1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Initialization.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <map> 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// \brief Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_Other 53 }; 54 55 /// \brief Check whether the array of type AT can be initialized by the Init 56 /// expression by means of string initialization. Returns SIF_None if so, 57 /// otherwise returns a StringInitFailureKind that describes why the 58 /// initialization would not work. 59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 60 ASTContext &Context) { 61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 62 return SIF_Other; 63 64 // See if this is a string literal or @encode. 65 Init = Init->IgnoreParens(); 66 67 // Handle @encode, which is a narrow string. 68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 69 return SIF_None; 70 71 // Otherwise we can only handle string literals. 72 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 73 if (!SL) 74 return SIF_Other; 75 76 const QualType ElemTy = 77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 78 79 switch (SL->getKind()) { 80 case StringLiteral::Ascii: 81 case StringLiteral::UTF8: 82 // char array can be initialized with a narrow string. 83 // Only allow char x[] = "foo"; not char x[] = L"foo"; 84 if (ElemTy->isCharType()) 85 return SIF_None; 86 if (IsWideCharCompatible(ElemTy, Context)) 87 return SIF_NarrowStringIntoWideChar; 88 return SIF_Other; 89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 90 // "An array with element type compatible with a qualified or unqualified 91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 92 // string literal with the corresponding encoding prefix (L, u, or U, 93 // respectively), optionally enclosed in braces. 94 case StringLiteral::UTF16: 95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 96 return SIF_None; 97 if (ElemTy->isCharType()) 98 return SIF_WideStringIntoChar; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_IncompatWideStringIntoWideChar; 101 return SIF_Other; 102 case StringLiteral::UTF32: 103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 104 return SIF_None; 105 if (ElemTy->isCharType()) 106 return SIF_WideStringIntoChar; 107 if (IsWideCharCompatible(ElemTy, Context)) 108 return SIF_IncompatWideStringIntoWideChar; 109 return SIF_Other; 110 case StringLiteral::Wide: 111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 112 return SIF_None; 113 if (ElemTy->isCharType()) 114 return SIF_WideStringIntoChar; 115 if (IsWideCharCompatible(ElemTy, Context)) 116 return SIF_IncompatWideStringIntoWideChar; 117 return SIF_Other; 118 } 119 120 llvm_unreachable("missed a StringLiteral kind?"); 121 } 122 123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 124 ASTContext &Context) { 125 const ArrayType *arrayType = Context.getAsArrayType(declType); 126 if (!arrayType) 127 return SIF_Other; 128 return IsStringInit(init, arrayType, Context); 129 } 130 131 /// Update the type of a string literal, including any surrounding parentheses, 132 /// to match the type of the object which it is initializing. 133 static void updateStringLiteralType(Expr *E, QualType Ty) { 134 while (true) { 135 E->setType(Ty); 136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 137 break; 138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 139 E = PE->getSubExpr(); 140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 141 E = UO->getSubExpr(); 142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 143 E = GSE->getResultExpr(); 144 else 145 llvm_unreachable("unexpected expr in string literal init"); 146 } 147 } 148 149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 150 Sema &S) { 151 // Get the length of the string as parsed. 152 auto *ConstantArrayTy = 153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 155 156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 157 // C99 6.7.8p14. We have an array of character type with unknown size 158 // being initialized to a string literal. 159 llvm::APInt ConstVal(32, StrLength); 160 // Return a new array type (C99 6.7.8p22). 161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 162 ConstVal, 163 ArrayType::Normal, 0); 164 updateStringLiteralType(Str, DeclT); 165 return; 166 } 167 168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 169 170 // We have an array of character type with known size. However, 171 // the size may be smaller or larger than the string we are initializing. 172 // FIXME: Avoid truncation for 64-bit length strings. 173 if (S.getLangOpts().CPlusPlus) { 174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 175 // For Pascal strings it's OK to strip off the terminating null character, 176 // so the example below is valid: 177 // 178 // unsigned char a[2] = "\pa"; 179 if (SL->isPascal()) 180 StrLength--; 181 } 182 183 // [dcl.init.string]p2 184 if (StrLength > CAT->getSize().getZExtValue()) 185 S.Diag(Str->getLocStart(), 186 diag::err_initializer_string_for_char_array_too_long) 187 << Str->getSourceRange(); 188 } else { 189 // C99 6.7.8p14. 190 if (StrLength-1 > CAT->getSize().getZExtValue()) 191 S.Diag(Str->getLocStart(), 192 diag::ext_initializer_string_for_char_array_too_long) 193 << Str->getSourceRange(); 194 } 195 196 // Set the type to the actual size that we are initializing. If we have 197 // something like: 198 // char x[1] = "foo"; 199 // then this will set the string literal's type to char[1]. 200 updateStringLiteralType(Str, DeclT); 201 } 202 203 //===----------------------------------------------------------------------===// 204 // Semantic checking for initializer lists. 205 //===----------------------------------------------------------------------===// 206 207 /// @brief Semantic checking for initializer lists. 208 /// 209 /// The InitListChecker class contains a set of routines that each 210 /// handle the initialization of a certain kind of entity, e.g., 211 /// arrays, vectors, struct/union types, scalars, etc. The 212 /// InitListChecker itself performs a recursive walk of the subobject 213 /// structure of the type to be initialized, while stepping through 214 /// the initializer list one element at a time. The IList and Index 215 /// parameters to each of the Check* routines contain the active 216 /// (syntactic) initializer list and the index into that initializer 217 /// list that represents the current initializer. Each routine is 218 /// responsible for moving that Index forward as it consumes elements. 219 /// 220 /// Each Check* routine also has a StructuredList/StructuredIndex 221 /// arguments, which contains the current "structured" (semantic) 222 /// initializer list and the index into that initializer list where we 223 /// are copying initializers as we map them over to the semantic 224 /// list. Once we have completed our recursive walk of the subobject 225 /// structure, we will have constructed a full semantic initializer 226 /// list. 227 /// 228 /// C99 designators cause changes in the initializer list traversal, 229 /// because they make the initialization "jump" into a specific 230 /// subobject and then continue the initialization from that 231 /// point. CheckDesignatedInitializer() recursively steps into the 232 /// designated subobject and manages backing out the recursion to 233 /// initialize the subobjects after the one designated. 234 namespace { 235 class InitListChecker { 236 Sema &SemaRef; 237 bool hadError; 238 bool VerifyOnly; // no diagnostics, no structure building 239 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 240 InitListExpr *FullyStructuredList; 241 242 void CheckImplicitInitList(const InitializedEntity &Entity, 243 InitListExpr *ParentIList, QualType T, 244 unsigned &Index, InitListExpr *StructuredList, 245 unsigned &StructuredIndex); 246 void CheckExplicitInitList(const InitializedEntity &Entity, 247 InitListExpr *IList, QualType &T, 248 InitListExpr *StructuredList, 249 bool TopLevelObject = false); 250 void CheckListElementTypes(const InitializedEntity &Entity, 251 InitListExpr *IList, QualType &DeclType, 252 bool SubobjectIsDesignatorContext, 253 unsigned &Index, 254 InitListExpr *StructuredList, 255 unsigned &StructuredIndex, 256 bool TopLevelObject = false); 257 void CheckSubElementType(const InitializedEntity &Entity, 258 InitListExpr *IList, QualType ElemType, 259 unsigned &Index, 260 InitListExpr *StructuredList, 261 unsigned &StructuredIndex); 262 void CheckComplexType(const InitializedEntity &Entity, 263 InitListExpr *IList, QualType DeclType, 264 unsigned &Index, 265 InitListExpr *StructuredList, 266 unsigned &StructuredIndex); 267 void CheckScalarType(const InitializedEntity &Entity, 268 InitListExpr *IList, QualType DeclType, 269 unsigned &Index, 270 InitListExpr *StructuredList, 271 unsigned &StructuredIndex); 272 void CheckReferenceType(const InitializedEntity &Entity, 273 InitListExpr *IList, QualType DeclType, 274 unsigned &Index, 275 InitListExpr *StructuredList, 276 unsigned &StructuredIndex); 277 void CheckVectorType(const InitializedEntity &Entity, 278 InitListExpr *IList, QualType DeclType, unsigned &Index, 279 InitListExpr *StructuredList, 280 unsigned &StructuredIndex); 281 void CheckStructUnionTypes(const InitializedEntity &Entity, 282 InitListExpr *IList, QualType DeclType, 283 RecordDecl::field_iterator Field, 284 bool SubobjectIsDesignatorContext, unsigned &Index, 285 InitListExpr *StructuredList, 286 unsigned &StructuredIndex, 287 bool TopLevelObject = false); 288 void CheckArrayType(const InitializedEntity &Entity, 289 InitListExpr *IList, QualType &DeclType, 290 llvm::APSInt elementIndex, 291 bool SubobjectIsDesignatorContext, unsigned &Index, 292 InitListExpr *StructuredList, 293 unsigned &StructuredIndex); 294 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 295 InitListExpr *IList, DesignatedInitExpr *DIE, 296 unsigned DesigIdx, 297 QualType &CurrentObjectType, 298 RecordDecl::field_iterator *NextField, 299 llvm::APSInt *NextElementIndex, 300 unsigned &Index, 301 InitListExpr *StructuredList, 302 unsigned &StructuredIndex, 303 bool FinishSubobjectInit, 304 bool TopLevelObject); 305 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 306 QualType CurrentObjectType, 307 InitListExpr *StructuredList, 308 unsigned StructuredIndex, 309 SourceRange InitRange, 310 bool IsFullyOverwritten = false); 311 void UpdateStructuredListElement(InitListExpr *StructuredList, 312 unsigned &StructuredIndex, 313 Expr *expr); 314 int numArrayElements(QualType DeclType); 315 int numStructUnionElements(QualType DeclType); 316 317 static ExprResult PerformEmptyInit(Sema &SemaRef, 318 SourceLocation Loc, 319 const InitializedEntity &Entity, 320 bool VerifyOnly); 321 322 // Explanation on the "FillWithNoInit" mode: 323 // 324 // Assume we have the following definitions (Case#1): 325 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 326 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 327 // 328 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 329 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 330 // 331 // But if we have (Case#2): 332 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 333 // 334 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 335 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 336 // 337 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 338 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 339 // initializers but with special "NoInitExpr" place holders, which tells the 340 // CodeGen not to generate any initializers for these parts. 341 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 342 const InitializedEntity &ParentEntity, 343 InitListExpr *ILE, bool &RequiresSecondPass, 344 bool FillWithNoInit = false); 345 void FillInEmptyInitializations(const InitializedEntity &Entity, 346 InitListExpr *ILE, bool &RequiresSecondPass, 347 bool FillWithNoInit = false); 348 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 349 Expr *InitExpr, FieldDecl *Field, 350 bool TopLevelObject); 351 void CheckEmptyInitializable(const InitializedEntity &Entity, 352 SourceLocation Loc); 353 354 public: 355 InitListChecker(Sema &S, const InitializedEntity &Entity, 356 InitListExpr *IL, QualType &T, bool VerifyOnly); 357 bool HadError() { return hadError; } 358 359 // @brief Retrieves the fully-structured initializer list used for 360 // semantic analysis and code generation. 361 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 362 }; 363 } // end anonymous namespace 364 365 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 366 SourceLocation Loc, 367 const InitializedEntity &Entity, 368 bool VerifyOnly) { 369 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 370 true); 371 MultiExprArg SubInit; 372 Expr *InitExpr; 373 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 374 375 // C++ [dcl.init.aggr]p7: 376 // If there are fewer initializer-clauses in the list than there are 377 // members in the aggregate, then each member not explicitly initialized 378 // ... 379 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 380 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 381 if (EmptyInitList) { 382 // C++1y / DR1070: 383 // shall be initialized [...] from an empty initializer list. 384 // 385 // We apply the resolution of this DR to C++11 but not C++98, since C++98 386 // does not have useful semantics for initialization from an init list. 387 // We treat this as copy-initialization, because aggregate initialization 388 // always performs copy-initialization on its elements. 389 // 390 // Only do this if we're initializing a class type, to avoid filling in 391 // the initializer list where possible. 392 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 393 InitListExpr(SemaRef.Context, Loc, None, Loc); 394 InitExpr->setType(SemaRef.Context.VoidTy); 395 SubInit = InitExpr; 396 Kind = InitializationKind::CreateCopy(Loc, Loc); 397 } else { 398 // C++03: 399 // shall be value-initialized. 400 } 401 402 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 403 // libstdc++4.6 marks the vector default constructor as explicit in 404 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 405 // stlport does so too. Look for std::__debug for libstdc++, and for 406 // std:: for stlport. This is effectively a compiler-side implementation of 407 // LWG2193. 408 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 409 InitializationSequence::FK_ExplicitConstructor) { 410 OverloadCandidateSet::iterator Best; 411 OverloadingResult O = 412 InitSeq.getFailedCandidateSet() 413 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 414 (void)O; 415 assert(O == OR_Success && "Inconsistent overload resolution"); 416 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 417 CXXRecordDecl *R = CtorDecl->getParent(); 418 419 if (CtorDecl->getMinRequiredArguments() == 0 && 420 CtorDecl->isExplicit() && R->getDeclName() && 421 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 422 423 424 bool IsInStd = false; 425 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 426 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 427 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 428 IsInStd = true; 429 } 430 431 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 432 .Cases("basic_string", "deque", "forward_list", true) 433 .Cases("list", "map", "multimap", "multiset", true) 434 .Cases("priority_queue", "queue", "set", "stack", true) 435 .Cases("unordered_map", "unordered_set", "vector", true) 436 .Default(false)) { 437 InitSeq.InitializeFrom( 438 SemaRef, Entity, 439 InitializationKind::CreateValue(Loc, Loc, Loc, true), 440 MultiExprArg(), /*TopLevelOfInitList=*/false); 441 // Emit a warning for this. System header warnings aren't shown 442 // by default, but people working on system headers should see it. 443 if (!VerifyOnly) { 444 SemaRef.Diag(CtorDecl->getLocation(), 445 diag::warn_invalid_initializer_from_system_header); 446 if (Entity.getKind() == InitializedEntity::EK_Member) 447 SemaRef.Diag(Entity.getDecl()->getLocation(), 448 diag::note_used_in_initialization_here); 449 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 450 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 451 } 452 } 453 } 454 } 455 if (!InitSeq) { 456 if (!VerifyOnly) { 457 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 458 if (Entity.getKind() == InitializedEntity::EK_Member) 459 SemaRef.Diag(Entity.getDecl()->getLocation(), 460 diag::note_in_omitted_aggregate_initializer) 461 << /*field*/1 << Entity.getDecl(); 462 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 463 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 464 << /*array element*/0 << Entity.getElementIndex(); 465 } 466 return ExprError(); 467 } 468 469 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 470 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 471 } 472 473 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 474 SourceLocation Loc) { 475 assert(VerifyOnly && 476 "CheckEmptyInitializable is only inteded for verification mode."); 477 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid()) 478 hadError = true; 479 } 480 481 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 482 const InitializedEntity &ParentEntity, 483 InitListExpr *ILE, 484 bool &RequiresSecondPass, 485 bool FillWithNoInit) { 486 SourceLocation Loc = ILE->getLocEnd(); 487 unsigned NumInits = ILE->getNumInits(); 488 InitializedEntity MemberEntity 489 = InitializedEntity::InitializeMember(Field, &ParentEntity); 490 491 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 492 if (!RType->getDecl()->isUnion()) 493 assert(Init < NumInits && "This ILE should have been expanded"); 494 495 if (Init >= NumInits || !ILE->getInit(Init)) { 496 if (FillWithNoInit) { 497 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 498 if (Init < NumInits) 499 ILE->setInit(Init, Filler); 500 else 501 ILE->updateInit(SemaRef.Context, Init, Filler); 502 return; 503 } 504 // C++1y [dcl.init.aggr]p7: 505 // If there are fewer initializer-clauses in the list than there are 506 // members in the aggregate, then each member not explicitly initialized 507 // shall be initialized from its brace-or-equal-initializer [...] 508 if (Field->hasInClassInitializer()) { 509 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 510 if (DIE.isInvalid()) { 511 hadError = true; 512 return; 513 } 514 if (Init < NumInits) 515 ILE->setInit(Init, DIE.get()); 516 else { 517 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 518 RequiresSecondPass = true; 519 } 520 return; 521 } 522 523 if (Field->getType()->isReferenceType()) { 524 // C++ [dcl.init.aggr]p9: 525 // If an incomplete or empty initializer-list leaves a 526 // member of reference type uninitialized, the program is 527 // ill-formed. 528 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 529 << Field->getType() 530 << ILE->getSyntacticForm()->getSourceRange(); 531 SemaRef.Diag(Field->getLocation(), 532 diag::note_uninit_reference_member); 533 hadError = true; 534 return; 535 } 536 537 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 538 /*VerifyOnly*/false); 539 if (MemberInit.isInvalid()) { 540 hadError = true; 541 return; 542 } 543 544 if (hadError) { 545 // Do nothing 546 } else if (Init < NumInits) { 547 ILE->setInit(Init, MemberInit.getAs<Expr>()); 548 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 549 // Empty initialization requires a constructor call, so 550 // extend the initializer list to include the constructor 551 // call and make a note that we'll need to take another pass 552 // through the initializer list. 553 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 554 RequiresSecondPass = true; 555 } 556 } else if (InitListExpr *InnerILE 557 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 558 FillInEmptyInitializations(MemberEntity, InnerILE, 559 RequiresSecondPass, FillWithNoInit); 560 else if (DesignatedInitUpdateExpr *InnerDIUE 561 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 562 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 563 RequiresSecondPass, /*FillWithNoInit =*/ true); 564 } 565 566 /// Recursively replaces NULL values within the given initializer list 567 /// with expressions that perform value-initialization of the 568 /// appropriate type. 569 void 570 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 571 InitListExpr *ILE, 572 bool &RequiresSecondPass, 573 bool FillWithNoInit) { 574 assert((ILE->getType() != SemaRef.Context.VoidTy) && 575 "Should not have void type"); 576 577 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 578 const RecordDecl *RDecl = RType->getDecl(); 579 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 580 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 581 Entity, ILE, RequiresSecondPass, FillWithNoInit); 582 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 583 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 584 for (auto *Field : RDecl->fields()) { 585 if (Field->hasInClassInitializer()) { 586 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 587 FillWithNoInit); 588 break; 589 } 590 } 591 } else { 592 // The fields beyond ILE->getNumInits() are default initialized, so in 593 // order to leave them uninitialized, the ILE is expanded and the extra 594 // fields are then filled with NoInitExpr. 595 unsigned NumFields = 0; 596 for (auto *Field : RDecl->fields()) 597 if (!Field->isUnnamedBitfield()) 598 ++NumFields; 599 if (ILE->getNumInits() < NumFields) 600 ILE->resizeInits(SemaRef.Context, NumFields); 601 602 unsigned Init = 0; 603 for (auto *Field : RDecl->fields()) { 604 if (Field->isUnnamedBitfield()) 605 continue; 606 607 if (hadError) 608 return; 609 610 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 611 FillWithNoInit); 612 if (hadError) 613 return; 614 615 ++Init; 616 617 // Only look at the first initialization of a union. 618 if (RDecl->isUnion()) 619 break; 620 } 621 } 622 623 return; 624 } 625 626 QualType ElementType; 627 628 InitializedEntity ElementEntity = Entity; 629 unsigned NumInits = ILE->getNumInits(); 630 unsigned NumElements = NumInits; 631 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 632 ElementType = AType->getElementType(); 633 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 634 NumElements = CAType->getSize().getZExtValue(); 635 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 636 0, Entity); 637 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 638 ElementType = VType->getElementType(); 639 NumElements = VType->getNumElements(); 640 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 641 0, Entity); 642 } else 643 ElementType = ILE->getType(); 644 645 for (unsigned Init = 0; Init != NumElements; ++Init) { 646 if (hadError) 647 return; 648 649 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 650 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 651 ElementEntity.setElementIndex(Init); 652 653 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 654 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 655 ILE->setInit(Init, ILE->getArrayFiller()); 656 else if (!InitExpr && !ILE->hasArrayFiller()) { 657 Expr *Filler = nullptr; 658 659 if (FillWithNoInit) 660 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 661 else { 662 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(), 663 ElementEntity, 664 /*VerifyOnly*/false); 665 if (ElementInit.isInvalid()) { 666 hadError = true; 667 return; 668 } 669 670 Filler = ElementInit.getAs<Expr>(); 671 } 672 673 if (hadError) { 674 // Do nothing 675 } else if (Init < NumInits) { 676 // For arrays, just set the expression used for value-initialization 677 // of the "holes" in the array. 678 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 679 ILE->setArrayFiller(Filler); 680 else 681 ILE->setInit(Init, Filler); 682 } else { 683 // For arrays, just set the expression used for value-initialization 684 // of the rest of elements and exit. 685 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 686 ILE->setArrayFiller(Filler); 687 return; 688 } 689 690 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 691 // Empty initialization requires a constructor call, so 692 // extend the initializer list to include the constructor 693 // call and make a note that we'll need to take another pass 694 // through the initializer list. 695 ILE->updateInit(SemaRef.Context, Init, Filler); 696 RequiresSecondPass = true; 697 } 698 } 699 } else if (InitListExpr *InnerILE 700 = dyn_cast_or_null<InitListExpr>(InitExpr)) 701 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 702 FillWithNoInit); 703 else if (DesignatedInitUpdateExpr *InnerDIUE 704 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 705 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 706 RequiresSecondPass, /*FillWithNoInit =*/ true); 707 } 708 } 709 710 711 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 712 InitListExpr *IL, QualType &T, 713 bool VerifyOnly) 714 : SemaRef(S), VerifyOnly(VerifyOnly) { 715 // FIXME: Check that IL isn't already the semantic form of some other 716 // InitListExpr. If it is, we'd create a broken AST. 717 718 hadError = false; 719 720 FullyStructuredList = 721 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 722 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 723 /*TopLevelObject=*/true); 724 725 if (!hadError && !VerifyOnly) { 726 bool RequiresSecondPass = false; 727 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass); 728 if (RequiresSecondPass && !hadError) 729 FillInEmptyInitializations(Entity, FullyStructuredList, 730 RequiresSecondPass); 731 } 732 } 733 734 int InitListChecker::numArrayElements(QualType DeclType) { 735 // FIXME: use a proper constant 736 int maxElements = 0x7FFFFFFF; 737 if (const ConstantArrayType *CAT = 738 SemaRef.Context.getAsConstantArrayType(DeclType)) { 739 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 740 } 741 return maxElements; 742 } 743 744 int InitListChecker::numStructUnionElements(QualType DeclType) { 745 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 746 int InitializableMembers = 0; 747 for (const auto *Field : structDecl->fields()) 748 if (!Field->isUnnamedBitfield()) 749 ++InitializableMembers; 750 751 if (structDecl->isUnion()) 752 return std::min(InitializableMembers, 1); 753 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 754 } 755 756 /// Check whether the range of the initializer \p ParentIList from element 757 /// \p Index onwards can be used to initialize an object of type \p T. Update 758 /// \p Index to indicate how many elements of the list were consumed. 759 /// 760 /// This also fills in \p StructuredList, from element \p StructuredIndex 761 /// onwards, with the fully-braced, desugared form of the initialization. 762 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 763 InitListExpr *ParentIList, 764 QualType T, unsigned &Index, 765 InitListExpr *StructuredList, 766 unsigned &StructuredIndex) { 767 int maxElements = 0; 768 769 if (T->isArrayType()) 770 maxElements = numArrayElements(T); 771 else if (T->isRecordType()) 772 maxElements = numStructUnionElements(T); 773 else if (T->isVectorType()) 774 maxElements = T->getAs<VectorType>()->getNumElements(); 775 else 776 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 777 778 if (maxElements == 0) { 779 if (!VerifyOnly) 780 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 781 diag::err_implicit_empty_initializer); 782 ++Index; 783 hadError = true; 784 return; 785 } 786 787 // Build a structured initializer list corresponding to this subobject. 788 InitListExpr *StructuredSubobjectInitList 789 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 790 StructuredIndex, 791 SourceRange(ParentIList->getInit(Index)->getLocStart(), 792 ParentIList->getSourceRange().getEnd())); 793 unsigned StructuredSubobjectInitIndex = 0; 794 795 // Check the element types and build the structural subobject. 796 unsigned StartIndex = Index; 797 CheckListElementTypes(Entity, ParentIList, T, 798 /*SubobjectIsDesignatorContext=*/false, Index, 799 StructuredSubobjectInitList, 800 StructuredSubobjectInitIndex); 801 802 if (!VerifyOnly) { 803 StructuredSubobjectInitList->setType(T); 804 805 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 806 // Update the structured sub-object initializer so that it's ending 807 // range corresponds with the end of the last initializer it used. 808 if (EndIndex < ParentIList->getNumInits() && 809 ParentIList->getInit(EndIndex)) { 810 SourceLocation EndLoc 811 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 812 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 813 } 814 815 // Complain about missing braces. 816 if (T->isArrayType() || T->isRecordType()) { 817 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 818 diag::warn_missing_braces) 819 << StructuredSubobjectInitList->getSourceRange() 820 << FixItHint::CreateInsertion( 821 StructuredSubobjectInitList->getLocStart(), "{") 822 << FixItHint::CreateInsertion( 823 SemaRef.getLocForEndOfToken( 824 StructuredSubobjectInitList->getLocEnd()), 825 "}"); 826 } 827 } 828 } 829 830 /// Warn that \p Entity was of scalar type and was initialized by a 831 /// single-element braced initializer list. 832 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 833 SourceRange Braces) { 834 // Don't warn during template instantiation. If the initialization was 835 // non-dependent, we warned during the initial parse; otherwise, the 836 // type might not be scalar in some uses of the template. 837 if (!S.ActiveTemplateInstantiations.empty()) 838 return; 839 840 unsigned DiagID = 0; 841 842 switch (Entity.getKind()) { 843 case InitializedEntity::EK_VectorElement: 844 case InitializedEntity::EK_ComplexElement: 845 case InitializedEntity::EK_ArrayElement: 846 case InitializedEntity::EK_Parameter: 847 case InitializedEntity::EK_Parameter_CF_Audited: 848 case InitializedEntity::EK_Result: 849 // Extra braces here are suspicious. 850 DiagID = diag::warn_braces_around_scalar_init; 851 break; 852 853 case InitializedEntity::EK_Member: 854 // Warn on aggregate initialization but not on ctor init list or 855 // default member initializer. 856 if (Entity.getParent()) 857 DiagID = diag::warn_braces_around_scalar_init; 858 break; 859 860 case InitializedEntity::EK_Variable: 861 case InitializedEntity::EK_LambdaCapture: 862 // No warning, might be direct-list-initialization. 863 // FIXME: Should we warn for copy-list-initialization in these cases? 864 break; 865 866 case InitializedEntity::EK_New: 867 case InitializedEntity::EK_Temporary: 868 case InitializedEntity::EK_CompoundLiteralInit: 869 // No warning, braces are part of the syntax of the underlying construct. 870 break; 871 872 case InitializedEntity::EK_RelatedResult: 873 // No warning, we already warned when initializing the result. 874 break; 875 876 case InitializedEntity::EK_Exception: 877 case InitializedEntity::EK_Base: 878 case InitializedEntity::EK_Delegating: 879 case InitializedEntity::EK_BlockElement: 880 llvm_unreachable("unexpected braced scalar init"); 881 } 882 883 if (DiagID) { 884 S.Diag(Braces.getBegin(), DiagID) 885 << Braces 886 << FixItHint::CreateRemoval(Braces.getBegin()) 887 << FixItHint::CreateRemoval(Braces.getEnd()); 888 } 889 } 890 891 892 /// Check whether the initializer \p IList (that was written with explicit 893 /// braces) can be used to initialize an object of type \p T. 894 /// 895 /// This also fills in \p StructuredList with the fully-braced, desugared 896 /// form of the initialization. 897 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 898 InitListExpr *IList, QualType &T, 899 InitListExpr *StructuredList, 900 bool TopLevelObject) { 901 if (!VerifyOnly) { 902 SyntacticToSemantic[IList] = StructuredList; 903 StructuredList->setSyntacticForm(IList); 904 } 905 906 unsigned Index = 0, StructuredIndex = 0; 907 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 908 Index, StructuredList, StructuredIndex, TopLevelObject); 909 if (!VerifyOnly) { 910 QualType ExprTy = T; 911 if (!ExprTy->isArrayType()) 912 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 913 IList->setType(ExprTy); 914 StructuredList->setType(ExprTy); 915 } 916 if (hadError) 917 return; 918 919 if (Index < IList->getNumInits()) { 920 // We have leftover initializers 921 if (VerifyOnly) { 922 if (SemaRef.getLangOpts().CPlusPlus || 923 (SemaRef.getLangOpts().OpenCL && 924 IList->getType()->isVectorType())) { 925 hadError = true; 926 } 927 return; 928 } 929 930 if (StructuredIndex == 1 && 931 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 932 SIF_None) { 933 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 934 if (SemaRef.getLangOpts().CPlusPlus) { 935 DK = diag::err_excess_initializers_in_char_array_initializer; 936 hadError = true; 937 } 938 // Special-case 939 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 940 << IList->getInit(Index)->getSourceRange(); 941 } else if (!T->isIncompleteType()) { 942 // Don't complain for incomplete types, since we'll get an error 943 // elsewhere 944 QualType CurrentObjectType = StructuredList->getType(); 945 int initKind = 946 CurrentObjectType->isArrayType()? 0 : 947 CurrentObjectType->isVectorType()? 1 : 948 CurrentObjectType->isScalarType()? 2 : 949 CurrentObjectType->isUnionType()? 3 : 950 4; 951 952 unsigned DK = diag::ext_excess_initializers; 953 if (SemaRef.getLangOpts().CPlusPlus) { 954 DK = diag::err_excess_initializers; 955 hadError = true; 956 } 957 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 958 DK = diag::err_excess_initializers; 959 hadError = true; 960 } 961 962 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 963 << initKind << IList->getInit(Index)->getSourceRange(); 964 } 965 } 966 967 if (!VerifyOnly && T->isScalarType() && 968 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0))) 969 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 970 } 971 972 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 973 InitListExpr *IList, 974 QualType &DeclType, 975 bool SubobjectIsDesignatorContext, 976 unsigned &Index, 977 InitListExpr *StructuredList, 978 unsigned &StructuredIndex, 979 bool TopLevelObject) { 980 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 981 // Explicitly braced initializer for complex type can be real+imaginary 982 // parts. 983 CheckComplexType(Entity, IList, DeclType, Index, 984 StructuredList, StructuredIndex); 985 } else if (DeclType->isScalarType()) { 986 CheckScalarType(Entity, IList, DeclType, Index, 987 StructuredList, StructuredIndex); 988 } else if (DeclType->isVectorType()) { 989 CheckVectorType(Entity, IList, DeclType, Index, 990 StructuredList, StructuredIndex); 991 } else if (DeclType->isRecordType()) { 992 assert(DeclType->isAggregateType() && 993 "non-aggregate records should be handed in CheckSubElementType"); 994 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 995 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 996 SubobjectIsDesignatorContext, Index, 997 StructuredList, StructuredIndex, 998 TopLevelObject); 999 } else if (DeclType->isArrayType()) { 1000 llvm::APSInt Zero( 1001 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1002 false); 1003 CheckArrayType(Entity, IList, DeclType, Zero, 1004 SubobjectIsDesignatorContext, Index, 1005 StructuredList, StructuredIndex); 1006 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1007 // This type is invalid, issue a diagnostic. 1008 ++Index; 1009 if (!VerifyOnly) 1010 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 1011 << DeclType; 1012 hadError = true; 1013 } else if (DeclType->isReferenceType()) { 1014 CheckReferenceType(Entity, IList, DeclType, Index, 1015 StructuredList, StructuredIndex); 1016 } else if (DeclType->isObjCObjectType()) { 1017 if (!VerifyOnly) 1018 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 1019 << DeclType; 1020 hadError = true; 1021 } else { 1022 if (!VerifyOnly) 1023 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 1024 << DeclType; 1025 hadError = true; 1026 } 1027 } 1028 1029 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1030 InitListExpr *IList, 1031 QualType ElemType, 1032 unsigned &Index, 1033 InitListExpr *StructuredList, 1034 unsigned &StructuredIndex) { 1035 Expr *expr = IList->getInit(Index); 1036 1037 if (ElemType->isReferenceType()) 1038 return CheckReferenceType(Entity, IList, ElemType, Index, 1039 StructuredList, StructuredIndex); 1040 1041 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1042 if (SubInitList->getNumInits() == 1 && 1043 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1044 SIF_None) { 1045 expr = SubInitList->getInit(0); 1046 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1047 InitListExpr *InnerStructuredList 1048 = getStructuredSubobjectInit(IList, Index, ElemType, 1049 StructuredList, StructuredIndex, 1050 SubInitList->getSourceRange(), true); 1051 CheckExplicitInitList(Entity, SubInitList, ElemType, 1052 InnerStructuredList); 1053 1054 if (!hadError && !VerifyOnly) { 1055 bool RequiresSecondPass = false; 1056 FillInEmptyInitializations(Entity, InnerStructuredList, 1057 RequiresSecondPass); 1058 if (RequiresSecondPass && !hadError) 1059 FillInEmptyInitializations(Entity, InnerStructuredList, 1060 RequiresSecondPass); 1061 } 1062 ++StructuredIndex; 1063 ++Index; 1064 return; 1065 } 1066 // C++ initialization is handled later. 1067 } else if (isa<ImplicitValueInitExpr>(expr)) { 1068 // This happens during template instantiation when we see an InitListExpr 1069 // that we've already checked once. 1070 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1071 "found implicit initialization for the wrong type"); 1072 if (!VerifyOnly) 1073 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1074 ++Index; 1075 return; 1076 } 1077 1078 if (SemaRef.getLangOpts().CPlusPlus) { 1079 // C++ [dcl.init.aggr]p2: 1080 // Each member is copy-initialized from the corresponding 1081 // initializer-clause. 1082 1083 // FIXME: Better EqualLoc? 1084 InitializationKind Kind = 1085 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 1086 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1087 /*TopLevelOfInitList*/ true); 1088 1089 // C++14 [dcl.init.aggr]p13: 1090 // If the assignment-expression can initialize a member, the member is 1091 // initialized. Otherwise [...] brace elision is assumed 1092 // 1093 // Brace elision is never performed if the element is not an 1094 // assignment-expression. 1095 if (Seq || isa<InitListExpr>(expr)) { 1096 if (!VerifyOnly) { 1097 ExprResult Result = 1098 Seq.Perform(SemaRef, Entity, Kind, expr); 1099 if (Result.isInvalid()) 1100 hadError = true; 1101 1102 UpdateStructuredListElement(StructuredList, StructuredIndex, 1103 Result.getAs<Expr>()); 1104 } else if (!Seq) 1105 hadError = true; 1106 ++Index; 1107 return; 1108 } 1109 1110 // Fall through for subaggregate initialization 1111 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1112 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1113 return CheckScalarType(Entity, IList, ElemType, Index, 1114 StructuredList, StructuredIndex); 1115 } else if (const ArrayType *arrayType = 1116 SemaRef.Context.getAsArrayType(ElemType)) { 1117 // arrayType can be incomplete if we're initializing a flexible 1118 // array member. There's nothing we can do with the completed 1119 // type here, though. 1120 1121 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1122 if (!VerifyOnly) { 1123 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1124 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1125 } 1126 ++Index; 1127 return; 1128 } 1129 1130 // Fall through for subaggregate initialization. 1131 1132 } else { 1133 assert((ElemType->isRecordType() || ElemType->isVectorType()) && 1134 "Unexpected type"); 1135 1136 // C99 6.7.8p13: 1137 // 1138 // The initializer for a structure or union object that has 1139 // automatic storage duration shall be either an initializer 1140 // list as described below, or a single expression that has 1141 // compatible structure or union type. In the latter case, the 1142 // initial value of the object, including unnamed members, is 1143 // that of the expression. 1144 ExprResult ExprRes = expr; 1145 if (SemaRef.CheckSingleAssignmentConstraints( 1146 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1147 if (ExprRes.isInvalid()) 1148 hadError = true; 1149 else { 1150 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1151 if (ExprRes.isInvalid()) 1152 hadError = true; 1153 } 1154 UpdateStructuredListElement(StructuredList, StructuredIndex, 1155 ExprRes.getAs<Expr>()); 1156 ++Index; 1157 return; 1158 } 1159 ExprRes.get(); 1160 // Fall through for subaggregate initialization 1161 } 1162 1163 // C++ [dcl.init.aggr]p12: 1164 // 1165 // [...] Otherwise, if the member is itself a non-empty 1166 // subaggregate, brace elision is assumed and the initializer is 1167 // considered for the initialization of the first member of 1168 // the subaggregate. 1169 if (!SemaRef.getLangOpts().OpenCL && 1170 (ElemType->isAggregateType() || ElemType->isVectorType())) { 1171 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1172 StructuredIndex); 1173 ++StructuredIndex; 1174 } else { 1175 if (!VerifyOnly) { 1176 // We cannot initialize this element, so let 1177 // PerformCopyInitialization produce the appropriate diagnostic. 1178 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1179 /*TopLevelOfInitList=*/true); 1180 } 1181 hadError = true; 1182 ++Index; 1183 ++StructuredIndex; 1184 } 1185 } 1186 1187 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1188 InitListExpr *IList, QualType DeclType, 1189 unsigned &Index, 1190 InitListExpr *StructuredList, 1191 unsigned &StructuredIndex) { 1192 assert(Index == 0 && "Index in explicit init list must be zero"); 1193 1194 // As an extension, clang supports complex initializers, which initialize 1195 // a complex number component-wise. When an explicit initializer list for 1196 // a complex number contains two two initializers, this extension kicks in: 1197 // it exepcts the initializer list to contain two elements convertible to 1198 // the element type of the complex type. The first element initializes 1199 // the real part, and the second element intitializes the imaginary part. 1200 1201 if (IList->getNumInits() != 2) 1202 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1203 StructuredIndex); 1204 1205 // This is an extension in C. (The builtin _Complex type does not exist 1206 // in the C++ standard.) 1207 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1208 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 1209 << IList->getSourceRange(); 1210 1211 // Initialize the complex number. 1212 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1213 InitializedEntity ElementEntity = 1214 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1215 1216 for (unsigned i = 0; i < 2; ++i) { 1217 ElementEntity.setElementIndex(Index); 1218 CheckSubElementType(ElementEntity, IList, elementType, Index, 1219 StructuredList, StructuredIndex); 1220 } 1221 } 1222 1223 1224 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1225 InitListExpr *IList, QualType DeclType, 1226 unsigned &Index, 1227 InitListExpr *StructuredList, 1228 unsigned &StructuredIndex) { 1229 if (Index >= IList->getNumInits()) { 1230 if (!VerifyOnly) 1231 SemaRef.Diag(IList->getLocStart(), 1232 SemaRef.getLangOpts().CPlusPlus11 ? 1233 diag::warn_cxx98_compat_empty_scalar_initializer : 1234 diag::err_empty_scalar_initializer) 1235 << IList->getSourceRange(); 1236 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1237 ++Index; 1238 ++StructuredIndex; 1239 return; 1240 } 1241 1242 Expr *expr = IList->getInit(Index); 1243 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1244 // FIXME: This is invalid, and accepting it causes overload resolution 1245 // to pick the wrong overload in some corner cases. 1246 if (!VerifyOnly) 1247 SemaRef.Diag(SubIList->getLocStart(), 1248 diag::ext_many_braces_around_scalar_init) 1249 << SubIList->getSourceRange(); 1250 1251 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1252 StructuredIndex); 1253 return; 1254 } else if (isa<DesignatedInitExpr>(expr)) { 1255 if (!VerifyOnly) 1256 SemaRef.Diag(expr->getLocStart(), 1257 diag::err_designator_for_scalar_init) 1258 << DeclType << expr->getSourceRange(); 1259 hadError = true; 1260 ++Index; 1261 ++StructuredIndex; 1262 return; 1263 } 1264 1265 if (VerifyOnly) { 1266 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1267 hadError = true; 1268 ++Index; 1269 return; 1270 } 1271 1272 ExprResult Result = 1273 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1274 /*TopLevelOfInitList=*/true); 1275 1276 Expr *ResultExpr = nullptr; 1277 1278 if (Result.isInvalid()) 1279 hadError = true; // types weren't compatible. 1280 else { 1281 ResultExpr = Result.getAs<Expr>(); 1282 1283 if (ResultExpr != expr) { 1284 // The type was promoted, update initializer list. 1285 IList->setInit(Index, ResultExpr); 1286 } 1287 } 1288 if (hadError) 1289 ++StructuredIndex; 1290 else 1291 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1292 ++Index; 1293 } 1294 1295 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1296 InitListExpr *IList, QualType DeclType, 1297 unsigned &Index, 1298 InitListExpr *StructuredList, 1299 unsigned &StructuredIndex) { 1300 if (Index >= IList->getNumInits()) { 1301 // FIXME: It would be wonderful if we could point at the actual member. In 1302 // general, it would be useful to pass location information down the stack, 1303 // so that we know the location (or decl) of the "current object" being 1304 // initialized. 1305 if (!VerifyOnly) 1306 SemaRef.Diag(IList->getLocStart(), 1307 diag::err_init_reference_member_uninitialized) 1308 << DeclType 1309 << IList->getSourceRange(); 1310 hadError = true; 1311 ++Index; 1312 ++StructuredIndex; 1313 return; 1314 } 1315 1316 Expr *expr = IList->getInit(Index); 1317 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1318 if (!VerifyOnly) 1319 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 1320 << DeclType << IList->getSourceRange(); 1321 hadError = true; 1322 ++Index; 1323 ++StructuredIndex; 1324 return; 1325 } 1326 1327 if (VerifyOnly) { 1328 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1329 hadError = true; 1330 ++Index; 1331 return; 1332 } 1333 1334 ExprResult Result = 1335 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1336 /*TopLevelOfInitList=*/true); 1337 1338 if (Result.isInvalid()) 1339 hadError = true; 1340 1341 expr = Result.getAs<Expr>(); 1342 IList->setInit(Index, expr); 1343 1344 if (hadError) 1345 ++StructuredIndex; 1346 else 1347 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1348 ++Index; 1349 } 1350 1351 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1352 InitListExpr *IList, QualType DeclType, 1353 unsigned &Index, 1354 InitListExpr *StructuredList, 1355 unsigned &StructuredIndex) { 1356 const VectorType *VT = DeclType->getAs<VectorType>(); 1357 unsigned maxElements = VT->getNumElements(); 1358 unsigned numEltsInit = 0; 1359 QualType elementType = VT->getElementType(); 1360 1361 if (Index >= IList->getNumInits()) { 1362 // Make sure the element type can be value-initialized. 1363 if (VerifyOnly) 1364 CheckEmptyInitializable( 1365 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1366 IList->getLocEnd()); 1367 return; 1368 } 1369 1370 if (!SemaRef.getLangOpts().OpenCL) { 1371 // If the initializing element is a vector, try to copy-initialize 1372 // instead of breaking it apart (which is doomed to failure anyway). 1373 Expr *Init = IList->getInit(Index); 1374 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1375 if (VerifyOnly) { 1376 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1377 hadError = true; 1378 ++Index; 1379 return; 1380 } 1381 1382 ExprResult Result = 1383 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, 1384 /*TopLevelOfInitList=*/true); 1385 1386 Expr *ResultExpr = nullptr; 1387 if (Result.isInvalid()) 1388 hadError = true; // types weren't compatible. 1389 else { 1390 ResultExpr = Result.getAs<Expr>(); 1391 1392 if (ResultExpr != Init) { 1393 // The type was promoted, update initializer list. 1394 IList->setInit(Index, ResultExpr); 1395 } 1396 } 1397 if (hadError) 1398 ++StructuredIndex; 1399 else 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, 1401 ResultExpr); 1402 ++Index; 1403 return; 1404 } 1405 1406 InitializedEntity ElementEntity = 1407 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1408 1409 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1410 // Don't attempt to go past the end of the init list 1411 if (Index >= IList->getNumInits()) { 1412 if (VerifyOnly) 1413 CheckEmptyInitializable(ElementEntity, IList->getLocEnd()); 1414 break; 1415 } 1416 1417 ElementEntity.setElementIndex(Index); 1418 CheckSubElementType(ElementEntity, IList, elementType, Index, 1419 StructuredList, StructuredIndex); 1420 } 1421 1422 if (VerifyOnly) 1423 return; 1424 1425 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1426 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1427 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1428 T->getVectorKind() == VectorType::NeonPolyVector)) { 1429 // The ability to use vector initializer lists is a GNU vector extension 1430 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1431 // endian machines it works fine, however on big endian machines it 1432 // exhibits surprising behaviour: 1433 // 1434 // uint32x2_t x = {42, 64}; 1435 // return vget_lane_u32(x, 0); // Will return 64. 1436 // 1437 // Because of this, explicitly call out that it is non-portable. 1438 // 1439 SemaRef.Diag(IList->getLocStart(), 1440 diag::warn_neon_vector_initializer_non_portable); 1441 1442 const char *typeCode; 1443 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1444 1445 if (elementType->isFloatingType()) 1446 typeCode = "f"; 1447 else if (elementType->isSignedIntegerType()) 1448 typeCode = "s"; 1449 else if (elementType->isUnsignedIntegerType()) 1450 typeCode = "u"; 1451 else 1452 llvm_unreachable("Invalid element type!"); 1453 1454 SemaRef.Diag(IList->getLocStart(), 1455 SemaRef.Context.getTypeSize(VT) > 64 ? 1456 diag::note_neon_vector_initializer_non_portable_q : 1457 diag::note_neon_vector_initializer_non_portable) 1458 << typeCode << typeSize; 1459 } 1460 1461 return; 1462 } 1463 1464 InitializedEntity ElementEntity = 1465 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1466 1467 // OpenCL initializers allows vectors to be constructed from vectors. 1468 for (unsigned i = 0; i < maxElements; ++i) { 1469 // Don't attempt to go past the end of the init list 1470 if (Index >= IList->getNumInits()) 1471 break; 1472 1473 ElementEntity.setElementIndex(Index); 1474 1475 QualType IType = IList->getInit(Index)->getType(); 1476 if (!IType->isVectorType()) { 1477 CheckSubElementType(ElementEntity, IList, elementType, Index, 1478 StructuredList, StructuredIndex); 1479 ++numEltsInit; 1480 } else { 1481 QualType VecType; 1482 const VectorType *IVT = IType->getAs<VectorType>(); 1483 unsigned numIElts = IVT->getNumElements(); 1484 1485 if (IType->isExtVectorType()) 1486 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1487 else 1488 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1489 IVT->getVectorKind()); 1490 CheckSubElementType(ElementEntity, IList, VecType, Index, 1491 StructuredList, StructuredIndex); 1492 numEltsInit += numIElts; 1493 } 1494 } 1495 1496 // OpenCL requires all elements to be initialized. 1497 if (numEltsInit != maxElements) { 1498 if (!VerifyOnly) 1499 SemaRef.Diag(IList->getLocStart(), 1500 diag::err_vector_incorrect_num_initializers) 1501 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1502 hadError = true; 1503 } 1504 } 1505 1506 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1507 InitListExpr *IList, QualType &DeclType, 1508 llvm::APSInt elementIndex, 1509 bool SubobjectIsDesignatorContext, 1510 unsigned &Index, 1511 InitListExpr *StructuredList, 1512 unsigned &StructuredIndex) { 1513 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1514 1515 // Check for the special-case of initializing an array with a string. 1516 if (Index < IList->getNumInits()) { 1517 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1518 SIF_None) { 1519 // We place the string literal directly into the resulting 1520 // initializer list. This is the only place where the structure 1521 // of the structured initializer list doesn't match exactly, 1522 // because doing so would involve allocating one character 1523 // constant for each string. 1524 if (!VerifyOnly) { 1525 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1526 UpdateStructuredListElement(StructuredList, StructuredIndex, 1527 IList->getInit(Index)); 1528 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1529 } 1530 ++Index; 1531 return; 1532 } 1533 } 1534 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1535 // Check for VLAs; in standard C it would be possible to check this 1536 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1537 // them in all sorts of strange places). 1538 if (!VerifyOnly) 1539 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1540 diag::err_variable_object_no_init) 1541 << VAT->getSizeExpr()->getSourceRange(); 1542 hadError = true; 1543 ++Index; 1544 ++StructuredIndex; 1545 return; 1546 } 1547 1548 // We might know the maximum number of elements in advance. 1549 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1550 elementIndex.isUnsigned()); 1551 bool maxElementsKnown = false; 1552 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1553 maxElements = CAT->getSize(); 1554 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1555 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1556 maxElementsKnown = true; 1557 } 1558 1559 QualType elementType = arrayType->getElementType(); 1560 while (Index < IList->getNumInits()) { 1561 Expr *Init = IList->getInit(Index); 1562 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1563 // If we're not the subobject that matches up with the '{' for 1564 // the designator, we shouldn't be handling the 1565 // designator. Return immediately. 1566 if (!SubobjectIsDesignatorContext) 1567 return; 1568 1569 // Handle this designated initializer. elementIndex will be 1570 // updated to be the next array element we'll initialize. 1571 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1572 DeclType, nullptr, &elementIndex, Index, 1573 StructuredList, StructuredIndex, true, 1574 false)) { 1575 hadError = true; 1576 continue; 1577 } 1578 1579 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1580 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1581 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1582 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1583 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1584 1585 // If the array is of incomplete type, keep track of the number of 1586 // elements in the initializer. 1587 if (!maxElementsKnown && elementIndex > maxElements) 1588 maxElements = elementIndex; 1589 1590 continue; 1591 } 1592 1593 // If we know the maximum number of elements, and we've already 1594 // hit it, stop consuming elements in the initializer list. 1595 if (maxElementsKnown && elementIndex == maxElements) 1596 break; 1597 1598 InitializedEntity ElementEntity = 1599 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1600 Entity); 1601 // Check this element. 1602 CheckSubElementType(ElementEntity, IList, elementType, Index, 1603 StructuredList, StructuredIndex); 1604 ++elementIndex; 1605 1606 // If the array is of incomplete type, keep track of the number of 1607 // elements in the initializer. 1608 if (!maxElementsKnown && elementIndex > maxElements) 1609 maxElements = elementIndex; 1610 } 1611 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1612 // If this is an incomplete array type, the actual type needs to 1613 // be calculated here. 1614 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1615 if (maxElements == Zero) { 1616 // Sizing an array implicitly to zero is not allowed by ISO C, 1617 // but is supported by GNU. 1618 SemaRef.Diag(IList->getLocStart(), 1619 diag::ext_typecheck_zero_array_size); 1620 } 1621 1622 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1623 ArrayType::Normal, 0); 1624 } 1625 if (!hadError && VerifyOnly) { 1626 // Check if there are any members of the array that get value-initialized. 1627 // If so, check if doing that is possible. 1628 // FIXME: This needs to detect holes left by designated initializers too. 1629 if (maxElementsKnown && elementIndex < maxElements) 1630 CheckEmptyInitializable(InitializedEntity::InitializeElement( 1631 SemaRef.Context, 0, Entity), 1632 IList->getLocEnd()); 1633 } 1634 } 1635 1636 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1637 Expr *InitExpr, 1638 FieldDecl *Field, 1639 bool TopLevelObject) { 1640 // Handle GNU flexible array initializers. 1641 unsigned FlexArrayDiag; 1642 if (isa<InitListExpr>(InitExpr) && 1643 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1644 // Empty flexible array init always allowed as an extension 1645 FlexArrayDiag = diag::ext_flexible_array_init; 1646 } else if (SemaRef.getLangOpts().CPlusPlus) { 1647 // Disallow flexible array init in C++; it is not required for gcc 1648 // compatibility, and it needs work to IRGen correctly in general. 1649 FlexArrayDiag = diag::err_flexible_array_init; 1650 } else if (!TopLevelObject) { 1651 // Disallow flexible array init on non-top-level object 1652 FlexArrayDiag = diag::err_flexible_array_init; 1653 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1654 // Disallow flexible array init on anything which is not a variable. 1655 FlexArrayDiag = diag::err_flexible_array_init; 1656 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1657 // Disallow flexible array init on local variables. 1658 FlexArrayDiag = diag::err_flexible_array_init; 1659 } else { 1660 // Allow other cases. 1661 FlexArrayDiag = diag::ext_flexible_array_init; 1662 } 1663 1664 if (!VerifyOnly) { 1665 SemaRef.Diag(InitExpr->getLocStart(), 1666 FlexArrayDiag) 1667 << InitExpr->getLocStart(); 1668 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1669 << Field; 1670 } 1671 1672 return FlexArrayDiag != diag::ext_flexible_array_init; 1673 } 1674 1675 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1676 InitListExpr *IList, 1677 QualType DeclType, 1678 RecordDecl::field_iterator Field, 1679 bool SubobjectIsDesignatorContext, 1680 unsigned &Index, 1681 InitListExpr *StructuredList, 1682 unsigned &StructuredIndex, 1683 bool TopLevelObject) { 1684 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1685 1686 // If the record is invalid, some of it's members are invalid. To avoid 1687 // confusion, we forgo checking the intializer for the entire record. 1688 if (structDecl->isInvalidDecl()) { 1689 // Assume it was supposed to consume a single initializer. 1690 ++Index; 1691 hadError = true; 1692 return; 1693 } 1694 1695 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1696 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1697 1698 // If there's a default initializer, use it. 1699 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1700 if (VerifyOnly) 1701 return; 1702 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1703 Field != FieldEnd; ++Field) { 1704 if (Field->hasInClassInitializer()) { 1705 StructuredList->setInitializedFieldInUnion(*Field); 1706 // FIXME: Actually build a CXXDefaultInitExpr? 1707 return; 1708 } 1709 } 1710 } 1711 1712 // Value-initialize the first member of the union that isn't an unnamed 1713 // bitfield. 1714 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1715 Field != FieldEnd; ++Field) { 1716 if (!Field->isUnnamedBitfield()) { 1717 if (VerifyOnly) 1718 CheckEmptyInitializable( 1719 InitializedEntity::InitializeMember(*Field, &Entity), 1720 IList->getLocEnd()); 1721 else 1722 StructuredList->setInitializedFieldInUnion(*Field); 1723 break; 1724 } 1725 } 1726 return; 1727 } 1728 1729 // If structDecl is a forward declaration, this loop won't do 1730 // anything except look at designated initializers; That's okay, 1731 // because an error should get printed out elsewhere. It might be 1732 // worthwhile to skip over the rest of the initializer, though. 1733 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1734 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1735 bool InitializedSomething = false; 1736 bool CheckForMissingFields = true; 1737 while (Index < IList->getNumInits()) { 1738 Expr *Init = IList->getInit(Index); 1739 1740 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1741 // If we're not the subobject that matches up with the '{' for 1742 // the designator, we shouldn't be handling the 1743 // designator. Return immediately. 1744 if (!SubobjectIsDesignatorContext) 1745 return; 1746 1747 // Handle this designated initializer. Field will be updated to 1748 // the next field that we'll be initializing. 1749 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1750 DeclType, &Field, nullptr, Index, 1751 StructuredList, StructuredIndex, 1752 true, TopLevelObject)) 1753 hadError = true; 1754 1755 InitializedSomething = true; 1756 1757 // Disable check for missing fields when designators are used. 1758 // This matches gcc behaviour. 1759 CheckForMissingFields = false; 1760 continue; 1761 } 1762 1763 if (Field == FieldEnd) { 1764 // We've run out of fields. We're done. 1765 break; 1766 } 1767 1768 // We've already initialized a member of a union. We're done. 1769 if (InitializedSomething && DeclType->isUnionType()) 1770 break; 1771 1772 // If we've hit the flexible array member at the end, we're done. 1773 if (Field->getType()->isIncompleteArrayType()) 1774 break; 1775 1776 if (Field->isUnnamedBitfield()) { 1777 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1778 ++Field; 1779 continue; 1780 } 1781 1782 // Make sure we can use this declaration. 1783 bool InvalidUse; 1784 if (VerifyOnly) 1785 InvalidUse = !SemaRef.CanUseDecl(*Field); 1786 else 1787 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1788 IList->getInit(Index)->getLocStart()); 1789 if (InvalidUse) { 1790 ++Index; 1791 ++Field; 1792 hadError = true; 1793 continue; 1794 } 1795 1796 InitializedEntity MemberEntity = 1797 InitializedEntity::InitializeMember(*Field, &Entity); 1798 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1799 StructuredList, StructuredIndex); 1800 InitializedSomething = true; 1801 1802 if (DeclType->isUnionType() && !VerifyOnly) { 1803 // Initialize the first field within the union. 1804 StructuredList->setInitializedFieldInUnion(*Field); 1805 } 1806 1807 ++Field; 1808 } 1809 1810 // Emit warnings for missing struct field initializers. 1811 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1812 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1813 !DeclType->isUnionType()) { 1814 // It is possible we have one or more unnamed bitfields remaining. 1815 // Find first (if any) named field and emit warning. 1816 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1817 it != end; ++it) { 1818 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 1819 SemaRef.Diag(IList->getSourceRange().getEnd(), 1820 diag::warn_missing_field_initializers) << *it; 1821 break; 1822 } 1823 } 1824 } 1825 1826 // Check that any remaining fields can be value-initialized. 1827 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1828 !Field->getType()->isIncompleteArrayType()) { 1829 // FIXME: Should check for holes left by designated initializers too. 1830 for (; Field != FieldEnd && !hadError; ++Field) { 1831 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 1832 CheckEmptyInitializable( 1833 InitializedEntity::InitializeMember(*Field, &Entity), 1834 IList->getLocEnd()); 1835 } 1836 } 1837 1838 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1839 Index >= IList->getNumInits()) 1840 return; 1841 1842 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1843 TopLevelObject)) { 1844 hadError = true; 1845 ++Index; 1846 return; 1847 } 1848 1849 InitializedEntity MemberEntity = 1850 InitializedEntity::InitializeMember(*Field, &Entity); 1851 1852 if (isa<InitListExpr>(IList->getInit(Index))) 1853 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1854 StructuredList, StructuredIndex); 1855 else 1856 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1857 StructuredList, StructuredIndex); 1858 } 1859 1860 /// \brief Expand a field designator that refers to a member of an 1861 /// anonymous struct or union into a series of field designators that 1862 /// refers to the field within the appropriate subobject. 1863 /// 1864 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1865 DesignatedInitExpr *DIE, 1866 unsigned DesigIdx, 1867 IndirectFieldDecl *IndirectField) { 1868 typedef DesignatedInitExpr::Designator Designator; 1869 1870 // Build the replacement designators. 1871 SmallVector<Designator, 4> Replacements; 1872 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1873 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1874 if (PI + 1 == PE) 1875 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1876 DIE->getDesignator(DesigIdx)->getDotLoc(), 1877 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1878 else 1879 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1880 SourceLocation(), SourceLocation())); 1881 assert(isa<FieldDecl>(*PI)); 1882 Replacements.back().setField(cast<FieldDecl>(*PI)); 1883 } 1884 1885 // Expand the current designator into the set of replacement 1886 // designators, so we have a full subobject path down to where the 1887 // member of the anonymous struct/union is actually stored. 1888 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1889 &Replacements[0] + Replacements.size()); 1890 } 1891 1892 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1893 DesignatedInitExpr *DIE) { 1894 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1895 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1896 for (unsigned I = 0; I < NumIndexExprs; ++I) 1897 IndexExprs[I] = DIE->getSubExpr(I + 1); 1898 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1899 DIE->size(), IndexExprs, 1900 DIE->getEqualOrColonLoc(), 1901 DIE->usesGNUSyntax(), DIE->getInit()); 1902 } 1903 1904 namespace { 1905 1906 // Callback to only accept typo corrections that are for field members of 1907 // the given struct or union. 1908 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 1909 public: 1910 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 1911 : Record(RD) {} 1912 1913 bool ValidateCandidate(const TypoCorrection &candidate) override { 1914 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 1915 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 1916 } 1917 1918 private: 1919 RecordDecl *Record; 1920 }; 1921 1922 } 1923 1924 /// @brief Check the well-formedness of a C99 designated initializer. 1925 /// 1926 /// Determines whether the designated initializer @p DIE, which 1927 /// resides at the given @p Index within the initializer list @p 1928 /// IList, is well-formed for a current object of type @p DeclType 1929 /// (C99 6.7.8). The actual subobject that this designator refers to 1930 /// within the current subobject is returned in either 1931 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1932 /// 1933 /// @param IList The initializer list in which this designated 1934 /// initializer occurs. 1935 /// 1936 /// @param DIE The designated initializer expression. 1937 /// 1938 /// @param DesigIdx The index of the current designator. 1939 /// 1940 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 1941 /// into which the designation in @p DIE should refer. 1942 /// 1943 /// @param NextField If non-NULL and the first designator in @p DIE is 1944 /// a field, this will be set to the field declaration corresponding 1945 /// to the field named by the designator. 1946 /// 1947 /// @param NextElementIndex If non-NULL and the first designator in @p 1948 /// DIE is an array designator or GNU array-range designator, this 1949 /// will be set to the last index initialized by this designator. 1950 /// 1951 /// @param Index Index into @p IList where the designated initializer 1952 /// @p DIE occurs. 1953 /// 1954 /// @param StructuredList The initializer list expression that 1955 /// describes all of the subobject initializers in the order they'll 1956 /// actually be initialized. 1957 /// 1958 /// @returns true if there was an error, false otherwise. 1959 bool 1960 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1961 InitListExpr *IList, 1962 DesignatedInitExpr *DIE, 1963 unsigned DesigIdx, 1964 QualType &CurrentObjectType, 1965 RecordDecl::field_iterator *NextField, 1966 llvm::APSInt *NextElementIndex, 1967 unsigned &Index, 1968 InitListExpr *StructuredList, 1969 unsigned &StructuredIndex, 1970 bool FinishSubobjectInit, 1971 bool TopLevelObject) { 1972 if (DesigIdx == DIE->size()) { 1973 // Check the actual initialization for the designated object type. 1974 bool prevHadError = hadError; 1975 1976 // Temporarily remove the designator expression from the 1977 // initializer list that the child calls see, so that we don't try 1978 // to re-process the designator. 1979 unsigned OldIndex = Index; 1980 IList->setInit(OldIndex, DIE->getInit()); 1981 1982 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1983 StructuredList, StructuredIndex); 1984 1985 // Restore the designated initializer expression in the syntactic 1986 // form of the initializer list. 1987 if (IList->getInit(OldIndex) != DIE->getInit()) 1988 DIE->setInit(IList->getInit(OldIndex)); 1989 IList->setInit(OldIndex, DIE); 1990 1991 return hadError && !prevHadError; 1992 } 1993 1994 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1995 bool IsFirstDesignator = (DesigIdx == 0); 1996 if (!VerifyOnly) { 1997 assert((IsFirstDesignator || StructuredList) && 1998 "Need a non-designated initializer list to start from"); 1999 2000 // Determine the structural initializer list that corresponds to the 2001 // current subobject. 2002 if (IsFirstDesignator) 2003 StructuredList = SyntacticToSemantic.lookup(IList); 2004 else { 2005 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2006 StructuredList->getInit(StructuredIndex) : nullptr; 2007 if (!ExistingInit && StructuredList->hasArrayFiller()) 2008 ExistingInit = StructuredList->getArrayFiller(); 2009 2010 if (!ExistingInit) 2011 StructuredList = 2012 getStructuredSubobjectInit(IList, Index, CurrentObjectType, 2013 StructuredList, StructuredIndex, 2014 SourceRange(D->getLocStart(), 2015 DIE->getLocEnd())); 2016 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2017 StructuredList = Result; 2018 else { 2019 if (DesignatedInitUpdateExpr *E = 2020 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2021 StructuredList = E->getUpdater(); 2022 else { 2023 DesignatedInitUpdateExpr *DIUE = 2024 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context, 2025 D->getLocStart(), ExistingInit, 2026 DIE->getLocEnd()); 2027 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2028 StructuredList = DIUE->getUpdater(); 2029 } 2030 2031 // We need to check on source range validity because the previous 2032 // initializer does not have to be an explicit initializer. e.g., 2033 // 2034 // struct P { int a, b; }; 2035 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2036 // 2037 // There is an overwrite taking place because the first braced initializer 2038 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2039 if (ExistingInit->getSourceRange().isValid()) { 2040 // We are creating an initializer list that initializes the 2041 // subobjects of the current object, but there was already an 2042 // initialization that completely initialized the current 2043 // subobject, e.g., by a compound literal: 2044 // 2045 // struct X { int a, b; }; 2046 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2047 // 2048 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2049 // designated initializer re-initializes the whole 2050 // subobject [0], overwriting previous initializers. 2051 SemaRef.Diag(D->getLocStart(), 2052 diag::warn_subobject_initializer_overrides) 2053 << SourceRange(D->getLocStart(), DIE->getLocEnd()); 2054 2055 SemaRef.Diag(ExistingInit->getLocStart(), 2056 diag::note_previous_initializer) 2057 << /*FIXME:has side effects=*/0 2058 << ExistingInit->getSourceRange(); 2059 } 2060 } 2061 } 2062 assert(StructuredList && "Expected a structured initializer list"); 2063 } 2064 2065 if (D->isFieldDesignator()) { 2066 // C99 6.7.8p7: 2067 // 2068 // If a designator has the form 2069 // 2070 // . identifier 2071 // 2072 // then the current object (defined below) shall have 2073 // structure or union type and the identifier shall be the 2074 // name of a member of that type. 2075 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2076 if (!RT) { 2077 SourceLocation Loc = D->getDotLoc(); 2078 if (Loc.isInvalid()) 2079 Loc = D->getFieldLoc(); 2080 if (!VerifyOnly) 2081 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2082 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2083 ++Index; 2084 return true; 2085 } 2086 2087 FieldDecl *KnownField = D->getField(); 2088 if (!KnownField) { 2089 IdentifierInfo *FieldName = D->getFieldName(); 2090 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2091 for (NamedDecl *ND : Lookup) { 2092 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2093 KnownField = FD; 2094 break; 2095 } 2096 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2097 // In verify mode, don't modify the original. 2098 if (VerifyOnly) 2099 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2100 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2101 D = DIE->getDesignator(DesigIdx); 2102 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2103 break; 2104 } 2105 } 2106 if (!KnownField) { 2107 if (VerifyOnly) { 2108 ++Index; 2109 return true; // No typo correction when just trying this out. 2110 } 2111 2112 // Name lookup found something, but it wasn't a field. 2113 if (!Lookup.empty()) { 2114 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2115 << FieldName; 2116 SemaRef.Diag(Lookup.front()->getLocation(), 2117 diag::note_field_designator_found); 2118 ++Index; 2119 return true; 2120 } 2121 2122 // Name lookup didn't find anything. 2123 // Determine whether this was a typo for another field name. 2124 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2125 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2126 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, 2127 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()), 2128 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2129 SemaRef.diagnoseTypo( 2130 Corrected, 2131 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2132 << FieldName << CurrentObjectType); 2133 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2134 hadError = true; 2135 } else { 2136 // Typo correction didn't find anything. 2137 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2138 << FieldName << CurrentObjectType; 2139 ++Index; 2140 return true; 2141 } 2142 } 2143 } 2144 2145 unsigned FieldIndex = 0; 2146 for (auto *FI : RT->getDecl()->fields()) { 2147 if (FI->isUnnamedBitfield()) 2148 continue; 2149 if (KnownField == FI) 2150 break; 2151 ++FieldIndex; 2152 } 2153 2154 RecordDecl::field_iterator Field = 2155 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2156 2157 // All of the fields of a union are located at the same place in 2158 // the initializer list. 2159 if (RT->getDecl()->isUnion()) { 2160 FieldIndex = 0; 2161 if (!VerifyOnly) { 2162 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2163 if (CurrentField && CurrentField != *Field) { 2164 assert(StructuredList->getNumInits() == 1 2165 && "A union should never have more than one initializer!"); 2166 2167 // we're about to throw away an initializer, emit warning 2168 SemaRef.Diag(D->getFieldLoc(), 2169 diag::warn_initializer_overrides) 2170 << D->getSourceRange(); 2171 Expr *ExistingInit = StructuredList->getInit(0); 2172 SemaRef.Diag(ExistingInit->getLocStart(), 2173 diag::note_previous_initializer) 2174 << /*FIXME:has side effects=*/0 2175 << ExistingInit->getSourceRange(); 2176 2177 // remove existing initializer 2178 StructuredList->resizeInits(SemaRef.Context, 0); 2179 StructuredList->setInitializedFieldInUnion(nullptr); 2180 } 2181 2182 StructuredList->setInitializedFieldInUnion(*Field); 2183 } 2184 } 2185 2186 // Make sure we can use this declaration. 2187 bool InvalidUse; 2188 if (VerifyOnly) 2189 InvalidUse = !SemaRef.CanUseDecl(*Field); 2190 else 2191 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2192 if (InvalidUse) { 2193 ++Index; 2194 return true; 2195 } 2196 2197 if (!VerifyOnly) { 2198 // Update the designator with the field declaration. 2199 D->setField(*Field); 2200 2201 // Make sure that our non-designated initializer list has space 2202 // for a subobject corresponding to this field. 2203 if (FieldIndex >= StructuredList->getNumInits()) 2204 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2205 } 2206 2207 // This designator names a flexible array member. 2208 if (Field->getType()->isIncompleteArrayType()) { 2209 bool Invalid = false; 2210 if ((DesigIdx + 1) != DIE->size()) { 2211 // We can't designate an object within the flexible array 2212 // member (because GCC doesn't allow it). 2213 if (!VerifyOnly) { 2214 DesignatedInitExpr::Designator *NextD 2215 = DIE->getDesignator(DesigIdx + 1); 2216 SemaRef.Diag(NextD->getLocStart(), 2217 diag::err_designator_into_flexible_array_member) 2218 << SourceRange(NextD->getLocStart(), 2219 DIE->getLocEnd()); 2220 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2221 << *Field; 2222 } 2223 Invalid = true; 2224 } 2225 2226 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2227 !isa<StringLiteral>(DIE->getInit())) { 2228 // The initializer is not an initializer list. 2229 if (!VerifyOnly) { 2230 SemaRef.Diag(DIE->getInit()->getLocStart(), 2231 diag::err_flexible_array_init_needs_braces) 2232 << DIE->getInit()->getSourceRange(); 2233 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2234 << *Field; 2235 } 2236 Invalid = true; 2237 } 2238 2239 // Check GNU flexible array initializer. 2240 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2241 TopLevelObject)) 2242 Invalid = true; 2243 2244 if (Invalid) { 2245 ++Index; 2246 return true; 2247 } 2248 2249 // Initialize the array. 2250 bool prevHadError = hadError; 2251 unsigned newStructuredIndex = FieldIndex; 2252 unsigned OldIndex = Index; 2253 IList->setInit(Index, DIE->getInit()); 2254 2255 InitializedEntity MemberEntity = 2256 InitializedEntity::InitializeMember(*Field, &Entity); 2257 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2258 StructuredList, newStructuredIndex); 2259 2260 IList->setInit(OldIndex, DIE); 2261 if (hadError && !prevHadError) { 2262 ++Field; 2263 ++FieldIndex; 2264 if (NextField) 2265 *NextField = Field; 2266 StructuredIndex = FieldIndex; 2267 return true; 2268 } 2269 } else { 2270 // Recurse to check later designated subobjects. 2271 QualType FieldType = Field->getType(); 2272 unsigned newStructuredIndex = FieldIndex; 2273 2274 InitializedEntity MemberEntity = 2275 InitializedEntity::InitializeMember(*Field, &Entity); 2276 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2277 FieldType, nullptr, nullptr, Index, 2278 StructuredList, newStructuredIndex, 2279 true, false)) 2280 return true; 2281 } 2282 2283 // Find the position of the next field to be initialized in this 2284 // subobject. 2285 ++Field; 2286 ++FieldIndex; 2287 2288 // If this the first designator, our caller will continue checking 2289 // the rest of this struct/class/union subobject. 2290 if (IsFirstDesignator) { 2291 if (NextField) 2292 *NextField = Field; 2293 StructuredIndex = FieldIndex; 2294 return false; 2295 } 2296 2297 if (!FinishSubobjectInit) 2298 return false; 2299 2300 // We've already initialized something in the union; we're done. 2301 if (RT->getDecl()->isUnion()) 2302 return hadError; 2303 2304 // Check the remaining fields within this class/struct/union subobject. 2305 bool prevHadError = hadError; 2306 2307 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 2308 StructuredList, FieldIndex); 2309 return hadError && !prevHadError; 2310 } 2311 2312 // C99 6.7.8p6: 2313 // 2314 // If a designator has the form 2315 // 2316 // [ constant-expression ] 2317 // 2318 // then the current object (defined below) shall have array 2319 // type and the expression shall be an integer constant 2320 // expression. If the array is of unknown size, any 2321 // nonnegative value is valid. 2322 // 2323 // Additionally, cope with the GNU extension that permits 2324 // designators of the form 2325 // 2326 // [ constant-expression ... constant-expression ] 2327 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2328 if (!AT) { 2329 if (!VerifyOnly) 2330 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2331 << CurrentObjectType; 2332 ++Index; 2333 return true; 2334 } 2335 2336 Expr *IndexExpr = nullptr; 2337 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2338 if (D->isArrayDesignator()) { 2339 IndexExpr = DIE->getArrayIndex(*D); 2340 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2341 DesignatedEndIndex = DesignatedStartIndex; 2342 } else { 2343 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2344 2345 DesignatedStartIndex = 2346 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2347 DesignatedEndIndex = 2348 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2349 IndexExpr = DIE->getArrayRangeEnd(*D); 2350 2351 // Codegen can't handle evaluating array range designators that have side 2352 // effects, because we replicate the AST value for each initialized element. 2353 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2354 // elements with something that has a side effect, so codegen can emit an 2355 // "error unsupported" error instead of miscompiling the app. 2356 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2357 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2358 FullyStructuredList->sawArrayRangeDesignator(); 2359 } 2360 2361 if (isa<ConstantArrayType>(AT)) { 2362 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2363 DesignatedStartIndex 2364 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2365 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2366 DesignatedEndIndex 2367 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2368 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2369 if (DesignatedEndIndex >= MaxElements) { 2370 if (!VerifyOnly) 2371 SemaRef.Diag(IndexExpr->getLocStart(), 2372 diag::err_array_designator_too_large) 2373 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2374 << IndexExpr->getSourceRange(); 2375 ++Index; 2376 return true; 2377 } 2378 } else { 2379 unsigned DesignatedIndexBitWidth = 2380 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2381 DesignatedStartIndex = 2382 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2383 DesignatedEndIndex = 2384 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2385 DesignatedStartIndex.setIsUnsigned(true); 2386 DesignatedEndIndex.setIsUnsigned(true); 2387 } 2388 2389 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2390 // We're modifying a string literal init; we have to decompose the string 2391 // so we can modify the individual characters. 2392 ASTContext &Context = SemaRef.Context; 2393 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2394 2395 // Compute the character type 2396 QualType CharTy = AT->getElementType(); 2397 2398 // Compute the type of the integer literals. 2399 QualType PromotedCharTy = CharTy; 2400 if (CharTy->isPromotableIntegerType()) 2401 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2402 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2403 2404 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2405 // Get the length of the string. 2406 uint64_t StrLen = SL->getLength(); 2407 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2408 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2409 StructuredList->resizeInits(Context, StrLen); 2410 2411 // Build a literal for each character in the string, and put them into 2412 // the init list. 2413 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2414 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2415 Expr *Init = new (Context) IntegerLiteral( 2416 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2417 if (CharTy != PromotedCharTy) 2418 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2419 Init, nullptr, VK_RValue); 2420 StructuredList->updateInit(Context, i, Init); 2421 } 2422 } else { 2423 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2424 std::string Str; 2425 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2426 2427 // Get the length of the string. 2428 uint64_t StrLen = Str.size(); 2429 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2430 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2431 StructuredList->resizeInits(Context, StrLen); 2432 2433 // Build a literal for each character in the string, and put them into 2434 // the init list. 2435 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2436 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2437 Expr *Init = new (Context) IntegerLiteral( 2438 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2439 if (CharTy != PromotedCharTy) 2440 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2441 Init, nullptr, VK_RValue); 2442 StructuredList->updateInit(Context, i, Init); 2443 } 2444 } 2445 } 2446 2447 // Make sure that our non-designated initializer list has space 2448 // for a subobject corresponding to this array element. 2449 if (!VerifyOnly && 2450 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2451 StructuredList->resizeInits(SemaRef.Context, 2452 DesignatedEndIndex.getZExtValue() + 1); 2453 2454 // Repeatedly perform subobject initializations in the range 2455 // [DesignatedStartIndex, DesignatedEndIndex]. 2456 2457 // Move to the next designator 2458 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2459 unsigned OldIndex = Index; 2460 2461 InitializedEntity ElementEntity = 2462 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2463 2464 while (DesignatedStartIndex <= DesignatedEndIndex) { 2465 // Recurse to check later designated subobjects. 2466 QualType ElementType = AT->getElementType(); 2467 Index = OldIndex; 2468 2469 ElementEntity.setElementIndex(ElementIndex); 2470 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 2471 ElementType, nullptr, nullptr, Index, 2472 StructuredList, ElementIndex, 2473 (DesignatedStartIndex == DesignatedEndIndex), 2474 false)) 2475 return true; 2476 2477 // Move to the next index in the array that we'll be initializing. 2478 ++DesignatedStartIndex; 2479 ElementIndex = DesignatedStartIndex.getZExtValue(); 2480 } 2481 2482 // If this the first designator, our caller will continue checking 2483 // the rest of this array subobject. 2484 if (IsFirstDesignator) { 2485 if (NextElementIndex) 2486 *NextElementIndex = DesignatedStartIndex; 2487 StructuredIndex = ElementIndex; 2488 return false; 2489 } 2490 2491 if (!FinishSubobjectInit) 2492 return false; 2493 2494 // Check the remaining elements within this array subobject. 2495 bool prevHadError = hadError; 2496 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2497 /*SubobjectIsDesignatorContext=*/false, Index, 2498 StructuredList, ElementIndex); 2499 return hadError && !prevHadError; 2500 } 2501 2502 // Get the structured initializer list for a subobject of type 2503 // @p CurrentObjectType. 2504 InitListExpr * 2505 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2506 QualType CurrentObjectType, 2507 InitListExpr *StructuredList, 2508 unsigned StructuredIndex, 2509 SourceRange InitRange, 2510 bool IsFullyOverwritten) { 2511 if (VerifyOnly) 2512 return nullptr; // No structured list in verification-only mode. 2513 Expr *ExistingInit = nullptr; 2514 if (!StructuredList) 2515 ExistingInit = SyntacticToSemantic.lookup(IList); 2516 else if (StructuredIndex < StructuredList->getNumInits()) 2517 ExistingInit = StructuredList->getInit(StructuredIndex); 2518 2519 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2520 // There might have already been initializers for subobjects of the current 2521 // object, but a subsequent initializer list will overwrite the entirety 2522 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2523 // 2524 // struct P { char x[6]; }; 2525 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2526 // 2527 // The first designated initializer is ignored, and l.x is just "f". 2528 if (!IsFullyOverwritten) 2529 return Result; 2530 2531 if (ExistingInit) { 2532 // We are creating an initializer list that initializes the 2533 // subobjects of the current object, but there was already an 2534 // initialization that completely initialized the current 2535 // subobject, e.g., by a compound literal: 2536 // 2537 // struct X { int a, b; }; 2538 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2539 // 2540 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2541 // designated initializer re-initializes the whole 2542 // subobject [0], overwriting previous initializers. 2543 SemaRef.Diag(InitRange.getBegin(), 2544 diag::warn_subobject_initializer_overrides) 2545 << InitRange; 2546 SemaRef.Diag(ExistingInit->getLocStart(), 2547 diag::note_previous_initializer) 2548 << /*FIXME:has side effects=*/0 2549 << ExistingInit->getSourceRange(); 2550 } 2551 2552 InitListExpr *Result 2553 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2554 InitRange.getBegin(), None, 2555 InitRange.getEnd()); 2556 2557 QualType ResultType = CurrentObjectType; 2558 if (!ResultType->isArrayType()) 2559 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2560 Result->setType(ResultType); 2561 2562 // Pre-allocate storage for the structured initializer list. 2563 unsigned NumElements = 0; 2564 unsigned NumInits = 0; 2565 bool GotNumInits = false; 2566 if (!StructuredList) { 2567 NumInits = IList->getNumInits(); 2568 GotNumInits = true; 2569 } else if (Index < IList->getNumInits()) { 2570 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2571 NumInits = SubList->getNumInits(); 2572 GotNumInits = true; 2573 } 2574 } 2575 2576 if (const ArrayType *AType 2577 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2578 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2579 NumElements = CAType->getSize().getZExtValue(); 2580 // Simple heuristic so that we don't allocate a very large 2581 // initializer with many empty entries at the end. 2582 if (GotNumInits && NumElements > NumInits) 2583 NumElements = 0; 2584 } 2585 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2586 NumElements = VType->getNumElements(); 2587 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2588 RecordDecl *RDecl = RType->getDecl(); 2589 if (RDecl->isUnion()) 2590 NumElements = 1; 2591 else 2592 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2593 } 2594 2595 Result->reserveInits(SemaRef.Context, NumElements); 2596 2597 // Link this new initializer list into the structured initializer 2598 // lists. 2599 if (StructuredList) 2600 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2601 else { 2602 Result->setSyntacticForm(IList); 2603 SyntacticToSemantic[IList] = Result; 2604 } 2605 2606 return Result; 2607 } 2608 2609 /// Update the initializer at index @p StructuredIndex within the 2610 /// structured initializer list to the value @p expr. 2611 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2612 unsigned &StructuredIndex, 2613 Expr *expr) { 2614 // No structured initializer list to update 2615 if (!StructuredList) 2616 return; 2617 2618 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2619 StructuredIndex, expr)) { 2620 // This initializer overwrites a previous initializer. Warn. 2621 // We need to check on source range validity because the previous 2622 // initializer does not have to be an explicit initializer. 2623 // struct P { int a, b; }; 2624 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2625 // There is an overwrite taking place because the first braced initializer 2626 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2627 if (PrevInit->getSourceRange().isValid()) { 2628 SemaRef.Diag(expr->getLocStart(), 2629 diag::warn_initializer_overrides) 2630 << expr->getSourceRange(); 2631 2632 SemaRef.Diag(PrevInit->getLocStart(), 2633 diag::note_previous_initializer) 2634 << /*FIXME:has side effects=*/0 2635 << PrevInit->getSourceRange(); 2636 } 2637 } 2638 2639 ++StructuredIndex; 2640 } 2641 2642 /// Check that the given Index expression is a valid array designator 2643 /// value. This is essentially just a wrapper around 2644 /// VerifyIntegerConstantExpression that also checks for negative values 2645 /// and produces a reasonable diagnostic if there is a 2646 /// failure. Returns the index expression, possibly with an implicit cast 2647 /// added, on success. If everything went okay, Value will receive the 2648 /// value of the constant expression. 2649 static ExprResult 2650 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2651 SourceLocation Loc = Index->getLocStart(); 2652 2653 // Make sure this is an integer constant expression. 2654 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2655 if (Result.isInvalid()) 2656 return Result; 2657 2658 if (Value.isSigned() && Value.isNegative()) 2659 return S.Diag(Loc, diag::err_array_designator_negative) 2660 << Value.toString(10) << Index->getSourceRange(); 2661 2662 Value.setIsUnsigned(true); 2663 return Result; 2664 } 2665 2666 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2667 SourceLocation Loc, 2668 bool GNUSyntax, 2669 ExprResult Init) { 2670 typedef DesignatedInitExpr::Designator ASTDesignator; 2671 2672 bool Invalid = false; 2673 SmallVector<ASTDesignator, 32> Designators; 2674 SmallVector<Expr *, 32> InitExpressions; 2675 2676 // Build designators and check array designator expressions. 2677 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2678 const Designator &D = Desig.getDesignator(Idx); 2679 switch (D.getKind()) { 2680 case Designator::FieldDesignator: 2681 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2682 D.getFieldLoc())); 2683 break; 2684 2685 case Designator::ArrayDesignator: { 2686 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2687 llvm::APSInt IndexValue; 2688 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2689 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2690 if (!Index) 2691 Invalid = true; 2692 else { 2693 Designators.push_back(ASTDesignator(InitExpressions.size(), 2694 D.getLBracketLoc(), 2695 D.getRBracketLoc())); 2696 InitExpressions.push_back(Index); 2697 } 2698 break; 2699 } 2700 2701 case Designator::ArrayRangeDesignator: { 2702 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2703 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2704 llvm::APSInt StartValue; 2705 llvm::APSInt EndValue; 2706 bool StartDependent = StartIndex->isTypeDependent() || 2707 StartIndex->isValueDependent(); 2708 bool EndDependent = EndIndex->isTypeDependent() || 2709 EndIndex->isValueDependent(); 2710 if (!StartDependent) 2711 StartIndex = 2712 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2713 if (!EndDependent) 2714 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2715 2716 if (!StartIndex || !EndIndex) 2717 Invalid = true; 2718 else { 2719 // Make sure we're comparing values with the same bit width. 2720 if (StartDependent || EndDependent) { 2721 // Nothing to compute. 2722 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2723 EndValue = EndValue.extend(StartValue.getBitWidth()); 2724 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2725 StartValue = StartValue.extend(EndValue.getBitWidth()); 2726 2727 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2728 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2729 << StartValue.toString(10) << EndValue.toString(10) 2730 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2731 Invalid = true; 2732 } else { 2733 Designators.push_back(ASTDesignator(InitExpressions.size(), 2734 D.getLBracketLoc(), 2735 D.getEllipsisLoc(), 2736 D.getRBracketLoc())); 2737 InitExpressions.push_back(StartIndex); 2738 InitExpressions.push_back(EndIndex); 2739 } 2740 } 2741 break; 2742 } 2743 } 2744 } 2745 2746 if (Invalid || Init.isInvalid()) 2747 return ExprError(); 2748 2749 // Clear out the expressions within the designation. 2750 Desig.ClearExprs(*this); 2751 2752 DesignatedInitExpr *DIE 2753 = DesignatedInitExpr::Create(Context, 2754 Designators.data(), Designators.size(), 2755 InitExpressions, Loc, GNUSyntax, 2756 Init.getAs<Expr>()); 2757 2758 if (!getLangOpts().C99) 2759 Diag(DIE->getLocStart(), diag::ext_designated_init) 2760 << DIE->getSourceRange(); 2761 2762 return DIE; 2763 } 2764 2765 //===----------------------------------------------------------------------===// 2766 // Initialization entity 2767 //===----------------------------------------------------------------------===// 2768 2769 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2770 const InitializedEntity &Parent) 2771 : Parent(&Parent), Index(Index) 2772 { 2773 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2774 Kind = EK_ArrayElement; 2775 Type = AT->getElementType(); 2776 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2777 Kind = EK_VectorElement; 2778 Type = VT->getElementType(); 2779 } else { 2780 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2781 assert(CT && "Unexpected type"); 2782 Kind = EK_ComplexElement; 2783 Type = CT->getElementType(); 2784 } 2785 } 2786 2787 InitializedEntity 2788 InitializedEntity::InitializeBase(ASTContext &Context, 2789 const CXXBaseSpecifier *Base, 2790 bool IsInheritedVirtualBase) { 2791 InitializedEntity Result; 2792 Result.Kind = EK_Base; 2793 Result.Parent = nullptr; 2794 Result.Base = reinterpret_cast<uintptr_t>(Base); 2795 if (IsInheritedVirtualBase) 2796 Result.Base |= 0x01; 2797 2798 Result.Type = Base->getType(); 2799 return Result; 2800 } 2801 2802 DeclarationName InitializedEntity::getName() const { 2803 switch (getKind()) { 2804 case EK_Parameter: 2805 case EK_Parameter_CF_Audited: { 2806 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2807 return (D ? D->getDeclName() : DeclarationName()); 2808 } 2809 2810 case EK_Variable: 2811 case EK_Member: 2812 return VariableOrMember->getDeclName(); 2813 2814 case EK_LambdaCapture: 2815 return DeclarationName(Capture.VarID); 2816 2817 case EK_Result: 2818 case EK_Exception: 2819 case EK_New: 2820 case EK_Temporary: 2821 case EK_Base: 2822 case EK_Delegating: 2823 case EK_ArrayElement: 2824 case EK_VectorElement: 2825 case EK_ComplexElement: 2826 case EK_BlockElement: 2827 case EK_CompoundLiteralInit: 2828 case EK_RelatedResult: 2829 return DeclarationName(); 2830 } 2831 2832 llvm_unreachable("Invalid EntityKind!"); 2833 } 2834 2835 DeclaratorDecl *InitializedEntity::getDecl() const { 2836 switch (getKind()) { 2837 case EK_Variable: 2838 case EK_Member: 2839 return VariableOrMember; 2840 2841 case EK_Parameter: 2842 case EK_Parameter_CF_Audited: 2843 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2844 2845 case EK_Result: 2846 case EK_Exception: 2847 case EK_New: 2848 case EK_Temporary: 2849 case EK_Base: 2850 case EK_Delegating: 2851 case EK_ArrayElement: 2852 case EK_VectorElement: 2853 case EK_ComplexElement: 2854 case EK_BlockElement: 2855 case EK_LambdaCapture: 2856 case EK_CompoundLiteralInit: 2857 case EK_RelatedResult: 2858 return nullptr; 2859 } 2860 2861 llvm_unreachable("Invalid EntityKind!"); 2862 } 2863 2864 bool InitializedEntity::allowsNRVO() const { 2865 switch (getKind()) { 2866 case EK_Result: 2867 case EK_Exception: 2868 return LocAndNRVO.NRVO; 2869 2870 case EK_Variable: 2871 case EK_Parameter: 2872 case EK_Parameter_CF_Audited: 2873 case EK_Member: 2874 case EK_New: 2875 case EK_Temporary: 2876 case EK_CompoundLiteralInit: 2877 case EK_Base: 2878 case EK_Delegating: 2879 case EK_ArrayElement: 2880 case EK_VectorElement: 2881 case EK_ComplexElement: 2882 case EK_BlockElement: 2883 case EK_LambdaCapture: 2884 case EK_RelatedResult: 2885 break; 2886 } 2887 2888 return false; 2889 } 2890 2891 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 2892 assert(getParent() != this); 2893 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 2894 for (unsigned I = 0; I != Depth; ++I) 2895 OS << "`-"; 2896 2897 switch (getKind()) { 2898 case EK_Variable: OS << "Variable"; break; 2899 case EK_Parameter: OS << "Parameter"; break; 2900 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 2901 break; 2902 case EK_Result: OS << "Result"; break; 2903 case EK_Exception: OS << "Exception"; break; 2904 case EK_Member: OS << "Member"; break; 2905 case EK_New: OS << "New"; break; 2906 case EK_Temporary: OS << "Temporary"; break; 2907 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 2908 case EK_RelatedResult: OS << "RelatedResult"; break; 2909 case EK_Base: OS << "Base"; break; 2910 case EK_Delegating: OS << "Delegating"; break; 2911 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 2912 case EK_VectorElement: OS << "VectorElement " << Index; break; 2913 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 2914 case EK_BlockElement: OS << "Block"; break; 2915 case EK_LambdaCapture: 2916 OS << "LambdaCapture "; 2917 OS << DeclarationName(Capture.VarID); 2918 break; 2919 } 2920 2921 if (Decl *D = getDecl()) { 2922 OS << " "; 2923 cast<NamedDecl>(D)->printQualifiedName(OS); 2924 } 2925 2926 OS << " '" << getType().getAsString() << "'\n"; 2927 2928 return Depth + 1; 2929 } 2930 2931 void InitializedEntity::dump() const { 2932 dumpImpl(llvm::errs()); 2933 } 2934 2935 //===----------------------------------------------------------------------===// 2936 // Initialization sequence 2937 //===----------------------------------------------------------------------===// 2938 2939 void InitializationSequence::Step::Destroy() { 2940 switch (Kind) { 2941 case SK_ResolveAddressOfOverloadedFunction: 2942 case SK_CastDerivedToBaseRValue: 2943 case SK_CastDerivedToBaseXValue: 2944 case SK_CastDerivedToBaseLValue: 2945 case SK_BindReference: 2946 case SK_BindReferenceToTemporary: 2947 case SK_ExtraneousCopyToTemporary: 2948 case SK_UserConversion: 2949 case SK_QualificationConversionRValue: 2950 case SK_QualificationConversionXValue: 2951 case SK_QualificationConversionLValue: 2952 case SK_AtomicConversion: 2953 case SK_LValueToRValue: 2954 case SK_ListInitialization: 2955 case SK_UnwrapInitList: 2956 case SK_RewrapInitList: 2957 case SK_ConstructorInitialization: 2958 case SK_ConstructorInitializationFromList: 2959 case SK_ZeroInitialization: 2960 case SK_CAssignment: 2961 case SK_StringInit: 2962 case SK_ObjCObjectConversion: 2963 case SK_ArrayInit: 2964 case SK_ParenthesizedArrayInit: 2965 case SK_PassByIndirectCopyRestore: 2966 case SK_PassByIndirectRestore: 2967 case SK_ProduceObjCObject: 2968 case SK_StdInitializerList: 2969 case SK_StdInitializerListConstructorCall: 2970 case SK_OCLSamplerInit: 2971 case SK_OCLZeroEvent: 2972 break; 2973 2974 case SK_ConversionSequence: 2975 case SK_ConversionSequenceNoNarrowing: 2976 delete ICS; 2977 } 2978 } 2979 2980 bool InitializationSequence::isDirectReferenceBinding() const { 2981 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2982 } 2983 2984 bool InitializationSequence::isAmbiguous() const { 2985 if (!Failed()) 2986 return false; 2987 2988 switch (getFailureKind()) { 2989 case FK_TooManyInitsForReference: 2990 case FK_ArrayNeedsInitList: 2991 case FK_ArrayNeedsInitListOrStringLiteral: 2992 case FK_ArrayNeedsInitListOrWideStringLiteral: 2993 case FK_NarrowStringIntoWideCharArray: 2994 case FK_WideStringIntoCharArray: 2995 case FK_IncompatWideStringIntoWideChar: 2996 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2997 case FK_NonConstLValueReferenceBindingToTemporary: 2998 case FK_NonConstLValueReferenceBindingToUnrelated: 2999 case FK_RValueReferenceBindingToLValue: 3000 case FK_ReferenceInitDropsQualifiers: 3001 case FK_ReferenceInitFailed: 3002 case FK_ConversionFailed: 3003 case FK_ConversionFromPropertyFailed: 3004 case FK_TooManyInitsForScalar: 3005 case FK_ReferenceBindingToInitList: 3006 case FK_InitListBadDestinationType: 3007 case FK_DefaultInitOfConst: 3008 case FK_Incomplete: 3009 case FK_ArrayTypeMismatch: 3010 case FK_NonConstantArrayInit: 3011 case FK_ListInitializationFailed: 3012 case FK_VariableLengthArrayHasInitializer: 3013 case FK_PlaceholderType: 3014 case FK_ExplicitConstructor: 3015 case FK_AddressOfUnaddressableFunction: 3016 return false; 3017 3018 case FK_ReferenceInitOverloadFailed: 3019 case FK_UserConversionOverloadFailed: 3020 case FK_ConstructorOverloadFailed: 3021 case FK_ListConstructorOverloadFailed: 3022 return FailedOverloadResult == OR_Ambiguous; 3023 } 3024 3025 llvm_unreachable("Invalid EntityKind!"); 3026 } 3027 3028 bool InitializationSequence::isConstructorInitialization() const { 3029 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3030 } 3031 3032 void 3033 InitializationSequence 3034 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3035 DeclAccessPair Found, 3036 bool HadMultipleCandidates) { 3037 Step S; 3038 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3039 S.Type = Function->getType(); 3040 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3041 S.Function.Function = Function; 3042 S.Function.FoundDecl = Found; 3043 Steps.push_back(S); 3044 } 3045 3046 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3047 ExprValueKind VK) { 3048 Step S; 3049 switch (VK) { 3050 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3051 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3052 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3053 } 3054 S.Type = BaseType; 3055 Steps.push_back(S); 3056 } 3057 3058 void InitializationSequence::AddReferenceBindingStep(QualType T, 3059 bool BindingTemporary) { 3060 Step S; 3061 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3062 S.Type = T; 3063 Steps.push_back(S); 3064 } 3065 3066 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3067 Step S; 3068 S.Kind = SK_ExtraneousCopyToTemporary; 3069 S.Type = T; 3070 Steps.push_back(S); 3071 } 3072 3073 void 3074 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3075 DeclAccessPair FoundDecl, 3076 QualType T, 3077 bool HadMultipleCandidates) { 3078 Step S; 3079 S.Kind = SK_UserConversion; 3080 S.Type = T; 3081 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3082 S.Function.Function = Function; 3083 S.Function.FoundDecl = FoundDecl; 3084 Steps.push_back(S); 3085 } 3086 3087 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3088 ExprValueKind VK) { 3089 Step S; 3090 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3091 switch (VK) { 3092 case VK_RValue: 3093 S.Kind = SK_QualificationConversionRValue; 3094 break; 3095 case VK_XValue: 3096 S.Kind = SK_QualificationConversionXValue; 3097 break; 3098 case VK_LValue: 3099 S.Kind = SK_QualificationConversionLValue; 3100 break; 3101 } 3102 S.Type = Ty; 3103 Steps.push_back(S); 3104 } 3105 3106 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3107 Step S; 3108 S.Kind = SK_AtomicConversion; 3109 S.Type = Ty; 3110 Steps.push_back(S); 3111 } 3112 3113 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 3114 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 3115 3116 Step S; 3117 S.Kind = SK_LValueToRValue; 3118 S.Type = Ty; 3119 Steps.push_back(S); 3120 } 3121 3122 void InitializationSequence::AddConversionSequenceStep( 3123 const ImplicitConversionSequence &ICS, QualType T, 3124 bool TopLevelOfInitList) { 3125 Step S; 3126 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3127 : SK_ConversionSequence; 3128 S.Type = T; 3129 S.ICS = new ImplicitConversionSequence(ICS); 3130 Steps.push_back(S); 3131 } 3132 3133 void InitializationSequence::AddListInitializationStep(QualType T) { 3134 Step S; 3135 S.Kind = SK_ListInitialization; 3136 S.Type = T; 3137 Steps.push_back(S); 3138 } 3139 3140 void 3141 InitializationSequence 3142 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 3143 AccessSpecifier Access, 3144 QualType T, 3145 bool HadMultipleCandidates, 3146 bool FromInitList, bool AsInitList) { 3147 Step S; 3148 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3149 : SK_ConstructorInitializationFromList 3150 : SK_ConstructorInitialization; 3151 S.Type = T; 3152 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3153 S.Function.Function = Constructor; 3154 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 3155 Steps.push_back(S); 3156 } 3157 3158 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3159 Step S; 3160 S.Kind = SK_ZeroInitialization; 3161 S.Type = T; 3162 Steps.push_back(S); 3163 } 3164 3165 void InitializationSequence::AddCAssignmentStep(QualType T) { 3166 Step S; 3167 S.Kind = SK_CAssignment; 3168 S.Type = T; 3169 Steps.push_back(S); 3170 } 3171 3172 void InitializationSequence::AddStringInitStep(QualType T) { 3173 Step S; 3174 S.Kind = SK_StringInit; 3175 S.Type = T; 3176 Steps.push_back(S); 3177 } 3178 3179 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3180 Step S; 3181 S.Kind = SK_ObjCObjectConversion; 3182 S.Type = T; 3183 Steps.push_back(S); 3184 } 3185 3186 void InitializationSequence::AddArrayInitStep(QualType T) { 3187 Step S; 3188 S.Kind = SK_ArrayInit; 3189 S.Type = T; 3190 Steps.push_back(S); 3191 } 3192 3193 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3194 Step S; 3195 S.Kind = SK_ParenthesizedArrayInit; 3196 S.Type = T; 3197 Steps.push_back(S); 3198 } 3199 3200 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3201 bool shouldCopy) { 3202 Step s; 3203 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3204 : SK_PassByIndirectRestore); 3205 s.Type = type; 3206 Steps.push_back(s); 3207 } 3208 3209 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3210 Step S; 3211 S.Kind = SK_ProduceObjCObject; 3212 S.Type = T; 3213 Steps.push_back(S); 3214 } 3215 3216 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3217 Step S; 3218 S.Kind = SK_StdInitializerList; 3219 S.Type = T; 3220 Steps.push_back(S); 3221 } 3222 3223 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3224 Step S; 3225 S.Kind = SK_OCLSamplerInit; 3226 S.Type = T; 3227 Steps.push_back(S); 3228 } 3229 3230 void InitializationSequence::AddOCLZeroEventStep(QualType T) { 3231 Step S; 3232 S.Kind = SK_OCLZeroEvent; 3233 S.Type = T; 3234 Steps.push_back(S); 3235 } 3236 3237 void InitializationSequence::RewrapReferenceInitList(QualType T, 3238 InitListExpr *Syntactic) { 3239 assert(Syntactic->getNumInits() == 1 && 3240 "Can only rewrap trivial init lists."); 3241 Step S; 3242 S.Kind = SK_UnwrapInitList; 3243 S.Type = Syntactic->getInit(0)->getType(); 3244 Steps.insert(Steps.begin(), S); 3245 3246 S.Kind = SK_RewrapInitList; 3247 S.Type = T; 3248 S.WrappingSyntacticList = Syntactic; 3249 Steps.push_back(S); 3250 } 3251 3252 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3253 OverloadingResult Result) { 3254 setSequenceKind(FailedSequence); 3255 this->Failure = Failure; 3256 this->FailedOverloadResult = Result; 3257 } 3258 3259 //===----------------------------------------------------------------------===// 3260 // Attempt initialization 3261 //===----------------------------------------------------------------------===// 3262 3263 /// Tries to add a zero initializer. Returns true if that worked. 3264 static bool 3265 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3266 const InitializedEntity &Entity) { 3267 if (Entity.getKind() != InitializedEntity::EK_Variable) 3268 return false; 3269 3270 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3271 if (VD->getInit() || VD->getLocEnd().isMacroID()) 3272 return false; 3273 3274 QualType VariableTy = VD->getType().getCanonicalType(); 3275 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd()); 3276 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3277 if (!Init.empty()) { 3278 Sequence.AddZeroInitializationStep(Entity.getType()); 3279 Sequence.SetZeroInitializationFixit(Init, Loc); 3280 return true; 3281 } 3282 return false; 3283 } 3284 3285 static void MaybeProduceObjCObject(Sema &S, 3286 InitializationSequence &Sequence, 3287 const InitializedEntity &Entity) { 3288 if (!S.getLangOpts().ObjCAutoRefCount) return; 3289 3290 /// When initializing a parameter, produce the value if it's marked 3291 /// __attribute__((ns_consumed)). 3292 if (Entity.isParameterKind()) { 3293 if (!Entity.isParameterConsumed()) 3294 return; 3295 3296 assert(Entity.getType()->isObjCRetainableType() && 3297 "consuming an object of unretainable type?"); 3298 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3299 3300 /// When initializing a return value, if the return type is a 3301 /// retainable type, then returns need to immediately retain the 3302 /// object. If an autorelease is required, it will be done at the 3303 /// last instant. 3304 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 3305 if (!Entity.getType()->isObjCRetainableType()) 3306 return; 3307 3308 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3309 } 3310 } 3311 3312 static void TryListInitialization(Sema &S, 3313 const InitializedEntity &Entity, 3314 const InitializationKind &Kind, 3315 InitListExpr *InitList, 3316 InitializationSequence &Sequence); 3317 3318 /// \brief When initializing from init list via constructor, handle 3319 /// initialization of an object of type std::initializer_list<T>. 3320 /// 3321 /// \return true if we have handled initialization of an object of type 3322 /// std::initializer_list<T>, false otherwise. 3323 static bool TryInitializerListConstruction(Sema &S, 3324 InitListExpr *List, 3325 QualType DestType, 3326 InitializationSequence &Sequence) { 3327 QualType E; 3328 if (!S.isStdInitializerList(DestType, &E)) 3329 return false; 3330 3331 if (!S.isCompleteType(List->getExprLoc(), E)) { 3332 Sequence.setIncompleteTypeFailure(E); 3333 return true; 3334 } 3335 3336 // Try initializing a temporary array from the init list. 3337 QualType ArrayType = S.Context.getConstantArrayType( 3338 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3339 List->getNumInits()), 3340 clang::ArrayType::Normal, 0); 3341 InitializedEntity HiddenArray = 3342 InitializedEntity::InitializeTemporary(ArrayType); 3343 InitializationKind Kind = 3344 InitializationKind::CreateDirectList(List->getExprLoc()); 3345 TryListInitialization(S, HiddenArray, Kind, List, Sequence); 3346 if (Sequence) 3347 Sequence.AddStdInitializerListConstructionStep(DestType); 3348 return true; 3349 } 3350 3351 static OverloadingResult 3352 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3353 MultiExprArg Args, 3354 OverloadCandidateSet &CandidateSet, 3355 DeclContext::lookup_result Ctors, 3356 OverloadCandidateSet::iterator &Best, 3357 bool CopyInitializing, bool AllowExplicit, 3358 bool OnlyListConstructors, bool IsListInit) { 3359 CandidateSet.clear(); 3360 3361 for (NamedDecl *D : Ctors) { 3362 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3363 bool SuppressUserConversions = false; 3364 3365 // Find the constructor (which may be a template). 3366 CXXConstructorDecl *Constructor = nullptr; 3367 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3368 if (ConstructorTmpl) 3369 Constructor = cast<CXXConstructorDecl>( 3370 ConstructorTmpl->getTemplatedDecl()); 3371 else { 3372 Constructor = cast<CXXConstructorDecl>(D); 3373 3374 // C++11 [over.best.ics]p4: 3375 // ... and the constructor or user-defined conversion function is a 3376 // candidate by 3377 // - 13.3.1.3, when the argument is the temporary in the second step 3378 // of a class copy-initialization, or 3379 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), 3380 // user-defined conversion sequences are not considered. 3381 // FIXME: This breaks backward compatibility, e.g. PR12117. As a 3382 // temporary fix, let's re-instate the third bullet above until 3383 // there is a resolution in the standard, i.e., 3384 // - 13.3.1.7 when the initializer list has exactly one element that is 3385 // itself an initializer list and a conversion to some class X or 3386 // reference to (possibly cv-qualified) X is considered for the first 3387 // parameter of a constructor of X. 3388 if ((CopyInitializing || 3389 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3390 Constructor->isCopyOrMoveConstructor()) 3391 SuppressUserConversions = true; 3392 } 3393 3394 if (!Constructor->isInvalidDecl() && 3395 (AllowExplicit || !Constructor->isExplicit()) && 3396 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) { 3397 if (ConstructorTmpl) 3398 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3399 /*ExplicitArgs*/ nullptr, Args, 3400 CandidateSet, SuppressUserConversions); 3401 else { 3402 // C++ [over.match.copy]p1: 3403 // - When initializing a temporary to be bound to the first parameter 3404 // of a constructor that takes a reference to possibly cv-qualified 3405 // T as its first argument, called with a single argument in the 3406 // context of direct-initialization, explicit conversion functions 3407 // are also considered. 3408 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3409 Args.size() == 1 && 3410 Constructor->isCopyOrMoveConstructor(); 3411 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet, 3412 SuppressUserConversions, 3413 /*PartialOverloading=*/false, 3414 /*AllowExplicit=*/AllowExplicitConv); 3415 } 3416 } 3417 } 3418 3419 // Perform overload resolution and return the result. 3420 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3421 } 3422 3423 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 3424 /// enumerates the constructors of the initialized entity and performs overload 3425 /// resolution to select the best. 3426 /// \param IsListInit Is this list-initialization? 3427 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3428 /// list-initialization from {x} where x is the same 3429 /// type as the entity? 3430 static void TryConstructorInitialization(Sema &S, 3431 const InitializedEntity &Entity, 3432 const InitializationKind &Kind, 3433 MultiExprArg Args, QualType DestType, 3434 InitializationSequence &Sequence, 3435 bool IsListInit = false, 3436 bool IsInitListCopy = false) { 3437 assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3438 "IsListInit must come with a single initializer list argument."); 3439 3440 // The type we're constructing needs to be complete. 3441 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3442 Sequence.setIncompleteTypeFailure(DestType); 3443 return; 3444 } 3445 3446 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3447 assert(DestRecordType && "Constructor initialization requires record type"); 3448 CXXRecordDecl *DestRecordDecl 3449 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3450 3451 // Build the candidate set directly in the initialization sequence 3452 // structure, so that it will persist if we fail. 3453 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3454 3455 // Determine whether we are allowed to call explicit constructors or 3456 // explicit conversion operators. 3457 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3458 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3459 3460 // - Otherwise, if T is a class type, constructors are considered. The 3461 // applicable constructors are enumerated, and the best one is chosen 3462 // through overload resolution. 3463 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3464 3465 OverloadingResult Result = OR_No_Viable_Function; 3466 OverloadCandidateSet::iterator Best; 3467 bool AsInitializerList = false; 3468 3469 // C++11 [over.match.list]p1, per DR1467: 3470 // When objects of non-aggregate type T are list-initialized, such that 3471 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3472 // according to the rules in this section, overload resolution selects 3473 // the constructor in two phases: 3474 // 3475 // - Initially, the candidate functions are the initializer-list 3476 // constructors of the class T and the argument list consists of the 3477 // initializer list as a single argument. 3478 if (IsListInit) { 3479 InitListExpr *ILE = cast<InitListExpr>(Args[0]); 3480 AsInitializerList = true; 3481 3482 // If the initializer list has no elements and T has a default constructor, 3483 // the first phase is omitted. 3484 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) 3485 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3486 CandidateSet, Ctors, Best, 3487 CopyInitialization, AllowExplicit, 3488 /*OnlyListConstructor=*/true, 3489 IsListInit); 3490 3491 // Time to unwrap the init list. 3492 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 3493 } 3494 3495 // C++11 [over.match.list]p1: 3496 // - If no viable initializer-list constructor is found, overload resolution 3497 // is performed again, where the candidate functions are all the 3498 // constructors of the class T and the argument list consists of the 3499 // elements of the initializer list. 3500 if (Result == OR_No_Viable_Function) { 3501 AsInitializerList = false; 3502 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3503 CandidateSet, Ctors, Best, 3504 CopyInitialization, AllowExplicit, 3505 /*OnlyListConstructors=*/false, 3506 IsListInit); 3507 } 3508 if (Result) { 3509 Sequence.SetOverloadFailure(IsListInit ? 3510 InitializationSequence::FK_ListConstructorOverloadFailed : 3511 InitializationSequence::FK_ConstructorOverloadFailed, 3512 Result); 3513 return; 3514 } 3515 3516 // C++11 [dcl.init]p6: 3517 // If a program calls for the default initialization of an object 3518 // of a const-qualified type T, T shall be a class type with a 3519 // user-provided default constructor. 3520 if (Kind.getKind() == InitializationKind::IK_Default && 3521 Entity.getType().isConstQualified() && 3522 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) { 3523 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3524 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3525 return; 3526 } 3527 3528 // C++11 [over.match.list]p1: 3529 // In copy-list-initialization, if an explicit constructor is chosen, the 3530 // initializer is ill-formed. 3531 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3532 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3533 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3534 return; 3535 } 3536 3537 // Add the constructor initialization step. Any cv-qualification conversion is 3538 // subsumed by the initialization. 3539 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3540 Sequence.AddConstructorInitializationStep( 3541 CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates, 3542 IsListInit | IsInitListCopy, AsInitializerList); 3543 } 3544 3545 static bool 3546 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3547 Expr *Initializer, 3548 QualType &SourceType, 3549 QualType &UnqualifiedSourceType, 3550 QualType UnqualifiedTargetType, 3551 InitializationSequence &Sequence) { 3552 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3553 S.Context.OverloadTy) { 3554 DeclAccessPair Found; 3555 bool HadMultipleCandidates = false; 3556 if (FunctionDecl *Fn 3557 = S.ResolveAddressOfOverloadedFunction(Initializer, 3558 UnqualifiedTargetType, 3559 false, Found, 3560 &HadMultipleCandidates)) { 3561 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3562 HadMultipleCandidates); 3563 SourceType = Fn->getType(); 3564 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3565 } else if (!UnqualifiedTargetType->isRecordType()) { 3566 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3567 return true; 3568 } 3569 } 3570 return false; 3571 } 3572 3573 static void TryReferenceInitializationCore(Sema &S, 3574 const InitializedEntity &Entity, 3575 const InitializationKind &Kind, 3576 Expr *Initializer, 3577 QualType cv1T1, QualType T1, 3578 Qualifiers T1Quals, 3579 QualType cv2T2, QualType T2, 3580 Qualifiers T2Quals, 3581 InitializationSequence &Sequence); 3582 3583 static void TryValueInitialization(Sema &S, 3584 const InitializedEntity &Entity, 3585 const InitializationKind &Kind, 3586 InitializationSequence &Sequence, 3587 InitListExpr *InitList = nullptr); 3588 3589 /// \brief Attempt list initialization of a reference. 3590 static void TryReferenceListInitialization(Sema &S, 3591 const InitializedEntity &Entity, 3592 const InitializationKind &Kind, 3593 InitListExpr *InitList, 3594 InitializationSequence &Sequence) { 3595 // First, catch C++03 where this isn't possible. 3596 if (!S.getLangOpts().CPlusPlus11) { 3597 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3598 return; 3599 } 3600 // Can't reference initialize a compound literal. 3601 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 3602 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3603 return; 3604 } 3605 3606 QualType DestType = Entity.getType(); 3607 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3608 Qualifiers T1Quals; 3609 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3610 3611 // Reference initialization via an initializer list works thus: 3612 // If the initializer list consists of a single element that is 3613 // reference-related to the referenced type, bind directly to that element 3614 // (possibly creating temporaries). 3615 // Otherwise, initialize a temporary with the initializer list and 3616 // bind to that. 3617 if (InitList->getNumInits() == 1) { 3618 Expr *Initializer = InitList->getInit(0); 3619 QualType cv2T2 = Initializer->getType(); 3620 Qualifiers T2Quals; 3621 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3622 3623 // If this fails, creating a temporary wouldn't work either. 3624 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3625 T1, Sequence)) 3626 return; 3627 3628 SourceLocation DeclLoc = Initializer->getLocStart(); 3629 bool dummy1, dummy2, dummy3; 3630 Sema::ReferenceCompareResult RefRelationship 3631 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3632 dummy2, dummy3); 3633 if (RefRelationship >= Sema::Ref_Related) { 3634 // Try to bind the reference here. 3635 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3636 T1Quals, cv2T2, T2, T2Quals, Sequence); 3637 if (Sequence) 3638 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3639 return; 3640 } 3641 3642 // Update the initializer if we've resolved an overloaded function. 3643 if (Sequence.step_begin() != Sequence.step_end()) 3644 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3645 } 3646 3647 // Not reference-related. Create a temporary and bind to that. 3648 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3649 3650 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3651 if (Sequence) { 3652 if (DestType->isRValueReferenceType() || 3653 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3654 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3655 else 3656 Sequence.SetFailed( 3657 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3658 } 3659 } 3660 3661 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3662 static void TryListInitialization(Sema &S, 3663 const InitializedEntity &Entity, 3664 const InitializationKind &Kind, 3665 InitListExpr *InitList, 3666 InitializationSequence &Sequence) { 3667 QualType DestType = Entity.getType(); 3668 3669 // C++ doesn't allow scalar initialization with more than one argument. 3670 // But C99 complex numbers are scalars and it makes sense there. 3671 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 3672 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3673 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3674 return; 3675 } 3676 if (DestType->isReferenceType()) { 3677 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3678 return; 3679 } 3680 3681 if (DestType->isRecordType() && 3682 !S.isCompleteType(InitList->getLocStart(), DestType)) { 3683 Sequence.setIncompleteTypeFailure(DestType); 3684 return; 3685 } 3686 3687 // C++11 [dcl.init.list]p3, per DR1467: 3688 // - If T is a class type and the initializer list has a single element of 3689 // type cv U, where U is T or a class derived from T, the object is 3690 // initialized from that element (by copy-initialization for 3691 // copy-list-initialization, or by direct-initialization for 3692 // direct-list-initialization). 3693 // - Otherwise, if T is a character array and the initializer list has a 3694 // single element that is an appropriately-typed string literal 3695 // (8.5.2 [dcl.init.string]), initialization is performed as described 3696 // in that section. 3697 // - Otherwise, if T is an aggregate, [...] (continue below). 3698 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 3699 if (DestType->isRecordType()) { 3700 QualType InitType = InitList->getInit(0)->getType(); 3701 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 3702 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) { 3703 Expr *InitAsExpr = InitList->getInit(0); 3704 TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType, 3705 Sequence, /*InitListSyntax*/ false, 3706 /*IsInitListCopy*/ true); 3707 return; 3708 } 3709 } 3710 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 3711 Expr *SubInit[1] = {InitList->getInit(0)}; 3712 if (!isa<VariableArrayType>(DestAT) && 3713 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 3714 InitializationKind SubKind = 3715 Kind.getKind() == InitializationKind::IK_DirectList 3716 ? InitializationKind::CreateDirect(Kind.getLocation(), 3717 InitList->getLBraceLoc(), 3718 InitList->getRBraceLoc()) 3719 : Kind; 3720 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3721 /*TopLevelOfInitList*/ true); 3722 3723 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 3724 // the element is not an appropriately-typed string literal, in which 3725 // case we should proceed as in C++11 (below). 3726 if (Sequence) { 3727 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3728 return; 3729 } 3730 } 3731 } 3732 } 3733 3734 // C++11 [dcl.init.list]p3: 3735 // - If T is an aggregate, aggregate initialization is performed. 3736 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 3737 (S.getLangOpts().CPlusPlus11 && 3738 S.isStdInitializerList(DestType, nullptr))) { 3739 if (S.getLangOpts().CPlusPlus11) { 3740 // - Otherwise, if the initializer list has no elements and T is a 3741 // class type with a default constructor, the object is 3742 // value-initialized. 3743 if (InitList->getNumInits() == 0) { 3744 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 3745 if (RD->hasDefaultConstructor()) { 3746 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 3747 return; 3748 } 3749 } 3750 3751 // - Otherwise, if T is a specialization of std::initializer_list<E>, 3752 // an initializer_list object constructed [...] 3753 if (TryInitializerListConstruction(S, InitList, DestType, Sequence)) 3754 return; 3755 3756 // - Otherwise, if T is a class type, constructors are considered. 3757 Expr *InitListAsExpr = InitList; 3758 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 3759 Sequence, /*InitListSyntax*/ true); 3760 } else 3761 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 3762 return; 3763 } 3764 3765 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 3766 InitList->getNumInits() == 1 && 3767 InitList->getInit(0)->getType()->isRecordType()) { 3768 // - Otherwise, if the initializer list has a single element of type E 3769 // [...references are handled above...], the object or reference is 3770 // initialized from that element (by copy-initialization for 3771 // copy-list-initialization, or by direct-initialization for 3772 // direct-list-initialization); if a narrowing conversion is required 3773 // to convert the element to T, the program is ill-formed. 3774 // 3775 // Per core-24034, this is direct-initialization if we were performing 3776 // direct-list-initialization and copy-initialization otherwise. 3777 // We can't use InitListChecker for this, because it always performs 3778 // copy-initialization. This only matters if we might use an 'explicit' 3779 // conversion operator, so we only need to handle the cases where the source 3780 // is of record type. 3781 InitializationKind SubKind = 3782 Kind.getKind() == InitializationKind::IK_DirectList 3783 ? InitializationKind::CreateDirect(Kind.getLocation(), 3784 InitList->getLBraceLoc(), 3785 InitList->getRBraceLoc()) 3786 : Kind; 3787 Expr *SubInit[1] = { InitList->getInit(0) }; 3788 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3789 /*TopLevelOfInitList*/true); 3790 if (Sequence) 3791 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3792 return; 3793 } 3794 3795 InitListChecker CheckInitList(S, Entity, InitList, 3796 DestType, /*VerifyOnly=*/true); 3797 if (CheckInitList.HadError()) { 3798 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3799 return; 3800 } 3801 3802 // Add the list initialization step with the built init list. 3803 Sequence.AddListInitializationStep(DestType); 3804 } 3805 3806 /// \brief Try a reference initialization that involves calling a conversion 3807 /// function. 3808 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3809 const InitializedEntity &Entity, 3810 const InitializationKind &Kind, 3811 Expr *Initializer, 3812 bool AllowRValues, 3813 InitializationSequence &Sequence) { 3814 QualType DestType = Entity.getType(); 3815 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3816 QualType T1 = cv1T1.getUnqualifiedType(); 3817 QualType cv2T2 = Initializer->getType(); 3818 QualType T2 = cv2T2.getUnqualifiedType(); 3819 3820 bool DerivedToBase; 3821 bool ObjCConversion; 3822 bool ObjCLifetimeConversion; 3823 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3824 T1, T2, DerivedToBase, 3825 ObjCConversion, 3826 ObjCLifetimeConversion) && 3827 "Must have incompatible references when binding via conversion"); 3828 (void)DerivedToBase; 3829 (void)ObjCConversion; 3830 (void)ObjCLifetimeConversion; 3831 3832 // Build the candidate set directly in the initialization sequence 3833 // structure, so that it will persist if we fail. 3834 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3835 CandidateSet.clear(); 3836 3837 // Determine whether we are allowed to call explicit constructors or 3838 // explicit conversion operators. 3839 bool AllowExplicit = Kind.AllowExplicit(); 3840 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 3841 3842 const RecordType *T1RecordType = nullptr; 3843 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3844 S.isCompleteType(Kind.getLocation(), T1)) { 3845 // The type we're converting to is a class type. Enumerate its constructors 3846 // to see if there is a suitable conversion. 3847 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3848 3849 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 3850 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3851 3852 // Find the constructor (which may be a template). 3853 CXXConstructorDecl *Constructor = nullptr; 3854 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3855 if (ConstructorTmpl) 3856 Constructor = cast<CXXConstructorDecl>( 3857 ConstructorTmpl->getTemplatedDecl()); 3858 else 3859 Constructor = cast<CXXConstructorDecl>(D); 3860 3861 if (!Constructor->isInvalidDecl() && 3862 Constructor->isConvertingConstructor(AllowExplicit)) { 3863 if (ConstructorTmpl) 3864 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3865 /*ExplicitArgs*/ nullptr, 3866 Initializer, CandidateSet, 3867 /*SuppressUserConversions=*/true); 3868 else 3869 S.AddOverloadCandidate(Constructor, FoundDecl, 3870 Initializer, CandidateSet, 3871 /*SuppressUserConversions=*/true); 3872 } 3873 } 3874 } 3875 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3876 return OR_No_Viable_Function; 3877 3878 const RecordType *T2RecordType = nullptr; 3879 if ((T2RecordType = T2->getAs<RecordType>()) && 3880 S.isCompleteType(Kind.getLocation(), T2)) { 3881 // The type we're converting from is a class type, enumerate its conversion 3882 // functions. 3883 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3884 3885 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 3886 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3887 NamedDecl *D = *I; 3888 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3889 if (isa<UsingShadowDecl>(D)) 3890 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3891 3892 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3893 CXXConversionDecl *Conv; 3894 if (ConvTemplate) 3895 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3896 else 3897 Conv = cast<CXXConversionDecl>(D); 3898 3899 // If the conversion function doesn't return a reference type, 3900 // it can't be considered for this conversion unless we're allowed to 3901 // consider rvalues. 3902 // FIXME: Do we need to make sure that we only consider conversion 3903 // candidates with reference-compatible results? That might be needed to 3904 // break recursion. 3905 if ((AllowExplicitConvs || !Conv->isExplicit()) && 3906 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3907 if (ConvTemplate) 3908 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3909 ActingDC, Initializer, 3910 DestType, CandidateSet, 3911 /*AllowObjCConversionOnExplicit=*/ 3912 false); 3913 else 3914 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3915 Initializer, DestType, CandidateSet, 3916 /*AllowObjCConversionOnExplicit=*/false); 3917 } 3918 } 3919 } 3920 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3921 return OR_No_Viable_Function; 3922 3923 SourceLocation DeclLoc = Initializer->getLocStart(); 3924 3925 // Perform overload resolution. If it fails, return the failed result. 3926 OverloadCandidateSet::iterator Best; 3927 if (OverloadingResult Result 3928 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3929 return Result; 3930 3931 FunctionDecl *Function = Best->Function; 3932 // This is the overload that will be used for this initialization step if we 3933 // use this initialization. Mark it as referenced. 3934 Function->setReferenced(); 3935 3936 // Compute the returned type of the conversion. 3937 if (isa<CXXConversionDecl>(Function)) 3938 T2 = Function->getReturnType(); 3939 else 3940 T2 = cv1T1; 3941 3942 // Add the user-defined conversion step. 3943 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3944 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3945 T2.getNonLValueExprType(S.Context), 3946 HadMultipleCandidates); 3947 3948 // Determine whether we need to perform derived-to-base or 3949 // cv-qualification adjustments. 3950 ExprValueKind VK = VK_RValue; 3951 if (T2->isLValueReferenceType()) 3952 VK = VK_LValue; 3953 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3954 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3955 3956 bool NewDerivedToBase = false; 3957 bool NewObjCConversion = false; 3958 bool NewObjCLifetimeConversion = false; 3959 Sema::ReferenceCompareResult NewRefRelationship 3960 = S.CompareReferenceRelationship(DeclLoc, T1, 3961 T2.getNonLValueExprType(S.Context), 3962 NewDerivedToBase, NewObjCConversion, 3963 NewObjCLifetimeConversion); 3964 if (NewRefRelationship == Sema::Ref_Incompatible) { 3965 // If the type we've converted to is not reference-related to the 3966 // type we're looking for, then there is another conversion step 3967 // we need to perform to produce a temporary of the right type 3968 // that we'll be binding to. 3969 ImplicitConversionSequence ICS; 3970 ICS.setStandard(); 3971 ICS.Standard = Best->FinalConversion; 3972 T2 = ICS.Standard.getToType(2); 3973 Sequence.AddConversionSequenceStep(ICS, T2); 3974 } else if (NewDerivedToBase) 3975 Sequence.AddDerivedToBaseCastStep( 3976 S.Context.getQualifiedType(T1, 3977 T2.getNonReferenceType().getQualifiers()), 3978 VK); 3979 else if (NewObjCConversion) 3980 Sequence.AddObjCObjectConversionStep( 3981 S.Context.getQualifiedType(T1, 3982 T2.getNonReferenceType().getQualifiers())); 3983 3984 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3985 Sequence.AddQualificationConversionStep(cv1T1, VK); 3986 3987 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3988 return OR_Success; 3989 } 3990 3991 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3992 const InitializedEntity &Entity, 3993 Expr *CurInitExpr); 3994 3995 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3996 static void TryReferenceInitialization(Sema &S, 3997 const InitializedEntity &Entity, 3998 const InitializationKind &Kind, 3999 Expr *Initializer, 4000 InitializationSequence &Sequence) { 4001 QualType DestType = Entity.getType(); 4002 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4003 Qualifiers T1Quals; 4004 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4005 QualType cv2T2 = Initializer->getType(); 4006 Qualifiers T2Quals; 4007 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4008 4009 // If the initializer is the address of an overloaded function, try 4010 // to resolve the overloaded function. If all goes well, T2 is the 4011 // type of the resulting function. 4012 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4013 T1, Sequence)) 4014 return; 4015 4016 // Delegate everything else to a subfunction. 4017 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4018 T1Quals, cv2T2, T2, T2Quals, Sequence); 4019 } 4020 4021 /// Converts the target of reference initialization so that it has the 4022 /// appropriate qualifiers and value kind. 4023 /// 4024 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. 4025 /// \code 4026 /// int x; 4027 /// const int &r = x; 4028 /// \endcode 4029 /// 4030 /// In this case the reference is binding to a bitfield lvalue, which isn't 4031 /// valid. Perform a load to create a lifetime-extended temporary instead. 4032 /// \code 4033 /// const int &r = someStruct.bitfield; 4034 /// \endcode 4035 static ExprValueKind 4036 convertQualifiersAndValueKindIfNecessary(Sema &S, 4037 InitializationSequence &Sequence, 4038 Expr *Initializer, 4039 QualType cv1T1, 4040 Qualifiers T1Quals, 4041 Qualifiers T2Quals, 4042 bool IsLValueRef) { 4043 bool IsNonAddressableType = Initializer->refersToBitField() || 4044 Initializer->refersToVectorElement(); 4045 4046 if (IsNonAddressableType) { 4047 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an 4048 // lvalue reference to a non-volatile const type, or the reference shall be 4049 // an rvalue reference. 4050 // 4051 // If not, we can't make a temporary and bind to that. Give up and allow the 4052 // error to be diagnosed later. 4053 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { 4054 assert(Initializer->isGLValue()); 4055 return Initializer->getValueKind(); 4056 } 4057 4058 // Force a load so we can materialize a temporary. 4059 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); 4060 return VK_RValue; 4061 } 4062 4063 if (T1Quals != T2Quals) { 4064 Sequence.AddQualificationConversionStep(cv1T1, 4065 Initializer->getValueKind()); 4066 } 4067 4068 return Initializer->getValueKind(); 4069 } 4070 4071 4072 /// \brief Reference initialization without resolving overloaded functions. 4073 static void TryReferenceInitializationCore(Sema &S, 4074 const InitializedEntity &Entity, 4075 const InitializationKind &Kind, 4076 Expr *Initializer, 4077 QualType cv1T1, QualType T1, 4078 Qualifiers T1Quals, 4079 QualType cv2T2, QualType T2, 4080 Qualifiers T2Quals, 4081 InitializationSequence &Sequence) { 4082 QualType DestType = Entity.getType(); 4083 SourceLocation DeclLoc = Initializer->getLocStart(); 4084 // Compute some basic properties of the types and the initializer. 4085 bool isLValueRef = DestType->isLValueReferenceType(); 4086 bool isRValueRef = !isLValueRef; 4087 bool DerivedToBase = false; 4088 bool ObjCConversion = false; 4089 bool ObjCLifetimeConversion = false; 4090 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4091 Sema::ReferenceCompareResult RefRelationship 4092 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4093 ObjCConversion, ObjCLifetimeConversion); 4094 4095 // C++0x [dcl.init.ref]p5: 4096 // A reference to type "cv1 T1" is initialized by an expression of type 4097 // "cv2 T2" as follows: 4098 // 4099 // - If the reference is an lvalue reference and the initializer 4100 // expression 4101 // Note the analogous bullet points for rvalue refs to functions. Because 4102 // there are no function rvalues in C++, rvalue refs to functions are treated 4103 // like lvalue refs. 4104 OverloadingResult ConvOvlResult = OR_Success; 4105 bool T1Function = T1->isFunctionType(); 4106 if (isLValueRef || T1Function) { 4107 if (InitCategory.isLValue() && 4108 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 4109 (Kind.isCStyleOrFunctionalCast() && 4110 RefRelationship == Sema::Ref_Related))) { 4111 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4112 // reference-compatible with "cv2 T2," or 4113 // 4114 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 4115 // bit-field when we're determining whether the reference initialization 4116 // can occur. However, we do pay attention to whether it is a bit-field 4117 // to decide whether we're actually binding to a temporary created from 4118 // the bit-field. 4119 if (DerivedToBase) 4120 Sequence.AddDerivedToBaseCastStep( 4121 S.Context.getQualifiedType(T1, T2Quals), 4122 VK_LValue); 4123 else if (ObjCConversion) 4124 Sequence.AddObjCObjectConversionStep( 4125 S.Context.getQualifiedType(T1, T2Quals)); 4126 4127 ExprValueKind ValueKind = 4128 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, 4129 cv1T1, T1Quals, T2Quals, 4130 isLValueRef); 4131 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 4132 return; 4133 } 4134 4135 // - has a class type (i.e., T2 is a class type), where T1 is not 4136 // reference-related to T2, and can be implicitly converted to an 4137 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4138 // with "cv3 T3" (this conversion is selected by enumerating the 4139 // applicable conversion functions (13.3.1.6) and choosing the best 4140 // one through overload resolution (13.3)), 4141 // If we have an rvalue ref to function type here, the rhs must be 4142 // an rvalue. DR1287 removed the "implicitly" here. 4143 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4144 (isLValueRef || InitCategory.isRValue())) { 4145 ConvOvlResult = TryRefInitWithConversionFunction( 4146 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence); 4147 if (ConvOvlResult == OR_Success) 4148 return; 4149 if (ConvOvlResult != OR_No_Viable_Function) 4150 Sequence.SetOverloadFailure( 4151 InitializationSequence::FK_ReferenceInitOverloadFailed, 4152 ConvOvlResult); 4153 } 4154 } 4155 4156 // - Otherwise, the reference shall be an lvalue reference to a 4157 // non-volatile const type (i.e., cv1 shall be const), or the reference 4158 // shall be an rvalue reference. 4159 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4160 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4161 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4162 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4163 Sequence.SetOverloadFailure( 4164 InitializationSequence::FK_ReferenceInitOverloadFailed, 4165 ConvOvlResult); 4166 else 4167 Sequence.SetFailed(InitCategory.isLValue() 4168 ? (RefRelationship == Sema::Ref_Related 4169 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 4170 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 4171 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4172 4173 return; 4174 } 4175 4176 // - If the initializer expression 4177 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 4178 // "cv1 T1" is reference-compatible with "cv2 T2" 4179 // Note: functions are handled below. 4180 if (!T1Function && 4181 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 4182 (Kind.isCStyleOrFunctionalCast() && 4183 RefRelationship == Sema::Ref_Related)) && 4184 (InitCategory.isXValue() || 4185 (InitCategory.isPRValue() && T2->isRecordType()) || 4186 (InitCategory.isPRValue() && T2->isArrayType()))) { 4187 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 4188 if (InitCategory.isPRValue() && T2->isRecordType()) { 4189 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4190 // compiler the freedom to perform a copy here or bind to the 4191 // object, while C++0x requires that we bind directly to the 4192 // object. Hence, we always bind to the object without making an 4193 // extra copy. However, in C++03 requires that we check for the 4194 // presence of a suitable copy constructor: 4195 // 4196 // The constructor that would be used to make the copy shall 4197 // be callable whether or not the copy is actually done. 4198 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4199 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4200 else if (S.getLangOpts().CPlusPlus11) 4201 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4202 } 4203 4204 if (DerivedToBase) 4205 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 4206 ValueKind); 4207 else if (ObjCConversion) 4208 Sequence.AddObjCObjectConversionStep( 4209 S.Context.getQualifiedType(T1, T2Quals)); 4210 4211 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, 4212 Initializer, cv1T1, 4213 T1Quals, T2Quals, 4214 isLValueRef); 4215 4216 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 4217 return; 4218 } 4219 4220 // - has a class type (i.e., T2 is a class type), where T1 is not 4221 // reference-related to T2, and can be implicitly converted to an 4222 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4223 // where "cv1 T1" is reference-compatible with "cv3 T3", 4224 // 4225 // DR1287 removes the "implicitly" here. 4226 if (T2->isRecordType()) { 4227 if (RefRelationship == Sema::Ref_Incompatible) { 4228 ConvOvlResult = TryRefInitWithConversionFunction( 4229 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence); 4230 if (ConvOvlResult) 4231 Sequence.SetOverloadFailure( 4232 InitializationSequence::FK_ReferenceInitOverloadFailed, 4233 ConvOvlResult); 4234 4235 return; 4236 } 4237 4238 if ((RefRelationship == Sema::Ref_Compatible || 4239 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && 4240 isRValueRef && InitCategory.isLValue()) { 4241 Sequence.SetFailed( 4242 InitializationSequence::FK_RValueReferenceBindingToLValue); 4243 return; 4244 } 4245 4246 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4247 return; 4248 } 4249 4250 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4251 // from the initializer expression using the rules for a non-reference 4252 // copy-initialization (8.5). The reference is then bound to the 4253 // temporary. [...] 4254 4255 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4256 4257 // FIXME: Why do we use an implicit conversion here rather than trying 4258 // copy-initialization? 4259 ImplicitConversionSequence ICS 4260 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4261 /*SuppressUserConversions=*/false, 4262 /*AllowExplicit=*/false, 4263 /*FIXME:InOverloadResolution=*/false, 4264 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4265 /*AllowObjCWritebackConversion=*/false); 4266 4267 if (ICS.isBad()) { 4268 // FIXME: Use the conversion function set stored in ICS to turn 4269 // this into an overloading ambiguity diagnostic. However, we need 4270 // to keep that set as an OverloadCandidateSet rather than as some 4271 // other kind of set. 4272 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4273 Sequence.SetOverloadFailure( 4274 InitializationSequence::FK_ReferenceInitOverloadFailed, 4275 ConvOvlResult); 4276 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4277 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4278 else 4279 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4280 return; 4281 } else { 4282 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4283 } 4284 4285 // [...] If T1 is reference-related to T2, cv1 must be the 4286 // same cv-qualification as, or greater cv-qualification 4287 // than, cv2; otherwise, the program is ill-formed. 4288 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4289 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4290 if (RefRelationship == Sema::Ref_Related && 4291 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 4292 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4293 return; 4294 } 4295 4296 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4297 // reference, the initializer expression shall not be an lvalue. 4298 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4299 InitCategory.isLValue()) { 4300 Sequence.SetFailed( 4301 InitializationSequence::FK_RValueReferenceBindingToLValue); 4302 return; 4303 } 4304 4305 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4306 return; 4307 } 4308 4309 /// \brief Attempt character array initialization from a string literal 4310 /// (C++ [dcl.init.string], C99 6.7.8). 4311 static void TryStringLiteralInitialization(Sema &S, 4312 const InitializedEntity &Entity, 4313 const InitializationKind &Kind, 4314 Expr *Initializer, 4315 InitializationSequence &Sequence) { 4316 Sequence.AddStringInitStep(Entity.getType()); 4317 } 4318 4319 /// \brief Attempt value initialization (C++ [dcl.init]p7). 4320 static void TryValueInitialization(Sema &S, 4321 const InitializedEntity &Entity, 4322 const InitializationKind &Kind, 4323 InitializationSequence &Sequence, 4324 InitListExpr *InitList) { 4325 assert((!InitList || InitList->getNumInits() == 0) && 4326 "Shouldn't use value-init for non-empty init lists"); 4327 4328 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4329 // 4330 // To value-initialize an object of type T means: 4331 QualType T = Entity.getType(); 4332 4333 // -- if T is an array type, then each element is value-initialized; 4334 T = S.Context.getBaseElementType(T); 4335 4336 if (const RecordType *RT = T->getAs<RecordType>()) { 4337 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4338 bool NeedZeroInitialization = true; 4339 if (!S.getLangOpts().CPlusPlus11) { 4340 // C++98: 4341 // -- if T is a class type (clause 9) with a user-declared constructor 4342 // (12.1), then the default constructor for T is called (and the 4343 // initialization is ill-formed if T has no accessible default 4344 // constructor); 4345 if (ClassDecl->hasUserDeclaredConstructor()) 4346 NeedZeroInitialization = false; 4347 } else { 4348 // C++11: 4349 // -- if T is a class type (clause 9) with either no default constructor 4350 // (12.1 [class.ctor]) or a default constructor that is user-provided 4351 // or deleted, then the object is default-initialized; 4352 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4353 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4354 NeedZeroInitialization = false; 4355 } 4356 4357 // -- if T is a (possibly cv-qualified) non-union class type without a 4358 // user-provided or deleted default constructor, then the object is 4359 // zero-initialized and, if T has a non-trivial default constructor, 4360 // default-initialized; 4361 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4362 // constructor' part was removed by DR1507. 4363 if (NeedZeroInitialization) 4364 Sequence.AddZeroInitializationStep(Entity.getType()); 4365 4366 // C++03: 4367 // -- if T is a non-union class type without a user-declared constructor, 4368 // then every non-static data member and base class component of T is 4369 // value-initialized; 4370 // [...] A program that calls for [...] value-initialization of an 4371 // entity of reference type is ill-formed. 4372 // 4373 // C++11 doesn't need this handling, because value-initialization does not 4374 // occur recursively there, and the implicit default constructor is 4375 // defined as deleted in the problematic cases. 4376 if (!S.getLangOpts().CPlusPlus11 && 4377 ClassDecl->hasUninitializedReferenceMember()) { 4378 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4379 return; 4380 } 4381 4382 // If this is list-value-initialization, pass the empty init list on when 4383 // building the constructor call. This affects the semantics of a few 4384 // things (such as whether an explicit default constructor can be called). 4385 Expr *InitListAsExpr = InitList; 4386 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4387 bool InitListSyntax = InitList; 4388 4389 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, 4390 InitListSyntax); 4391 } 4392 } 4393 4394 Sequence.AddZeroInitializationStep(Entity.getType()); 4395 } 4396 4397 /// \brief Attempt default initialization (C++ [dcl.init]p6). 4398 static void TryDefaultInitialization(Sema &S, 4399 const InitializedEntity &Entity, 4400 const InitializationKind &Kind, 4401 InitializationSequence &Sequence) { 4402 assert(Kind.getKind() == InitializationKind::IK_Default); 4403 4404 // C++ [dcl.init]p6: 4405 // To default-initialize an object of type T means: 4406 // - if T is an array type, each element is default-initialized; 4407 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4408 4409 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4410 // constructor for T is called (and the initialization is ill-formed if 4411 // T has no accessible default constructor); 4412 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4413 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); 4414 return; 4415 } 4416 4417 // - otherwise, no initialization is performed. 4418 4419 // If a program calls for the default initialization of an object of 4420 // a const-qualified type T, T shall be a class type with a user-provided 4421 // default constructor. 4422 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4423 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4424 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4425 return; 4426 } 4427 4428 // If the destination type has a lifetime property, zero-initialize it. 4429 if (DestType.getQualifiers().hasObjCLifetime()) { 4430 Sequence.AddZeroInitializationStep(Entity.getType()); 4431 return; 4432 } 4433 } 4434 4435 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 4436 /// which enumerates all conversion functions and performs overload resolution 4437 /// to select the best. 4438 static void TryUserDefinedConversion(Sema &S, 4439 QualType DestType, 4440 const InitializationKind &Kind, 4441 Expr *Initializer, 4442 InitializationSequence &Sequence, 4443 bool TopLevelOfInitList) { 4444 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4445 QualType SourceType = Initializer->getType(); 4446 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4447 "Must have a class type to perform a user-defined conversion"); 4448 4449 // Build the candidate set directly in the initialization sequence 4450 // structure, so that it will persist if we fail. 4451 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4452 CandidateSet.clear(); 4453 4454 // Determine whether we are allowed to call explicit constructors or 4455 // explicit conversion operators. 4456 bool AllowExplicit = Kind.AllowExplicit(); 4457 4458 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4459 // The type we're converting to is a class type. Enumerate its constructors 4460 // to see if there is a suitable conversion. 4461 CXXRecordDecl *DestRecordDecl 4462 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4463 4464 // Try to complete the type we're converting to. 4465 if (S.isCompleteType(Kind.getLocation(), DestType)) { 4466 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 4467 // The container holding the constructors can under certain conditions 4468 // be changed while iterating. To be safe we copy the lookup results 4469 // to a new container. 4470 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); 4471 for (SmallVectorImpl<NamedDecl *>::iterator 4472 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); 4473 Con != ConEnd; ++Con) { 4474 NamedDecl *D = *Con; 4475 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 4476 4477 // Find the constructor (which may be a template). 4478 CXXConstructorDecl *Constructor = nullptr; 4479 FunctionTemplateDecl *ConstructorTmpl 4480 = dyn_cast<FunctionTemplateDecl>(D); 4481 if (ConstructorTmpl) 4482 Constructor = cast<CXXConstructorDecl>( 4483 ConstructorTmpl->getTemplatedDecl()); 4484 else 4485 Constructor = cast<CXXConstructorDecl>(D); 4486 4487 if (!Constructor->isInvalidDecl() && 4488 Constructor->isConvertingConstructor(AllowExplicit)) { 4489 if (ConstructorTmpl) 4490 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 4491 /*ExplicitArgs*/ nullptr, 4492 Initializer, CandidateSet, 4493 /*SuppressUserConversions=*/true); 4494 else 4495 S.AddOverloadCandidate(Constructor, FoundDecl, 4496 Initializer, CandidateSet, 4497 /*SuppressUserConversions=*/true); 4498 } 4499 } 4500 } 4501 } 4502 4503 SourceLocation DeclLoc = Initializer->getLocStart(); 4504 4505 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4506 // The type we're converting from is a class type, enumerate its conversion 4507 // functions. 4508 4509 // We can only enumerate the conversion functions for a complete type; if 4510 // the type isn't complete, simply skip this step. 4511 if (S.isCompleteType(DeclLoc, SourceType)) { 4512 CXXRecordDecl *SourceRecordDecl 4513 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4514 4515 const auto &Conversions = 4516 SourceRecordDecl->getVisibleConversionFunctions(); 4517 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4518 NamedDecl *D = *I; 4519 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4520 if (isa<UsingShadowDecl>(D)) 4521 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4522 4523 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4524 CXXConversionDecl *Conv; 4525 if (ConvTemplate) 4526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4527 else 4528 Conv = cast<CXXConversionDecl>(D); 4529 4530 if (AllowExplicit || !Conv->isExplicit()) { 4531 if (ConvTemplate) 4532 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4533 ActingDC, Initializer, DestType, 4534 CandidateSet, AllowExplicit); 4535 else 4536 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4537 Initializer, DestType, CandidateSet, 4538 AllowExplicit); 4539 } 4540 } 4541 } 4542 } 4543 4544 // Perform overload resolution. If it fails, return the failed result. 4545 OverloadCandidateSet::iterator Best; 4546 if (OverloadingResult Result 4547 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4548 Sequence.SetOverloadFailure( 4549 InitializationSequence::FK_UserConversionOverloadFailed, 4550 Result); 4551 return; 4552 } 4553 4554 FunctionDecl *Function = Best->Function; 4555 Function->setReferenced(); 4556 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4557 4558 if (isa<CXXConstructorDecl>(Function)) { 4559 // Add the user-defined conversion step. Any cv-qualification conversion is 4560 // subsumed by the initialization. Per DR5, the created temporary is of the 4561 // cv-unqualified type of the destination. 4562 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4563 DestType.getUnqualifiedType(), 4564 HadMultipleCandidates); 4565 return; 4566 } 4567 4568 // Add the user-defined conversion step that calls the conversion function. 4569 QualType ConvType = Function->getCallResultType(); 4570 if (ConvType->getAs<RecordType>()) { 4571 // If we're converting to a class type, there may be an copy of 4572 // the resulting temporary object (possible to create an object of 4573 // a base class type). That copy is not a separate conversion, so 4574 // we just make a note of the actual destination type (possibly a 4575 // base class of the type returned by the conversion function) and 4576 // let the user-defined conversion step handle the conversion. 4577 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 4578 HadMultipleCandidates); 4579 return; 4580 } 4581 4582 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 4583 HadMultipleCandidates); 4584 4585 // If the conversion following the call to the conversion function 4586 // is interesting, add it as a separate step. 4587 if (Best->FinalConversion.First || Best->FinalConversion.Second || 4588 Best->FinalConversion.Third) { 4589 ImplicitConversionSequence ICS; 4590 ICS.setStandard(); 4591 ICS.Standard = Best->FinalConversion; 4592 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 4593 } 4594 } 4595 4596 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 4597 /// a function with a pointer return type contains a 'return false;' statement. 4598 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 4599 /// code using that header. 4600 /// 4601 /// Work around this by treating 'return false;' as zero-initializing the result 4602 /// if it's used in a pointer-returning function in a system header. 4603 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 4604 const InitializedEntity &Entity, 4605 const Expr *Init) { 4606 return S.getLangOpts().CPlusPlus11 && 4607 Entity.getKind() == InitializedEntity::EK_Result && 4608 Entity.getType()->isPointerType() && 4609 isa<CXXBoolLiteralExpr>(Init) && 4610 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 4611 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 4612 } 4613 4614 /// The non-zero enum values here are indexes into diagnostic alternatives. 4615 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 4616 4617 /// Determines whether this expression is an acceptable ICR source. 4618 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 4619 bool isAddressOf, bool &isWeakAccess) { 4620 // Skip parens. 4621 e = e->IgnoreParens(); 4622 4623 // Skip address-of nodes. 4624 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 4625 if (op->getOpcode() == UO_AddrOf) 4626 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 4627 isWeakAccess); 4628 4629 // Skip certain casts. 4630 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 4631 switch (ce->getCastKind()) { 4632 case CK_Dependent: 4633 case CK_BitCast: 4634 case CK_LValueBitCast: 4635 case CK_NoOp: 4636 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 4637 4638 case CK_ArrayToPointerDecay: 4639 return IIK_nonscalar; 4640 4641 case CK_NullToPointer: 4642 return IIK_okay; 4643 4644 default: 4645 break; 4646 } 4647 4648 // If we have a declaration reference, it had better be a local variable. 4649 } else if (isa<DeclRefExpr>(e)) { 4650 // set isWeakAccess to true, to mean that there will be an implicit 4651 // load which requires a cleanup. 4652 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 4653 isWeakAccess = true; 4654 4655 if (!isAddressOf) return IIK_nonlocal; 4656 4657 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 4658 if (!var) return IIK_nonlocal; 4659 4660 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 4661 4662 // If we have a conditional operator, check both sides. 4663 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 4664 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 4665 isWeakAccess)) 4666 return iik; 4667 4668 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 4669 4670 // These are never scalar. 4671 } else if (isa<ArraySubscriptExpr>(e)) { 4672 return IIK_nonscalar; 4673 4674 // Otherwise, it needs to be a null pointer constant. 4675 } else { 4676 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 4677 ? IIK_okay : IIK_nonlocal); 4678 } 4679 4680 return IIK_nonlocal; 4681 } 4682 4683 /// Check whether the given expression is a valid operand for an 4684 /// indirect copy/restore. 4685 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 4686 assert(src->isRValue()); 4687 bool isWeakAccess = false; 4688 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 4689 // If isWeakAccess to true, there will be an implicit 4690 // load which requires a cleanup. 4691 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 4692 S.ExprNeedsCleanups = true; 4693 4694 if (iik == IIK_okay) return; 4695 4696 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 4697 << ((unsigned) iik - 1) // shift index into diagnostic explanations 4698 << src->getSourceRange(); 4699 } 4700 4701 /// \brief Determine whether we have compatible array types for the 4702 /// purposes of GNU by-copy array initialization. 4703 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 4704 const ArrayType *Source) { 4705 // If the source and destination array types are equivalent, we're 4706 // done. 4707 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 4708 return true; 4709 4710 // Make sure that the element types are the same. 4711 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 4712 return false; 4713 4714 // The only mismatch we allow is when the destination is an 4715 // incomplete array type and the source is a constant array type. 4716 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 4717 } 4718 4719 static bool tryObjCWritebackConversion(Sema &S, 4720 InitializationSequence &Sequence, 4721 const InitializedEntity &Entity, 4722 Expr *Initializer) { 4723 bool ArrayDecay = false; 4724 QualType ArgType = Initializer->getType(); 4725 QualType ArgPointee; 4726 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 4727 ArrayDecay = true; 4728 ArgPointee = ArgArrayType->getElementType(); 4729 ArgType = S.Context.getPointerType(ArgPointee); 4730 } 4731 4732 // Handle write-back conversion. 4733 QualType ConvertedArgType; 4734 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 4735 ConvertedArgType)) 4736 return false; 4737 4738 // We should copy unless we're passing to an argument explicitly 4739 // marked 'out'. 4740 bool ShouldCopy = true; 4741 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4742 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4743 4744 // Do we need an lvalue conversion? 4745 if (ArrayDecay || Initializer->isGLValue()) { 4746 ImplicitConversionSequence ICS; 4747 ICS.setStandard(); 4748 ICS.Standard.setAsIdentityConversion(); 4749 4750 QualType ResultType; 4751 if (ArrayDecay) { 4752 ICS.Standard.First = ICK_Array_To_Pointer; 4753 ResultType = S.Context.getPointerType(ArgPointee); 4754 } else { 4755 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4756 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 4757 } 4758 4759 Sequence.AddConversionSequenceStep(ICS, ResultType); 4760 } 4761 4762 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4763 return true; 4764 } 4765 4766 static bool TryOCLSamplerInitialization(Sema &S, 4767 InitializationSequence &Sequence, 4768 QualType DestType, 4769 Expr *Initializer) { 4770 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 4771 !Initializer->isIntegerConstantExpr(S.getASTContext())) 4772 return false; 4773 4774 Sequence.AddOCLSamplerInitStep(DestType); 4775 return true; 4776 } 4777 4778 // 4779 // OpenCL 1.2 spec, s6.12.10 4780 // 4781 // The event argument can also be used to associate the 4782 // async_work_group_copy with a previous async copy allowing 4783 // an event to be shared by multiple async copies; otherwise 4784 // event should be zero. 4785 // 4786 static bool TryOCLZeroEventInitialization(Sema &S, 4787 InitializationSequence &Sequence, 4788 QualType DestType, 4789 Expr *Initializer) { 4790 if (!S.getLangOpts().OpenCL || !DestType->isEventT() || 4791 !Initializer->isIntegerConstantExpr(S.getASTContext()) || 4792 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) 4793 return false; 4794 4795 Sequence.AddOCLZeroEventStep(DestType); 4796 return true; 4797 } 4798 4799 InitializationSequence::InitializationSequence(Sema &S, 4800 const InitializedEntity &Entity, 4801 const InitializationKind &Kind, 4802 MultiExprArg Args, 4803 bool TopLevelOfInitList) 4804 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 4805 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList); 4806 } 4807 4808 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 4809 /// address of that function, this returns true. Otherwise, it returns false. 4810 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 4811 auto *DRE = dyn_cast<DeclRefExpr>(E); 4812 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 4813 return false; 4814 4815 return !S.checkAddressOfFunctionIsAvailable( 4816 cast<FunctionDecl>(DRE->getDecl())); 4817 } 4818 4819 void InitializationSequence::InitializeFrom(Sema &S, 4820 const InitializedEntity &Entity, 4821 const InitializationKind &Kind, 4822 MultiExprArg Args, 4823 bool TopLevelOfInitList) { 4824 ASTContext &Context = S.Context; 4825 4826 // Eliminate non-overload placeholder types in the arguments. We 4827 // need to do this before checking whether types are dependent 4828 // because lowering a pseudo-object expression might well give us 4829 // something of dependent type. 4830 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4831 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4832 // FIXME: should we be doing this here? 4833 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4834 if (result.isInvalid()) { 4835 SetFailed(FK_PlaceholderType); 4836 return; 4837 } 4838 Args[I] = result.get(); 4839 } 4840 4841 // C++0x [dcl.init]p16: 4842 // The semantics of initializers are as follows. The destination type is 4843 // the type of the object or reference being initialized and the source 4844 // type is the type of the initializer expression. The source type is not 4845 // defined when the initializer is a braced-init-list or when it is a 4846 // parenthesized list of expressions. 4847 QualType DestType = Entity.getType(); 4848 4849 if (DestType->isDependentType() || 4850 Expr::hasAnyTypeDependentArguments(Args)) { 4851 SequenceKind = DependentSequence; 4852 return; 4853 } 4854 4855 // Almost everything is a normal sequence. 4856 setSequenceKind(NormalSequence); 4857 4858 QualType SourceType; 4859 Expr *Initializer = nullptr; 4860 if (Args.size() == 1) { 4861 Initializer = Args[0]; 4862 if (S.getLangOpts().ObjC1) { 4863 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), 4864 DestType, Initializer->getType(), 4865 Initializer) || 4866 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 4867 Args[0] = Initializer; 4868 } 4869 if (!isa<InitListExpr>(Initializer)) 4870 SourceType = Initializer->getType(); 4871 } 4872 4873 // - If the initializer is a (non-parenthesized) braced-init-list, the 4874 // object is list-initialized (8.5.4). 4875 if (Kind.getKind() != InitializationKind::IK_Direct) { 4876 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4877 TryListInitialization(S, Entity, Kind, InitList, *this); 4878 return; 4879 } 4880 } 4881 4882 // - If the destination type is a reference type, see 8.5.3. 4883 if (DestType->isReferenceType()) { 4884 // C++0x [dcl.init.ref]p1: 4885 // A variable declared to be a T& or T&&, that is, "reference to type T" 4886 // (8.3.2), shall be initialized by an object, or function, of type T or 4887 // by an object that can be converted into a T. 4888 // (Therefore, multiple arguments are not permitted.) 4889 if (Args.size() != 1) 4890 SetFailed(FK_TooManyInitsForReference); 4891 else 4892 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4893 return; 4894 } 4895 4896 // - If the initializer is (), the object is value-initialized. 4897 if (Kind.getKind() == InitializationKind::IK_Value || 4898 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 4899 TryValueInitialization(S, Entity, Kind, *this); 4900 return; 4901 } 4902 4903 // Handle default initialization. 4904 if (Kind.getKind() == InitializationKind::IK_Default) { 4905 TryDefaultInitialization(S, Entity, Kind, *this); 4906 return; 4907 } 4908 4909 // - If the destination type is an array of characters, an array of 4910 // char16_t, an array of char32_t, or an array of wchar_t, and the 4911 // initializer is a string literal, see 8.5.2. 4912 // - Otherwise, if the destination type is an array, the program is 4913 // ill-formed. 4914 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4915 if (Initializer && isa<VariableArrayType>(DestAT)) { 4916 SetFailed(FK_VariableLengthArrayHasInitializer); 4917 return; 4918 } 4919 4920 if (Initializer) { 4921 switch (IsStringInit(Initializer, DestAT, Context)) { 4922 case SIF_None: 4923 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4924 return; 4925 case SIF_NarrowStringIntoWideChar: 4926 SetFailed(FK_NarrowStringIntoWideCharArray); 4927 return; 4928 case SIF_WideStringIntoChar: 4929 SetFailed(FK_WideStringIntoCharArray); 4930 return; 4931 case SIF_IncompatWideStringIntoWideChar: 4932 SetFailed(FK_IncompatWideStringIntoWideChar); 4933 return; 4934 case SIF_Other: 4935 break; 4936 } 4937 } 4938 4939 // Note: as an GNU C extension, we allow initialization of an 4940 // array from a compound literal that creates an array of the same 4941 // type, so long as the initializer has no side effects. 4942 if (!S.getLangOpts().CPlusPlus && Initializer && 4943 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4944 Initializer->getType()->isArrayType()) { 4945 const ArrayType *SourceAT 4946 = Context.getAsArrayType(Initializer->getType()); 4947 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4948 SetFailed(FK_ArrayTypeMismatch); 4949 else if (Initializer->HasSideEffects(S.Context)) 4950 SetFailed(FK_NonConstantArrayInit); 4951 else { 4952 AddArrayInitStep(DestType); 4953 } 4954 } 4955 // Note: as a GNU C++ extension, we allow list-initialization of a 4956 // class member of array type from a parenthesized initializer list. 4957 else if (S.getLangOpts().CPlusPlus && 4958 Entity.getKind() == InitializedEntity::EK_Member && 4959 Initializer && isa<InitListExpr>(Initializer)) { 4960 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 4961 *this); 4962 AddParenthesizedArrayInitStep(DestType); 4963 } else if (DestAT->getElementType()->isCharType()) 4964 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4965 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 4966 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 4967 else 4968 SetFailed(FK_ArrayNeedsInitList); 4969 4970 return; 4971 } 4972 4973 // Determine whether we should consider writeback conversions for 4974 // Objective-C ARC. 4975 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 4976 Entity.isParameterKind(); 4977 4978 // We're at the end of the line for C: it's either a write-back conversion 4979 // or it's a C assignment. There's no need to check anything else. 4980 if (!S.getLangOpts().CPlusPlus) { 4981 // If allowed, check whether this is an Objective-C writeback conversion. 4982 if (allowObjCWritebackConversion && 4983 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4984 return; 4985 } 4986 4987 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 4988 return; 4989 4990 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) 4991 return; 4992 4993 // Handle initialization in C 4994 AddCAssignmentStep(DestType); 4995 MaybeProduceObjCObject(S, *this, Entity); 4996 return; 4997 } 4998 4999 assert(S.getLangOpts().CPlusPlus); 5000 5001 // - If the destination type is a (possibly cv-qualified) class type: 5002 if (DestType->isRecordType()) { 5003 // - If the initialization is direct-initialization, or if it is 5004 // copy-initialization where the cv-unqualified version of the 5005 // source type is the same class as, or a derived class of, the 5006 // class of the destination, constructors are considered. [...] 5007 if (Kind.getKind() == InitializationKind::IK_Direct || 5008 (Kind.getKind() == InitializationKind::IK_Copy && 5009 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5010 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType)))) 5011 TryConstructorInitialization(S, Entity, Kind, Args, 5012 DestType, *this); 5013 // - Otherwise (i.e., for the remaining copy-initialization cases), 5014 // user-defined conversion sequences that can convert from the source 5015 // type to the destination type or (when a conversion function is 5016 // used) to a derived class thereof are enumerated as described in 5017 // 13.3.1.4, and the best one is chosen through overload resolution 5018 // (13.3). 5019 else 5020 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5021 TopLevelOfInitList); 5022 return; 5023 } 5024 5025 if (Args.size() > 1) { 5026 SetFailed(FK_TooManyInitsForScalar); 5027 return; 5028 } 5029 assert(Args.size() == 1 && "Zero-argument case handled above"); 5030 5031 // - Otherwise, if the source type is a (possibly cv-qualified) class 5032 // type, conversion functions are considered. 5033 if (!SourceType.isNull() && SourceType->isRecordType()) { 5034 // For a conversion to _Atomic(T) from either T or a class type derived 5035 // from T, initialize the T object then convert to _Atomic type. 5036 bool NeedAtomicConversion = false; 5037 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5038 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5039 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, 5040 Atomic->getValueType())) { 5041 DestType = Atomic->getValueType(); 5042 NeedAtomicConversion = true; 5043 } 5044 } 5045 5046 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5047 TopLevelOfInitList); 5048 MaybeProduceObjCObject(S, *this, Entity); 5049 if (!Failed() && NeedAtomicConversion) 5050 AddAtomicConversionStep(Entity.getType()); 5051 return; 5052 } 5053 5054 // - Otherwise, the initial value of the object being initialized is the 5055 // (possibly converted) value of the initializer expression. Standard 5056 // conversions (Clause 4) will be used, if necessary, to convert the 5057 // initializer expression to the cv-unqualified version of the 5058 // destination type; no user-defined conversions are considered. 5059 5060 ImplicitConversionSequence ICS 5061 = S.TryImplicitConversion(Initializer, DestType, 5062 /*SuppressUserConversions*/true, 5063 /*AllowExplicitConversions*/ false, 5064 /*InOverloadResolution*/ false, 5065 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5066 allowObjCWritebackConversion); 5067 5068 if (ICS.isStandard() && 5069 ICS.Standard.Second == ICK_Writeback_Conversion) { 5070 // Objective-C ARC writeback conversion. 5071 5072 // We should copy unless we're passing to an argument explicitly 5073 // marked 'out'. 5074 bool ShouldCopy = true; 5075 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5076 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5077 5078 // If there was an lvalue adjustment, add it as a separate conversion. 5079 if (ICS.Standard.First == ICK_Array_To_Pointer || 5080 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5081 ImplicitConversionSequence LvalueICS; 5082 LvalueICS.setStandard(); 5083 LvalueICS.Standard.setAsIdentityConversion(); 5084 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5085 LvalueICS.Standard.First = ICS.Standard.First; 5086 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5087 } 5088 5089 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5090 } else if (ICS.isBad()) { 5091 DeclAccessPair dap; 5092 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5093 AddZeroInitializationStep(Entity.getType()); 5094 } else if (Initializer->getType() == Context.OverloadTy && 5095 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5096 false, dap)) 5097 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5098 else if (Initializer->getType()->isFunctionType() && 5099 isExprAnUnaddressableFunction(S, Initializer)) 5100 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5101 else 5102 SetFailed(InitializationSequence::FK_ConversionFailed); 5103 } else { 5104 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5105 5106 MaybeProduceObjCObject(S, *this, Entity); 5107 } 5108 } 5109 5110 InitializationSequence::~InitializationSequence() { 5111 for (auto &S : Steps) 5112 S.Destroy(); 5113 } 5114 5115 //===----------------------------------------------------------------------===// 5116 // Perform initialization 5117 //===----------------------------------------------------------------------===// 5118 static Sema::AssignmentAction 5119 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5120 switch(Entity.getKind()) { 5121 case InitializedEntity::EK_Variable: 5122 case InitializedEntity::EK_New: 5123 case InitializedEntity::EK_Exception: 5124 case InitializedEntity::EK_Base: 5125 case InitializedEntity::EK_Delegating: 5126 return Sema::AA_Initializing; 5127 5128 case InitializedEntity::EK_Parameter: 5129 if (Entity.getDecl() && 5130 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5131 return Sema::AA_Sending; 5132 5133 return Sema::AA_Passing; 5134 5135 case InitializedEntity::EK_Parameter_CF_Audited: 5136 if (Entity.getDecl() && 5137 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5138 return Sema::AA_Sending; 5139 5140 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5141 5142 case InitializedEntity::EK_Result: 5143 return Sema::AA_Returning; 5144 5145 case InitializedEntity::EK_Temporary: 5146 case InitializedEntity::EK_RelatedResult: 5147 // FIXME: Can we tell apart casting vs. converting? 5148 return Sema::AA_Casting; 5149 5150 case InitializedEntity::EK_Member: 5151 case InitializedEntity::EK_ArrayElement: 5152 case InitializedEntity::EK_VectorElement: 5153 case InitializedEntity::EK_ComplexElement: 5154 case InitializedEntity::EK_BlockElement: 5155 case InitializedEntity::EK_LambdaCapture: 5156 case InitializedEntity::EK_CompoundLiteralInit: 5157 return Sema::AA_Initializing; 5158 } 5159 5160 llvm_unreachable("Invalid EntityKind!"); 5161 } 5162 5163 /// \brief Whether we should bind a created object as a temporary when 5164 /// initializing the given entity. 5165 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5166 switch (Entity.getKind()) { 5167 case InitializedEntity::EK_ArrayElement: 5168 case InitializedEntity::EK_Member: 5169 case InitializedEntity::EK_Result: 5170 case InitializedEntity::EK_New: 5171 case InitializedEntity::EK_Variable: 5172 case InitializedEntity::EK_Base: 5173 case InitializedEntity::EK_Delegating: 5174 case InitializedEntity::EK_VectorElement: 5175 case InitializedEntity::EK_ComplexElement: 5176 case InitializedEntity::EK_Exception: 5177 case InitializedEntity::EK_BlockElement: 5178 case InitializedEntity::EK_LambdaCapture: 5179 case InitializedEntity::EK_CompoundLiteralInit: 5180 return false; 5181 5182 case InitializedEntity::EK_Parameter: 5183 case InitializedEntity::EK_Parameter_CF_Audited: 5184 case InitializedEntity::EK_Temporary: 5185 case InitializedEntity::EK_RelatedResult: 5186 return true; 5187 } 5188 5189 llvm_unreachable("missed an InitializedEntity kind?"); 5190 } 5191 5192 /// \brief Whether the given entity, when initialized with an object 5193 /// created for that initialization, requires destruction. 5194 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 5195 switch (Entity.getKind()) { 5196 case InitializedEntity::EK_Result: 5197 case InitializedEntity::EK_New: 5198 case InitializedEntity::EK_Base: 5199 case InitializedEntity::EK_Delegating: 5200 case InitializedEntity::EK_VectorElement: 5201 case InitializedEntity::EK_ComplexElement: 5202 case InitializedEntity::EK_BlockElement: 5203 case InitializedEntity::EK_LambdaCapture: 5204 return false; 5205 5206 case InitializedEntity::EK_Member: 5207 case InitializedEntity::EK_Variable: 5208 case InitializedEntity::EK_Parameter: 5209 case InitializedEntity::EK_Parameter_CF_Audited: 5210 case InitializedEntity::EK_Temporary: 5211 case InitializedEntity::EK_ArrayElement: 5212 case InitializedEntity::EK_Exception: 5213 case InitializedEntity::EK_CompoundLiteralInit: 5214 case InitializedEntity::EK_RelatedResult: 5215 return true; 5216 } 5217 5218 llvm_unreachable("missed an InitializedEntity kind?"); 5219 } 5220 5221 /// \brief Look for copy and move constructors and constructor templates, for 5222 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 5223 static void LookupCopyAndMoveConstructors(Sema &S, 5224 OverloadCandidateSet &CandidateSet, 5225 CXXRecordDecl *Class, 5226 Expr *CurInitExpr) { 5227 DeclContext::lookup_result R = S.LookupConstructors(Class); 5228 // The container holding the constructors can under certain conditions 5229 // be changed while iterating (e.g. because of deserialization). 5230 // To be safe we copy the lookup results to a new container. 5231 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 5232 for (SmallVectorImpl<NamedDecl *>::iterator 5233 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 5234 NamedDecl *D = *CI; 5235 CXXConstructorDecl *Constructor = nullptr; 5236 5237 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) { 5238 // Handle copy/moveconstructors, only. 5239 if (!Constructor || Constructor->isInvalidDecl() || 5240 !Constructor->isCopyOrMoveConstructor() || 5241 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 5242 continue; 5243 5244 DeclAccessPair FoundDecl 5245 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 5246 S.AddOverloadCandidate(Constructor, FoundDecl, 5247 CurInitExpr, CandidateSet); 5248 continue; 5249 } 5250 5251 // Handle constructor templates. 5252 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D); 5253 if (ConstructorTmpl->isInvalidDecl()) 5254 continue; 5255 5256 Constructor = cast<CXXConstructorDecl>( 5257 ConstructorTmpl->getTemplatedDecl()); 5258 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 5259 continue; 5260 5261 // FIXME: Do we need to limit this to copy-constructor-like 5262 // candidates? 5263 DeclAccessPair FoundDecl 5264 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 5265 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr, 5266 CurInitExpr, CandidateSet, true); 5267 } 5268 } 5269 5270 /// \brief Get the location at which initialization diagnostics should appear. 5271 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5272 Expr *Initializer) { 5273 switch (Entity.getKind()) { 5274 case InitializedEntity::EK_Result: 5275 return Entity.getReturnLoc(); 5276 5277 case InitializedEntity::EK_Exception: 5278 return Entity.getThrowLoc(); 5279 5280 case InitializedEntity::EK_Variable: 5281 return Entity.getDecl()->getLocation(); 5282 5283 case InitializedEntity::EK_LambdaCapture: 5284 return Entity.getCaptureLoc(); 5285 5286 case InitializedEntity::EK_ArrayElement: 5287 case InitializedEntity::EK_Member: 5288 case InitializedEntity::EK_Parameter: 5289 case InitializedEntity::EK_Parameter_CF_Audited: 5290 case InitializedEntity::EK_Temporary: 5291 case InitializedEntity::EK_New: 5292 case InitializedEntity::EK_Base: 5293 case InitializedEntity::EK_Delegating: 5294 case InitializedEntity::EK_VectorElement: 5295 case InitializedEntity::EK_ComplexElement: 5296 case InitializedEntity::EK_BlockElement: 5297 case InitializedEntity::EK_CompoundLiteralInit: 5298 case InitializedEntity::EK_RelatedResult: 5299 return Initializer->getLocStart(); 5300 } 5301 llvm_unreachable("missed an InitializedEntity kind?"); 5302 } 5303 5304 /// \brief Make a (potentially elidable) temporary copy of the object 5305 /// provided by the given initializer by calling the appropriate copy 5306 /// constructor. 5307 /// 5308 /// \param S The Sema object used for type-checking. 5309 /// 5310 /// \param T The type of the temporary object, which must either be 5311 /// the type of the initializer expression or a superclass thereof. 5312 /// 5313 /// \param Entity The entity being initialized. 5314 /// 5315 /// \param CurInit The initializer expression. 5316 /// 5317 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5318 /// is permitted in C++03 (but not C++0x) when binding a reference to 5319 /// an rvalue. 5320 /// 5321 /// \returns An expression that copies the initializer expression into 5322 /// a temporary object, or an error expression if a copy could not be 5323 /// created. 5324 static ExprResult CopyObject(Sema &S, 5325 QualType T, 5326 const InitializedEntity &Entity, 5327 ExprResult CurInit, 5328 bool IsExtraneousCopy) { 5329 if (CurInit.isInvalid()) 5330 return CurInit; 5331 // Determine which class type we're copying to. 5332 Expr *CurInitExpr = (Expr *)CurInit.get(); 5333 CXXRecordDecl *Class = nullptr; 5334 if (const RecordType *Record = T->getAs<RecordType>()) 5335 Class = cast<CXXRecordDecl>(Record->getDecl()); 5336 if (!Class) 5337 return CurInit; 5338 5339 // C++0x [class.copy]p32: 5340 // When certain criteria are met, an implementation is allowed to 5341 // omit the copy/move construction of a class object, even if the 5342 // copy/move constructor and/or destructor for the object have 5343 // side effects. [...] 5344 // - when a temporary class object that has not been bound to a 5345 // reference (12.2) would be copied/moved to a class object 5346 // with the same cv-unqualified type, the copy/move operation 5347 // can be omitted by constructing the temporary object 5348 // directly into the target of the omitted copy/move 5349 // 5350 // Note that the other three bullets are handled elsewhere. Copy 5351 // elision for return statements and throw expressions are handled as part 5352 // of constructor initialization, while copy elision for exception handlers 5353 // is handled by the run-time. 5354 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 5355 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5356 5357 // Make sure that the type we are copying is complete. 5358 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5359 return CurInit; 5360 5361 // Perform overload resolution using the class's copy/move constructors. 5362 // Only consider constructors and constructor templates. Per 5363 // C++0x [dcl.init]p16, second bullet to class types, this initialization 5364 // is direct-initialization. 5365 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5366 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 5367 5368 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5369 5370 OverloadCandidateSet::iterator Best; 5371 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 5372 case OR_Success: 5373 break; 5374 5375 case OR_No_Viable_Function: 5376 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 5377 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5378 : diag::err_temp_copy_no_viable) 5379 << (int)Entity.getKind() << CurInitExpr->getType() 5380 << CurInitExpr->getSourceRange(); 5381 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5382 if (!IsExtraneousCopy || S.isSFINAEContext()) 5383 return ExprError(); 5384 return CurInit; 5385 5386 case OR_Ambiguous: 5387 S.Diag(Loc, diag::err_temp_copy_ambiguous) 5388 << (int)Entity.getKind() << CurInitExpr->getType() 5389 << CurInitExpr->getSourceRange(); 5390 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5391 return ExprError(); 5392 5393 case OR_Deleted: 5394 S.Diag(Loc, diag::err_temp_copy_deleted) 5395 << (int)Entity.getKind() << CurInitExpr->getType() 5396 << CurInitExpr->getSourceRange(); 5397 S.NoteDeletedFunction(Best->Function); 5398 return ExprError(); 5399 } 5400 5401 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 5402 SmallVector<Expr*, 8> ConstructorArgs; 5403 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5404 5405 S.CheckConstructorAccess(Loc, Constructor, Entity, 5406 Best->FoundDecl.getAccess(), IsExtraneousCopy); 5407 5408 if (IsExtraneousCopy) { 5409 // If this is a totally extraneous copy for C++03 reference 5410 // binding purposes, just return the original initialization 5411 // expression. We don't generate an (elided) copy operation here 5412 // because doing so would require us to pass down a flag to avoid 5413 // infinite recursion, where each step adds another extraneous, 5414 // elidable copy. 5415 5416 // Instantiate the default arguments of any extra parameters in 5417 // the selected copy constructor, as if we were going to create a 5418 // proper call to the copy constructor. 5419 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 5420 ParmVarDecl *Parm = Constructor->getParamDecl(I); 5421 if (S.RequireCompleteType(Loc, Parm->getType(), 5422 diag::err_call_incomplete_argument)) 5423 break; 5424 5425 // Build the default argument expression; we don't actually care 5426 // if this succeeds or not, because this routine will complain 5427 // if there was a problem. 5428 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5429 } 5430 5431 return CurInitExpr; 5432 } 5433 5434 // Determine the arguments required to actually perform the 5435 // constructor call (we might have derived-to-base conversions, or 5436 // the copy constructor may have default arguments). 5437 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5438 return ExprError(); 5439 5440 // Actually perform the constructor call. 5441 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 5442 ConstructorArgs, 5443 HadMultipleCandidates, 5444 /*ListInit*/ false, 5445 /*StdInitListInit*/ false, 5446 /*ZeroInit*/ false, 5447 CXXConstructExpr::CK_Complete, 5448 SourceRange()); 5449 5450 // If we're supposed to bind temporaries, do so. 5451 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 5452 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5453 return CurInit; 5454 } 5455 5456 /// \brief Check whether elidable copy construction for binding a reference to 5457 /// a temporary would have succeeded if we were building in C++98 mode, for 5458 /// -Wc++98-compat. 5459 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5460 const InitializedEntity &Entity, 5461 Expr *CurInitExpr) { 5462 assert(S.getLangOpts().CPlusPlus11); 5463 5464 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 5465 if (!Record) 5466 return; 5467 5468 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 5469 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 5470 return; 5471 5472 // Find constructors which would have been considered. 5473 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5474 LookupCopyAndMoveConstructors( 5475 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 5476 5477 // Perform overload resolution. 5478 OverloadCandidateSet::iterator Best; 5479 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 5480 5481 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 5482 << OR << (int)Entity.getKind() << CurInitExpr->getType() 5483 << CurInitExpr->getSourceRange(); 5484 5485 switch (OR) { 5486 case OR_Success: 5487 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 5488 Entity, Best->FoundDecl.getAccess(), Diag); 5489 // FIXME: Check default arguments as far as that's possible. 5490 break; 5491 5492 case OR_No_Viable_Function: 5493 S.Diag(Loc, Diag); 5494 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5495 break; 5496 5497 case OR_Ambiguous: 5498 S.Diag(Loc, Diag); 5499 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5500 break; 5501 5502 case OR_Deleted: 5503 S.Diag(Loc, Diag); 5504 S.NoteDeletedFunction(Best->Function); 5505 break; 5506 } 5507 } 5508 5509 void InitializationSequence::PrintInitLocationNote(Sema &S, 5510 const InitializedEntity &Entity) { 5511 if (Entity.isParameterKind() && Entity.getDecl()) { 5512 if (Entity.getDecl()->getLocation().isInvalid()) 5513 return; 5514 5515 if (Entity.getDecl()->getDeclName()) 5516 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 5517 << Entity.getDecl()->getDeclName(); 5518 else 5519 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 5520 } 5521 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 5522 Entity.getMethodDecl()) 5523 S.Diag(Entity.getMethodDecl()->getLocation(), 5524 diag::note_method_return_type_change) 5525 << Entity.getMethodDecl()->getDeclName(); 5526 } 5527 5528 static bool isReferenceBinding(const InitializationSequence::Step &s) { 5529 return s.Kind == InitializationSequence::SK_BindReference || 5530 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 5531 } 5532 5533 /// Returns true if the parameters describe a constructor initialization of 5534 /// an explicit temporary object, e.g. "Point(x, y)". 5535 static bool isExplicitTemporary(const InitializedEntity &Entity, 5536 const InitializationKind &Kind, 5537 unsigned NumArgs) { 5538 switch (Entity.getKind()) { 5539 case InitializedEntity::EK_Temporary: 5540 case InitializedEntity::EK_CompoundLiteralInit: 5541 case InitializedEntity::EK_RelatedResult: 5542 break; 5543 default: 5544 return false; 5545 } 5546 5547 switch (Kind.getKind()) { 5548 case InitializationKind::IK_DirectList: 5549 return true; 5550 // FIXME: Hack to work around cast weirdness. 5551 case InitializationKind::IK_Direct: 5552 case InitializationKind::IK_Value: 5553 return NumArgs != 1; 5554 default: 5555 return false; 5556 } 5557 } 5558 5559 static ExprResult 5560 PerformConstructorInitialization(Sema &S, 5561 const InitializedEntity &Entity, 5562 const InitializationKind &Kind, 5563 MultiExprArg Args, 5564 const InitializationSequence::Step& Step, 5565 bool &ConstructorInitRequiresZeroInit, 5566 bool IsListInitialization, 5567 bool IsStdInitListInitialization, 5568 SourceLocation LBraceLoc, 5569 SourceLocation RBraceLoc) { 5570 unsigned NumArgs = Args.size(); 5571 CXXConstructorDecl *Constructor 5572 = cast<CXXConstructorDecl>(Step.Function.Function); 5573 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 5574 5575 // Build a call to the selected constructor. 5576 SmallVector<Expr*, 8> ConstructorArgs; 5577 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 5578 ? Kind.getEqualLoc() 5579 : Kind.getLocation(); 5580 5581 if (Kind.getKind() == InitializationKind::IK_Default) { 5582 // Force even a trivial, implicit default constructor to be 5583 // semantically checked. We do this explicitly because we don't build 5584 // the definition for completely trivial constructors. 5585 assert(Constructor->getParent() && "No parent class for constructor."); 5586 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5587 Constructor->isTrivial() && !Constructor->isUsed(false)) 5588 S.DefineImplicitDefaultConstructor(Loc, Constructor); 5589 } 5590 5591 ExprResult CurInit((Expr *)nullptr); 5592 5593 // C++ [over.match.copy]p1: 5594 // - When initializing a temporary to be bound to the first parameter 5595 // of a constructor that takes a reference to possibly cv-qualified 5596 // T as its first argument, called with a single argument in the 5597 // context of direct-initialization, explicit conversion functions 5598 // are also considered. 5599 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && 5600 Args.size() == 1 && 5601 Constructor->isCopyOrMoveConstructor(); 5602 5603 // Determine the arguments required to actually perform the constructor 5604 // call. 5605 if (S.CompleteConstructorCall(Constructor, Args, 5606 Loc, ConstructorArgs, 5607 AllowExplicitConv, 5608 IsListInitialization)) 5609 return ExprError(); 5610 5611 5612 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 5613 // An explicitly-constructed temporary, e.g., X(1, 2). 5614 S.MarkFunctionReferenced(Loc, Constructor); 5615 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5616 return ExprError(); 5617 5618 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5619 if (!TSInfo) 5620 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 5621 SourceRange ParenOrBraceRange = 5622 (Kind.getKind() == InitializationKind::IK_DirectList) 5623 ? SourceRange(LBraceLoc, RBraceLoc) 5624 : Kind.getParenRange(); 5625 5626 CurInit = new (S.Context) CXXTemporaryObjectExpr( 5627 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange, 5628 HadMultipleCandidates, IsListInitialization, 5629 IsStdInitListInitialization, ConstructorInitRequiresZeroInit); 5630 } else { 5631 CXXConstructExpr::ConstructionKind ConstructKind = 5632 CXXConstructExpr::CK_Complete; 5633 5634 if (Entity.getKind() == InitializedEntity::EK_Base) { 5635 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 5636 CXXConstructExpr::CK_VirtualBase : 5637 CXXConstructExpr::CK_NonVirtualBase; 5638 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 5639 ConstructKind = CXXConstructExpr::CK_Delegating; 5640 } 5641 5642 // Only get the parenthesis or brace range if it is a list initialization or 5643 // direct construction. 5644 SourceRange ParenOrBraceRange; 5645 if (IsListInitialization) 5646 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 5647 else if (Kind.getKind() == InitializationKind::IK_Direct) 5648 ParenOrBraceRange = Kind.getParenRange(); 5649 5650 // If the entity allows NRVO, mark the construction as elidable 5651 // unconditionally. 5652 if (Entity.allowsNRVO()) 5653 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5654 Constructor, /*Elidable=*/true, 5655 ConstructorArgs, 5656 HadMultipleCandidates, 5657 IsListInitialization, 5658 IsStdInitListInitialization, 5659 ConstructorInitRequiresZeroInit, 5660 ConstructKind, 5661 ParenOrBraceRange); 5662 else 5663 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5664 Constructor, 5665 ConstructorArgs, 5666 HadMultipleCandidates, 5667 IsListInitialization, 5668 IsStdInitListInitialization, 5669 ConstructorInitRequiresZeroInit, 5670 ConstructKind, 5671 ParenOrBraceRange); 5672 } 5673 if (CurInit.isInvalid()) 5674 return ExprError(); 5675 5676 // Only check access if all of that succeeded. 5677 S.CheckConstructorAccess(Loc, Constructor, Entity, 5678 Step.Function.FoundDecl.getAccess()); 5679 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 5680 return ExprError(); 5681 5682 if (shouldBindAsTemporary(Entity)) 5683 CurInit = S.MaybeBindToTemporary(CurInit.get()); 5684 5685 return CurInit; 5686 } 5687 5688 /// Determine whether the specified InitializedEntity definitely has a lifetime 5689 /// longer than the current full-expression. Conservatively returns false if 5690 /// it's unclear. 5691 static bool 5692 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { 5693 const InitializedEntity *Top = &Entity; 5694 while (Top->getParent()) 5695 Top = Top->getParent(); 5696 5697 switch (Top->getKind()) { 5698 case InitializedEntity::EK_Variable: 5699 case InitializedEntity::EK_Result: 5700 case InitializedEntity::EK_Exception: 5701 case InitializedEntity::EK_Member: 5702 case InitializedEntity::EK_New: 5703 case InitializedEntity::EK_Base: 5704 case InitializedEntity::EK_Delegating: 5705 return true; 5706 5707 case InitializedEntity::EK_ArrayElement: 5708 case InitializedEntity::EK_VectorElement: 5709 case InitializedEntity::EK_BlockElement: 5710 case InitializedEntity::EK_ComplexElement: 5711 // Could not determine what the full initialization is. Assume it might not 5712 // outlive the full-expression. 5713 return false; 5714 5715 case InitializedEntity::EK_Parameter: 5716 case InitializedEntity::EK_Parameter_CF_Audited: 5717 case InitializedEntity::EK_Temporary: 5718 case InitializedEntity::EK_LambdaCapture: 5719 case InitializedEntity::EK_CompoundLiteralInit: 5720 case InitializedEntity::EK_RelatedResult: 5721 // The entity being initialized might not outlive the full-expression. 5722 return false; 5723 } 5724 5725 llvm_unreachable("unknown entity kind"); 5726 } 5727 5728 /// Determine the declaration which an initialized entity ultimately refers to, 5729 /// for the purpose of lifetime-extending a temporary bound to a reference in 5730 /// the initialization of \p Entity. 5731 static const InitializedEntity *getEntityForTemporaryLifetimeExtension( 5732 const InitializedEntity *Entity, 5733 const InitializedEntity *FallbackDecl = nullptr) { 5734 // C++11 [class.temporary]p5: 5735 switch (Entity->getKind()) { 5736 case InitializedEntity::EK_Variable: 5737 // The temporary [...] persists for the lifetime of the reference 5738 return Entity; 5739 5740 case InitializedEntity::EK_Member: 5741 // For subobjects, we look at the complete object. 5742 if (Entity->getParent()) 5743 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5744 Entity); 5745 5746 // except: 5747 // -- A temporary bound to a reference member in a constructor's 5748 // ctor-initializer persists until the constructor exits. 5749 return Entity; 5750 5751 case InitializedEntity::EK_Parameter: 5752 case InitializedEntity::EK_Parameter_CF_Audited: 5753 // -- A temporary bound to a reference parameter in a function call 5754 // persists until the completion of the full-expression containing 5755 // the call. 5756 case InitializedEntity::EK_Result: 5757 // -- The lifetime of a temporary bound to the returned value in a 5758 // function return statement is not extended; the temporary is 5759 // destroyed at the end of the full-expression in the return statement. 5760 case InitializedEntity::EK_New: 5761 // -- A temporary bound to a reference in a new-initializer persists 5762 // until the completion of the full-expression containing the 5763 // new-initializer. 5764 return nullptr; 5765 5766 case InitializedEntity::EK_Temporary: 5767 case InitializedEntity::EK_CompoundLiteralInit: 5768 case InitializedEntity::EK_RelatedResult: 5769 // We don't yet know the storage duration of the surrounding temporary. 5770 // Assume it's got full-expression duration for now, it will patch up our 5771 // storage duration if that's not correct. 5772 return nullptr; 5773 5774 case InitializedEntity::EK_ArrayElement: 5775 // For subobjects, we look at the complete object. 5776 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5777 FallbackDecl); 5778 5779 case InitializedEntity::EK_Base: 5780 case InitializedEntity::EK_Delegating: 5781 // We can reach this case for aggregate initialization in a constructor: 5782 // struct A { int &&r; }; 5783 // struct B : A { B() : A{0} {} }; 5784 // In this case, use the innermost field decl as the context. 5785 return FallbackDecl; 5786 5787 case InitializedEntity::EK_BlockElement: 5788 case InitializedEntity::EK_LambdaCapture: 5789 case InitializedEntity::EK_Exception: 5790 case InitializedEntity::EK_VectorElement: 5791 case InitializedEntity::EK_ComplexElement: 5792 return nullptr; 5793 } 5794 llvm_unreachable("unknown entity kind"); 5795 } 5796 5797 static void performLifetimeExtension(Expr *Init, 5798 const InitializedEntity *ExtendingEntity); 5799 5800 /// Update a glvalue expression that is used as the initializer of a reference 5801 /// to note that its lifetime is extended. 5802 /// \return \c true if any temporary had its lifetime extended. 5803 static bool 5804 performReferenceExtension(Expr *Init, 5805 const InitializedEntity *ExtendingEntity) { 5806 // Walk past any constructs which we can lifetime-extend across. 5807 Expr *Old; 5808 do { 5809 Old = Init; 5810 5811 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5812 if (ILE->getNumInits() == 1 && ILE->isGLValue()) { 5813 // This is just redundant braces around an initializer. Step over it. 5814 Init = ILE->getInit(0); 5815 } 5816 } 5817 5818 // Step over any subobject adjustments; we may have a materialized 5819 // temporary inside them. 5820 SmallVector<const Expr *, 2> CommaLHSs; 5821 SmallVector<SubobjectAdjustment, 2> Adjustments; 5822 Init = const_cast<Expr *>( 5823 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5824 5825 // Per current approach for DR1376, look through casts to reference type 5826 // when performing lifetime extension. 5827 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 5828 if (CE->getSubExpr()->isGLValue()) 5829 Init = CE->getSubExpr(); 5830 5831 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. 5832 // It's unclear if binding a reference to that xvalue extends the array 5833 // temporary. 5834 } while (Init != Old); 5835 5836 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { 5837 // Update the storage duration of the materialized temporary. 5838 // FIXME: Rebuild the expression instead of mutating it. 5839 ME->setExtendingDecl(ExtendingEntity->getDecl(), 5840 ExtendingEntity->allocateManglingNumber()); 5841 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity); 5842 return true; 5843 } 5844 5845 return false; 5846 } 5847 5848 /// Update a prvalue expression that is going to be materialized as a 5849 /// lifetime-extended temporary. 5850 static void performLifetimeExtension(Expr *Init, 5851 const InitializedEntity *ExtendingEntity) { 5852 // Dig out the expression which constructs the extended temporary. 5853 SmallVector<const Expr *, 2> CommaLHSs; 5854 SmallVector<SubobjectAdjustment, 2> Adjustments; 5855 Init = const_cast<Expr *>( 5856 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5857 5858 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 5859 Init = BTE->getSubExpr(); 5860 5861 if (CXXStdInitializerListExpr *ILE = 5862 dyn_cast<CXXStdInitializerListExpr>(Init)) { 5863 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity); 5864 return; 5865 } 5866 5867 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5868 if (ILE->getType()->isArrayType()) { 5869 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 5870 performLifetimeExtension(ILE->getInit(I), ExtendingEntity); 5871 return; 5872 } 5873 5874 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 5875 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 5876 5877 // If we lifetime-extend a braced initializer which is initializing an 5878 // aggregate, and that aggregate contains reference members which are 5879 // bound to temporaries, those temporaries are also lifetime-extended. 5880 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 5881 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 5882 performReferenceExtension(ILE->getInit(0), ExtendingEntity); 5883 else { 5884 unsigned Index = 0; 5885 for (const auto *I : RD->fields()) { 5886 if (Index >= ILE->getNumInits()) 5887 break; 5888 if (I->isUnnamedBitfield()) 5889 continue; 5890 Expr *SubInit = ILE->getInit(Index); 5891 if (I->getType()->isReferenceType()) 5892 performReferenceExtension(SubInit, ExtendingEntity); 5893 else if (isa<InitListExpr>(SubInit) || 5894 isa<CXXStdInitializerListExpr>(SubInit)) 5895 // This may be either aggregate-initialization of a member or 5896 // initialization of a std::initializer_list object. Either way, 5897 // we should recursively lifetime-extend that initializer. 5898 performLifetimeExtension(SubInit, ExtendingEntity); 5899 ++Index; 5900 } 5901 } 5902 } 5903 } 5904 } 5905 5906 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, 5907 const Expr *Init, bool IsInitializerList, 5908 const ValueDecl *ExtendingDecl) { 5909 // Warn if a field lifetime-extends a temporary. 5910 if (isa<FieldDecl>(ExtendingDecl)) { 5911 if (IsInitializerList) { 5912 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) 5913 << /*at end of constructor*/true; 5914 return; 5915 } 5916 5917 bool IsSubobjectMember = false; 5918 for (const InitializedEntity *Ent = Entity.getParent(); Ent; 5919 Ent = Ent->getParent()) { 5920 if (Ent->getKind() != InitializedEntity::EK_Base) { 5921 IsSubobjectMember = true; 5922 break; 5923 } 5924 } 5925 S.Diag(Init->getExprLoc(), 5926 diag::warn_bind_ref_member_to_temporary) 5927 << ExtendingDecl << Init->getSourceRange() 5928 << IsSubobjectMember << IsInitializerList; 5929 if (IsSubobjectMember) 5930 S.Diag(ExtendingDecl->getLocation(), 5931 diag::note_ref_subobject_of_member_declared_here); 5932 else 5933 S.Diag(ExtendingDecl->getLocation(), 5934 diag::note_ref_or_ptr_member_declared_here) 5935 << /*is pointer*/false; 5936 } 5937 } 5938 5939 static void DiagnoseNarrowingInInitList(Sema &S, 5940 const ImplicitConversionSequence &ICS, 5941 QualType PreNarrowingType, 5942 QualType EntityType, 5943 const Expr *PostInit); 5944 5945 /// Provide warnings when std::move is used on construction. 5946 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 5947 bool IsReturnStmt) { 5948 if (!InitExpr) 5949 return; 5950 5951 if (!S.ActiveTemplateInstantiations.empty()) 5952 return; 5953 5954 QualType DestType = InitExpr->getType(); 5955 if (!DestType->isRecordType()) 5956 return; 5957 5958 unsigned DiagID = 0; 5959 if (IsReturnStmt) { 5960 const CXXConstructExpr *CCE = 5961 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 5962 if (!CCE || CCE->getNumArgs() != 1) 5963 return; 5964 5965 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 5966 return; 5967 5968 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 5969 } 5970 5971 // Find the std::move call and get the argument. 5972 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 5973 if (!CE || CE->getNumArgs() != 1) 5974 return; 5975 5976 const FunctionDecl *MoveFunction = CE->getDirectCallee(); 5977 if (!MoveFunction || !MoveFunction->isInStdNamespace() || 5978 !MoveFunction->getIdentifier() || 5979 !MoveFunction->getIdentifier()->isStr("move")) 5980 return; 5981 5982 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 5983 5984 if (IsReturnStmt) { 5985 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 5986 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 5987 return; 5988 5989 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 5990 if (!VD || !VD->hasLocalStorage()) 5991 return; 5992 5993 QualType SourceType = VD->getType(); 5994 if (!SourceType->isRecordType()) 5995 return; 5996 5997 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 5998 return; 5999 } 6000 6001 // If we're returning a function parameter, copy elision 6002 // is not possible. 6003 if (isa<ParmVarDecl>(VD)) 6004 DiagID = diag::warn_redundant_move_on_return; 6005 else 6006 DiagID = diag::warn_pessimizing_move_on_return; 6007 } else { 6008 DiagID = diag::warn_pessimizing_move_on_initialization; 6009 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 6010 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 6011 return; 6012 } 6013 6014 S.Diag(CE->getLocStart(), DiagID); 6015 6016 // Get all the locations for a fix-it. Don't emit the fix-it if any location 6017 // is within a macro. 6018 SourceLocation CallBegin = CE->getCallee()->getLocStart(); 6019 if (CallBegin.isMacroID()) 6020 return; 6021 SourceLocation RParen = CE->getRParenLoc(); 6022 if (RParen.isMacroID()) 6023 return; 6024 SourceLocation LParen; 6025 SourceLocation ArgLoc = Arg->getLocStart(); 6026 6027 // Special testing for the argument location. Since the fix-it needs the 6028 // location right before the argument, the argument location can be in a 6029 // macro only if it is at the beginning of the macro. 6030 while (ArgLoc.isMacroID() && 6031 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 6032 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first; 6033 } 6034 6035 if (LParen.isMacroID()) 6036 return; 6037 6038 LParen = ArgLoc.getLocWithOffset(-1); 6039 6040 S.Diag(CE->getLocStart(), diag::note_remove_move) 6041 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 6042 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 6043 } 6044 6045 ExprResult 6046 InitializationSequence::Perform(Sema &S, 6047 const InitializedEntity &Entity, 6048 const InitializationKind &Kind, 6049 MultiExprArg Args, 6050 QualType *ResultType) { 6051 if (Failed()) { 6052 Diagnose(S, Entity, Kind, Args); 6053 return ExprError(); 6054 } 6055 if (!ZeroInitializationFixit.empty()) { 6056 unsigned DiagID = diag::err_default_init_const; 6057 if (Decl *D = Entity.getDecl()) 6058 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 6059 DiagID = diag::ext_default_init_const; 6060 6061 // The initialization would have succeeded with this fixit. Since the fixit 6062 // is on the error, we need to build a valid AST in this case, so this isn't 6063 // handled in the Failed() branch above. 6064 QualType DestType = Entity.getType(); 6065 S.Diag(Kind.getLocation(), DiagID) 6066 << DestType << (bool)DestType->getAs<RecordType>() 6067 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 6068 ZeroInitializationFixit); 6069 } 6070 6071 if (getKind() == DependentSequence) { 6072 // If the declaration is a non-dependent, incomplete array type 6073 // that has an initializer, then its type will be completed once 6074 // the initializer is instantiated. 6075 if (ResultType && !Entity.getType()->isDependentType() && 6076 Args.size() == 1) { 6077 QualType DeclType = Entity.getType(); 6078 if (const IncompleteArrayType *ArrayT 6079 = S.Context.getAsIncompleteArrayType(DeclType)) { 6080 // FIXME: We don't currently have the ability to accurately 6081 // compute the length of an initializer list without 6082 // performing full type-checking of the initializer list 6083 // (since we have to determine where braces are implicitly 6084 // introduced and such). So, we fall back to making the array 6085 // type a dependently-sized array type with no specified 6086 // bound. 6087 if (isa<InitListExpr>((Expr *)Args[0])) { 6088 SourceRange Brackets; 6089 6090 // Scavange the location of the brackets from the entity, if we can. 6091 if (DeclaratorDecl *DD = Entity.getDecl()) { 6092 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 6093 TypeLoc TL = TInfo->getTypeLoc(); 6094 if (IncompleteArrayTypeLoc ArrayLoc = 6095 TL.getAs<IncompleteArrayTypeLoc>()) 6096 Brackets = ArrayLoc.getBracketsRange(); 6097 } 6098 } 6099 6100 *ResultType 6101 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 6102 /*NumElts=*/nullptr, 6103 ArrayT->getSizeModifier(), 6104 ArrayT->getIndexTypeCVRQualifiers(), 6105 Brackets); 6106 } 6107 6108 } 6109 } 6110 if (Kind.getKind() == InitializationKind::IK_Direct && 6111 !Kind.isExplicitCast()) { 6112 // Rebuild the ParenListExpr. 6113 SourceRange ParenRange = Kind.getParenRange(); 6114 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 6115 Args); 6116 } 6117 assert(Kind.getKind() == InitializationKind::IK_Copy || 6118 Kind.isExplicitCast() || 6119 Kind.getKind() == InitializationKind::IK_DirectList); 6120 return ExprResult(Args[0]); 6121 } 6122 6123 // No steps means no initialization. 6124 if (Steps.empty()) 6125 return ExprResult((Expr *)nullptr); 6126 6127 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 6128 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 6129 !Entity.isParameterKind()) { 6130 // Produce a C++98 compatibility warning if we are initializing a reference 6131 // from an initializer list. For parameters, we produce a better warning 6132 // elsewhere. 6133 Expr *Init = Args[0]; 6134 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) 6135 << Init->getSourceRange(); 6136 } 6137 6138 // Diagnose cases where we initialize a pointer to an array temporary, and the 6139 // pointer obviously outlives the temporary. 6140 if (Args.size() == 1 && Args[0]->getType()->isArrayType() && 6141 Entity.getType()->isPointerType() && 6142 InitializedEntityOutlivesFullExpression(Entity)) { 6143 Expr *Init = Args[0]; 6144 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); 6145 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) 6146 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) 6147 << Init->getSourceRange(); 6148 } 6149 6150 QualType DestType = Entity.getType().getNonReferenceType(); 6151 // FIXME: Ugly hack around the fact that Entity.getType() is not 6152 // the same as Entity.getDecl()->getType() in cases involving type merging, 6153 // and we want latter when it makes sense. 6154 if (ResultType) 6155 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 6156 Entity.getType(); 6157 6158 ExprResult CurInit((Expr *)nullptr); 6159 6160 // For initialization steps that start with a single initializer, 6161 // grab the only argument out the Args and place it into the "current" 6162 // initializer. 6163 switch (Steps.front().Kind) { 6164 case SK_ResolveAddressOfOverloadedFunction: 6165 case SK_CastDerivedToBaseRValue: 6166 case SK_CastDerivedToBaseXValue: 6167 case SK_CastDerivedToBaseLValue: 6168 case SK_BindReference: 6169 case SK_BindReferenceToTemporary: 6170 case SK_ExtraneousCopyToTemporary: 6171 case SK_UserConversion: 6172 case SK_QualificationConversionLValue: 6173 case SK_QualificationConversionXValue: 6174 case SK_QualificationConversionRValue: 6175 case SK_AtomicConversion: 6176 case SK_LValueToRValue: 6177 case SK_ConversionSequence: 6178 case SK_ConversionSequenceNoNarrowing: 6179 case SK_ListInitialization: 6180 case SK_UnwrapInitList: 6181 case SK_RewrapInitList: 6182 case SK_CAssignment: 6183 case SK_StringInit: 6184 case SK_ObjCObjectConversion: 6185 case SK_ArrayInit: 6186 case SK_ParenthesizedArrayInit: 6187 case SK_PassByIndirectCopyRestore: 6188 case SK_PassByIndirectRestore: 6189 case SK_ProduceObjCObject: 6190 case SK_StdInitializerList: 6191 case SK_OCLSamplerInit: 6192 case SK_OCLZeroEvent: { 6193 assert(Args.size() == 1); 6194 CurInit = Args[0]; 6195 if (!CurInit.get()) return ExprError(); 6196 break; 6197 } 6198 6199 case SK_ConstructorInitialization: 6200 case SK_ConstructorInitializationFromList: 6201 case SK_StdInitializerListConstructorCall: 6202 case SK_ZeroInitialization: 6203 break; 6204 } 6205 6206 // Walk through the computed steps for the initialization sequence, 6207 // performing the specified conversions along the way. 6208 bool ConstructorInitRequiresZeroInit = false; 6209 for (step_iterator Step = step_begin(), StepEnd = step_end(); 6210 Step != StepEnd; ++Step) { 6211 if (CurInit.isInvalid()) 6212 return ExprError(); 6213 6214 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 6215 6216 switch (Step->Kind) { 6217 case SK_ResolveAddressOfOverloadedFunction: 6218 // Overload resolution determined which function invoke; update the 6219 // initializer to reflect that choice. 6220 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 6221 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 6222 return ExprError(); 6223 CurInit = S.FixOverloadedFunctionReference(CurInit, 6224 Step->Function.FoundDecl, 6225 Step->Function.Function); 6226 break; 6227 6228 case SK_CastDerivedToBaseRValue: 6229 case SK_CastDerivedToBaseXValue: 6230 case SK_CastDerivedToBaseLValue: { 6231 // We have a derived-to-base cast that produces either an rvalue or an 6232 // lvalue. Perform that cast. 6233 6234 CXXCastPath BasePath; 6235 6236 // Casts to inaccessible base classes are allowed with C-style casts. 6237 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 6238 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 6239 CurInit.get()->getLocStart(), 6240 CurInit.get()->getSourceRange(), 6241 &BasePath, IgnoreBaseAccess)) 6242 return ExprError(); 6243 6244 ExprValueKind VK = 6245 Step->Kind == SK_CastDerivedToBaseLValue ? 6246 VK_LValue : 6247 (Step->Kind == SK_CastDerivedToBaseXValue ? 6248 VK_XValue : 6249 VK_RValue); 6250 CurInit = 6251 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 6252 CurInit.get(), &BasePath, VK); 6253 break; 6254 } 6255 6256 case SK_BindReference: 6257 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). 6258 if (CurInit.get()->refersToBitField()) { 6259 // We don't necessarily have an unambiguous source bit-field. 6260 FieldDecl *BitField = CurInit.get()->getSourceBitField(); 6261 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 6262 << Entity.getType().isVolatileQualified() 6263 << (BitField ? BitField->getDeclName() : DeclarationName()) 6264 << (BitField != nullptr) 6265 << CurInit.get()->getSourceRange(); 6266 if (BitField) 6267 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 6268 6269 return ExprError(); 6270 } 6271 6272 if (CurInit.get()->refersToVectorElement()) { 6273 // References cannot bind to vector elements. 6274 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 6275 << Entity.getType().isVolatileQualified() 6276 << CurInit.get()->getSourceRange(); 6277 PrintInitLocationNote(S, Entity); 6278 return ExprError(); 6279 } 6280 6281 // Reference binding does not have any corresponding ASTs. 6282 6283 // Check exception specifications 6284 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 6285 return ExprError(); 6286 6287 // Even though we didn't materialize a temporary, the binding may still 6288 // extend the lifetime of a temporary. This happens if we bind a reference 6289 // to the result of a cast to reference type. 6290 if (const InitializedEntity *ExtendingEntity = 6291 getEntityForTemporaryLifetimeExtension(&Entity)) 6292 if (performReferenceExtension(CurInit.get(), ExtendingEntity)) 6293 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6294 /*IsInitializerList=*/false, 6295 ExtendingEntity->getDecl()); 6296 6297 break; 6298 6299 case SK_BindReferenceToTemporary: { 6300 // Make sure the "temporary" is actually an rvalue. 6301 assert(CurInit.get()->isRValue() && "not a temporary"); 6302 6303 // Check exception specifications 6304 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 6305 return ExprError(); 6306 6307 // Materialize the temporary into memory. 6308 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr( 6309 Entity.getType().getNonReferenceType(), CurInit.get(), 6310 Entity.getType()->isLValueReferenceType()); 6311 6312 // Maybe lifetime-extend the temporary's subobjects to match the 6313 // entity's lifetime. 6314 if (const InitializedEntity *ExtendingEntity = 6315 getEntityForTemporaryLifetimeExtension(&Entity)) 6316 if (performReferenceExtension(MTE, ExtendingEntity)) 6317 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false, 6318 ExtendingEntity->getDecl()); 6319 6320 // If we're binding to an Objective-C object that has lifetime, we 6321 // need cleanups. Likewise if we're extending this temporary to automatic 6322 // storage duration -- we need to register its cleanup during the 6323 // full-expression's cleanups. 6324 if ((S.getLangOpts().ObjCAutoRefCount && 6325 MTE->getType()->isObjCLifetimeType()) || 6326 (MTE->getStorageDuration() == SD_Automatic && 6327 MTE->getType().isDestructedType())) 6328 S.ExprNeedsCleanups = true; 6329 6330 CurInit = MTE; 6331 break; 6332 } 6333 6334 case SK_ExtraneousCopyToTemporary: 6335 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 6336 /*IsExtraneousCopy=*/true); 6337 break; 6338 6339 case SK_UserConversion: { 6340 // We have a user-defined conversion that invokes either a constructor 6341 // or a conversion function. 6342 CastKind CastKind; 6343 bool IsCopy = false; 6344 FunctionDecl *Fn = Step->Function.Function; 6345 DeclAccessPair FoundFn = Step->Function.FoundDecl; 6346 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 6347 bool CreatedObject = false; 6348 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 6349 // Build a call to the selected constructor. 6350 SmallVector<Expr*, 8> ConstructorArgs; 6351 SourceLocation Loc = CurInit.get()->getLocStart(); 6352 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6353 6354 // Determine the arguments required to actually perform the constructor 6355 // call. 6356 Expr *Arg = CurInit.get(); 6357 if (S.CompleteConstructorCall(Constructor, 6358 MultiExprArg(&Arg, 1), 6359 Loc, ConstructorArgs)) 6360 return ExprError(); 6361 6362 // Build an expression that constructs a temporary. 6363 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 6364 ConstructorArgs, 6365 HadMultipleCandidates, 6366 /*ListInit*/ false, 6367 /*StdInitListInit*/ false, 6368 /*ZeroInit*/ false, 6369 CXXConstructExpr::CK_Complete, 6370 SourceRange()); 6371 if (CurInit.isInvalid()) 6372 return ExprError(); 6373 6374 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 6375 FoundFn.getAccess()); 6376 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 6377 return ExprError(); 6378 6379 CastKind = CK_ConstructorConversion; 6380 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 6381 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 6382 S.IsDerivedFrom(Loc, SourceType, Class)) 6383 IsCopy = true; 6384 6385 CreatedObject = true; 6386 } else { 6387 // Build a call to the conversion function. 6388 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 6389 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 6390 FoundFn); 6391 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 6392 return ExprError(); 6393 6394 // FIXME: Should we move this initialization into a separate 6395 // derived-to-base conversion? I believe the answer is "no", because 6396 // we don't want to turn off access control here for c-style casts. 6397 ExprResult CurInitExprRes = 6398 S.PerformObjectArgumentInitialization(CurInit.get(), 6399 /*Qualifier=*/nullptr, 6400 FoundFn, Conversion); 6401 if(CurInitExprRes.isInvalid()) 6402 return ExprError(); 6403 CurInit = CurInitExprRes; 6404 6405 // Build the actual call to the conversion function. 6406 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 6407 HadMultipleCandidates); 6408 if (CurInit.isInvalid() || !CurInit.get()) 6409 return ExprError(); 6410 6411 CastKind = CK_UserDefinedConversion; 6412 6413 CreatedObject = Conversion->getReturnType()->isRecordType(); 6414 } 6415 6416 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 6417 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 6418 6419 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 6420 QualType T = CurInit.get()->getType(); 6421 if (const RecordType *Record = T->getAs<RecordType>()) { 6422 CXXDestructorDecl *Destructor 6423 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 6424 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 6425 S.PDiag(diag::err_access_dtor_temp) << T); 6426 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); 6427 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) 6428 return ExprError(); 6429 } 6430 } 6431 6432 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 6433 CastKind, CurInit.get(), nullptr, 6434 CurInit.get()->getValueKind()); 6435 if (MaybeBindToTemp) 6436 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6437 if (RequiresCopy) 6438 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 6439 CurInit, /*IsExtraneousCopy=*/false); 6440 break; 6441 } 6442 6443 case SK_QualificationConversionLValue: 6444 case SK_QualificationConversionXValue: 6445 case SK_QualificationConversionRValue: { 6446 // Perform a qualification conversion; these can never go wrong. 6447 ExprValueKind VK = 6448 Step->Kind == SK_QualificationConversionLValue ? 6449 VK_LValue : 6450 (Step->Kind == SK_QualificationConversionXValue ? 6451 VK_XValue : 6452 VK_RValue); 6453 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 6454 break; 6455 } 6456 6457 case SK_AtomicConversion: { 6458 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 6459 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6460 CK_NonAtomicToAtomic, VK_RValue); 6461 break; 6462 } 6463 6464 case SK_LValueToRValue: { 6465 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 6466 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 6467 CK_LValueToRValue, CurInit.get(), 6468 /*BasePath=*/nullptr, VK_RValue); 6469 break; 6470 } 6471 6472 case SK_ConversionSequence: 6473 case SK_ConversionSequenceNoNarrowing: { 6474 Sema::CheckedConversionKind CCK 6475 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 6476 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 6477 : Kind.isExplicitCast()? Sema::CCK_OtherCast 6478 : Sema::CCK_ImplicitConversion; 6479 ExprResult CurInitExprRes = 6480 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 6481 getAssignmentAction(Entity), CCK); 6482 if (CurInitExprRes.isInvalid()) 6483 return ExprError(); 6484 CurInit = CurInitExprRes; 6485 6486 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 6487 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent()) 6488 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 6489 CurInit.get()); 6490 break; 6491 } 6492 6493 case SK_ListInitialization: { 6494 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 6495 // If we're not initializing the top-level entity, we need to create an 6496 // InitializeTemporary entity for our target type. 6497 QualType Ty = Step->Type; 6498 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 6499 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 6500 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 6501 InitListChecker PerformInitList(S, InitEntity, 6502 InitList, Ty, /*VerifyOnly=*/false); 6503 if (PerformInitList.HadError()) 6504 return ExprError(); 6505 6506 // Hack: We must update *ResultType if available in order to set the 6507 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 6508 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 6509 if (ResultType && 6510 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 6511 if ((*ResultType)->isRValueReferenceType()) 6512 Ty = S.Context.getRValueReferenceType(Ty); 6513 else if ((*ResultType)->isLValueReferenceType()) 6514 Ty = S.Context.getLValueReferenceType(Ty, 6515 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 6516 *ResultType = Ty; 6517 } 6518 6519 InitListExpr *StructuredInitList = 6520 PerformInitList.getFullyStructuredList(); 6521 CurInit.get(); 6522 CurInit = shouldBindAsTemporary(InitEntity) 6523 ? S.MaybeBindToTemporary(StructuredInitList) 6524 : StructuredInitList; 6525 break; 6526 } 6527 6528 case SK_ConstructorInitializationFromList: { 6529 // When an initializer list is passed for a parameter of type "reference 6530 // to object", we don't get an EK_Temporary entity, but instead an 6531 // EK_Parameter entity with reference type. 6532 // FIXME: This is a hack. What we really should do is create a user 6533 // conversion step for this case, but this makes it considerably more 6534 // complicated. For now, this will do. 6535 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6536 Entity.getType().getNonReferenceType()); 6537 bool UseTemporary = Entity.getType()->isReferenceType(); 6538 assert(Args.size() == 1 && "expected a single argument for list init"); 6539 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6540 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 6541 << InitList->getSourceRange(); 6542 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 6543 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 6544 Entity, 6545 Kind, Arg, *Step, 6546 ConstructorInitRequiresZeroInit, 6547 /*IsListInitialization*/true, 6548 /*IsStdInitListInit*/false, 6549 InitList->getLBraceLoc(), 6550 InitList->getRBraceLoc()); 6551 break; 6552 } 6553 6554 case SK_UnwrapInitList: 6555 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 6556 break; 6557 6558 case SK_RewrapInitList: { 6559 Expr *E = CurInit.get(); 6560 InitListExpr *Syntactic = Step->WrappingSyntacticList; 6561 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 6562 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 6563 ILE->setSyntacticForm(Syntactic); 6564 ILE->setType(E->getType()); 6565 ILE->setValueKind(E->getValueKind()); 6566 CurInit = ILE; 6567 break; 6568 } 6569 6570 case SK_ConstructorInitialization: 6571 case SK_StdInitializerListConstructorCall: { 6572 // When an initializer list is passed for a parameter of type "reference 6573 // to object", we don't get an EK_Temporary entity, but instead an 6574 // EK_Parameter entity with reference type. 6575 // FIXME: This is a hack. What we really should do is create a user 6576 // conversion step for this case, but this makes it considerably more 6577 // complicated. For now, this will do. 6578 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6579 Entity.getType().getNonReferenceType()); 6580 bool UseTemporary = Entity.getType()->isReferenceType(); 6581 bool IsStdInitListInit = 6582 Step->Kind == SK_StdInitializerListConstructorCall; 6583 CurInit = PerformConstructorInitialization( 6584 S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step, 6585 ConstructorInitRequiresZeroInit, 6586 /*IsListInitialization*/IsStdInitListInit, 6587 /*IsStdInitListInitialization*/IsStdInitListInit, 6588 /*LBraceLoc*/SourceLocation(), 6589 /*RBraceLoc*/SourceLocation()); 6590 break; 6591 } 6592 6593 case SK_ZeroInitialization: { 6594 step_iterator NextStep = Step; 6595 ++NextStep; 6596 if (NextStep != StepEnd && 6597 (NextStep->Kind == SK_ConstructorInitialization || 6598 NextStep->Kind == SK_ConstructorInitializationFromList)) { 6599 // The need for zero-initialization is recorded directly into 6600 // the call to the object's constructor within the next step. 6601 ConstructorInitRequiresZeroInit = true; 6602 } else if (Kind.getKind() == InitializationKind::IK_Value && 6603 S.getLangOpts().CPlusPlus && 6604 !Kind.isImplicitValueInit()) { 6605 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6606 if (!TSInfo) 6607 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 6608 Kind.getRange().getBegin()); 6609 6610 CurInit = new (S.Context) CXXScalarValueInitExpr( 6611 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo, 6612 Kind.getRange().getEnd()); 6613 } else { 6614 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 6615 } 6616 break; 6617 } 6618 6619 case SK_CAssignment: { 6620 QualType SourceType = CurInit.get()->getType(); 6621 // Save off the initial CurInit in case we need to emit a diagnostic 6622 ExprResult InitialCurInit = CurInit; 6623 ExprResult Result = CurInit; 6624 Sema::AssignConvertType ConvTy = 6625 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 6626 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 6627 if (Result.isInvalid()) 6628 return ExprError(); 6629 CurInit = Result; 6630 6631 // If this is a call, allow conversion to a transparent union. 6632 ExprResult CurInitExprRes = CurInit; 6633 if (ConvTy != Sema::Compatible && 6634 Entity.isParameterKind() && 6635 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 6636 == Sema::Compatible) 6637 ConvTy = Sema::Compatible; 6638 if (CurInitExprRes.isInvalid()) 6639 return ExprError(); 6640 CurInit = CurInitExprRes; 6641 6642 bool Complained; 6643 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 6644 Step->Type, SourceType, 6645 InitialCurInit.get(), 6646 getAssignmentAction(Entity, true), 6647 &Complained)) { 6648 PrintInitLocationNote(S, Entity); 6649 return ExprError(); 6650 } else if (Complained) 6651 PrintInitLocationNote(S, Entity); 6652 break; 6653 } 6654 6655 case SK_StringInit: { 6656 QualType Ty = Step->Type; 6657 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 6658 S.Context.getAsArrayType(Ty), S); 6659 break; 6660 } 6661 6662 case SK_ObjCObjectConversion: 6663 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6664 CK_ObjCObjectLValueCast, 6665 CurInit.get()->getValueKind()); 6666 break; 6667 6668 case SK_ArrayInit: 6669 // Okay: we checked everything before creating this step. Note that 6670 // this is a GNU extension. 6671 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 6672 << Step->Type << CurInit.get()->getType() 6673 << CurInit.get()->getSourceRange(); 6674 6675 // If the destination type is an incomplete array type, update the 6676 // type accordingly. 6677 if (ResultType) { 6678 if (const IncompleteArrayType *IncompleteDest 6679 = S.Context.getAsIncompleteArrayType(Step->Type)) { 6680 if (const ConstantArrayType *ConstantSource 6681 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 6682 *ResultType = S.Context.getConstantArrayType( 6683 IncompleteDest->getElementType(), 6684 ConstantSource->getSize(), 6685 ArrayType::Normal, 0); 6686 } 6687 } 6688 } 6689 break; 6690 6691 case SK_ParenthesizedArrayInit: 6692 // Okay: we checked everything before creating this step. Note that 6693 // this is a GNU extension. 6694 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 6695 << CurInit.get()->getSourceRange(); 6696 break; 6697 6698 case SK_PassByIndirectCopyRestore: 6699 case SK_PassByIndirectRestore: 6700 checkIndirectCopyRestoreSource(S, CurInit.get()); 6701 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 6702 CurInit.get(), Step->Type, 6703 Step->Kind == SK_PassByIndirectCopyRestore); 6704 break; 6705 6706 case SK_ProduceObjCObject: 6707 CurInit = 6708 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 6709 CurInit.get(), nullptr, VK_RValue); 6710 break; 6711 6712 case SK_StdInitializerList: { 6713 S.Diag(CurInit.get()->getExprLoc(), 6714 diag::warn_cxx98_compat_initializer_list_init) 6715 << CurInit.get()->getSourceRange(); 6716 6717 // Materialize the temporary into memory. 6718 MaterializeTemporaryExpr *MTE = new (S.Context) 6719 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(), 6720 /*BoundToLvalueReference=*/false); 6721 6722 // Maybe lifetime-extend the array temporary's subobjects to match the 6723 // entity's lifetime. 6724 if (const InitializedEntity *ExtendingEntity = 6725 getEntityForTemporaryLifetimeExtension(&Entity)) 6726 if (performReferenceExtension(MTE, ExtendingEntity)) 6727 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6728 /*IsInitializerList=*/true, 6729 ExtendingEntity->getDecl()); 6730 6731 // Wrap it in a construction of a std::initializer_list<T>. 6732 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 6733 6734 // Bind the result, in case the library has given initializer_list a 6735 // non-trivial destructor. 6736 if (shouldBindAsTemporary(Entity)) 6737 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6738 break; 6739 } 6740 6741 case SK_OCLSamplerInit: { 6742 assert(Step->Type->isSamplerT() && 6743 "Sampler initialization on non-sampler type."); 6744 6745 QualType SourceType = CurInit.get()->getType(); 6746 6747 if (Entity.isParameterKind()) { 6748 if (!SourceType->isSamplerT()) 6749 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 6750 << SourceType; 6751 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 6752 llvm_unreachable("Invalid EntityKind!"); 6753 } 6754 6755 break; 6756 } 6757 case SK_OCLZeroEvent: { 6758 assert(Step->Type->isEventT() && 6759 "Event initialization on non-event type."); 6760 6761 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6762 CK_ZeroToOCLEvent, 6763 CurInit.get()->getValueKind()); 6764 break; 6765 } 6766 } 6767 } 6768 6769 // Diagnose non-fatal problems with the completed initialization. 6770 if (Entity.getKind() == InitializedEntity::EK_Member && 6771 cast<FieldDecl>(Entity.getDecl())->isBitField()) 6772 S.CheckBitFieldInitialization(Kind.getLocation(), 6773 cast<FieldDecl>(Entity.getDecl()), 6774 CurInit.get()); 6775 6776 // Check for std::move on construction. 6777 if (const Expr *E = CurInit.get()) { 6778 CheckMoveOnConstruction(S, E, 6779 Entity.getKind() == InitializedEntity::EK_Result); 6780 } 6781 6782 return CurInit; 6783 } 6784 6785 /// Somewhere within T there is an uninitialized reference subobject. 6786 /// Dig it out and diagnose it. 6787 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 6788 QualType T) { 6789 if (T->isReferenceType()) { 6790 S.Diag(Loc, diag::err_reference_without_init) 6791 << T.getNonReferenceType(); 6792 return true; 6793 } 6794 6795 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6796 if (!RD || !RD->hasUninitializedReferenceMember()) 6797 return false; 6798 6799 for (const auto *FI : RD->fields()) { 6800 if (FI->isUnnamedBitfield()) 6801 continue; 6802 6803 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 6804 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6805 return true; 6806 } 6807 } 6808 6809 for (const auto &BI : RD->bases()) { 6810 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { 6811 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6812 return true; 6813 } 6814 } 6815 6816 return false; 6817 } 6818 6819 6820 //===----------------------------------------------------------------------===// 6821 // Diagnose initialization failures 6822 //===----------------------------------------------------------------------===// 6823 6824 /// Emit notes associated with an initialization that failed due to a 6825 /// "simple" conversion failure. 6826 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 6827 Expr *op) { 6828 QualType destType = entity.getType(); 6829 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 6830 op->getType()->isObjCObjectPointerType()) { 6831 6832 // Emit a possible note about the conversion failing because the 6833 // operand is a message send with a related result type. 6834 S.EmitRelatedResultTypeNote(op); 6835 6836 // Emit a possible note about a return failing because we're 6837 // expecting a related result type. 6838 if (entity.getKind() == InitializedEntity::EK_Result) 6839 S.EmitRelatedResultTypeNoteForReturn(destType); 6840 } 6841 } 6842 6843 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 6844 InitListExpr *InitList) { 6845 QualType DestType = Entity.getType(); 6846 6847 QualType E; 6848 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 6849 QualType ArrayType = S.Context.getConstantArrayType( 6850 E.withConst(), 6851 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 6852 InitList->getNumInits()), 6853 clang::ArrayType::Normal, 0); 6854 InitializedEntity HiddenArray = 6855 InitializedEntity::InitializeTemporary(ArrayType); 6856 return diagnoseListInit(S, HiddenArray, InitList); 6857 } 6858 6859 if (DestType->isReferenceType()) { 6860 // A list-initialization failure for a reference means that we tried to 6861 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 6862 // inner initialization failed. 6863 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 6864 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 6865 SourceLocation Loc = InitList->getLocStart(); 6866 if (auto *D = Entity.getDecl()) 6867 Loc = D->getLocation(); 6868 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 6869 return; 6870 } 6871 6872 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 6873 /*VerifyOnly=*/false); 6874 assert(DiagnoseInitList.HadError() && 6875 "Inconsistent init list check result."); 6876 } 6877 6878 bool InitializationSequence::Diagnose(Sema &S, 6879 const InitializedEntity &Entity, 6880 const InitializationKind &Kind, 6881 ArrayRef<Expr *> Args) { 6882 if (!Failed()) 6883 return false; 6884 6885 QualType DestType = Entity.getType(); 6886 switch (Failure) { 6887 case FK_TooManyInitsForReference: 6888 // FIXME: Customize for the initialized entity? 6889 if (Args.empty()) { 6890 // Dig out the reference subobject which is uninitialized and diagnose it. 6891 // If this is value-initialization, this could be nested some way within 6892 // the target type. 6893 assert(Kind.getKind() == InitializationKind::IK_Value || 6894 DestType->isReferenceType()); 6895 bool Diagnosed = 6896 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 6897 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 6898 (void)Diagnosed; 6899 } else // FIXME: diagnostic below could be better! 6900 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 6901 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); 6902 break; 6903 6904 case FK_ArrayNeedsInitList: 6905 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 6906 break; 6907 case FK_ArrayNeedsInitListOrStringLiteral: 6908 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 6909 break; 6910 case FK_ArrayNeedsInitListOrWideStringLiteral: 6911 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 6912 break; 6913 case FK_NarrowStringIntoWideCharArray: 6914 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 6915 break; 6916 case FK_WideStringIntoCharArray: 6917 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 6918 break; 6919 case FK_IncompatWideStringIntoWideChar: 6920 S.Diag(Kind.getLocation(), 6921 diag::err_array_init_incompat_wide_string_into_wchar); 6922 break; 6923 case FK_ArrayTypeMismatch: 6924 case FK_NonConstantArrayInit: 6925 S.Diag(Kind.getLocation(), 6926 (Failure == FK_ArrayTypeMismatch 6927 ? diag::err_array_init_different_type 6928 : diag::err_array_init_non_constant_array)) 6929 << DestType.getNonReferenceType() 6930 << Args[0]->getType() 6931 << Args[0]->getSourceRange(); 6932 break; 6933 6934 case FK_VariableLengthArrayHasInitializer: 6935 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 6936 << Args[0]->getSourceRange(); 6937 break; 6938 6939 case FK_AddressOfOverloadFailed: { 6940 DeclAccessPair Found; 6941 S.ResolveAddressOfOverloadedFunction(Args[0], 6942 DestType.getNonReferenceType(), 6943 true, 6944 Found); 6945 break; 6946 } 6947 6948 case FK_AddressOfUnaddressableFunction: { 6949 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl()); 6950 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 6951 Args[0]->getLocStart()); 6952 break; 6953 } 6954 6955 case FK_ReferenceInitOverloadFailed: 6956 case FK_UserConversionOverloadFailed: 6957 switch (FailedOverloadResult) { 6958 case OR_Ambiguous: 6959 if (Failure == FK_UserConversionOverloadFailed) 6960 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 6961 << Args[0]->getType() << DestType 6962 << Args[0]->getSourceRange(); 6963 else 6964 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 6965 << DestType << Args[0]->getType() 6966 << Args[0]->getSourceRange(); 6967 6968 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6969 break; 6970 6971 case OR_No_Viable_Function: 6972 if (!S.RequireCompleteType(Kind.getLocation(), 6973 DestType.getNonReferenceType(), 6974 diag::err_typecheck_nonviable_condition_incomplete, 6975 Args[0]->getType(), Args[0]->getSourceRange())) 6976 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 6977 << (Entity.getKind() == InitializedEntity::EK_Result) 6978 << Args[0]->getType() << Args[0]->getSourceRange() 6979 << DestType.getNonReferenceType(); 6980 6981 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6982 break; 6983 6984 case OR_Deleted: { 6985 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 6986 << Args[0]->getType() << DestType.getNonReferenceType() 6987 << Args[0]->getSourceRange(); 6988 OverloadCandidateSet::iterator Best; 6989 OverloadingResult Ovl 6990 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 6991 true); 6992 if (Ovl == OR_Deleted) { 6993 S.NoteDeletedFunction(Best->Function); 6994 } else { 6995 llvm_unreachable("Inconsistent overload resolution?"); 6996 } 6997 break; 6998 } 6999 7000 case OR_Success: 7001 llvm_unreachable("Conversion did not fail!"); 7002 } 7003 break; 7004 7005 case FK_NonConstLValueReferenceBindingToTemporary: 7006 if (isa<InitListExpr>(Args[0])) { 7007 S.Diag(Kind.getLocation(), 7008 diag::err_lvalue_reference_bind_to_initlist) 7009 << DestType.getNonReferenceType().isVolatileQualified() 7010 << DestType.getNonReferenceType() 7011 << Args[0]->getSourceRange(); 7012 break; 7013 } 7014 // Intentional fallthrough 7015 7016 case FK_NonConstLValueReferenceBindingToUnrelated: 7017 S.Diag(Kind.getLocation(), 7018 Failure == FK_NonConstLValueReferenceBindingToTemporary 7019 ? diag::err_lvalue_reference_bind_to_temporary 7020 : diag::err_lvalue_reference_bind_to_unrelated) 7021 << DestType.getNonReferenceType().isVolatileQualified() 7022 << DestType.getNonReferenceType() 7023 << Args[0]->getType() 7024 << Args[0]->getSourceRange(); 7025 break; 7026 7027 case FK_RValueReferenceBindingToLValue: 7028 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 7029 << DestType.getNonReferenceType() << Args[0]->getType() 7030 << Args[0]->getSourceRange(); 7031 break; 7032 7033 case FK_ReferenceInitDropsQualifiers: { 7034 QualType SourceType = Args[0]->getType(); 7035 QualType NonRefType = DestType.getNonReferenceType(); 7036 Qualifiers DroppedQualifiers = 7037 SourceType.getQualifiers() - NonRefType.getQualifiers(); 7038 7039 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 7040 << SourceType 7041 << NonRefType 7042 << DroppedQualifiers.getCVRQualifiers() 7043 << Args[0]->getSourceRange(); 7044 break; 7045 } 7046 7047 case FK_ReferenceInitFailed: 7048 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 7049 << DestType.getNonReferenceType() 7050 << Args[0]->isLValue() 7051 << Args[0]->getType() 7052 << Args[0]->getSourceRange(); 7053 emitBadConversionNotes(S, Entity, Args[0]); 7054 break; 7055 7056 case FK_ConversionFailed: { 7057 QualType FromType = Args[0]->getType(); 7058 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 7059 << (int)Entity.getKind() 7060 << DestType 7061 << Args[0]->isLValue() 7062 << FromType 7063 << Args[0]->getSourceRange(); 7064 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 7065 S.Diag(Kind.getLocation(), PDiag); 7066 emitBadConversionNotes(S, Entity, Args[0]); 7067 break; 7068 } 7069 7070 case FK_ConversionFromPropertyFailed: 7071 // No-op. This error has already been reported. 7072 break; 7073 7074 case FK_TooManyInitsForScalar: { 7075 SourceRange R; 7076 7077 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 7078 if (InitList && InitList->getNumInits() >= 1) { 7079 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd()); 7080 } else { 7081 assert(Args.size() > 1 && "Expected multiple initializers!"); 7082 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); 7083 } 7084 7085 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 7086 if (Kind.isCStyleOrFunctionalCast()) 7087 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 7088 << R; 7089 else 7090 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 7091 << /*scalar=*/2 << R; 7092 break; 7093 } 7094 7095 case FK_ReferenceBindingToInitList: 7096 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 7097 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 7098 break; 7099 7100 case FK_InitListBadDestinationType: 7101 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 7102 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 7103 break; 7104 7105 case FK_ListConstructorOverloadFailed: 7106 case FK_ConstructorOverloadFailed: { 7107 SourceRange ArgsRange; 7108 if (Args.size()) 7109 ArgsRange = SourceRange(Args.front()->getLocStart(), 7110 Args.back()->getLocEnd()); 7111 7112 if (Failure == FK_ListConstructorOverloadFailed) { 7113 assert(Args.size() == 1 && 7114 "List construction from other than 1 argument."); 7115 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7116 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 7117 } 7118 7119 // FIXME: Using "DestType" for the entity we're printing is probably 7120 // bad. 7121 switch (FailedOverloadResult) { 7122 case OR_Ambiguous: 7123 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 7124 << DestType << ArgsRange; 7125 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 7126 break; 7127 7128 case OR_No_Viable_Function: 7129 if (Kind.getKind() == InitializationKind::IK_Default && 7130 (Entity.getKind() == InitializedEntity::EK_Base || 7131 Entity.getKind() == InitializedEntity::EK_Member) && 7132 isa<CXXConstructorDecl>(S.CurContext)) { 7133 // This is implicit default initialization of a member or 7134 // base within a constructor. If no viable function was 7135 // found, notify the user that she needs to explicitly 7136 // initialize this base/member. 7137 CXXConstructorDecl *Constructor 7138 = cast<CXXConstructorDecl>(S.CurContext); 7139 if (Entity.getKind() == InitializedEntity::EK_Base) { 7140 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 7141 << (Constructor->getInheritedConstructor() ? 2 : 7142 Constructor->isImplicit() ? 1 : 0) 7143 << S.Context.getTypeDeclType(Constructor->getParent()) 7144 << /*base=*/0 7145 << Entity.getType(); 7146 7147 RecordDecl *BaseDecl 7148 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 7149 ->getDecl(); 7150 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 7151 << S.Context.getTagDeclType(BaseDecl); 7152 } else { 7153 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 7154 << (Constructor->getInheritedConstructor() ? 2 : 7155 Constructor->isImplicit() ? 1 : 0) 7156 << S.Context.getTypeDeclType(Constructor->getParent()) 7157 << /*member=*/1 7158 << Entity.getName(); 7159 S.Diag(Entity.getDecl()->getLocation(), 7160 diag::note_member_declared_at); 7161 7162 if (const RecordType *Record 7163 = Entity.getType()->getAs<RecordType>()) 7164 S.Diag(Record->getDecl()->getLocation(), 7165 diag::note_previous_decl) 7166 << S.Context.getTagDeclType(Record->getDecl()); 7167 } 7168 break; 7169 } 7170 7171 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 7172 << DestType << ArgsRange; 7173 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 7174 break; 7175 7176 case OR_Deleted: { 7177 OverloadCandidateSet::iterator Best; 7178 OverloadingResult Ovl 7179 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 7180 if (Ovl != OR_Deleted) { 7181 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 7182 << true << DestType << ArgsRange; 7183 llvm_unreachable("Inconsistent overload resolution?"); 7184 break; 7185 } 7186 7187 // If this is a defaulted or implicitly-declared function, then 7188 // it was implicitly deleted. Make it clear that the deletion was 7189 // implicit. 7190 if (S.isImplicitlyDeleted(Best->Function)) 7191 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 7192 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 7193 << DestType << ArgsRange; 7194 else 7195 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 7196 << true << DestType << ArgsRange; 7197 7198 S.NoteDeletedFunction(Best->Function); 7199 break; 7200 } 7201 7202 case OR_Success: 7203 llvm_unreachable("Conversion did not fail!"); 7204 } 7205 } 7206 break; 7207 7208 case FK_DefaultInitOfConst: 7209 if (Entity.getKind() == InitializedEntity::EK_Member && 7210 isa<CXXConstructorDecl>(S.CurContext)) { 7211 // This is implicit default-initialization of a const member in 7212 // a constructor. Complain that it needs to be explicitly 7213 // initialized. 7214 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 7215 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 7216 << (Constructor->getInheritedConstructor() ? 2 : 7217 Constructor->isImplicit() ? 1 : 0) 7218 << S.Context.getTypeDeclType(Constructor->getParent()) 7219 << /*const=*/1 7220 << Entity.getName(); 7221 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 7222 << Entity.getName(); 7223 } else { 7224 S.Diag(Kind.getLocation(), diag::err_default_init_const) 7225 << DestType << (bool)DestType->getAs<RecordType>(); 7226 } 7227 break; 7228 7229 case FK_Incomplete: 7230 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 7231 diag::err_init_incomplete_type); 7232 break; 7233 7234 case FK_ListInitializationFailed: { 7235 // Run the init list checker again to emit diagnostics. 7236 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7237 diagnoseListInit(S, Entity, InitList); 7238 break; 7239 } 7240 7241 case FK_PlaceholderType: { 7242 // FIXME: Already diagnosed! 7243 break; 7244 } 7245 7246 case FK_ExplicitConstructor: { 7247 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 7248 << Args[0]->getSourceRange(); 7249 OverloadCandidateSet::iterator Best; 7250 OverloadingResult Ovl 7251 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 7252 (void)Ovl; 7253 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 7254 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 7255 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); 7256 break; 7257 } 7258 } 7259 7260 PrintInitLocationNote(S, Entity); 7261 return true; 7262 } 7263 7264 void InitializationSequence::dump(raw_ostream &OS) const { 7265 switch (SequenceKind) { 7266 case FailedSequence: { 7267 OS << "Failed sequence: "; 7268 switch (Failure) { 7269 case FK_TooManyInitsForReference: 7270 OS << "too many initializers for reference"; 7271 break; 7272 7273 case FK_ArrayNeedsInitList: 7274 OS << "array requires initializer list"; 7275 break; 7276 7277 case FK_AddressOfUnaddressableFunction: 7278 OS << "address of unaddressable function was taken"; 7279 break; 7280 7281 case FK_ArrayNeedsInitListOrStringLiteral: 7282 OS << "array requires initializer list or string literal"; 7283 break; 7284 7285 case FK_ArrayNeedsInitListOrWideStringLiteral: 7286 OS << "array requires initializer list or wide string literal"; 7287 break; 7288 7289 case FK_NarrowStringIntoWideCharArray: 7290 OS << "narrow string into wide char array"; 7291 break; 7292 7293 case FK_WideStringIntoCharArray: 7294 OS << "wide string into char array"; 7295 break; 7296 7297 case FK_IncompatWideStringIntoWideChar: 7298 OS << "incompatible wide string into wide char array"; 7299 break; 7300 7301 case FK_ArrayTypeMismatch: 7302 OS << "array type mismatch"; 7303 break; 7304 7305 case FK_NonConstantArrayInit: 7306 OS << "non-constant array initializer"; 7307 break; 7308 7309 case FK_AddressOfOverloadFailed: 7310 OS << "address of overloaded function failed"; 7311 break; 7312 7313 case FK_ReferenceInitOverloadFailed: 7314 OS << "overload resolution for reference initialization failed"; 7315 break; 7316 7317 case FK_NonConstLValueReferenceBindingToTemporary: 7318 OS << "non-const lvalue reference bound to temporary"; 7319 break; 7320 7321 case FK_NonConstLValueReferenceBindingToUnrelated: 7322 OS << "non-const lvalue reference bound to unrelated type"; 7323 break; 7324 7325 case FK_RValueReferenceBindingToLValue: 7326 OS << "rvalue reference bound to an lvalue"; 7327 break; 7328 7329 case FK_ReferenceInitDropsQualifiers: 7330 OS << "reference initialization drops qualifiers"; 7331 break; 7332 7333 case FK_ReferenceInitFailed: 7334 OS << "reference initialization failed"; 7335 break; 7336 7337 case FK_ConversionFailed: 7338 OS << "conversion failed"; 7339 break; 7340 7341 case FK_ConversionFromPropertyFailed: 7342 OS << "conversion from property failed"; 7343 break; 7344 7345 case FK_TooManyInitsForScalar: 7346 OS << "too many initializers for scalar"; 7347 break; 7348 7349 case FK_ReferenceBindingToInitList: 7350 OS << "referencing binding to initializer list"; 7351 break; 7352 7353 case FK_InitListBadDestinationType: 7354 OS << "initializer list for non-aggregate, non-scalar type"; 7355 break; 7356 7357 case FK_UserConversionOverloadFailed: 7358 OS << "overloading failed for user-defined conversion"; 7359 break; 7360 7361 case FK_ConstructorOverloadFailed: 7362 OS << "constructor overloading failed"; 7363 break; 7364 7365 case FK_DefaultInitOfConst: 7366 OS << "default initialization of a const variable"; 7367 break; 7368 7369 case FK_Incomplete: 7370 OS << "initialization of incomplete type"; 7371 break; 7372 7373 case FK_ListInitializationFailed: 7374 OS << "list initialization checker failure"; 7375 break; 7376 7377 case FK_VariableLengthArrayHasInitializer: 7378 OS << "variable length array has an initializer"; 7379 break; 7380 7381 case FK_PlaceholderType: 7382 OS << "initializer expression isn't contextually valid"; 7383 break; 7384 7385 case FK_ListConstructorOverloadFailed: 7386 OS << "list constructor overloading failed"; 7387 break; 7388 7389 case FK_ExplicitConstructor: 7390 OS << "list copy initialization chose explicit constructor"; 7391 break; 7392 } 7393 OS << '\n'; 7394 return; 7395 } 7396 7397 case DependentSequence: 7398 OS << "Dependent sequence\n"; 7399 return; 7400 7401 case NormalSequence: 7402 OS << "Normal sequence: "; 7403 break; 7404 } 7405 7406 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 7407 if (S != step_begin()) { 7408 OS << " -> "; 7409 } 7410 7411 switch (S->Kind) { 7412 case SK_ResolveAddressOfOverloadedFunction: 7413 OS << "resolve address of overloaded function"; 7414 break; 7415 7416 case SK_CastDerivedToBaseRValue: 7417 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 7418 break; 7419 7420 case SK_CastDerivedToBaseXValue: 7421 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 7422 break; 7423 7424 case SK_CastDerivedToBaseLValue: 7425 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 7426 break; 7427 7428 case SK_BindReference: 7429 OS << "bind reference to lvalue"; 7430 break; 7431 7432 case SK_BindReferenceToTemporary: 7433 OS << "bind reference to a temporary"; 7434 break; 7435 7436 case SK_ExtraneousCopyToTemporary: 7437 OS << "extraneous C++03 copy to temporary"; 7438 break; 7439 7440 case SK_UserConversion: 7441 OS << "user-defined conversion via " << *S->Function.Function; 7442 break; 7443 7444 case SK_QualificationConversionRValue: 7445 OS << "qualification conversion (rvalue)"; 7446 break; 7447 7448 case SK_QualificationConversionXValue: 7449 OS << "qualification conversion (xvalue)"; 7450 break; 7451 7452 case SK_QualificationConversionLValue: 7453 OS << "qualification conversion (lvalue)"; 7454 break; 7455 7456 case SK_AtomicConversion: 7457 OS << "non-atomic-to-atomic conversion"; 7458 break; 7459 7460 case SK_LValueToRValue: 7461 OS << "load (lvalue to rvalue)"; 7462 break; 7463 7464 case SK_ConversionSequence: 7465 OS << "implicit conversion sequence ("; 7466 S->ICS->dump(); // FIXME: use OS 7467 OS << ")"; 7468 break; 7469 7470 case SK_ConversionSequenceNoNarrowing: 7471 OS << "implicit conversion sequence with narrowing prohibited ("; 7472 S->ICS->dump(); // FIXME: use OS 7473 OS << ")"; 7474 break; 7475 7476 case SK_ListInitialization: 7477 OS << "list aggregate initialization"; 7478 break; 7479 7480 case SK_UnwrapInitList: 7481 OS << "unwrap reference initializer list"; 7482 break; 7483 7484 case SK_RewrapInitList: 7485 OS << "rewrap reference initializer list"; 7486 break; 7487 7488 case SK_ConstructorInitialization: 7489 OS << "constructor initialization"; 7490 break; 7491 7492 case SK_ConstructorInitializationFromList: 7493 OS << "list initialization via constructor"; 7494 break; 7495 7496 case SK_ZeroInitialization: 7497 OS << "zero initialization"; 7498 break; 7499 7500 case SK_CAssignment: 7501 OS << "C assignment"; 7502 break; 7503 7504 case SK_StringInit: 7505 OS << "string initialization"; 7506 break; 7507 7508 case SK_ObjCObjectConversion: 7509 OS << "Objective-C object conversion"; 7510 break; 7511 7512 case SK_ArrayInit: 7513 OS << "array initialization"; 7514 break; 7515 7516 case SK_ParenthesizedArrayInit: 7517 OS << "parenthesized array initialization"; 7518 break; 7519 7520 case SK_PassByIndirectCopyRestore: 7521 OS << "pass by indirect copy and restore"; 7522 break; 7523 7524 case SK_PassByIndirectRestore: 7525 OS << "pass by indirect restore"; 7526 break; 7527 7528 case SK_ProduceObjCObject: 7529 OS << "Objective-C object retension"; 7530 break; 7531 7532 case SK_StdInitializerList: 7533 OS << "std::initializer_list from initializer list"; 7534 break; 7535 7536 case SK_StdInitializerListConstructorCall: 7537 OS << "list initialization from std::initializer_list"; 7538 break; 7539 7540 case SK_OCLSamplerInit: 7541 OS << "OpenCL sampler_t from integer constant"; 7542 break; 7543 7544 case SK_OCLZeroEvent: 7545 OS << "OpenCL event_t from zero"; 7546 break; 7547 } 7548 7549 OS << " [" << S->Type.getAsString() << ']'; 7550 } 7551 7552 OS << '\n'; 7553 } 7554 7555 void InitializationSequence::dump() const { 7556 dump(llvm::errs()); 7557 } 7558 7559 static void DiagnoseNarrowingInInitList(Sema &S, 7560 const ImplicitConversionSequence &ICS, 7561 QualType PreNarrowingType, 7562 QualType EntityType, 7563 const Expr *PostInit) { 7564 const StandardConversionSequence *SCS = nullptr; 7565 switch (ICS.getKind()) { 7566 case ImplicitConversionSequence::StandardConversion: 7567 SCS = &ICS.Standard; 7568 break; 7569 case ImplicitConversionSequence::UserDefinedConversion: 7570 SCS = &ICS.UserDefined.After; 7571 break; 7572 case ImplicitConversionSequence::AmbiguousConversion: 7573 case ImplicitConversionSequence::EllipsisConversion: 7574 case ImplicitConversionSequence::BadConversion: 7575 return; 7576 } 7577 7578 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 7579 APValue ConstantValue; 7580 QualType ConstantType; 7581 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 7582 ConstantType)) { 7583 case NK_Not_Narrowing: 7584 // No narrowing occurred. 7585 return; 7586 7587 case NK_Type_Narrowing: 7588 // This was a floating-to-integer conversion, which is always considered a 7589 // narrowing conversion even if the value is a constant and can be 7590 // represented exactly as an integer. 7591 S.Diag(PostInit->getLocStart(), 7592 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7593 ? diag::warn_init_list_type_narrowing 7594 : diag::ext_init_list_type_narrowing) 7595 << PostInit->getSourceRange() 7596 << PreNarrowingType.getLocalUnqualifiedType() 7597 << EntityType.getLocalUnqualifiedType(); 7598 break; 7599 7600 case NK_Constant_Narrowing: 7601 // A constant value was narrowed. 7602 S.Diag(PostInit->getLocStart(), 7603 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7604 ? diag::warn_init_list_constant_narrowing 7605 : diag::ext_init_list_constant_narrowing) 7606 << PostInit->getSourceRange() 7607 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 7608 << EntityType.getLocalUnqualifiedType(); 7609 break; 7610 7611 case NK_Variable_Narrowing: 7612 // A variable's value may have been narrowed. 7613 S.Diag(PostInit->getLocStart(), 7614 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7615 ? diag::warn_init_list_variable_narrowing 7616 : diag::ext_init_list_variable_narrowing) 7617 << PostInit->getSourceRange() 7618 << PreNarrowingType.getLocalUnqualifiedType() 7619 << EntityType.getLocalUnqualifiedType(); 7620 break; 7621 } 7622 7623 SmallString<128> StaticCast; 7624 llvm::raw_svector_ostream OS(StaticCast); 7625 OS << "static_cast<"; 7626 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 7627 // It's important to use the typedef's name if there is one so that the 7628 // fixit doesn't break code using types like int64_t. 7629 // 7630 // FIXME: This will break if the typedef requires qualification. But 7631 // getQualifiedNameAsString() includes non-machine-parsable components. 7632 OS << *TT->getDecl(); 7633 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 7634 OS << BT->getName(S.getLangOpts()); 7635 else { 7636 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 7637 // with a broken cast. 7638 return; 7639 } 7640 OS << ">("; 7641 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) 7642 << PostInit->getSourceRange() 7643 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) 7644 << FixItHint::CreateInsertion( 7645 S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); 7646 } 7647 7648 //===----------------------------------------------------------------------===// 7649 // Initialization helper functions 7650 //===----------------------------------------------------------------------===// 7651 bool 7652 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 7653 ExprResult Init) { 7654 if (Init.isInvalid()) 7655 return false; 7656 7657 Expr *InitE = Init.get(); 7658 assert(InitE && "No initialization expression"); 7659 7660 InitializationKind Kind 7661 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); 7662 InitializationSequence Seq(*this, Entity, Kind, InitE); 7663 return !Seq.Failed(); 7664 } 7665 7666 ExprResult 7667 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 7668 SourceLocation EqualLoc, 7669 ExprResult Init, 7670 bool TopLevelOfInitList, 7671 bool AllowExplicit) { 7672 if (Init.isInvalid()) 7673 return ExprError(); 7674 7675 Expr *InitE = Init.get(); 7676 assert(InitE && "No initialization expression?"); 7677 7678 if (EqualLoc.isInvalid()) 7679 EqualLoc = InitE->getLocStart(); 7680 7681 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 7682 EqualLoc, 7683 AllowExplicit); 7684 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 7685 7686 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 7687 7688 return Result; 7689 } 7690