Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.lang;
     27 import java.lang.ref.*;
     28 import java.util.concurrent.atomic.AtomicInteger;
     29 
     30 /**
     31  * This class provides thread-local variables.  These variables differ from
     32  * their normal counterparts in that each thread that accesses one (via its
     33  * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
     34  * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
     35  * static fields in classes that wish to associate state with a thread (e.g.,
     36  * a user ID or Transaction ID).
     37  *
     38  * <p>For example, the class below generates unique identifiers local to each
     39  * thread.
     40  * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
     41  * and remains unchanged on subsequent calls.
     42  * <pre>
     43  * import java.util.concurrent.atomic.AtomicInteger;
     44  *
     45  * public class ThreadId {
     46  *     // Atomic integer containing the next thread ID to be assigned
     47  *     private static final AtomicInteger nextId = new AtomicInteger(0);
     48  *
     49  *     // Thread local variable containing each thread's ID
     50  *     private static final ThreadLocal&lt;Integer> threadId =
     51  *         new ThreadLocal&lt;Integer>() {
     52  *             &#64;Override protected Integer initialValue() {
     53  *                 return nextId.getAndIncrement();
     54  *         }
     55  *     };
     56  *
     57  *     // Returns the current thread's unique ID, assigning it if necessary
     58  *     public static int get() {
     59  *         return threadId.get();
     60  *     }
     61  * }
     62  * </pre>
     63  * <p>Each thread holds an implicit reference to its copy of a thread-local
     64  * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
     65  * instance is accessible; after a thread goes away, all of its copies of
     66  * thread-local instances are subject to garbage collection (unless other
     67  * references to these copies exist).
     68  *
     69  * @author  Josh Bloch and Doug Lea
     70  * @since   1.2
     71  */
     72 public class ThreadLocal<T> {
     73     /**
     74      * ThreadLocals rely on per-thread linear-probe hash maps attached
     75      * to each thread (Thread.threadLocals and
     76      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     77      * searched via threadLocalHashCode.  This is a custom hash code
     78      * (useful only within ThreadLocalMaps) that eliminates collisions
     79      * in the common case where consecutively constructed ThreadLocals
     80      * are used by the same threads, while remaining well-behaved in
     81      * less common cases.
     82      */
     83     private final int threadLocalHashCode = nextHashCode();
     84 
     85     /**
     86      * The next hash code to be given out. Updated atomically. Starts at
     87      * zero.
     88      */
     89     private static AtomicInteger nextHashCode =
     90         new AtomicInteger();
     91 
     92     /**
     93      * The difference between successively generated hash codes - turns
     94      * implicit sequential thread-local IDs into near-optimally spread
     95      * multiplicative hash values for power-of-two-sized tables.
     96      */
     97     private static final int HASH_INCREMENT = 0x61c88647;
     98 
     99     /**
    100      * Returns the next hash code.
    101      */
    102     private static int nextHashCode() {
    103         return nextHashCode.getAndAdd(HASH_INCREMENT);
    104     }
    105 
    106     /**
    107      * Returns the current thread's "initial value" for this
    108      * thread-local variable.  This method will be invoked the first
    109      * time a thread accesses the variable with the {@link #get}
    110      * method, unless the thread previously invoked the {@link #set}
    111      * method, in which case the <tt>initialValue</tt> method will not
    112      * be invoked for the thread.  Normally, this method is invoked at
    113      * most once per thread, but it may be invoked again in case of
    114      * subsequent invocations of {@link #remove} followed by {@link #get}.
    115      *
    116      * <p>This implementation simply returns <tt>null</tt>; if the
    117      * programmer desires thread-local variables to have an initial
    118      * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
    119      * subclassed, and this method overridden.  Typically, an
    120      * anonymous inner class will be used.
    121      *
    122      * @return the initial value for this thread-local
    123      */
    124     protected T initialValue() {
    125         return null;
    126     }
    127 
    128     /**
    129      * Creates a thread local variable.
    130      */
    131     public ThreadLocal() {
    132     }
    133 
    134     /**
    135      * Returns the value in the current thread's copy of this
    136      * thread-local variable.  If the variable has no value for the
    137      * current thread, it is first initialized to the value returned
    138      * by an invocation of the {@link #initialValue} method.
    139      *
    140      * @return the current thread's value of this thread-local
    141      */
    142     public T get() {
    143         Thread t = Thread.currentThread();
    144         ThreadLocalMap map = getMap(t);
    145         if (map != null) {
    146             ThreadLocalMap.Entry e = map.getEntry(this);
    147             if (e != null)
    148                 return (T)e.value;
    149         }
    150         return setInitialValue();
    151     }
    152 
    153     /**
    154      * Variant of set() to establish initialValue. Used instead
    155      * of set() in case user has overridden the set() method.
    156      *
    157      * @return the initial value
    158      */
    159     private T setInitialValue() {
    160         T value = initialValue();
    161         Thread t = Thread.currentThread();
    162         ThreadLocalMap map = getMap(t);
    163         if (map != null)
    164             map.set(this, value);
    165         else
    166             createMap(t, value);
    167         return value;
    168     }
    169 
    170     /**
    171      * Sets the current thread's copy of this thread-local variable
    172      * to the specified value.  Most subclasses will have no need to
    173      * override this method, relying solely on the {@link #initialValue}
    174      * method to set the values of thread-locals.
    175      *
    176      * @param value the value to be stored in the current thread's copy of
    177      *        this thread-local.
    178      */
    179     public void set(T value) {
    180         Thread t = Thread.currentThread();
    181         ThreadLocalMap map = getMap(t);
    182         if (map != null)
    183             map.set(this, value);
    184         else
    185             createMap(t, value);
    186     }
    187 
    188     /**
    189      * Removes the current thread's value for this thread-local
    190      * variable.  If this thread-local variable is subsequently
    191      * {@linkplain #get read} by the current thread, its value will be
    192      * reinitialized by invoking its {@link #initialValue} method,
    193      * unless its value is {@linkplain #set set} by the current thread
    194      * in the interim.  This may result in multiple invocations of the
    195      * <tt>initialValue</tt> method in the current thread.
    196      *
    197      * @since 1.5
    198      */
    199      public void remove() {
    200          ThreadLocalMap m = getMap(Thread.currentThread());
    201          if (m != null)
    202              m.remove(this);
    203      }
    204 
    205     /**
    206      * Get the map associated with a ThreadLocal. Overridden in
    207      * InheritableThreadLocal.
    208      *
    209      * @param  t the current thread
    210      * @return the map
    211      */
    212     ThreadLocalMap getMap(Thread t) {
    213         return t.threadLocals;
    214     }
    215 
    216     /**
    217      * Create the map associated with a ThreadLocal. Overridden in
    218      * InheritableThreadLocal.
    219      *
    220      * @param t the current thread
    221      * @param firstValue value for the initial entry of the map
    222      * @param map the map to store.
    223      */
    224     void createMap(Thread t, T firstValue) {
    225         t.threadLocals = new ThreadLocalMap(this, firstValue);
    226     }
    227 
    228     /**
    229      * Factory method to create map of inherited thread locals.
    230      * Designed to be called only from Thread constructor.
    231      *
    232      * @param  parentMap the map associated with parent thread
    233      * @return a map containing the parent's inheritable bindings
    234      */
    235     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
    236         return new ThreadLocalMap(parentMap);
    237     }
    238 
    239     /**
    240      * Method childValue is visibly defined in subclass
    241      * InheritableThreadLocal, but is internally defined here for the
    242      * sake of providing createInheritedMap factory method without
    243      * needing to subclass the map class in InheritableThreadLocal.
    244      * This technique is preferable to the alternative of embedding
    245      * instanceof tests in methods.
    246      */
    247     T childValue(T parentValue) {
    248         throw new UnsupportedOperationException();
    249     }
    250 
    251     /**
    252      * ThreadLocalMap is a customized hash map suitable only for
    253      * maintaining thread local values. No operations are exported
    254      * outside of the ThreadLocal class. The class is package private to
    255      * allow declaration of fields in class Thread.  To help deal with
    256      * very large and long-lived usages, the hash table entries use
    257      * WeakReferences for keys. However, since reference queues are not
    258      * used, stale entries are guaranteed to be removed only when
    259      * the table starts running out of space.
    260      */
    261     static class ThreadLocalMap {
    262 
    263         /**
    264          * The entries in this hash map extend WeakReference, using
    265          * its main ref field as the key (which is always a
    266          * ThreadLocal object).  Note that null keys (i.e. entry.get()
    267          * == null) mean that the key is no longer referenced, so the
    268          * entry can be expunged from table.  Such entries are referred to
    269          * as "stale entries" in the code that follows.
    270          */
    271         static class Entry extends WeakReference<ThreadLocal> {
    272             /** The value associated with this ThreadLocal. */
    273             Object value;
    274 
    275             Entry(ThreadLocal k, Object v) {
    276                 super(k);
    277                 value = v;
    278             }
    279         }
    280 
    281         /**
    282          * The initial capacity -- MUST be a power of two.
    283          */
    284         private static final int INITIAL_CAPACITY = 16;
    285 
    286         /**
    287          * The table, resized as necessary.
    288          * table.length MUST always be a power of two.
    289          */
    290         private Entry[] table;
    291 
    292         /**
    293          * The number of entries in the table.
    294          */
    295         private int size = 0;
    296 
    297         /**
    298          * The next size value at which to resize.
    299          */
    300         private int threshold; // Default to 0
    301 
    302         /**
    303          * Set the resize threshold to maintain at worst a 2/3 load factor.
    304          */
    305         private void setThreshold(int len) {
    306             threshold = len * 2 / 3;
    307         }
    308 
    309         /**
    310          * Increment i modulo len.
    311          */
    312         private static int nextIndex(int i, int len) {
    313             return ((i + 1 < len) ? i + 1 : 0);
    314         }
    315 
    316         /**
    317          * Decrement i modulo len.
    318          */
    319         private static int prevIndex(int i, int len) {
    320             return ((i - 1 >= 0) ? i - 1 : len - 1);
    321         }
    322 
    323         /**
    324          * Construct a new map initially containing (firstKey, firstValue).
    325          * ThreadLocalMaps are constructed lazily, so we only create
    326          * one when we have at least one entry to put in it.
    327          */
    328         ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
    329             table = new Entry[INITIAL_CAPACITY];
    330             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    331             table[i] = new Entry(firstKey, firstValue);
    332             size = 1;
    333             setThreshold(INITIAL_CAPACITY);
    334         }
    335 
    336         /**
    337          * Construct a new map including all Inheritable ThreadLocals
    338          * from given parent map. Called only by createInheritedMap.
    339          *
    340          * @param parentMap the map associated with parent thread.
    341          */
    342         private ThreadLocalMap(ThreadLocalMap parentMap) {
    343             Entry[] parentTable = parentMap.table;
    344             int len = parentTable.length;
    345             setThreshold(len);
    346             table = new Entry[len];
    347 
    348             for (int j = 0; j < len; j++) {
    349                 Entry e = parentTable[j];
    350                 if (e != null) {
    351                     ThreadLocal key = e.get();
    352                     if (key != null) {
    353                         Object value = key.childValue(e.value);
    354                         Entry c = new Entry(key, value);
    355                         int h = key.threadLocalHashCode & (len - 1);
    356                         while (table[h] != null)
    357                             h = nextIndex(h, len);
    358                         table[h] = c;
    359                         size++;
    360                     }
    361                 }
    362             }
    363         }
    364 
    365         /**
    366          * Get the entry associated with key.  This method
    367          * itself handles only the fast path: a direct hit of existing
    368          * key. It otherwise relays to getEntryAfterMiss.  This is
    369          * designed to maximize performance for direct hits, in part
    370          * by making this method readily inlinable.
    371          *
    372          * @param  key the thread local object
    373          * @return the entry associated with key, or null if no such
    374          */
    375         private Entry getEntry(ThreadLocal key) {
    376             int i = key.threadLocalHashCode & (table.length - 1);
    377             Entry e = table[i];
    378             if (e != null && e.get() == key)
    379                 return e;
    380             else
    381                 return getEntryAfterMiss(key, i, e);
    382         }
    383 
    384         /**
    385          * Version of getEntry method for use when key is not found in
    386          * its direct hash slot.
    387          *
    388          * @param  key the thread local object
    389          * @param  i the table index for key's hash code
    390          * @param  e the entry at table[i]
    391          * @return the entry associated with key, or null if no such
    392          */
    393         private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
    394             Entry[] tab = table;
    395             int len = tab.length;
    396 
    397             while (e != null) {
    398                 ThreadLocal k = e.get();
    399                 if (k == key)
    400                     return e;
    401                 if (k == null)
    402                     expungeStaleEntry(i);
    403                 else
    404                     i = nextIndex(i, len);
    405                 e = tab[i];
    406             }
    407             return null;
    408         }
    409 
    410         /**
    411          * Set the value associated with key.
    412          *
    413          * @param key the thread local object
    414          * @param value the value to be set
    415          */
    416         private void set(ThreadLocal key, Object value) {
    417 
    418             // We don't use a fast path as with get() because it is at
    419             // least as common to use set() to create new entries as
    420             // it is to replace existing ones, in which case, a fast
    421             // path would fail more often than not.
    422 
    423             Entry[] tab = table;
    424             int len = tab.length;
    425             int i = key.threadLocalHashCode & (len-1);
    426 
    427             for (Entry e = tab[i];
    428                  e != null;
    429                  e = tab[i = nextIndex(i, len)]) {
    430                 ThreadLocal k = e.get();
    431 
    432                 if (k == key) {
    433                     e.value = value;
    434                     return;
    435                 }
    436 
    437                 if (k == null) {
    438                     replaceStaleEntry(key, value, i);
    439                     return;
    440                 }
    441             }
    442 
    443             tab[i] = new Entry(key, value);
    444             int sz = ++size;
    445             if (!cleanSomeSlots(i, sz) && sz >= threshold)
    446                 rehash();
    447         }
    448 
    449         /**
    450          * Remove the entry for key.
    451          */
    452         private void remove(ThreadLocal key) {
    453             Entry[] tab = table;
    454             int len = tab.length;
    455             int i = key.threadLocalHashCode & (len-1);
    456             for (Entry e = tab[i];
    457                  e != null;
    458                  e = tab[i = nextIndex(i, len)]) {
    459                 if (e.get() == key) {
    460                     e.clear();
    461                     expungeStaleEntry(i);
    462                     return;
    463                 }
    464             }
    465         }
    466 
    467         /**
    468          * Replace a stale entry encountered during a set operation
    469          * with an entry for the specified key.  The value passed in
    470          * the value parameter is stored in the entry, whether or not
    471          * an entry already exists for the specified key.
    472          *
    473          * As a side effect, this method expunges all stale entries in the
    474          * "run" containing the stale entry.  (A run is a sequence of entries
    475          * between two null slots.)
    476          *
    477          * @param  key the key
    478          * @param  value the value to be associated with key
    479          * @param  staleSlot index of the first stale entry encountered while
    480          *         searching for key.
    481          */
    482         private void replaceStaleEntry(ThreadLocal key, Object value,
    483                                        int staleSlot) {
    484             Entry[] tab = table;
    485             int len = tab.length;
    486             Entry e;
    487 
    488             // Back up to check for prior stale entry in current run.
    489             // We clean out whole runs at a time to avoid continual
    490             // incremental rehashing due to garbage collector freeing
    491             // up refs in bunches (i.e., whenever the collector runs).
    492             int slotToExpunge = staleSlot;
    493             for (int i = prevIndex(staleSlot, len);
    494                  (e = tab[i]) != null;
    495                  i = prevIndex(i, len))
    496                 if (e.get() == null)
    497                     slotToExpunge = i;
    498 
    499             // Find either the key or trailing null slot of run, whichever
    500             // occurs first
    501             for (int i = nextIndex(staleSlot, len);
    502                  (e = tab[i]) != null;
    503                  i = nextIndex(i, len)) {
    504                 ThreadLocal k = e.get();
    505 
    506                 // If we find key, then we need to swap it
    507                 // with the stale entry to maintain hash table order.
    508                 // The newly stale slot, or any other stale slot
    509                 // encountered above it, can then be sent to expungeStaleEntry
    510                 // to remove or rehash all of the other entries in run.
    511                 if (k == key) {
    512                     e.value = value;
    513 
    514                     tab[i] = tab[staleSlot];
    515                     tab[staleSlot] = e;
    516 
    517                     // Start expunge at preceding stale entry if it exists
    518                     if (slotToExpunge == staleSlot)
    519                         slotToExpunge = i;
    520                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    521                     return;
    522                 }
    523 
    524                 // If we didn't find stale entry on backward scan, the
    525                 // first stale entry seen while scanning for key is the
    526                 // first still present in the run.
    527                 if (k == null && slotToExpunge == staleSlot)
    528                     slotToExpunge = i;
    529             }
    530 
    531             // If key not found, put new entry in stale slot
    532             tab[staleSlot].value = null;
    533             tab[staleSlot] = new Entry(key, value);
    534 
    535             // If there are any other stale entries in run, expunge them
    536             if (slotToExpunge != staleSlot)
    537                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    538         }
    539 
    540         /**
    541          * Expunge a stale entry by rehashing any possibly colliding entries
    542          * lying between staleSlot and the next null slot.  This also expunges
    543          * any other stale entries encountered before the trailing null.  See
    544          * Knuth, Section 6.4
    545          *
    546          * @param staleSlot index of slot known to have null key
    547          * @return the index of the next null slot after staleSlot
    548          * (all between staleSlot and this slot will have been checked
    549          * for expunging).
    550          */
    551         private int expungeStaleEntry(int staleSlot) {
    552             Entry[] tab = table;
    553             int len = tab.length;
    554 
    555             // expunge entry at staleSlot
    556             tab[staleSlot].value = null;
    557             tab[staleSlot] = null;
    558             size--;
    559 
    560             // Rehash until we encounter null
    561             Entry e;
    562             int i;
    563             for (i = nextIndex(staleSlot, len);
    564                  (e = tab[i]) != null;
    565                  i = nextIndex(i, len)) {
    566                 ThreadLocal k = e.get();
    567                 if (k == null) {
    568                     e.value = null;
    569                     tab[i] = null;
    570                     size--;
    571                 } else {
    572                     int h = k.threadLocalHashCode & (len - 1);
    573                     if (h != i) {
    574                         tab[i] = null;
    575 
    576                         // Unlike Knuth 6.4 Algorithm R, we must scan until
    577                         // null because multiple entries could have been stale.
    578                         while (tab[h] != null)
    579                             h = nextIndex(h, len);
    580                         tab[h] = e;
    581                     }
    582                 }
    583             }
    584             return i;
    585         }
    586 
    587         /**
    588          * Heuristically scan some cells looking for stale entries.
    589          * This is invoked when either a new element is added, or
    590          * another stale one has been expunged. It performs a
    591          * logarithmic number of scans, as a balance between no
    592          * scanning (fast but retains garbage) and a number of scans
    593          * proportional to number of elements, that would find all
    594          * garbage but would cause some insertions to take O(n) time.
    595          *
    596          * @param i a position known NOT to hold a stale entry. The
    597          * scan starts at the element after i.
    598          *
    599          * @param n scan control: <tt>log2(n)</tt> cells are scanned,
    600          * unless a stale entry is found, in which case
    601          * <tt>log2(table.length)-1</tt> additional cells are scanned.
    602          * When called from insertions, this parameter is the number
    603          * of elements, but when from replaceStaleEntry, it is the
    604          * table length. (Note: all this could be changed to be either
    605          * more or less aggressive by weighting n instead of just
    606          * using straight log n. But this version is simple, fast, and
    607          * seems to work well.)
    608          *
    609          * @return true if any stale entries have been removed.
    610          */
    611         private boolean cleanSomeSlots(int i, int n) {
    612             boolean removed = false;
    613             Entry[] tab = table;
    614             int len = tab.length;
    615             do {
    616                 i = nextIndex(i, len);
    617                 Entry e = tab[i];
    618                 if (e != null && e.get() == null) {
    619                     n = len;
    620                     removed = true;
    621                     i = expungeStaleEntry(i);
    622                 }
    623             } while ( (n >>>= 1) != 0);
    624             return removed;
    625         }
    626 
    627         /**
    628          * Re-pack and/or re-size the table. First scan the entire
    629          * table removing stale entries. If this doesn't sufficiently
    630          * shrink the size of the table, double the table size.
    631          */
    632         private void rehash() {
    633             expungeStaleEntries();
    634 
    635             // Use lower threshold for doubling to avoid hysteresis
    636             if (size >= threshold - threshold / 4)
    637                 resize();
    638         }
    639 
    640         /**
    641          * Double the capacity of the table.
    642          */
    643         private void resize() {
    644             Entry[] oldTab = table;
    645             int oldLen = oldTab.length;
    646             int newLen = oldLen * 2;
    647             Entry[] newTab = new Entry[newLen];
    648             int count = 0;
    649 
    650             for (int j = 0; j < oldLen; ++j) {
    651                 Entry e = oldTab[j];
    652                 if (e != null) {
    653                     ThreadLocal k = e.get();
    654                     if (k == null) {
    655                         e.value = null; // Help the GC
    656                     } else {
    657                         int h = k.threadLocalHashCode & (newLen - 1);
    658                         while (newTab[h] != null)
    659                             h = nextIndex(h, newLen);
    660                         newTab[h] = e;
    661                         count++;
    662                     }
    663                 }
    664             }
    665 
    666             setThreshold(newLen);
    667             size = count;
    668             table = newTab;
    669         }
    670 
    671         /**
    672          * Expunge all stale entries in the table.
    673          */
    674         private void expungeStaleEntries() {
    675             Entry[] tab = table;
    676             int len = tab.length;
    677             for (int j = 0; j < len; j++) {
    678                 Entry e = tab[j];
    679                 if (e != null && e.get() == null)
    680                     expungeStaleEntry(j);
    681             }
    682         }
    683     }
    684 }
    685