   5846 }
   5847 
   5848 /// Update a prvalue expression that is going to be materialized as a
   5849 /// lifetime-extended temporary.
   5850 static void performLifetimeExtension(Expr *Init,
   5851                                      const InitializedEntity *ExtendingEntity) {
   5852   // Dig out the expression which constructs the extended temporary.
   5853   SmallVector<const Expr *, 2> CommaLHSs;
   5854   SmallVector<SubobjectAdjustment, 2> Adjustments;
   5855   Init = const_cast<Expr *>(
   5856       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
   5857 
   5858   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
   5859     Init = BTE->getSubExpr();
   5860 
   5861   if (CXXStdInitializerListExpr *ILE =
   5862           dyn_cast<CXXStdInitializerListExpr>(Init)) {
   5863     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
   5864     return;
   5865   }
   5866 
   5867   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
   5868     if (ILE->getType()->isArrayType()) {
   5869       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
   5870         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
   5871       return;
   5872     }
   5873 
   5874     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
   5875       assert(RD->isAggregate() && "aggregate init on non-aggregate");
   5876 
   5877       // If we lifetime-extend a braced initializer which is initializing an
   5878       // aggregate, and that aggregate contains reference members which are
   5879       // bound to temporaries, those temporaries are also lifetime-extended.
   5880       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
   5881           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
   5882         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
   5883       else {
   5884         unsigned Index = 0;
   5885         for (const auto *I : RD->fields()) {
   5886           if (Index >= ILE->getNumInits())
   5887             break;
   5888           if (I->isUnnamedBitfield())
   5889             continue;
   5890           Expr *SubInit = ILE->getInit(Index);
   5891           if (I->getType()->isReferenceType())
   5892             performReferenceExtension(SubInit, ExtendingEntity);
   5893           else if (isa<InitListExpr>(SubInit) ||
   5894                    isa<CXXStdInitializerListExpr>(SubInit))
   5895             // This may be either aggregate-initialization of a member or
   5896             // initialization of a std::initializer_list object. Either way,
   5897             // we should recursively lifetime-extend that initializer.
   5898             performLifetimeExtension(SubInit, ExtendingEntity);
   5899           ++Index;
   5900         }
   5901       }
   5902     }
   5903   }
   5904 }
   5905 
   5906 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
   5907                                     const Expr *Init, bool IsInitializerList,
   5908                                     const ValueDecl *ExtendingDecl) {
   5909   // Warn if a field lifetime-extends a temporary.
   5910   if (isa<FieldDecl>(ExtendingDecl)) {
   5911     if (IsInitializerList) {
   5912       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
   5913         << /*at end of constructor*/true;
   5914       return;
   5915     }
   5916 
   5917     bool IsSubobjectMember = false;
   5918     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
   5919          Ent = Ent->getParent()) {
   5920       if (Ent->getKind() != InitializedEntity::EK_Base) {
   5921         IsSubobjectMember = true;
   5922         break;
   5923       }
   5924     }
   5925     S.Diag(Init->getExprLoc(),
   5926            diag::warn_bind_ref_member_to_temporary)
   5927       << ExtendingDecl << Init->getSourceRange()
   5928       << IsSubobjectMember << IsInitializerList;
   5929     if (IsSubobjectMember)
   5930       S.Diag(ExtendingDecl->getLocation(),
   5931              diag::note_ref_subobject_of_member_declared_here);
   5932     else
   5933       S.Diag(ExtendingDecl->getLocation(),
   5934              diag::note_ref_or_ptr_member_declared_here)
   5935         << /*is pointer*/false;
   5936   }
   5937 }
   5938 
   5939 static void DiagnoseNarrowingInInitList(Sema &S,
   5940                                         const ImplicitConversionSequence &ICS,
   5941                                         QualType PreNarrowingType,
   5942                                         QualType EntityType,
   5943                                         const Expr *PostInit);
   5944 
   5945 /// Provide warnings when std::move is used on construction.
   5946 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
   5947                                     bool IsReturnStmt) {
   5948   if (!InitExpr)
   5949     return;
   5950 
   5951   if (!S.ActiveTemplateInstantiations.empty())
   5952     return;
   5953 
   5954   QualType DestType = InitExpr->getType();
   5955   if (!DestType->isRecordType())
   5956     return;
   5957 
   5958   unsigned DiagID = 0;
   5959   if (IsReturnStmt) {
   5960     const CXXConstructExpr *CCE =
   5961         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
   5962     if (!CCE || CCE->getNumArgs() != 1)
   5963       return;
   5964 
   5965     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
   5966       return;
   5967 
   5968     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
   5969   }
   5970 
   5971   // Find the std::move call and get the argument.
   5972   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
   5973   if (!CE || CE->getNumArgs() != 1)
   5974     return;
   5975 
   5976   const FunctionDecl *MoveFunction = CE->getDirectCallee();
   5977   if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
   5978       !MoveFunction->getIdentifier() ||
   5979       !MoveFunction->getIdentifier()->isStr("move"))
   5980     return;
   5981 
   5982   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
   5983 
   5984   if (IsReturnStmt) {
   5985     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
   5986     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
   5987       return;
   5988 
   5989     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
   5990     if (!VD || !VD->hasLocalStorage())
   5991       return;
   5992 
   5993     QualType SourceType = VD->getType();
   5994     if (!SourceType->isRecordType())
   5995       return;
   5996 
   5997     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
   5998       return;
   5999     }
   6000 
   6001     // If we're returning a function parameter, copy elision
   6002     // is not possible.
   6003     if (isa<ParmVarDecl>(VD))
   6004       DiagID = diag::warn_redundant_move_on_return;
   6005     else
   6006       DiagID = diag::warn_pessimizing_move_on_return;
   6007   } else {
   6008     DiagID = diag::warn_pessimizing_move_on_initialization;
   6009     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
   6010     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
   6011       return;
   6012   }
   6013 
   6014   S.Diag(CE->getLocStart(), DiagID);
   6015 
   6016   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
   6017   // is within a macro.
   6018   SourceLocation CallBegin = CE->getCallee()->getLocStart();
   6019   if (CallBegin.isMacroID())
   6020     return;
   6021   SourceLocation RParen = CE->getRParenLoc();
   6022   if (RParen.isMacroID())
   6023     return;
   6024   SourceLocation LParen;
   6025   SourceLocation ArgLoc = Arg->getLocStart();
   6026 
   6027   // Special testing for the argument location.  Since the fix-it needs the
   6028   // location right before the argument, the argument location can be in a
   6029   // macro only if it is at the beginning of the macro.
   6030   while (ArgLoc.isMacroID() &&
   6031          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
   6032     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
   6033   }
   6034 
   6035   if (LParen.isMacroID())
   6036     return;
   6037 
   6038   LParen = ArgLoc.getLocWithOffset(-1);
   6039 
   6040   S.Diag(CE->getLocStart(), diag::note_remove_move)
   6041       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
   6042       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
   6043 }
   6044 
   6045 ExprResult
   6046 InitializationSequence::Perform(Sema &S,
   6047                                 const InitializedEntity &Entity,
   6048                                 const InitializationKind &Kind,
   6049                                 MultiExprArg Args,
   6050                                 QualType *ResultType) {
   6051   if (Failed()) {
   6052     Diagnose(S, Entity, Kind, Args);
   6053     return ExprError();
   6054   }
   6055   if (!ZeroInitializationFixit.empty()) {
   6056     unsigned DiagID = diag::err_default_init_const;
   6057     if (Decl *D = Entity.getDecl())
   6058       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
   6059         DiagID = diag::ext_default_init_const;
   6060 
   6061     // The initialization would have succeeded with this fixit. Since the fixit
   6062     // is on the error, we need to build a valid AST in this case, so this isn't
   6063     // handled in the Failed() branch above.
   6064     QualType DestType = Entity.getType();
   6065     S.Diag(Kind.getLocation(), DiagID)
   6066         << DestType << (bool)DestType->getAs<RecordType>()
   6067         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
   6068                                       ZeroInitializationFixit);
   6069   }
   6070 
   6071   if (getKind() == DependentSequence) {
   6072     // If the declaration is a non-dependent, incomplete array type
   6073     // that has an initializer, then its type will be completed once
   6074     // the initializer is instantiated.
   6075     if (ResultType && !Entity.getType()->isDependentType() &&
   6076         Args.size() == 1) {
   6077       QualType DeclType = Entity.getType();
   6078       if (const IncompleteArrayType *ArrayT
   6079                            = S.Context.getAsIncompleteArrayType(DeclType)) {
   6080         // FIXME: We don't currently have the ability to accurately
   6081         // compute the length of an initializer list without
   6082         // performing full type-checking of the initializer list
   6083         // (since we have to determine where braces are implicitly
   6084         // introduced and such).  So, we fall back to making the array
   6085         // type a dependently-sized array type with no specified
   6086         // bound.
   6087         if (isa<InitListExpr>((Expr *)Args[0])) {
   6088           SourceRange Brackets;
   6089 
   6090           // Scavange the location of the brackets from the entity, if we can.
   6091           if (DeclaratorDecl *DD = Entity.getDecl()) {
   6092             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
   6093               TypeLoc TL = TInfo->getTypeLoc();
   6094               if (IncompleteArrayTypeLoc ArrayLoc =
   6095                       TL.getAs<IncompleteArrayTypeLoc>())
   6096                 Brackets = ArrayLoc.getBracketsRange();
   6097             }
   6098           }
   6099 
   6100           *ResultType
   6101             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
   6102                                                    /*NumElts=*/nullptr,
   6103                                                    ArrayT->getSizeModifier(),
   6104                                        ArrayT->getIndexTypeCVRQualifiers(),
   6105                                                    Brackets);
   6106         }
   6107 
   6108       }
   6109     }
   6110     if (Kind.getKind() == InitializationKind::IK_Direct &&
   6111         !Kind.isExplicitCast()) {
   6112       // Rebuild the ParenListExpr.
   6113       SourceRange ParenRange = Kind.getParenRange();
   6114       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
   6115                                   Args);
   6116     }
   6117     assert(Kind.getKind() == InitializationKind::IK_Copy ||
   6118            Kind.isExplicitCast() ||
   6119            Kind.getKind() == InitializationKind::IK_DirectList);
   6120     return ExprResult(Args[0]);
   6121   }
   6122 
   6123   // No steps means no initialization.
   6124   if (Steps.empty())
   6125     return ExprResult((Expr *)nullptr);
   6126 
   6127   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
   6128       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
   6129       !Entity.isParameterKind()) {
   6130     // Produce a C++98 compatibility warning if we are initializing a reference
   6131     // from an initializer list. For parameters, we produce a better warning
   6132     // elsewhere.
   6133     Expr *Init = Args[0];
   6134     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
   6135       << Init->getSourceRange();
   6136   }
   6137 
   6138   // Diagnose cases where we initialize a pointer to an array temporary, and the
   6139   // pointer obviously outlives the temporary.
   6140   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
   6141       Entity.getType()->isPointerType() &&
   6142       InitializedEntityOutlivesFullExpression(Entity)) {
   6143     Expr *Init = Args[0];
   6144     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
   6145     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
   6146       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
   6147         << Init->getSourceRange();
   6148   }
   6149 
   6150   QualType DestType = Entity.getType().getNonReferenceType();
   6151   // FIXME: Ugly hack around the fact that Entity.getType() is not
   6152   // the same as Entity.getDecl()->getType() in cases involving type merging,
   6153   //  and we want latter when it makes sense.
   6154   if (ResultType)
   6155     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
   6156                                      Entity.getType();
   6157 
   6158   ExprResult CurInit((Expr *)nullptr);
   6159 
   6160   // For initialization steps that start with a single initializer,
   6161   // grab the only argument out the Args and place it into the "current"
   6162   // initializer.
   6163   switch (Steps.front().Kind) {
   6164   case SK_ResolveAddressOfOverloadedFunction:
   6165   case SK_CastDerivedToBaseRValue:
   6166   case SK_CastDerivedToBaseXValue:
   6167   case SK_CastDerivedToBaseLValue:
   6168   case SK_BindReference:
   6169   case SK_BindReferenceToTemporary:
   6170   case SK_ExtraneousCopyToTemporary:
   6171   case SK_UserConversion:
   6172   case SK_QualificationConversionLValue:
   6173   case SK_QualificationConversionXValue:
   6174   case SK_QualificationConversionRValue:
   6175   case SK_AtomicConversion:
   6176   case SK_LValueToRValue:
   6177   case SK_ConversionSequence:
   6178   case SK_ConversionSequenceNoNarrowing:
   6179   case SK_ListInitialization:
   6180   case SK_UnwrapInitList:
   6181   case SK_RewrapInitList:
   6182   case SK_CAssignment:
   6183   case SK_StringInit:
   6184   case SK_ObjCObjectConversion:
   6185   case SK_ArrayInit:
   6186   case SK_ParenthesizedArrayInit:
   6187   case SK_PassByIndirectCopyRestore:
   6188   case SK_PassByIndirectRestore:
   6189   case SK_ProduceObjCObject:
   6190   case SK_StdInitializerList:
   6191   case SK_OCLSamplerInit:
   6192   case SK_OCLZeroEvent: {
   6193     assert(Args.size() == 1);
   6194     CurInit = Args[0];
   6195     if (!CurInit.get()) return ExprError();
   6196     break;
   6197   }
   6198 
   6199   case SK_ConstructorInitialization:
   6200   case SK_ConstructorInitializationFromList:
   6201   case SK_StdInitializerListConstructorCall:
   6202   case SK_ZeroInitialization:
   6203     break;
   6204   }
   6205 
   6206   // Walk through the computed steps for the initialization sequence,
   6207   // performing the specified conversions along the way.
   6208   bool ConstructorInitRequiresZeroInit = false;
   6209   for (step_iterator Step = step_begin(), StepEnd = step_end();
   6210        Step != StepEnd; ++Step) {
   6211     if (CurInit.isInvalid())
   6212       return ExprError();
   6213 
   6214     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
   6215 
   6216     switch (Step->Kind) {
   6217     case SK_ResolveAddressOfOverloadedFunction:
   6218       // Overload resolution determined which function invoke; update the
   6219       // initializer to reflect that choice.
   6220       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
   6221       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
   6222         return ExprError();
   6223       CurInit = S.FixOverloadedFunctionReference(CurInit,
   6224                                                  Step->Function.FoundDecl,
   6225                                                  Step->Function.Function);
   6226       break;
   6227 
   6228     case SK_CastDerivedToBaseRValue:
   6229     case SK_CastDerivedToBaseXValue:
   6230     case SK_CastDerivedToBaseLValue: {
   6231       // We have a derived-to-base cast that produces either an rvalue or an
   6232       // lvalue. Perform that cast.
   6233 
   6234       CXXCastPath BasePath;
   6235 
   6236       // Casts to inaccessible base classes are allowed with C-style casts.
   6237       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
   6238       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
   6239                                          CurInit.get()->getLocStart(),
   6240                                          CurInit.get()->getSourceRange(),
   6241                                          &BasePath, IgnoreBaseAccess))
   6242         return ExprError();
   6243 
   6244       ExprValueKind VK =
   6245           Step->Kind == SK_CastDerivedToBaseLValue ?
   6246               VK_LValue :
   6247               (Step->Kind == SK_CastDerivedToBaseXValue ?
   6248                    VK_XValue :
   6249                    VK_RValue);
   6250       CurInit =
   6251           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
   6252                                    CurInit.get(), &BasePath, VK);
   6253       break;
   6254     }
   6255 
   6256     case SK_BindReference:
   6257       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
   6258       if (CurInit.get()->refersToBitField()) {
   6259         // We don't necessarily have an unambiguous source bit-field.
   6260         FieldDecl *BitField = CurInit.get()->getSourceBitField();
   6261         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
   6262           << Entity.getType().isVolatileQualified()
   6263           << (BitField ? BitField->getDeclName() : DeclarationName())
   6264           << (BitField != nullptr)
   6265           << CurInit.get()->getSourceRange();
   6266         if (BitField)
   6267           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
   6268 
   6269         return ExprError();
   6270       }
   6271 
   6272       if (CurInit.get()->refersToVectorElement()) {
   6273         // References cannot bind to vector elements.
   6274         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
   6275           << Entity.getType().isVolatileQualified()
   6276           << CurInit.get()->getSourceRange();
   6277         PrintInitLocationNote(S, Entity);
   6278         return ExprError();
   6279       }
   6280 
   6281       // Reference binding does not have any corresponding ASTs.
   6282 
   6283       // Check exception specifications
   6284       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
   6285         return ExprError();
   6286 
   6287       // Even though we didn't materialize a temporary, the binding may still
   6288       // extend the lifetime of a temporary. This happens if we bind a reference
   6289       // to the result of a cast to reference type.
   6290       if (const InitializedEntity *ExtendingEntity =
   6291               getEntityForTemporaryLifetimeExtension(&Entity))
   6292         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
   6293           warnOnLifetimeExtension(S, Entity, CurInit.get(),
   6294                                   /*IsInitializerList=*/false,
   6295                                   ExtendingEntity->getDecl());
   6296 
   6297       break;
   6298 
   6299     case SK_BindReferenceToTemporary: {
   6300       // Make sure the "temporary" is actually an rvalue.
   6301       assert(CurInit.get()->isRValue() && "not a temporary");
   6302 
   6303       // Check exception specifications
   6304       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
   6305         return ExprError();
   6306 
   6307       // Materialize the temporary into memory.
   6308       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
   6309           Entity.getType().getNonReferenceType(), CurInit.get(),
   6310           Entity.getType()->isLValueReferenceType());
   6311 
   6312       // Maybe lifetime-extend the temporary's subobjects to match the
   6313       // entity's lifetime.
   6314       if (const InitializedEntity *ExtendingEntity =
   6315               getEntityForTemporaryLifetimeExtension(&Entity))
   6316         if (performReferenceExtension(MTE, ExtendingEntity))
   6317           warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
   6318                                   ExtendingEntity->getDecl());
   6319 
   6320       // If we're binding to an Objective-C object that has lifetime, we
   6321       // need cleanups. Likewise if we're extending this temporary to automatic
   6322       // storage duration -- we need to register its cleanup during the
   6323       // full-expression's cleanups.
   6324       if ((S.getLangOpts().ObjCAutoRefCount &&
   6325            MTE->getType()->isObjCLifetimeType()) ||
   6326           (MTE->getStorageDuration() == SD_Automatic &&
   6327            MTE->getType().isDestructedType()))
   6328         S.ExprNeedsCleanups = true;
   6329 
   6330       CurInit = MTE;
   6331       break;
   6332     }
   6333 
   6334     case SK_ExtraneousCopyToTemporary:
   6335       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
   6336                            /*IsExtraneousCopy=*/true);
   6337       break;
   6338 
   6339     case SK_UserConversion: {
   6340       // We have a user-defined conversion that invokes either a constructor
   6341       // or a conversion function.
   6342       CastKind CastKind;
   6343       bool IsCopy = false;
   6344       FunctionDecl *Fn = Step->Function.Function;
   6345       DeclAccessPair FoundFn = Step->Function.FoundDecl;
   6346       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
   6347       bool CreatedObject = false;
   6348       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
   6349         // Build a call to the selected constructor.
   6350         SmallVector<Expr*, 8> ConstructorArgs;
   6351         SourceLocation Loc = CurInit.get()->getLocStart();
   6352         CurInit.get(); // Ownership transferred into MultiExprArg, below.
   6353 
   6354         // Determine the arguments required to actually perform the constructor
   6355         // call.
   6356         Expr *Arg = CurInit.get();
   6357         if (S.CompleteConstructorCall(Constructor,
   6358                                       MultiExprArg(&Arg, 1),
   6359                                       Loc, ConstructorArgs))
   6360           return ExprError();
   6361 
   6362         // Build an expression that constructs a temporary.
   6363         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
   6364                                           ConstructorArgs,
   6365                                           HadMultipleCandidates,
   6366                                           /*ListInit*/ false,
   6367                                           /*StdInitListInit*/ false,
   6368                                           /*ZeroInit*/ false,
   6369                                           CXXConstructExpr::CK_Complete,
   6370                                           SourceRange());
   6371         if (CurInit.isInvalid())
   6372           return ExprError();
   6373 
   6374         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
   6375                                  FoundFn.getAccess());
   6376         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
   6377           return ExprError();
   6378 
   6379         CastKind = CK_ConstructorConversion;
   6380         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
   6381         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
   6382             S.IsDerivedFrom(Loc, SourceType, Class))
   6383           IsCopy = true;
   6384 
   6385         CreatedObject = true;
   6386       } else {
   6387         // Build a call to the conversion function.
   6388         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
   6389         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
   6390                                     FoundFn);
   6391         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
   6392           return ExprError();
   6393 
   6394         // FIXME: Should we move this initialization into a separate
   6395         // derived-to-base conversion? I believe the answer is "no", because
   6396         // we don't want to turn off access control here for c-style casts.
   6397         ExprResult CurInitExprRes =
   6398           S.PerformObjectArgumentInitialization(CurInit.get(),
   6399                                                 /*Qualifier=*/nullptr,
   6400                                                 FoundFn, Conversion);
   6401         if(CurInitExprRes.isInvalid())
   6402           return ExprError();
   6403         CurInit = CurInitExprRes;
   6404 
   6405         // Build the actual call to the conversion function.
   6406         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
   6407                                            HadMultipleCandidates);
   6408         if (CurInit.isInvalid() || !CurInit.get())
   6409           return ExprError();
   6410 
   6411         CastKind = CK_UserDefinedConversion;
   6412 
   6413         CreatedObject = Conversion->getReturnType()->isRecordType();
   6414       }
   6415 
   6416       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
   6417       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
   6418 
   6419       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
   6420         QualType T = CurInit.get()->getType();
   6421         if (const RecordType *Record = T->getAs<RecordType>()) {
   6422           CXXDestructorDecl *Destructor
   6423             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
   6424           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
   6425                                   S.PDiag(diag::err_access_dtor_temp) << T);
   6426           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
   6427           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
   6428             return ExprError();
   6429         }
   6430       }
   6431 
   6432       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
   6433                                          CastKind, CurInit.get(), nullptr,
   6434                                          CurInit.get()->getValueKind());
   6435       if (MaybeBindToTemp)
   6436         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
   6437       if (RequiresCopy)
   6438         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
   6439                              CurInit, /*IsExtraneousCopy=*/false);
   6440       break;
   6441     }
   6442 
   6443     case SK_QualificationConversionLValue:
   6444     case SK_QualificationConversionXValue:
   6445     case SK_QualificationConversionRValue: {
   6446       // Perform a qualification conversion; these can never go wrong.
   6447       ExprValueKind VK =
   6448           Step->Kind == SK_QualificationConversionLValue ?
   6449               VK_LValue :
   6450               (Step->Kind == SK_QualificationConversionXValue ?
   6451                    VK_XValue :
   6452                    VK_RValue);
   6453       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
   6454       break;
   6455     }
   6456 
   6457     case SK_AtomicConversion: {
   6458       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
   6459       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
   6460                                     CK_NonAtomicToAtomic, VK_RValue);
   6461       break;
   6462     }
   6463 
   6464     case SK_LValueToRValue: {
   6465       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
   6466       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
   6467                                          CK_LValueToRValue, CurInit.get(),
   6468                                          /*BasePath=*/nullptr, VK_RValue);
   6469       break;
   6470     }
   6471 
   6472     case SK_ConversionSequence:
   6473     case SK_ConversionSequenceNoNarrowing: {
   6474       Sema::CheckedConversionKind CCK
   6475         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
   6476         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
   6477         : Kind.isExplicitCast()? Sema::CCK_OtherCast
   6478         : Sema::CCK_ImplicitConversion;
   6479       ExprResult CurInitExprRes =
   6480         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
   6481                                     getAssignmentAction(Entity), CCK);
   6482       if (CurInitExprRes.isInvalid())
   6483         return ExprError();
   6484       CurInit = CurInitExprRes;
   6485 
   6486       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
   6487           S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
   6488         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
   6489                                     CurInit.get());
   6490       break;
   6491     }
   6492 
   6493     case SK_ListInitialization: {
   6494       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
   6495       // If we're not initializing the top-level entity, we need to create an
   6496       // InitializeTemporary entity for our target type.
   6497       QualType Ty = Step->Type;
   6498       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
   6499       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
   6500       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
   6501       InitListChecker PerformInitList(S, InitEntity,
   6502           InitList, Ty, /*VerifyOnly=*/false);
   6503       if (PerformInitList.HadError())
   6504         return ExprError();
   6505 
   6506       // Hack: We must update *ResultType if available in order to set the
   6507       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
   6508       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
   6509       if (ResultType &&
   6510           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
   6511         if ((*ResultType)->isRValueReferenceType())
   6512           Ty = S.Context.getRValueReferenceType(Ty);
   6513         else if ((*ResultType)->isLValueReferenceType())
   6514           Ty = S.Context.getLValueReferenceType(Ty,
   6515             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
   6516         *ResultType = Ty;
   6517       }
   6518 
   6519       InitListExpr *StructuredInitList =
   6520           PerformInitList.getFullyStructuredList();
   6521       CurInit.get();
   6522       CurInit = shouldBindAsTemporary(InitEntity)
   6523           ? S.MaybeBindToTemporary(StructuredInitList)
   6524           : StructuredInitList;
   6525       break;
   6526     }
   6527 
   6528     case SK_ConstructorInitializationFromList: {
   6529       // When an initializer list is passed for a parameter of type "reference
   6530       // to object", we don't get an EK_Temporary entity, but instead an
   6531       // EK_Parameter entity with reference type.
   6532       // FIXME: This is a hack. What we really should do is create a user
   6533       // conversion step for this case, but this makes it considerably more
   6534       // complicated. For now, this will do.
   6535       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
   6536                                         Entity.getType().getNonReferenceType());
   6537       bool UseTemporary = Entity.getType()->isReferenceType();
   6538       assert(Args.size() == 1 && "expected a single argument for list init");
   6539       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
   6540       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
   6541         << InitList->getSourceRange();
   6542       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
   6543       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
   6544                                                                    Entity,
   6545                                                  Kind, Arg, *Step,
   6546                                                ConstructorInitRequiresZeroInit,
   6547                                                /*IsListInitialization*/true,
   6548                                                /*IsStdInitListInit*/false,
   6549                                                InitList->getLBraceLoc(),
   6550                                                InitList->getRBraceLoc());
   6551       break;
   6552     }
   6553 
   6554     case SK_UnwrapInitList:
   6555       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
   6556       break;
   6557 
   6558     case SK_RewrapInitList: {
   6559       Expr *E = CurInit.get();
   6560       InitListExpr *Syntactic = Step->WrappingSyntacticList;
   6561       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
   6562           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
   6563       ILE->setSyntacticForm(Syntactic);
   6564       ILE->setType(E->getType());
   6565       ILE->setValueKind(E->getValueKind());
   6566       CurInit = ILE;
   6567       break;
   6568     }
   6569 
   6570     case SK_ConstructorInitialization:
   6571     case SK_StdInitializerListConstructorCall: {
   6572       // When an initializer list is passed for a parameter of type "reference
   6573       // to object", we don't get an EK_Temporary entity, but instead an
   6574       // EK_Parameter entity with reference type.
   6575       // FIXME: This is a hack. What we really should do is create a user
   6576       // conversion step for this case, but this makes it considerably more
   6577       // complicated. For now, this will do.
   6578       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
   6579                                         Entity.getType().getNonReferenceType());
   6580       bool UseTemporary = Entity.getType()->isReferenceType();
   6581       bool IsStdInitListInit =
   6582           Step->Kind == SK_StdInitializerListConstructorCall;
   6583       CurInit = PerformConstructorInitialization(
   6584           S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
   6585           ConstructorInitRequiresZeroInit,
   6586           /*IsListInitialization*/IsStdInitListInit,
   6587           /*IsStdInitListInitialization*/IsStdInitListInit,
   6588           /*LBraceLoc*/SourceLocation(),
   6589           /*RBraceLoc*/SourceLocation());
   6590       break;
   6591     }
   6592 
   6593     case SK_ZeroInitialization: {
   6594       step_iterator NextStep = Step;
   6595       ++NextStep;
   6596       if (NextStep != StepEnd &&
   6597           (NextStep->Kind == SK_ConstructorInitialization ||
   6598            NextStep->Kind == SK_ConstructorInitializationFromList)) {
   6599         // The need for zero-initialization is recorded directly into
   6600         // the call to the object's constructor within the next step.
   6601         ConstructorInitRequiresZeroInit = true;
   6602       } else if (Kind.getKind() == InitializationKind::IK_Value &&
   6603                  S.getLangOpts().CPlusPlus &&
   6604                  !Kind.isImplicitValueInit()) {
   6605         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
   6606         if (!TSInfo)
   6607           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
   6608                                                     Kind.getRange().getBegin());
   6609 
   6610         CurInit = new (S.Context) CXXScalarValueInitExpr(
   6611             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
   6612             Kind.getRange().getEnd());
   6613       } else {
   6614         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
   6615       }
   6616       break;
   6617     }
   6618 
   6619     case SK_CAssignment: {
   6620       QualType SourceType = CurInit.get()->getType();
   6621       // Save off the initial CurInit in case we need to emit a diagnostic
   6622       ExprResult InitialCurInit = CurInit;
   6623       ExprResult Result = CurInit;
   6624       Sema::AssignConvertType ConvTy =
   6625         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
   6626             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
   6627       if (Result.isInvalid())
   6628         return ExprError();
   6629       CurInit = Result;
   6630 
   6631       // If this is a call, allow conversion to a transparent union.
   6632       ExprResult CurInitExprRes = CurInit;
   6633       if (ConvTy != Sema::Compatible &&
   6634           Entity.isParameterKind() &&
   6635           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
   6636             == Sema::Compatible)
   6637         ConvTy = Sema::Compatible;
   6638       if (CurInitExprRes.isInvalid())
   6639         return ExprError();
   6640       CurInit = CurInitExprRes;
   6641 
   6642       bool Complained;
   6643       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
   6644                                      Step->Type, SourceType,
   6645                                      InitialCurInit.get(),
   6646                                      getAssignmentAction(Entity, true),
   6647                                      &Complained)) {
   6648         PrintInitLocationNote(S, Entity);
   6649         return ExprError();
   6650       } else if (Complained)
   6651         PrintInitLocationNote(S, Entity);
   6652       break;
   6653     }
   6654 
   6655     case SK_StringInit: {
   6656       QualType Ty = Step->Type;
   6657       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
   6658                       S.Context.getAsArrayType(Ty), S);
   6659       break;
   6660     }
   6661 
   6662     case SK_ObjCObjectConversion:
   6663       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
   6664                           CK_ObjCObjectLValueCast,
   6665                           CurInit.get()->getValueKind());
   6666       break;
   6667 
   6668     case SK_ArrayInit:
   6669       // Okay: we checked everything before creating this step. Note that
   6670       // this is a GNU extension.
   6671       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
   6672         << Step->Type << CurInit.get()->getType()
   6673         << CurInit.get()->getSourceRange();
   6674 
   6675       // If the destination type is an incomplete array type, update the
   6676       // type accordingly.
   6677       if (ResultType) {
   6678         if (const IncompleteArrayType *IncompleteDest
   6679                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
   6680           if (const ConstantArrayType *ConstantSource
   6681                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
   6682             *ResultType = S.Context.getConstantArrayType(
   6683                                              IncompleteDest->getElementType(),
   6684                                              ConstantSource->getSize(),
   6685                                              ArrayType::Normal, 0);
   6686           }
   6687         }
   6688       }
   6689       break;
   6690 
   6691     case SK_ParenthesizedArrayInit:
   6692       // Okay: we checked everything before creating this step. Note that
   6693       // this is a GNU extension.
   6694       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
   6695         << CurInit.get()->getSourceRange();
   6696       break;
   6697 
   6698     case SK_PassByIndirectCopyRestore:
   6699     case SK_PassByIndirectRestore:
   6700       checkIndirectCopyRestoreSource(S, CurInit.get());
   6701       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
   6702           CurInit.get(), Step->Type,
   6703           Step->Kind == SK_PassByIndirectCopyRestore);
   6704       break;
   6705 
   6706     case SK_ProduceObjCObject:
   6707       CurInit =
   6708           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
   6709                                    CurInit.get(), nullptr, VK_RValue);
   6710       break;
   6711 
   6712     case SK_StdInitializerList: {
   6713       S.Diag(CurInit.get()->getExprLoc(),
   6714              diag::warn_cxx98_compat_initializer_list_init)
   6715         << CurInit.get()->getSourceRange();
   6716 
   6717       // Materialize the temporary into memory.
   6718       MaterializeTemporaryExpr *MTE = new (S.Context)
   6719           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
   6720                                    /*BoundToLvalueReference=*/false);
   6721 
   6722       // Maybe lifetime-extend the array temporary's subobjects to match the
   6723       // entity's lifetime.
   6724       if (const InitializedEntity *ExtendingEntity =
   6725               getEntityForTemporaryLifetimeExtension(&Entity))
   6726         if (performReferenceExtension(MTE, ExtendingEntity))
   6727           warnOnLifetimeExtension(S, Entity, CurInit.get(),
   6728                                   /*IsInitializerList=*/true,
   6729                                   ExtendingEntity->getDecl());
   6730 
   6731       // Wrap it in a construction of a std::initializer_list<T>.
   6732       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
   6733 
   6734       // Bind the result, in case the library has given initializer_list a
   6735       // non-trivial destructor.
   6736       if (shouldBindAsTemporary(Entity))
   6737         CurInit = S.MaybeBindToTemporary(CurInit.get());
   6738       break;
   6739     }
   6740 
   6741     case SK_OCLSamplerInit: {
   6742       assert(Step->Type->isSamplerT() &&
   6743              "Sampler initialization on non-sampler type.");
   6744 
   6745       QualType SourceType = CurInit.get()->getType();
   6746 
   6747       if (Entity.isParameterKind()) {
   6748         if (!SourceType->isSamplerT())
   6749           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
   6750             << SourceType;
   6751       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
   6752         llvm_unreachable("Invalid EntityKind!");
   6753       }
   6754 
   6755       break;
   6756     }
   6757     case SK_OCLZeroEvent: {
   6758       assert(Step->Type->isEventT() &&
   6759              "Event initialization on non-event type.");
   6760 
   6761       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
   6762                                     CK_ZeroToOCLEvent,
   6763                                     CurInit.get()->getValueKind());
   6764       break;
   6765     }
   6766     }
   6767   }
   6768 
   6769   // Diagnose non-fatal problems with the completed initialization.
   6770   if (Entity.getKind() == InitializedEntity::EK_Member &&
   6771       cast<FieldDecl>(Entity.getDecl())->isBitField())
   6772     S.CheckBitFieldInitialization(Kind.getLocation(),
   6773                                   cast<FieldDecl>(Entity.getDecl()),
   6774                                   CurInit.get());
   6775 
   6776   // Check for std::move on construction.
   6777   if (const Expr *E = CurInit.get()) {
   6778     CheckMoveOnConstruction(S, E,
   6779                             Entity.getKind() == InitializedEntity::EK_Result);
   6780   }
   6781 
   6782   return CurInit;
   6783 }
   6784 
   6785 /// Somewhere within T there is an uninitialized reference subobject.
   6786 /// Dig it out and diagnose it.
   6787 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
   6788                                            QualType T) {
   6789   if (T->isReferenceType()) {
   6790     S.Diag(Loc, diag::err_reference_without_init)
   6791       << T.getNonReferenceType();
   6792     return true;
   6793   }
   6794 
   6795   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   6796   if (!RD || !RD->hasUninitializedReferenceMember())
   6797     return false;
   6798 
   6799   for (const auto *FI : RD->fields()) {
   6800     if (FI->isUnnamedBitfield())
   6801       continue;
   6802 
   6803     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
   6804       S.Diag(Loc, diag::note_value_initialization_here) << RD;
   6805       return true;
   6806     }
   6807   }
   6808 
   6809   for (const auto &BI : RD->bases()) {
   6810     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
   6811       S.Diag(Loc, diag::note_value_initialization_here) << RD;
   6812       return true;
   6813     }
   6814   }
   6815 
   6816   return false;
   6817 }
   6818 
   6819 
   6820 //===----------------------------------------------------------------------===//
   6821 // Diagnose initialization failures
   6822 //===----------------------------------------------------------------------===//
   6823 
   6824 /// Emit notes associated with an initialization that failed due to a
   6825 /// "simple" conversion failure.
   6826 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
   6827                                    Expr *op) {
   6828   QualType destType = entity.getType();
   6829   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
   6830       op->getType()->isObjCObjectPointerType()) {
   6831 
   6832     // Emit a possible note about the conversion failing because the
   6833     // operand is a message send with a related result type.
   6834     S.EmitRelatedResultTypeNote(op);
   6835 
   6836     // Emit a possible note about a return failing because we're
   6837     // expecting a related result type.
   6838     if (entity.getKind() == InitializedEntity::EK_Result)
   6839       S.EmitRelatedResultTypeNoteForReturn(destType);
   6840   }
   6841 }
   6842 
   6843 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
   6844                              InitListExpr *InitList) {
   6845   QualType DestType = Entity.getType();
   6846 
   6847   QualType E;
   6848   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
   6849     QualType ArrayType = S.Context.getConstantArrayType(
   6850         E.withConst(),
   6851         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
   6852                     InitList->getNumInits()),
   6853         clang::ArrayType::Normal, 0);
   6854     InitializedEntity HiddenArray =
   6855         InitializedEntity::InitializeTemporary(ArrayType);
   6856     return diagnoseListInit(S, HiddenArray, InitList);
   6857   }
   6858 
   6859   if (DestType->isReferenceType()) {
   6860     // A list-initialization failure for a reference means that we tried to
   6861     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
   6862     // inner initialization failed.
   6863     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
   6864     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
   6865     SourceLocation Loc = InitList->getLocStart();
   6866     if (auto *D = Entity.getDecl())
   6867       Loc = D->getLocation();
   6868     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
   6869     return;
   6870   }
   6871 
   6872   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
   6873                                    /*VerifyOnly=*/false);
   6874   assert(DiagnoseInitList.HadError() &&
   6875          "Inconsistent init list check result.");
   6876 }
   6877 
   6878 bool InitializationSequence::Diagnose(Sema &S,
   6879                                       const InitializedEntity &Entity,
   6880                                       const InitializationKind &Kind,
   6881                                       ArrayRef<Expr *> Args) {
   6882   if (!Failed())
   6883     return false;
   6884 
   6885   QualType DestType = Entity.getType();
   6886   switch (Failure) {
   6887   case FK_TooManyInitsForReference:
   6888     // FIXME: Customize for the initialized entity?
   6889     if (Args.empty()) {
   6890       // Dig out the reference subobject which is uninitialized and diagnose it.
   6891       // If this is value-initialization, this could be nested some way within
   6892       // the target type.
   6893       assert(Kind.getKind() == InitializationKind::IK_Value ||
   6894              DestType->isReferenceType());
   6895       bool Diagnosed =
   6896         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
   6897       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
   6898       (void)Diagnosed;
   6899     } else  // FIXME: diagnostic below could be better!
   6900       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
   6901         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
   6902     break;
   6903 
   6904   case FK_ArrayNeedsInitList:
   6905     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
   6906     break;
   6907   case FK_ArrayNeedsInitListOrStringLiteral:
   6908     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
   6909     break;
   6910   case FK_ArrayNeedsInitListOrWideStringLiteral:
   6911     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
   6912     break;
   6913   case FK_NarrowStringIntoWideCharArray:
   6914     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
   6915     break;
   6916   case FK_WideStringIntoCharArray:
   6917     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
   6918     break;
   6919   case FK_IncompatWideStringIntoWideChar:
   6920     S.Diag(Kind.getLocation(),
   6921            diag::err_array_init_incompat_wide_string_into_wchar);
   6922     break;
   6923   case FK_ArrayTypeMismatch:
   6924   case FK_NonConstantArrayInit:
   6925     S.Diag(Kind.getLocation(),
   6926            (Failure == FK_ArrayTypeMismatch
   6927               ? diag::err_array_init_different_type
   6928               : diag::err_array_init_non_constant_array))
   6929       << DestType.getNonReferenceType()
   6930       << Args[0]->getType()
   6931       << Args[0]->getSourceRange();
   6932     break;
   6933 
   6934   case FK_VariableLengthArrayHasInitializer:
   6935     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
   6936       << Args[0]->getSourceRange();
   6937     break;
   6938 
   6939   case FK_AddressOfOverloadFailed: {
   6940     DeclAccessPair Found;
   6941     S.ResolveAddressOfOverloadedFunction(Args[0],
   6942                                          DestType.getNonReferenceType(),
   6943                                          true,
   6944                                          Found);
   6945     break;
   6946   }
   6947 
   6948   case FK_AddressOfUnaddressableFunction: {
   6949     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
   6950     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   6951                                         Args[0]->getLocStart());
   6952     break;
   6953   }
   6954 
   6955   case FK_ReferenceInitOverloadFailed:
   6956   case FK_UserConversionOverloadFailed:
   6957     switch (FailedOverloadResult) {
   6958     case OR_Ambiguous:
   6959       if (Failure == FK_UserConversionOverloadFailed)
   6960         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
   6961           << Args[0]->getType() << DestType
   6962           << Args[0]->getSourceRange();
   6963       else
   6964         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
   6965           << DestType << Args[0]->getType()
   6966           << Args[0]->getSourceRange();
   6967 
   6968       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
   6969       break;
   6970 
   6971     case OR_No_Viable_Function:
   6972       if (!S.RequireCompleteType(Kind.getLocation(),
   6973                                  DestType.getNonReferenceType(),
   6974                           diag::err_typecheck_nonviable_condition_incomplete,
   6975                                Args[0]->getType(), Args[0]->getSourceRange()))
   6976         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
   6977           << (Entity.getKind() == InitializedEntity::EK_Result)
   6978           << Args[0]->getType() << Args[0]->getSourceRange()
   6979           << DestType.getNonReferenceType();
   6980 
   6981       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
   6982       break;
   6983 
   6984     case OR_Deleted: {
   6985       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
   6986         << Args[0]->getType() << DestType.getNonReferenceType()
   6987         << Args[0]->getSourceRange();
   6988       OverloadCandidateSet::iterator Best;
   6989       OverloadingResult Ovl
   6990         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
   6991                                                 true);
   6992       if (Ovl == OR_Deleted) {
   6993         S.NoteDeletedFunction(Best->Function);
   6994       } else {
   6995         llvm_unreachable("Inconsistent overload resolution?");
   6996       }
   6997       break;
   6998     }
   6999 
   7000     case OR_Success:
   7001       llvm_unreachable("Conversion did not fail!");
   7002     }
   7003     break;
   7004 
   7005   case FK_NonConstLValueReferenceBindingToTemporary:
   7006     if (isa<InitListExpr>(Args[0])) {
   7007       S.Diag(Kind.getLocation(),
   7008              diag::err_lvalue_reference_bind_to_initlist)
   7009       << DestType.getNonReferenceType().isVolatileQualified()
   7010       << DestType.getNonReferenceType()
   7011       << Args[0]->getSourceRange();
   7012       break;
   7013     }
   7014     // Intentional fallthrough
   7015 
   7016   case FK_NonConstLValueReferenceBindingToUnrelated:
   7017     S.Diag(Kind.getLocation(),
   7018            Failure == FK_NonConstLValueReferenceBindingToTemporary
   7019              ? diag::err_lvalue_reference_bind_to_temporary
   7020              : diag::err_lvalue_reference_bind_to_unrelated)
   7021       << DestType.getNonReferenceType().isVolatileQualified()
   7022       << DestType.getNonReferenceType()
   7023       << Args[0]->getType()
   7024       << Args[0]->getSourceRange();
   7025     break;
   7026 
   7027   case FK_RValueReferenceBindingToLValue:
   7028     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
   7029       << DestType.getNonReferenceType() << Args[0]->getType()
   7030       << Args[0]->getSourceRange();
   7031     break;
   7032 
   7033   case FK_ReferenceInitDropsQualifiers: {
   7034     QualType SourceType = Args[0]->getType();
   7035     QualType NonRefType = DestType.getNonReferenceType();
   7036     Qualifiers DroppedQualifiers =
   7037         SourceType.getQualifiers() - NonRefType.getQualifiers();
   7038 
   7039     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
   7040       << SourceType
   7041       << NonRefType
   7042       << DroppedQualifiers.getCVRQualifiers()
   7043       << Args[0]->getSourceRange();
   7044     break;
   7045   }
   7046 
   7047   case FK_ReferenceInitFailed:
   7048     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
   7049       << DestType.getNonReferenceType()
   7050       << Args[0]->isLValue()
   7051       << Args[0]->getType()
   7052       << Args[0]->getSourceRange();
   7053     emitBadConversionNotes(S, Entity, Args[0]);
   7054     break;
   7055 
   7056   case FK_ConversionFailed: {
   7057     QualType FromType = Args[0]->getType();
   7058     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
   7059       << (int)Entity.getKind()
   7060       << DestType
   7061       << Args[0]->isLValue()
   7062       << FromType
   7063       << Args[0]->getSourceRange();
   7064     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
   7065     S.Diag(Kind.getLocation(), PDiag);
   7066     emitBadConversionNotes(S, Entity, Args[0]);
   7067     break;
   7068   }
   7069 
   7070   case FK_ConversionFromPropertyFailed:
   7071     // No-op. This error has already been reported.
   7072     break;
   7073 
   7074   case FK_TooManyInitsForScalar: {
   7075     SourceRange R;
   7076 
   7077     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
   7078     if (InitList && InitList->getNumInits() >= 1) {
   7079       R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
   7080     } else {
   7081       assert(Args.size() > 1 && "Expected multiple initializers!");
   7082       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
   7083     }
   7084 
   7085     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
   7086     if (Kind.isCStyleOrFunctionalCast())
   7087       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
   7088         << R;
   7089     else
   7090       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
   7091         << /*scalar=*/2 << R;
   7092     break;
   7093   }
   7094 
   7095   case FK_ReferenceBindingToInitList:
   7096     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
   7097       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
   7098     break;
   7099 
   7100   case FK_InitListBadDestinationType:
   7101     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
   7102       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
   7103     break;
   7104 
   7105   case FK_ListConstructorOverloadFailed:
   7106   case FK_ConstructorOverloadFailed: {
   7107     SourceRange ArgsRange;
   7108     if (Args.size())
   7109       ArgsRange = SourceRange(Args.front()->getLocStart(),
   7110                               Args.back()->getLocEnd());
   7111 
   7112     if (Failure == FK_ListConstructorOverloadFailed) {
   7113       assert(Args.size() == 1 &&
   7114              "List construction from other than 1 argument.");
   7115       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
   7116       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
   7117     }
   7118 
   7119     // FIXME: Using "DestType" for the entity we're printing is probably
   7120     // bad.
   7121     switch (FailedOverloadResult) {
   7122       case OR_Ambiguous:
   7123         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
   7124           << DestType << ArgsRange;
   7125         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
   7126         break;
   7127 
   7128       case OR_No_Viable_Function:
   7129         if (Kind.getKind() == InitializationKind::IK_Default &&
   7130             (Entity.getKind() == InitializedEntity::EK_Base ||
   7131              Entity.getKind() == InitializedEntity::EK_Member) &&
   7132             isa<CXXConstructorDecl>(S.CurContext)) {
   7133           // This is implicit default initialization of a member or
   7134           // base within a constructor. If no viable function was
   7135           // found, notify the user that she needs to explicitly
   7136           // initialize this base/member.
   7137           CXXConstructorDecl *Constructor
   7138             = cast<CXXConstructorDecl>(S.CurContext);
   7139           if (Entity.getKind() == InitializedEntity::EK_Base) {
   7140             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
   7141               << (Constructor->getInheritedConstructor() ? 2 :
   7142                   Constructor->isImplicit() ? 1 : 0)
   7143               << S.Context.getTypeDeclType(Constructor->getParent())
   7144               << /*base=*/0
   7145               << Entity.getType();
   7146 
   7147             RecordDecl *BaseDecl
   7148               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
   7149                                                                   ->getDecl();
   7150             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
   7151               << S.Context.getTagDeclType(BaseDecl);
   7152           } else {
   7153             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
   7154               << (Constructor->getInheritedConstructor() ? 2 :
   7155                   Constructor->isImplicit() ? 1 : 0)
   7156               << S.Context.getTypeDeclType(Constructor->getParent())
   7157               << /*member=*/1
   7158               << Entity.getName();
   7159             S.Diag(Entity.getDecl()->getLocation(),
   7160                    diag::note_member_declared_at);
   7161 
   7162             if (const RecordType *Record
   7163                                  = Entity.getType()->getAs<RecordType>())
   7164               S.Diag(Record->getDecl()->getLocation(),
   7165                      diag::note_previous_decl)
   7166                 << S.Context.getTagDeclType(Record->getDecl());
   7167           }
   7168           break;
   7169         }
   7170 
   7171         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
   7172           << DestType << ArgsRange;
   7173         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
   7174         break;
   7175 
   7176       case OR_Deleted: {
   7177         OverloadCandidateSet::iterator Best;
   7178         OverloadingResult Ovl
   7179           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
   7180         if (Ovl != OR_Deleted) {
   7181           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
   7182             << true << DestType << ArgsRange;
   7183           llvm_unreachable("Inconsistent overload resolution?");
   7184           break;
   7185         }
   7186 
   7187         // If this is a defaulted or implicitly-declared function, then
   7188         // it was implicitly deleted. Make it clear that the deletion was
   7189         // implicit.
   7190         if (S.isImplicitlyDeleted(Best->Function))
   7191           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
   7192             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
   7193             << DestType << ArgsRange;
   7194         else
   7195           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
   7196             << true << DestType << ArgsRange;
   7197 
   7198         S.NoteDeletedFunction(Best->Function);
   7199         break;
   7200       }
   7201 
   7202       case OR_Success:
   7203         llvm_unreachable("Conversion did not fail!");
   7204     }
   7205   }
   7206   break;
   7207 
   7208   case FK_DefaultInitOfConst:
   7209     if (Entity.getKind() == InitializedEntity::EK_Member &&
   7210         isa<CXXConstructorDecl>(S.CurContext)) {
   7211       // This is implicit default-initialization of a const member in
   7212       // a constructor. Complain that it needs to be explicitly
   7213       // initialized.
   7214       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
   7215       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
   7216         << (Constructor->getInheritedConstructor() ? 2 :
   7217             Constructor->isImplicit() ? 1 : 0)
   7218         << S.Context.getTypeDeclType(Constructor->getParent())
   7219         << /*const=*/1
   7220         << Entity.getName();
   7221       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
   7222         << Entity.getName();
   7223     } else {
   7224       S.Diag(Kind.getLocation(), diag::err_default_init_const)
   7225           << DestType << (bool)DestType->getAs<RecordType>();
   7226     }
   7227     break;
   7228 
   7229   case FK_Incomplete:
   7230     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
   7231                           diag::err_init_incomplete_type);
   7232     break;
   7233 
   7234   case FK_ListInitializationFailed: {
   7235     // Run the init list checker again to emit diagnostics.
   7236     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
   7237     diagnoseListInit(S, Entity, InitList);
   7238     break;
   7239   }
   7240 
   7241   case FK_PlaceholderType: {
   7242     // FIXME: Already diagnosed!
   7243     break;
   7244   }
   7245 
   7246   case FK_ExplicitConstructor: {
   7247     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
   7248       << Args[0]->getSourceRange();
   7249     OverloadCandidateSet::iterator Best;
   7250     OverloadingResult Ovl
   7251       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
   7252     (void)Ovl;
   7253     assert(Ovl == OR_Success && "Inconsistent overload resolution");
   7254     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
   7255     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
   7256     break;
   7257   }
   7258   }
   7259 
   7260   PrintInitLocationNote(S, Entity);
   7261   return true;
   7262 }
   7263 
   7264 void InitializationSequence::dump(raw_ostream &OS) const {
   7265   switch (SequenceKind) {
   7266   case FailedSequence: {
   7267     OS << "Failed sequence: ";
   7268     switch (Failure) {
   7269     case FK_TooManyInitsForReference:
   7270       OS << "too many initializers for reference";
   7271       break;
   7272 
   7273     case FK_ArrayNeedsInitList:
   7274       OS << "array requires initializer list";
   7275       break;
   7276 
   7277     case FK_AddressOfUnaddressableFunction:
   7278       OS << "address of unaddressable function was taken";
   7279       break;
   7280 
   7281     case FK_ArrayNeedsInitListOrStringLiteral:
   7282       OS << "array requires initializer list or string literal";
   7283       break;
   7284 
   7285     case FK_ArrayNeedsInitListOrWideStringLiteral:
   7286       OS << "array requires initializer list or wide string literal";
   7287       break;
   7288 
   7289     case FK_NarrowStringIntoWideCharArray:
   7290       OS << "narrow string into wide char array";
   7291       break;
   7292 
   7293     case FK_WideStringIntoCharArray:
   7294       OS << "wide string into char array";
   7295       break;
   7296 
   7297     case FK_IncompatWideStringIntoWideChar:
   7298       OS << "incompatible wide string into wide char array";
   7299       break;
   7300 
   7301     case FK_ArrayTypeMismatch:
   7302       OS << "array type mismatch";
   7303       break;
   7304 
   7305     case FK_NonConstantArrayInit:
   7306       OS << "non-constant array initializer";
   7307       break;
   7308 
   7309     case FK_AddressOfOverloadFailed:
   7310       OS << "address of overloaded function failed";
   7311       break;
   7312 
   7313     case FK_ReferenceInitOverloadFailed:
   7314       OS << "overload resolution for reference initialization failed";
   7315       break;
   7316 
   7317     case FK_NonConstLValueReferenceBindingToTemporary:
   7318       OS << "non-const lvalue reference bound to temporary";
   7319       break;
   7320 
   7321     case FK_NonConstLValueReferenceBindingToUnrelated:
   7322       OS << "non-const lvalue reference bound to unrelated type";
   7323       break;
   7324 
   7325     case FK_RValueReferenceBindingToLValue:
   7326       OS << "rvalue reference bound to an lvalue";
   7327       break;
   7328 
   7329     case FK_ReferenceInitDropsQualifiers:
   7330       OS << "reference initialization drops qualifiers";
   7331       break;
   7332 
   7333     case FK_ReferenceInitFailed:
   7334       OS << "reference initialization failed";
   7335       break;
   7336 
   7337     case FK_ConversionFailed:
   7338       OS << "conversion failed";
   7339       break;
   7340 
   7341     case FK_ConversionFromPropertyFailed:
   7342       OS << "conversion from property failed";
   7343       break;
   7344 
   7345     case FK_TooManyInitsForScalar:
   7346       OS << "too many initializers for scalar";
   7347       break;
   7348 
   7349     case FK_ReferenceBindingToInitList:
   7350       OS << "referencing binding to initializer list";
   7351       break;
   7352 
   7353     case FK_InitListBadDestinationType:
   7354       OS << "initializer list for non-aggregate, non-scalar type";
   7355       break;
   7356 
   7357     case FK_UserConversionOverloadFailed:
   7358       OS << "overloading failed for user-defined conversion";
   7359       break;
   7360 
   7361     case FK_ConstructorOverloadFailed:
   7362       OS << "constructor overloading failed";
   7363       break;
   7364 
   7365     case FK_DefaultInitOfConst:
   7366       OS << "default initialization of a const variable";
   7367       break;
   7368 
   7369     case FK_Incomplete:
   7370       OS << "initialization of incomplete type";
   7371       break;
   7372 
   7373     case FK_ListInitializationFailed:
   7374       OS << "list initialization checker failure";
   7375       break;
   7376 
   7377     case FK_VariableLengthArrayHasInitializer:
   7378       OS << "variable length array has an initializer";
   7379       break;
   7380 
   7381     case FK_PlaceholderType:
   7382       OS << "initializer expression isn't contextually valid";
   7383       break;
   7384 
   7385     case FK_ListConstructorOverloadFailed:
   7386       OS << "list constructor overloading failed";
   7387       break;
   7388 
   7389     case FK_ExplicitConstructor:
   7390       OS << "list copy initialization chose explicit constructor";
   7391       break;
   7392     }
   7393     OS << '\n';
   7394     return;
   7395   }
   7396 
   7397   case DependentSequence:
   7398     OS << "Dependent sequence\n";
   7399     return;
   7400 
   7401   case NormalSequence:
   7402     OS << "Normal sequence: ";
   7403     break;
   7404   }
   7405 
   7406   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
   7407     if (S != step_begin()) {
   7408       OS << " -> ";
   7409     }
   7410 
   7411     switch (S->Kind) {
   7412     case SK_ResolveAddressOfOverloadedFunction:
   7413       OS << "resolve address of overloaded function";
   7414       break;
   7415 
   7416     case SK_CastDerivedToBaseRValue:
   7417       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
   7418       break;
   7419 
   7420     case SK_CastDerivedToBaseXValue:
   7421       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
   7422       break;
   7423 
   7424     case SK_CastDerivedToBaseLValue:
   7425       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
   7426       break;
   7427 
   7428     case SK_BindReference:
   7429       OS << "bind reference to lvalue";
   7430       break;
   7431 
   7432     case SK_BindReferenceToTemporary:
   7433       OS << "bind reference to a temporary";
   7434       break;
   7435 
   7436     case SK_ExtraneousCopyToTemporary:
   7437       OS << "extraneous C++03 copy to temporary";
   7438       break;
   7439 
   7440     case SK_UserConversion:
   7441       OS << "user-defined conversion via " << *S->Function.Function;
   7442       break;
   7443 
   7444     case SK_QualificationConversionRValue:
   7445       OS << "qualification conversion (rvalue)";
   7446       break;
   7447 
   7448     case SK_QualificationConversionXValue:
   7449       OS << "qualification conversion (xvalue)";
   7450       break;
   7451 
   7452     case SK_QualificationConversionLValue:
   7453       OS << "qualification conversion (lvalue)";
   7454       break;
   7455 
   7456     case SK_AtomicConversion:
   7457       OS << "non-atomic-to-atomic conversion";
   7458       break;
   7459 
   7460     case SK_LValueToRValue:
   7461       OS << "load (lvalue to rvalue)";
   7462       break;
   7463 
   7464     case SK_ConversionSequence:
   7465       OS << "implicit conversion sequence (";
   7466       S->ICS->dump(); // FIXME: use OS
   7467       OS << ")";
   7468       break;
   7469 
   7470     case SK_ConversionSequenceNoNarrowing:
   7471       OS << "implicit conversion sequence with narrowing prohibited (";
   7472       S->ICS->dump(); // FIXME: use OS
   7473       OS << ")";
   7474       break;
   7475 
   7476     case SK_ListInitialization:
   7477       OS << "list aggregate initialization";
   7478       break;
   7479 
   7480     case SK_UnwrapInitList:
   7481       OS << "unwrap reference initializer list";
   7482       break;
   7483 
   7484     case SK_RewrapInitList:
   7485       OS << "rewrap reference initializer list";
   7486       break;
   7487 
   7488     case SK_ConstructorInitialization:
   7489       OS << "constructor initialization";
   7490       break;
   7491 
   7492     case SK_ConstructorInitializationFromList:
   7493       OS << "list initialization via constructor";
   7494       break;
   7495 
   7496     case SK_ZeroInitialization:
   7497       OS << "zero initialization";
   7498       break;
   7499 
   7500     case SK_CAssignment:
   7501       OS << "C assignment";
   7502       break;
   7503 
   7504     case SK_StringInit:
   7505       OS << "string initialization";
   7506       break;
   7507 
   7508     case SK_ObjCObjectConversion:
   7509       OS << "Objective-C object conversion";
   7510       break;
   7511 
   7512     case SK_ArrayInit:
   7513       OS << "array initialization";
   7514       break;
   7515 
   7516     case SK_ParenthesizedArrayInit:
   7517       OS << "parenthesized array initialization";
   7518       break;
   7519 
   7520     case SK_PassByIndirectCopyRestore:
   7521       OS << "pass by indirect copy and restore";
   7522       break;
   7523 
   7524     case SK_PassByIndirectRestore:
   7525       OS << "pass by indirect restore";
   7526       break;
   7527 
   7528     case SK_ProduceObjCObject:
   7529       OS << "Objective-C object retension";
   7530       break;
   7531 
   7532     case SK_StdInitializerList:
   7533       OS << "std::initializer_list from initializer list";
   7534       break;
   7535 
   7536     case SK_StdInitializerListConstructorCall:
   7537       OS << "list initialization from std::initializer_list";
   7538       break;
   7539 
   7540     case SK_OCLSamplerInit:
   7541       OS << "OpenCL sampler_t from integer constant";
   7542       break;
   7543 
   7544     case SK_OCLZeroEvent:
   7545       OS << "OpenCL event_t from zero";
   7546       break;
   7547     }
   7548 
   7549     OS << " [" << S->Type.getAsString() << ']';
   7550   }
   7551 
   7552   OS << '\n';
   7553 }
   7554 
   7555 void InitializationSequence::dump() const {
   7556   dump(llvm::errs());
   7557 }
   7558 
   7559 static void DiagnoseNarrowingInInitList(Sema &S,
   7560                                         const ImplicitConversionSequence &ICS,
   7561                                         QualType PreNarrowingType,
   7562                                         QualType EntityType,
   7563                                         const Expr *PostInit) {
   7564   const StandardConversionSequence *SCS = nullptr;
   7565   switch (ICS.getKind()) {
   7566   case ImplicitConversionSequence::StandardConversion:
   7567     SCS = &ICS.Standard;
   7568     break;
   7569   case ImplicitConversionSequence::UserDefinedConversion:
   7570     SCS = &ICS.UserDefined.After;
   7571     break;
   7572   case ImplicitConversionSequence::AmbiguousConversion:
   7573   case ImplicitConversionSequence::EllipsisConversion:
   7574   case ImplicitConversionSequence::BadConversion:
   7575     return;
   7576   }
   7577 
   7578   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
   7579   APValue ConstantValue;
   7580   QualType ConstantType;
   7581   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
   7582                                 ConstantType)) {
   7583   case NK_Not_Narrowing:
   7584     // No narrowing occurred.
   7585     return;
   7586 
   7587   case NK_Type_Narrowing:
   7588     // This was a floating-to-integer conversion, which is always considered a
   7589     // narrowing conversion even if the value is a constant and can be
   7590     // represented exactly as an integer.
   7591     S.Diag(PostInit->getLocStart(),
   7592            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
   7593                ? diag::warn_init_list_type_narrowing
   7594                : diag::ext_init_list_type_narrowing)
   7595       << PostInit->getSourceRange()
   7596       << PreNarrowingType.getLocalUnqualifiedType()
   7597       << EntityType.getLocalUnqualifiedType();
   7598     break;
   7599 
   7600   case NK_Constant_Narrowing:
   7601     // A constant value was narrowed.
   7602     S.Diag(PostInit->getLocStart(),
   7603            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
   7604                ? diag::warn_init_list_constant_narrowing
   7605                : diag::ext_init_list_constant_narrowing)
   7606       << PostInit->getSourceRange()
   7607       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
   7608       << EntityType.getLocalUnqualifiedType();
   7609     break;
   7610 
   7611   case NK_Variable_Narrowing:
   7612     // A variable's value may have been narrowed.
   7613     S.Diag(PostInit->getLocStart(),
   7614            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
   7615                ? diag::warn_init_list_variable_narrowing
   7616                : diag::ext_init_list_variable_narrowing)
   7617       << PostInit->getSourceRange()
   7618       << PreNarrowingType.getLocalUnqualifiedType()
   7619       << EntityType.getLocalUnqualifiedType();
   7620     break;
   7621   }
   7622 
   7623   SmallString<128> StaticCast;
   7624   llvm::raw_svector_ostream OS(StaticCast);
   7625   OS << "static_cast<";
   7626   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
   7627     // It's important to use the typedef's name if there is one so that the
   7628     // fixit doesn't break code using types like int64_t.
   7629     //
   7630     // FIXME: This will break if the typedef requires qualification.  But
   7631     // getQualifiedNameAsString() includes non-machine-parsable components.
   7632     OS << *TT->getDecl();
   7633   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
   7634     OS << BT->getName(S.getLangOpts());
   7635   else {
   7636     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
   7637     // with a broken cast.
   7638     return;
   7639   }
   7640   OS << ">(";
   7641   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
   7642       << PostInit->getSourceRange()
   7643       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
   7644       << FixItHint::CreateInsertion(
   7645              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
   7646 }
   7647 
   7648 //===----------------------------------------------------------------------===//
   7649 // Initialization helper functions
   7650 //===----------------------------------------------------------------------===//
   7651 bool
   7652 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
   7653                                    ExprResult Init) {
   7654   if (Init.isInvalid())
   7655     return false;
   7656 
   7657   Expr *InitE = Init.get();
   7658   assert(InitE && "No initialization expression");
   7659 
   7660   InitializationKind Kind
   7661     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
   7662   InitializationSequence Seq(*this, Entity, Kind, InitE);
   7663   return !Seq.Failed();
   7664 }
   7665 
   7666 ExprResult
   7667 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
   7668                                 SourceLocation EqualLoc,
   7669                                 ExprResult Init,
   7670                                 bool TopLevelOfInitList,
   7671                                 bool AllowExplicit) {
   7672   if (Init.isInvalid())
   7673     return ExprError();
   7674 
   7675   Expr *InitE = Init.get();
   7676   assert(InitE && "No initialization expression?");
   7677 
   7678   if (EqualLoc.isInvalid())
   7679     EqualLoc = InitE->getLocStart();
   7680 
   7681   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
   7682                                                            EqualLoc,
   7683                                                            AllowExplicit);
   7684   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
   7685 
   7686   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
   7687 
   7688   return Result;
   7689 }
   7690