Home | History | Annotate | Download | only in Vectorize
      1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
     10 // stores that can be put together into vector-stores. Next, it attempts to
     11 // construct vectorizable tree using the use-def chains. If a profitable tree
     12 // was found, the SLP vectorizer performs vectorization on the tree.
     13 //
     14 // The pass is inspired by the work described in the paper:
     15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 #include "llvm/Transforms/Vectorize.h"
     19 #include "llvm/ADT/MapVector.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/PostOrderIterator.h"
     22 #include "llvm/ADT/SetVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/GlobalsModRef.h"
     26 #include "llvm/Analysis/AssumptionCache.h"
     27 #include "llvm/Analysis/CodeMetrics.h"
     28 #include "llvm/Analysis/LoopInfo.h"
     29 #include "llvm/Analysis/ScalarEvolution.h"
     30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     31 #include "llvm/Analysis/TargetTransformInfo.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/IR/NoFolder.h"
     40 #include "llvm/IR/Type.h"
     41 #include "llvm/IR/Value.h"
     42 #include "llvm/IR/Verifier.h"
     43 #include "llvm/Pass.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Analysis/VectorUtils.h"
     48 #include <algorithm>
     49 #include <map>
     50 #include <memory>
     51 
     52 using namespace llvm;
     53 
     54 #define SV_NAME "slp-vectorizer"
     55 #define DEBUG_TYPE "SLP"
     56 
     57 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
     58 
     59 static cl::opt<int>
     60     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
     61                      cl::desc("Only vectorize if you gain more than this "
     62                               "number "));
     63 
     64 static cl::opt<bool>
     65 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
     66                    cl::desc("Attempt to vectorize horizontal reductions"));
     67 
     68 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
     69     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
     70     cl::desc(
     71         "Attempt to vectorize horizontal reductions feeding into a store"));
     72 
     73 static cl::opt<int>
     74 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
     75     cl::desc("Attempt to vectorize for this register size in bits"));
     76 
     77 /// Limits the size of scheduling regions in a block.
     78 /// It avoid long compile times for _very_ large blocks where vector
     79 /// instructions are spread over a wide range.
     80 /// This limit is way higher than needed by real-world functions.
     81 static cl::opt<int>
     82 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
     83     cl::desc("Limit the size of the SLP scheduling region per block"));
     84 
     85 namespace {
     86 
     87 // FIXME: Set this via cl::opt to allow overriding.
     88 static const unsigned MinVecRegSize = 128;
     89 
     90 static const unsigned RecursionMaxDepth = 12;
     91 
     92 // Limit the number of alias checks. The limit is chosen so that
     93 // it has no negative effect on the llvm benchmarks.
     94 static const unsigned AliasedCheckLimit = 10;
     95 
     96 // Another limit for the alias checks: The maximum distance between load/store
     97 // instructions where alias checks are done.
     98 // This limit is useful for very large basic blocks.
     99 static const unsigned MaxMemDepDistance = 160;
    100 
    101 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
    102 /// regions to be handled.
    103 static const int MinScheduleRegionSize = 16;
    104 
    105 /// \brief Predicate for the element types that the SLP vectorizer supports.
    106 ///
    107 /// The most important thing to filter here are types which are invalid in LLVM
    108 /// vectors. We also filter target specific types which have absolutely no
    109 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
    110 /// avoids spending time checking the cost model and realizing that they will
    111 /// be inevitably scalarized.
    112 static bool isValidElementType(Type *Ty) {
    113   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
    114          !Ty->isPPC_FP128Ty();
    115 }
    116 
    117 /// \returns the parent basic block if all of the instructions in \p VL
    118 /// are in the same block or null otherwise.
    119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
    120   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    121   if (!I0)
    122     return nullptr;
    123   BasicBlock *BB = I0->getParent();
    124   for (int i = 1, e = VL.size(); i < e; i++) {
    125     Instruction *I = dyn_cast<Instruction>(VL[i]);
    126     if (!I)
    127       return nullptr;
    128 
    129     if (BB != I->getParent())
    130       return nullptr;
    131   }
    132   return BB;
    133 }
    134 
    135 /// \returns True if all of the values in \p VL are constants.
    136 static bool allConstant(ArrayRef<Value *> VL) {
    137   for (unsigned i = 0, e = VL.size(); i < e; ++i)
    138     if (!isa<Constant>(VL[i]))
    139       return false;
    140   return true;
    141 }
    142 
    143 /// \returns True if all of the values in \p VL are identical.
    144 static bool isSplat(ArrayRef<Value *> VL) {
    145   for (unsigned i = 1, e = VL.size(); i < e; ++i)
    146     if (VL[i] != VL[0])
    147       return false;
    148   return true;
    149 }
    150 
    151 ///\returns Opcode that can be clubbed with \p Op to create an alternate
    152 /// sequence which can later be merged as a ShuffleVector instruction.
    153 static unsigned getAltOpcode(unsigned Op) {
    154   switch (Op) {
    155   case Instruction::FAdd:
    156     return Instruction::FSub;
    157   case Instruction::FSub:
    158     return Instruction::FAdd;
    159   case Instruction::Add:
    160     return Instruction::Sub;
    161   case Instruction::Sub:
    162     return Instruction::Add;
    163   default:
    164     return 0;
    165   }
    166 }
    167 
    168 ///\returns bool representing if Opcode \p Op can be part
    169 /// of an alternate sequence which can later be merged as
    170 /// a ShuffleVector instruction.
    171 static bool canCombineAsAltInst(unsigned Op) {
    172   return Op == Instruction::FAdd || Op == Instruction::FSub ||
    173          Op == Instruction::Sub || Op == Instruction::Add;
    174 }
    175 
    176 /// \returns ShuffleVector instruction if instructions in \p VL have
    177 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
    178 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
    179 static unsigned isAltInst(ArrayRef<Value *> VL) {
    180   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    181   unsigned Opcode = I0->getOpcode();
    182   unsigned AltOpcode = getAltOpcode(Opcode);
    183   for (int i = 1, e = VL.size(); i < e; i++) {
    184     Instruction *I = dyn_cast<Instruction>(VL[i]);
    185     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
    186       return 0;
    187   }
    188   return Instruction::ShuffleVector;
    189 }
    190 
    191 /// \returns The opcode if all of the Instructions in \p VL have the same
    192 /// opcode, or zero.
    193 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
    194   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    195   if (!I0)
    196     return 0;
    197   unsigned Opcode = I0->getOpcode();
    198   for (int i = 1, e = VL.size(); i < e; i++) {
    199     Instruction *I = dyn_cast<Instruction>(VL[i]);
    200     if (!I || Opcode != I->getOpcode()) {
    201       if (canCombineAsAltInst(Opcode) && i == 1)
    202         return isAltInst(VL);
    203       return 0;
    204     }
    205   }
    206   return Opcode;
    207 }
    208 
    209 /// Get the intersection (logical and) of all of the potential IR flags
    210 /// of each scalar operation (VL) that will be converted into a vector (I).
    211 /// Flag set: NSW, NUW, exact, and all of fast-math.
    212 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
    213   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
    214     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
    215       // Intersection is initialized to the 0th scalar,
    216       // so start counting from index '1'.
    217       for (int i = 1, e = VL.size(); i < e; ++i) {
    218         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
    219           Intersection->andIRFlags(Scalar);
    220       }
    221       VecOp->copyIRFlags(Intersection);
    222     }
    223   }
    224 }
    225 
    226 /// \returns \p I after propagating metadata from \p VL.
    227 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
    228   Instruction *I0 = cast<Instruction>(VL[0]);
    229   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
    230   I0->getAllMetadataOtherThanDebugLoc(Metadata);
    231 
    232   for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
    233     unsigned Kind = Metadata[i].first;
    234     MDNode *MD = Metadata[i].second;
    235 
    236     for (int i = 1, e = VL.size(); MD && i != e; i++) {
    237       Instruction *I = cast<Instruction>(VL[i]);
    238       MDNode *IMD = I->getMetadata(Kind);
    239 
    240       switch (Kind) {
    241       default:
    242         MD = nullptr; // Remove unknown metadata
    243         break;
    244       case LLVMContext::MD_tbaa:
    245         MD = MDNode::getMostGenericTBAA(MD, IMD);
    246         break;
    247       case LLVMContext::MD_alias_scope:
    248         MD = MDNode::getMostGenericAliasScope(MD, IMD);
    249         break;
    250       case LLVMContext::MD_noalias:
    251         MD = MDNode::intersect(MD, IMD);
    252         break;
    253       case LLVMContext::MD_fpmath:
    254         MD = MDNode::getMostGenericFPMath(MD, IMD);
    255         break;
    256       case LLVMContext::MD_nontemporal:
    257         MD = MDNode::intersect(MD, IMD);
    258         break;
    259       }
    260     }
    261     I->setMetadata(Kind, MD);
    262   }
    263   return I;
    264 }
    265 
    266 /// \returns The type that all of the values in \p VL have or null if there
    267 /// are different types.
    268 static Type* getSameType(ArrayRef<Value *> VL) {
    269   Type *Ty = VL[0]->getType();
    270   for (int i = 1, e = VL.size(); i < e; i++)
    271     if (VL[i]->getType() != Ty)
    272       return nullptr;
    273 
    274   return Ty;
    275 }
    276 
    277 /// \returns True if the ExtractElement instructions in VL can be vectorized
    278 /// to use the original vector.
    279 static bool CanReuseExtract(ArrayRef<Value *> VL) {
    280   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
    281   // Check if all of the extracts come from the same vector and from the
    282   // correct offset.
    283   Value *VL0 = VL[0];
    284   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
    285   Value *Vec = E0->getOperand(0);
    286 
    287   // We have to extract from the same vector type.
    288   unsigned NElts = Vec->getType()->getVectorNumElements();
    289 
    290   if (NElts != VL.size())
    291     return false;
    292 
    293   // Check that all of the indices extract from the correct offset.
    294   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
    295   if (!CI || CI->getZExtValue())
    296     return false;
    297 
    298   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
    299     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
    300     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
    301 
    302     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
    303       return false;
    304   }
    305 
    306   return true;
    307 }
    308 
    309 /// \returns True if in-tree use also needs extract. This refers to
    310 /// possible scalar operand in vectorized instruction.
    311 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
    312                                     TargetLibraryInfo *TLI) {
    313 
    314   unsigned Opcode = UserInst->getOpcode();
    315   switch (Opcode) {
    316   case Instruction::Load: {
    317     LoadInst *LI = cast<LoadInst>(UserInst);
    318     return (LI->getPointerOperand() == Scalar);
    319   }
    320   case Instruction::Store: {
    321     StoreInst *SI = cast<StoreInst>(UserInst);
    322     return (SI->getPointerOperand() == Scalar);
    323   }
    324   case Instruction::Call: {
    325     CallInst *CI = cast<CallInst>(UserInst);
    326     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
    327     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
    328       return (CI->getArgOperand(1) == Scalar);
    329     }
    330   }
    331   default:
    332     return false;
    333   }
    334 }
    335 
    336 /// \returns the AA location that is being access by the instruction.
    337 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
    338   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    339     return MemoryLocation::get(SI);
    340   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    341     return MemoryLocation::get(LI);
    342   return MemoryLocation();
    343 }
    344 
    345 /// \returns True if the instruction is not a volatile or atomic load/store.
    346 static bool isSimple(Instruction *I) {
    347   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    348     return LI->isSimple();
    349   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    350     return SI->isSimple();
    351   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    352     return !MI->isVolatile();
    353   return true;
    354 }
    355 
    356 /// Bottom Up SLP Vectorizer.
    357 class BoUpSLP {
    358 public:
    359   typedef SmallVector<Value *, 8> ValueList;
    360   typedef SmallVector<Instruction *, 16> InstrList;
    361   typedef SmallPtrSet<Value *, 16> ValueSet;
    362   typedef SmallVector<StoreInst *, 8> StoreList;
    363 
    364   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
    365           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
    366           DominatorTree *Dt, AssumptionCache *AC)
    367       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
    368         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
    369         Builder(Se->getContext()) {
    370     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
    371   }
    372 
    373   /// \brief Vectorize the tree that starts with the elements in \p VL.
    374   /// Returns the vectorized root.
    375   Value *vectorizeTree();
    376 
    377   /// \returns the cost incurred by unwanted spills and fills, caused by
    378   /// holding live values over call sites.
    379   int getSpillCost();
    380 
    381   /// \returns the vectorization cost of the subtree that starts at \p VL.
    382   /// A negative number means that this is profitable.
    383   int getTreeCost();
    384 
    385   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
    386   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
    387   void buildTree(ArrayRef<Value *> Roots,
    388                  ArrayRef<Value *> UserIgnoreLst = None);
    389 
    390   /// Clear the internal data structures that are created by 'buildTree'.
    391   void deleteTree() {
    392     VectorizableTree.clear();
    393     ScalarToTreeEntry.clear();
    394     MustGather.clear();
    395     ExternalUses.clear();
    396     NumLoadsWantToKeepOrder = 0;
    397     NumLoadsWantToChangeOrder = 0;
    398     for (auto &Iter : BlocksSchedules) {
    399       BlockScheduling *BS = Iter.second.get();
    400       BS->clear();
    401     }
    402   }
    403 
    404   /// \returns true if the memory operations A and B are consecutive.
    405   bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
    406 
    407   /// \brief Perform LICM and CSE on the newly generated gather sequences.
    408   void optimizeGatherSequence();
    409 
    410   /// \returns true if it is beneficial to reverse the vector order.
    411   bool shouldReorder() const {
    412     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
    413   }
    414 
    415 private:
    416   struct TreeEntry;
    417 
    418   /// \returns the cost of the vectorizable entry.
    419   int getEntryCost(TreeEntry *E);
    420 
    421   /// This is the recursive part of buildTree.
    422   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
    423 
    424   /// Vectorize a single entry in the tree.
    425   Value *vectorizeTree(TreeEntry *E);
    426 
    427   /// Vectorize a single entry in the tree, starting in \p VL.
    428   Value *vectorizeTree(ArrayRef<Value *> VL);
    429 
    430   /// \returns the pointer to the vectorized value if \p VL is already
    431   /// vectorized, or NULL. They may happen in cycles.
    432   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
    433 
    434   /// \brief Take the pointer operand from the Load/Store instruction.
    435   /// \returns NULL if this is not a valid Load/Store instruction.
    436   static Value *getPointerOperand(Value *I);
    437 
    438   /// \brief Take the address space operand from the Load/Store instruction.
    439   /// \returns -1 if this is not a valid Load/Store instruction.
    440   static unsigned getAddressSpaceOperand(Value *I);
    441 
    442   /// \returns the scalarization cost for this type. Scalarization in this
    443   /// context means the creation of vectors from a group of scalars.
    444   int getGatherCost(Type *Ty);
    445 
    446   /// \returns the scalarization cost for this list of values. Assuming that
    447   /// this subtree gets vectorized, we may need to extract the values from the
    448   /// roots. This method calculates the cost of extracting the values.
    449   int getGatherCost(ArrayRef<Value *> VL);
    450 
    451   /// \brief Set the Builder insert point to one after the last instruction in
    452   /// the bundle
    453   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
    454 
    455   /// \returns a vector from a collection of scalars in \p VL.
    456   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
    457 
    458   /// \returns whether the VectorizableTree is fully vectorizable and will
    459   /// be beneficial even the tree height is tiny.
    460   bool isFullyVectorizableTinyTree();
    461 
    462   /// \reorder commutative operands in alt shuffle if they result in
    463   ///  vectorized code.
    464   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
    465                                  SmallVectorImpl<Value *> &Left,
    466                                  SmallVectorImpl<Value *> &Right);
    467   /// \reorder commutative operands to get better probability of
    468   /// generating vectorized code.
    469   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
    470                                       SmallVectorImpl<Value *> &Left,
    471                                       SmallVectorImpl<Value *> &Right);
    472   struct TreeEntry {
    473     TreeEntry() : Scalars(), VectorizedValue(nullptr),
    474     NeedToGather(0) {}
    475 
    476     /// \returns true if the scalars in VL are equal to this entry.
    477     bool isSame(ArrayRef<Value *> VL) const {
    478       assert(VL.size() == Scalars.size() && "Invalid size");
    479       return std::equal(VL.begin(), VL.end(), Scalars.begin());
    480     }
    481 
    482     /// A vector of scalars.
    483     ValueList Scalars;
    484 
    485     /// The Scalars are vectorized into this value. It is initialized to Null.
    486     Value *VectorizedValue;
    487 
    488     /// Do we need to gather this sequence ?
    489     bool NeedToGather;
    490   };
    491 
    492   /// Create a new VectorizableTree entry.
    493   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
    494     VectorizableTree.emplace_back();
    495     int idx = VectorizableTree.size() - 1;
    496     TreeEntry *Last = &VectorizableTree[idx];
    497     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
    498     Last->NeedToGather = !Vectorized;
    499     if (Vectorized) {
    500       for (int i = 0, e = VL.size(); i != e; ++i) {
    501         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
    502         ScalarToTreeEntry[VL[i]] = idx;
    503       }
    504     } else {
    505       MustGather.insert(VL.begin(), VL.end());
    506     }
    507     return Last;
    508   }
    509 
    510   /// -- Vectorization State --
    511   /// Holds all of the tree entries.
    512   std::vector<TreeEntry> VectorizableTree;
    513 
    514   /// Maps a specific scalar to its tree entry.
    515   SmallDenseMap<Value*, int> ScalarToTreeEntry;
    516 
    517   /// A list of scalars that we found that we need to keep as scalars.
    518   ValueSet MustGather;
    519 
    520   /// This POD struct describes one external user in the vectorized tree.
    521   struct ExternalUser {
    522     ExternalUser (Value *S, llvm::User *U, int L) :
    523       Scalar(S), User(U), Lane(L){}
    524     // Which scalar in our function.
    525     Value *Scalar;
    526     // Which user that uses the scalar.
    527     llvm::User *User;
    528     // Which lane does the scalar belong to.
    529     int Lane;
    530   };
    531   typedef SmallVector<ExternalUser, 16> UserList;
    532 
    533   /// Checks if two instructions may access the same memory.
    534   ///
    535   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
    536   /// is invariant in the calling loop.
    537   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
    538                  Instruction *Inst2) {
    539 
    540     // First check if the result is already in the cache.
    541     AliasCacheKey key = std::make_pair(Inst1, Inst2);
    542     Optional<bool> &result = AliasCache[key];
    543     if (result.hasValue()) {
    544       return result.getValue();
    545     }
    546     MemoryLocation Loc2 = getLocation(Inst2, AA);
    547     bool aliased = true;
    548     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
    549       // Do the alias check.
    550       aliased = AA->alias(Loc1, Loc2);
    551     }
    552     // Store the result in the cache.
    553     result = aliased;
    554     return aliased;
    555   }
    556 
    557   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
    558 
    559   /// Cache for alias results.
    560   /// TODO: consider moving this to the AliasAnalysis itself.
    561   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
    562 
    563   /// Removes an instruction from its block and eventually deletes it.
    564   /// It's like Instruction::eraseFromParent() except that the actual deletion
    565   /// is delayed until BoUpSLP is destructed.
    566   /// This is required to ensure that there are no incorrect collisions in the
    567   /// AliasCache, which can happen if a new instruction is allocated at the
    568   /// same address as a previously deleted instruction.
    569   void eraseInstruction(Instruction *I) {
    570     I->removeFromParent();
    571     I->dropAllReferences();
    572     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
    573   }
    574 
    575   /// Temporary store for deleted instructions. Instructions will be deleted
    576   /// eventually when the BoUpSLP is destructed.
    577   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
    578 
    579   /// A list of values that need to extracted out of the tree.
    580   /// This list holds pairs of (Internal Scalar : External User).
    581   UserList ExternalUses;
    582 
    583   /// Values used only by @llvm.assume calls.
    584   SmallPtrSet<const Value *, 32> EphValues;
    585 
    586   /// Holds all of the instructions that we gathered.
    587   SetVector<Instruction *> GatherSeq;
    588   /// A list of blocks that we are going to CSE.
    589   SetVector<BasicBlock *> CSEBlocks;
    590 
    591   /// Contains all scheduling relevant data for an instruction.
    592   /// A ScheduleData either represents a single instruction or a member of an
    593   /// instruction bundle (= a group of instructions which is combined into a
    594   /// vector instruction).
    595   struct ScheduleData {
    596 
    597     // The initial value for the dependency counters. It means that the
    598     // dependencies are not calculated yet.
    599     enum { InvalidDeps = -1 };
    600 
    601     ScheduleData()
    602         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
    603           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
    604           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
    605           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
    606 
    607     void init(int BlockSchedulingRegionID) {
    608       FirstInBundle = this;
    609       NextInBundle = nullptr;
    610       NextLoadStore = nullptr;
    611       IsScheduled = false;
    612       SchedulingRegionID = BlockSchedulingRegionID;
    613       UnscheduledDepsInBundle = UnscheduledDeps;
    614       clearDependencies();
    615     }
    616 
    617     /// Returns true if the dependency information has been calculated.
    618     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
    619 
    620     /// Returns true for single instructions and for bundle representatives
    621     /// (= the head of a bundle).
    622     bool isSchedulingEntity() const { return FirstInBundle == this; }
    623 
    624     /// Returns true if it represents an instruction bundle and not only a
    625     /// single instruction.
    626     bool isPartOfBundle() const {
    627       return NextInBundle != nullptr || FirstInBundle != this;
    628     }
    629 
    630     /// Returns true if it is ready for scheduling, i.e. it has no more
    631     /// unscheduled depending instructions/bundles.
    632     bool isReady() const {
    633       assert(isSchedulingEntity() &&
    634              "can't consider non-scheduling entity for ready list");
    635       return UnscheduledDepsInBundle == 0 && !IsScheduled;
    636     }
    637 
    638     /// Modifies the number of unscheduled dependencies, also updating it for
    639     /// the whole bundle.
    640     int incrementUnscheduledDeps(int Incr) {
    641       UnscheduledDeps += Incr;
    642       return FirstInBundle->UnscheduledDepsInBundle += Incr;
    643     }
    644 
    645     /// Sets the number of unscheduled dependencies to the number of
    646     /// dependencies.
    647     void resetUnscheduledDeps() {
    648       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
    649     }
    650 
    651     /// Clears all dependency information.
    652     void clearDependencies() {
    653       Dependencies = InvalidDeps;
    654       resetUnscheduledDeps();
    655       MemoryDependencies.clear();
    656     }
    657 
    658     void dump(raw_ostream &os) const {
    659       if (!isSchedulingEntity()) {
    660         os << "/ " << *Inst;
    661       } else if (NextInBundle) {
    662         os << '[' << *Inst;
    663         ScheduleData *SD = NextInBundle;
    664         while (SD) {
    665           os << ';' << *SD->Inst;
    666           SD = SD->NextInBundle;
    667         }
    668         os << ']';
    669       } else {
    670         os << *Inst;
    671       }
    672     }
    673 
    674     Instruction *Inst;
    675 
    676     /// Points to the head in an instruction bundle (and always to this for
    677     /// single instructions).
    678     ScheduleData *FirstInBundle;
    679 
    680     /// Single linked list of all instructions in a bundle. Null if it is a
    681     /// single instruction.
    682     ScheduleData *NextInBundle;
    683 
    684     /// Single linked list of all memory instructions (e.g. load, store, call)
    685     /// in the block - until the end of the scheduling region.
    686     ScheduleData *NextLoadStore;
    687 
    688     /// The dependent memory instructions.
    689     /// This list is derived on demand in calculateDependencies().
    690     SmallVector<ScheduleData *, 4> MemoryDependencies;
    691 
    692     /// This ScheduleData is in the current scheduling region if this matches
    693     /// the current SchedulingRegionID of BlockScheduling.
    694     int SchedulingRegionID;
    695 
    696     /// Used for getting a "good" final ordering of instructions.
    697     int SchedulingPriority;
    698 
    699     /// The number of dependencies. Constitutes of the number of users of the
    700     /// instruction plus the number of dependent memory instructions (if any).
    701     /// This value is calculated on demand.
    702     /// If InvalidDeps, the number of dependencies is not calculated yet.
    703     ///
    704     int Dependencies;
    705 
    706     /// The number of dependencies minus the number of dependencies of scheduled
    707     /// instructions. As soon as this is zero, the instruction/bundle gets ready
    708     /// for scheduling.
    709     /// Note that this is negative as long as Dependencies is not calculated.
    710     int UnscheduledDeps;
    711 
    712     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
    713     /// single instructions.
    714     int UnscheduledDepsInBundle;
    715 
    716     /// True if this instruction is scheduled (or considered as scheduled in the
    717     /// dry-run).
    718     bool IsScheduled;
    719   };
    720 
    721 #ifndef NDEBUG
    722   friend raw_ostream &operator<<(raw_ostream &os,
    723                                  const BoUpSLP::ScheduleData &SD);
    724 #endif
    725 
    726   /// Contains all scheduling data for a basic block.
    727   ///
    728   struct BlockScheduling {
    729 
    730     BlockScheduling(BasicBlock *BB)
    731         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
    732           ScheduleStart(nullptr), ScheduleEnd(nullptr),
    733           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
    734           ScheduleRegionSize(0),
    735           ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
    736           // Make sure that the initial SchedulingRegionID is greater than the
    737           // initial SchedulingRegionID in ScheduleData (which is 0).
    738           SchedulingRegionID(1) {}
    739 
    740     void clear() {
    741       ReadyInsts.clear();
    742       ScheduleStart = nullptr;
    743       ScheduleEnd = nullptr;
    744       FirstLoadStoreInRegion = nullptr;
    745       LastLoadStoreInRegion = nullptr;
    746 
    747       // Reduce the maximum schedule region size by the size of the
    748       // previous scheduling run.
    749       ScheduleRegionSizeLimit -= ScheduleRegionSize;
    750       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
    751         ScheduleRegionSizeLimit = MinScheduleRegionSize;
    752       ScheduleRegionSize = 0;
    753 
    754       // Make a new scheduling region, i.e. all existing ScheduleData is not
    755       // in the new region yet.
    756       ++SchedulingRegionID;
    757     }
    758 
    759     ScheduleData *getScheduleData(Value *V) {
    760       ScheduleData *SD = ScheduleDataMap[V];
    761       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
    762         return SD;
    763       return nullptr;
    764     }
    765 
    766     bool isInSchedulingRegion(ScheduleData *SD) {
    767       return SD->SchedulingRegionID == SchedulingRegionID;
    768     }
    769 
    770     /// Marks an instruction as scheduled and puts all dependent ready
    771     /// instructions into the ready-list.
    772     template <typename ReadyListType>
    773     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
    774       SD->IsScheduled = true;
    775       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
    776 
    777       ScheduleData *BundleMember = SD;
    778       while (BundleMember) {
    779         // Handle the def-use chain dependencies.
    780         for (Use &U : BundleMember->Inst->operands()) {
    781           ScheduleData *OpDef = getScheduleData(U.get());
    782           if (OpDef && OpDef->hasValidDependencies() &&
    783               OpDef->incrementUnscheduledDeps(-1) == 0) {
    784             // There are no more unscheduled dependencies after decrementing,
    785             // so we can put the dependent instruction into the ready list.
    786             ScheduleData *DepBundle = OpDef->FirstInBundle;
    787             assert(!DepBundle->IsScheduled &&
    788                    "already scheduled bundle gets ready");
    789             ReadyList.insert(DepBundle);
    790             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
    791           }
    792         }
    793         // Handle the memory dependencies.
    794         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
    795           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
    796             // There are no more unscheduled dependencies after decrementing,
    797             // so we can put the dependent instruction into the ready list.
    798             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
    799             assert(!DepBundle->IsScheduled &&
    800                    "already scheduled bundle gets ready");
    801             ReadyList.insert(DepBundle);
    802             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
    803           }
    804         }
    805         BundleMember = BundleMember->NextInBundle;
    806       }
    807     }
    808 
    809     /// Put all instructions into the ReadyList which are ready for scheduling.
    810     template <typename ReadyListType>
    811     void initialFillReadyList(ReadyListType &ReadyList) {
    812       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
    813         ScheduleData *SD = getScheduleData(I);
    814         if (SD->isSchedulingEntity() && SD->isReady()) {
    815           ReadyList.insert(SD);
    816           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
    817         }
    818       }
    819     }
    820 
    821     /// Checks if a bundle of instructions can be scheduled, i.e. has no
    822     /// cyclic dependencies. This is only a dry-run, no instructions are
    823     /// actually moved at this stage.
    824     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
    825 
    826     /// Un-bundles a group of instructions.
    827     void cancelScheduling(ArrayRef<Value *> VL);
    828 
    829     /// Extends the scheduling region so that V is inside the region.
    830     /// \returns true if the region size is within the limit.
    831     bool extendSchedulingRegion(Value *V);
    832 
    833     /// Initialize the ScheduleData structures for new instructions in the
    834     /// scheduling region.
    835     void initScheduleData(Instruction *FromI, Instruction *ToI,
    836                           ScheduleData *PrevLoadStore,
    837                           ScheduleData *NextLoadStore);
    838 
    839     /// Updates the dependency information of a bundle and of all instructions/
    840     /// bundles which depend on the original bundle.
    841     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
    842                                BoUpSLP *SLP);
    843 
    844     /// Sets all instruction in the scheduling region to un-scheduled.
    845     void resetSchedule();
    846 
    847     BasicBlock *BB;
    848 
    849     /// Simple memory allocation for ScheduleData.
    850     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
    851 
    852     /// The size of a ScheduleData array in ScheduleDataChunks.
    853     int ChunkSize;
    854 
    855     /// The allocator position in the current chunk, which is the last entry
    856     /// of ScheduleDataChunks.
    857     int ChunkPos;
    858 
    859     /// Attaches ScheduleData to Instruction.
    860     /// Note that the mapping survives during all vectorization iterations, i.e.
    861     /// ScheduleData structures are recycled.
    862     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
    863 
    864     struct ReadyList : SmallVector<ScheduleData *, 8> {
    865       void insert(ScheduleData *SD) { push_back(SD); }
    866     };
    867 
    868     /// The ready-list for scheduling (only used for the dry-run).
    869     ReadyList ReadyInsts;
    870 
    871     /// The first instruction of the scheduling region.
    872     Instruction *ScheduleStart;
    873 
    874     /// The first instruction _after_ the scheduling region.
    875     Instruction *ScheduleEnd;
    876 
    877     /// The first memory accessing instruction in the scheduling region
    878     /// (can be null).
    879     ScheduleData *FirstLoadStoreInRegion;
    880 
    881     /// The last memory accessing instruction in the scheduling region
    882     /// (can be null).
    883     ScheduleData *LastLoadStoreInRegion;
    884 
    885     /// The current size of the scheduling region.
    886     int ScheduleRegionSize;
    887 
    888     /// The maximum size allowed for the scheduling region.
    889     int ScheduleRegionSizeLimit;
    890 
    891     /// The ID of the scheduling region. For a new vectorization iteration this
    892     /// is incremented which "removes" all ScheduleData from the region.
    893     int SchedulingRegionID;
    894   };
    895 
    896   /// Attaches the BlockScheduling structures to basic blocks.
    897   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
    898 
    899   /// Performs the "real" scheduling. Done before vectorization is actually
    900   /// performed in a basic block.
    901   void scheduleBlock(BlockScheduling *BS);
    902 
    903   /// List of users to ignore during scheduling and that don't need extracting.
    904   ArrayRef<Value *> UserIgnoreList;
    905 
    906   // Number of load-bundles, which contain consecutive loads.
    907   int NumLoadsWantToKeepOrder;
    908 
    909   // Number of load-bundles of size 2, which are consecutive loads if reversed.
    910   int NumLoadsWantToChangeOrder;
    911 
    912   // Analysis and block reference.
    913   Function *F;
    914   ScalarEvolution *SE;
    915   TargetTransformInfo *TTI;
    916   TargetLibraryInfo *TLI;
    917   AliasAnalysis *AA;
    918   LoopInfo *LI;
    919   DominatorTree *DT;
    920   /// Instruction builder to construct the vectorized tree.
    921   IRBuilder<> Builder;
    922 };
    923 
    924 #ifndef NDEBUG
    925 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
    926   SD.dump(os);
    927   return os;
    928 }
    929 #endif
    930 
    931 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
    932                         ArrayRef<Value *> UserIgnoreLst) {
    933   deleteTree();
    934   UserIgnoreList = UserIgnoreLst;
    935   if (!getSameType(Roots))
    936     return;
    937   buildTree_rec(Roots, 0);
    938 
    939   // Collect the values that we need to extract from the tree.
    940   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
    941     TreeEntry *Entry = &VectorizableTree[EIdx];
    942 
    943     // For each lane:
    944     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
    945       Value *Scalar = Entry->Scalars[Lane];
    946 
    947       // No need to handle users of gathered values.
    948       if (Entry->NeedToGather)
    949         continue;
    950 
    951       for (User *U : Scalar->users()) {
    952         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
    953 
    954         Instruction *UserInst = dyn_cast<Instruction>(U);
    955         if (!UserInst)
    956           continue;
    957 
    958         // Skip in-tree scalars that become vectors
    959         if (ScalarToTreeEntry.count(U)) {
    960           int Idx = ScalarToTreeEntry[U];
    961           TreeEntry *UseEntry = &VectorizableTree[Idx];
    962           Value *UseScalar = UseEntry->Scalars[0];
    963           // Some in-tree scalars will remain as scalar in vectorized
    964           // instructions. If that is the case, the one in Lane 0 will
    965           // be used.
    966           if (UseScalar != U ||
    967               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
    968             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
    969                          << ".\n");
    970             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
    971             continue;
    972           }
    973         }
    974 
    975         // Ignore users in the user ignore list.
    976         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
    977             UserIgnoreList.end())
    978           continue;
    979 
    980         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
    981               Lane << " from " << *Scalar << ".\n");
    982         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
    983       }
    984     }
    985   }
    986 }
    987 
    988 
    989 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
    990   bool SameTy = getSameType(VL); (void)SameTy;
    991   bool isAltShuffle = false;
    992   assert(SameTy && "Invalid types!");
    993 
    994   if (Depth == RecursionMaxDepth) {
    995     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
    996     newTreeEntry(VL, false);
    997     return;
    998   }
    999 
   1000   // Don't handle vectors.
   1001   if (VL[0]->getType()->isVectorTy()) {
   1002     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
   1003     newTreeEntry(VL, false);
   1004     return;
   1005   }
   1006 
   1007   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1008     if (SI->getValueOperand()->getType()->isVectorTy()) {
   1009       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
   1010       newTreeEntry(VL, false);
   1011       return;
   1012     }
   1013   unsigned Opcode = getSameOpcode(VL);
   1014 
   1015   // Check that this shuffle vector refers to the alternate
   1016   // sequence of opcodes.
   1017   if (Opcode == Instruction::ShuffleVector) {
   1018     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
   1019     unsigned Op = I0->getOpcode();
   1020     if (Op != Instruction::ShuffleVector)
   1021       isAltShuffle = true;
   1022   }
   1023 
   1024   // If all of the operands are identical or constant we have a simple solution.
   1025   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
   1026     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
   1027     newTreeEntry(VL, false);
   1028     return;
   1029   }
   1030 
   1031   // We now know that this is a vector of instructions of the same type from
   1032   // the same block.
   1033 
   1034   // Don't vectorize ephemeral values.
   1035   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1036     if (EphValues.count(VL[i])) {
   1037       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
   1038             ") is ephemeral.\n");
   1039       newTreeEntry(VL, false);
   1040       return;
   1041     }
   1042   }
   1043 
   1044   // Check if this is a duplicate of another entry.
   1045   if (ScalarToTreeEntry.count(VL[0])) {
   1046     int Idx = ScalarToTreeEntry[VL[0]];
   1047     TreeEntry *E = &VectorizableTree[Idx];
   1048     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1049       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
   1050       if (E->Scalars[i] != VL[i]) {
   1051         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
   1052         newTreeEntry(VL, false);
   1053         return;
   1054       }
   1055     }
   1056     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
   1057     return;
   1058   }
   1059 
   1060   // Check that none of the instructions in the bundle are already in the tree.
   1061   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1062     if (ScalarToTreeEntry.count(VL[i])) {
   1063       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
   1064             ") is already in tree.\n");
   1065       newTreeEntry(VL, false);
   1066       return;
   1067     }
   1068   }
   1069 
   1070   // If any of the scalars is marked as a value that needs to stay scalar then
   1071   // we need to gather the scalars.
   1072   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1073     if (MustGather.count(VL[i])) {
   1074       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
   1075       newTreeEntry(VL, false);
   1076       return;
   1077     }
   1078   }
   1079 
   1080   // Check that all of the users of the scalars that we want to vectorize are
   1081   // schedulable.
   1082   Instruction *VL0 = cast<Instruction>(VL[0]);
   1083   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
   1084 
   1085   if (!DT->isReachableFromEntry(BB)) {
   1086     // Don't go into unreachable blocks. They may contain instructions with
   1087     // dependency cycles which confuse the final scheduling.
   1088     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
   1089     newTreeEntry(VL, false);
   1090     return;
   1091   }
   1092 
   1093   // Check that every instructions appears once in this bundle.
   1094   for (unsigned i = 0, e = VL.size(); i < e; ++i)
   1095     for (unsigned j = i+1; j < e; ++j)
   1096       if (VL[i] == VL[j]) {
   1097         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
   1098         newTreeEntry(VL, false);
   1099         return;
   1100       }
   1101 
   1102   auto &BSRef = BlocksSchedules[BB];
   1103   if (!BSRef) {
   1104     BSRef = llvm::make_unique<BlockScheduling>(BB);
   1105   }
   1106   BlockScheduling &BS = *BSRef.get();
   1107 
   1108   if (!BS.tryScheduleBundle(VL, this)) {
   1109     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
   1110     assert((!BS.getScheduleData(VL[0]) ||
   1111             !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
   1112            "tryScheduleBundle should cancelScheduling on failure");
   1113     newTreeEntry(VL, false);
   1114     return;
   1115   }
   1116   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
   1117 
   1118   switch (Opcode) {
   1119     case Instruction::PHI: {
   1120       PHINode *PH = dyn_cast<PHINode>(VL0);
   1121 
   1122       // Check for terminator values (e.g. invoke).
   1123       for (unsigned j = 0; j < VL.size(); ++j)
   1124         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   1125           TerminatorInst *Term = dyn_cast<TerminatorInst>(
   1126               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
   1127           if (Term) {
   1128             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
   1129             BS.cancelScheduling(VL);
   1130             newTreeEntry(VL, false);
   1131             return;
   1132           }
   1133         }
   1134 
   1135       newTreeEntry(VL, true);
   1136       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
   1137 
   1138       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   1139         ValueList Operands;
   1140         // Prepare the operand vector.
   1141         for (unsigned j = 0; j < VL.size(); ++j)
   1142           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
   1143               PH->getIncomingBlock(i)));
   1144 
   1145         buildTree_rec(Operands, Depth + 1);
   1146       }
   1147       return;
   1148     }
   1149     case Instruction::ExtractElement: {
   1150       bool Reuse = CanReuseExtract(VL);
   1151       if (Reuse) {
   1152         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
   1153       } else {
   1154         BS.cancelScheduling(VL);
   1155       }
   1156       newTreeEntry(VL, Reuse);
   1157       return;
   1158     }
   1159     case Instruction::Load: {
   1160       // Check that a vectorized load would load the same memory as a scalar
   1161       // load.
   1162       // For example we don't want vectorize loads that are smaller than 8 bit.
   1163       // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
   1164       // loading/storing it as an i8 struct. If we vectorize loads/stores from
   1165       // such a struct we read/write packed bits disagreeing with the
   1166       // unvectorized version.
   1167       const DataLayout &DL = F->getParent()->getDataLayout();
   1168       Type *ScalarTy = VL[0]->getType();
   1169 
   1170       if (DL.getTypeSizeInBits(ScalarTy) !=
   1171           DL.getTypeAllocSizeInBits(ScalarTy)) {
   1172         BS.cancelScheduling(VL);
   1173         newTreeEntry(VL, false);
   1174         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
   1175         return;
   1176       }
   1177       // Check if the loads are consecutive or of we need to swizzle them.
   1178       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
   1179         LoadInst *L = cast<LoadInst>(VL[i]);
   1180         if (!L->isSimple()) {
   1181           BS.cancelScheduling(VL);
   1182           newTreeEntry(VL, false);
   1183           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
   1184           return;
   1185         }
   1186 
   1187         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
   1188           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
   1189             ++NumLoadsWantToChangeOrder;
   1190           }
   1191           BS.cancelScheduling(VL);
   1192           newTreeEntry(VL, false);
   1193           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
   1194           return;
   1195         }
   1196       }
   1197       ++NumLoadsWantToKeepOrder;
   1198       newTreeEntry(VL, true);
   1199       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
   1200       return;
   1201     }
   1202     case Instruction::ZExt:
   1203     case Instruction::SExt:
   1204     case Instruction::FPToUI:
   1205     case Instruction::FPToSI:
   1206     case Instruction::FPExt:
   1207     case Instruction::PtrToInt:
   1208     case Instruction::IntToPtr:
   1209     case Instruction::SIToFP:
   1210     case Instruction::UIToFP:
   1211     case Instruction::Trunc:
   1212     case Instruction::FPTrunc:
   1213     case Instruction::BitCast: {
   1214       Type *SrcTy = VL0->getOperand(0)->getType();
   1215       for (unsigned i = 0; i < VL.size(); ++i) {
   1216         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
   1217         if (Ty != SrcTy || !isValidElementType(Ty)) {
   1218           BS.cancelScheduling(VL);
   1219           newTreeEntry(VL, false);
   1220           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
   1221           return;
   1222         }
   1223       }
   1224       newTreeEntry(VL, true);
   1225       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
   1226 
   1227       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1228         ValueList Operands;
   1229         // Prepare the operand vector.
   1230         for (unsigned j = 0; j < VL.size(); ++j)
   1231           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
   1232 
   1233         buildTree_rec(Operands, Depth+1);
   1234       }
   1235       return;
   1236     }
   1237     case Instruction::ICmp:
   1238     case Instruction::FCmp: {
   1239       // Check that all of the compares have the same predicate.
   1240       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
   1241       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
   1242       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
   1243         CmpInst *Cmp = cast<CmpInst>(VL[i]);
   1244         if (Cmp->getPredicate() != P0 ||
   1245             Cmp->getOperand(0)->getType() != ComparedTy) {
   1246           BS.cancelScheduling(VL);
   1247           newTreeEntry(VL, false);
   1248           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
   1249           return;
   1250         }
   1251       }
   1252 
   1253       newTreeEntry(VL, true);
   1254       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
   1255 
   1256       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1257         ValueList Operands;
   1258         // Prepare the operand vector.
   1259         for (unsigned j = 0; j < VL.size(); ++j)
   1260           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
   1261 
   1262         buildTree_rec(Operands, Depth+1);
   1263       }
   1264       return;
   1265     }
   1266     case Instruction::Select:
   1267     case Instruction::Add:
   1268     case Instruction::FAdd:
   1269     case Instruction::Sub:
   1270     case Instruction::FSub:
   1271     case Instruction::Mul:
   1272     case Instruction::FMul:
   1273     case Instruction::UDiv:
   1274     case Instruction::SDiv:
   1275     case Instruction::FDiv:
   1276     case Instruction::URem:
   1277     case Instruction::SRem:
   1278     case Instruction::FRem:
   1279     case Instruction::Shl:
   1280     case Instruction::LShr:
   1281     case Instruction::AShr:
   1282     case Instruction::And:
   1283     case Instruction::Or:
   1284     case Instruction::Xor: {
   1285       newTreeEntry(VL, true);
   1286       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
   1287 
   1288       // Sort operands of the instructions so that each side is more likely to
   1289       // have the same opcode.
   1290       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
   1291         ValueList Left, Right;
   1292         reorderInputsAccordingToOpcode(VL, Left, Right);
   1293         buildTree_rec(Left, Depth + 1);
   1294         buildTree_rec(Right, Depth + 1);
   1295         return;
   1296       }
   1297 
   1298       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1299         ValueList Operands;
   1300         // Prepare the operand vector.
   1301         for (unsigned j = 0; j < VL.size(); ++j)
   1302           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
   1303 
   1304         buildTree_rec(Operands, Depth+1);
   1305       }
   1306       return;
   1307     }
   1308     case Instruction::GetElementPtr: {
   1309       // We don't combine GEPs with complicated (nested) indexing.
   1310       for (unsigned j = 0; j < VL.size(); ++j) {
   1311         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
   1312           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
   1313           BS.cancelScheduling(VL);
   1314           newTreeEntry(VL, false);
   1315           return;
   1316         }
   1317       }
   1318 
   1319       // We can't combine several GEPs into one vector if they operate on
   1320       // different types.
   1321       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
   1322       for (unsigned j = 0; j < VL.size(); ++j) {
   1323         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
   1324         if (Ty0 != CurTy) {
   1325           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
   1326           BS.cancelScheduling(VL);
   1327           newTreeEntry(VL, false);
   1328           return;
   1329         }
   1330       }
   1331 
   1332       // We don't combine GEPs with non-constant indexes.
   1333       for (unsigned j = 0; j < VL.size(); ++j) {
   1334         auto Op = cast<Instruction>(VL[j])->getOperand(1);
   1335         if (!isa<ConstantInt>(Op)) {
   1336           DEBUG(
   1337               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
   1338           BS.cancelScheduling(VL);
   1339           newTreeEntry(VL, false);
   1340           return;
   1341         }
   1342       }
   1343 
   1344       newTreeEntry(VL, true);
   1345       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
   1346       for (unsigned i = 0, e = 2; i < e; ++i) {
   1347         ValueList Operands;
   1348         // Prepare the operand vector.
   1349         for (unsigned j = 0; j < VL.size(); ++j)
   1350           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
   1351 
   1352         buildTree_rec(Operands, Depth + 1);
   1353       }
   1354       return;
   1355     }
   1356     case Instruction::Store: {
   1357       const DataLayout &DL = F->getParent()->getDataLayout();
   1358       // Check if the stores are consecutive or of we need to swizzle them.
   1359       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
   1360         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
   1361           BS.cancelScheduling(VL);
   1362           newTreeEntry(VL, false);
   1363           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
   1364           return;
   1365         }
   1366 
   1367       newTreeEntry(VL, true);
   1368       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
   1369 
   1370       ValueList Operands;
   1371       for (unsigned j = 0; j < VL.size(); ++j)
   1372         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
   1373 
   1374       buildTree_rec(Operands, Depth + 1);
   1375       return;
   1376     }
   1377     case Instruction::Call: {
   1378       // Check if the calls are all to the same vectorizable intrinsic.
   1379       CallInst *CI = cast<CallInst>(VL[0]);
   1380       // Check if this is an Intrinsic call or something that can be
   1381       // represented by an intrinsic call
   1382       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   1383       if (!isTriviallyVectorizable(ID)) {
   1384         BS.cancelScheduling(VL);
   1385         newTreeEntry(VL, false);
   1386         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
   1387         return;
   1388       }
   1389       Function *Int = CI->getCalledFunction();
   1390       Value *A1I = nullptr;
   1391       if (hasVectorInstrinsicScalarOpd(ID, 1))
   1392         A1I = CI->getArgOperand(1);
   1393       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
   1394         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
   1395         if (!CI2 || CI2->getCalledFunction() != Int ||
   1396             getIntrinsicIDForCall(CI2, TLI) != ID) {
   1397           BS.cancelScheduling(VL);
   1398           newTreeEntry(VL, false);
   1399           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
   1400                        << "\n");
   1401           return;
   1402         }
   1403         // ctlz,cttz and powi are special intrinsics whose second argument
   1404         // should be same in order for them to be vectorized.
   1405         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
   1406           Value *A1J = CI2->getArgOperand(1);
   1407           if (A1I != A1J) {
   1408             BS.cancelScheduling(VL);
   1409             newTreeEntry(VL, false);
   1410             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
   1411                          << " argument "<< A1I<<"!=" << A1J
   1412                          << "\n");
   1413             return;
   1414           }
   1415         }
   1416       }
   1417 
   1418       newTreeEntry(VL, true);
   1419       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
   1420         ValueList Operands;
   1421         // Prepare the operand vector.
   1422         for (unsigned j = 0; j < VL.size(); ++j) {
   1423           CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
   1424           Operands.push_back(CI2->getArgOperand(i));
   1425         }
   1426         buildTree_rec(Operands, Depth + 1);
   1427       }
   1428       return;
   1429     }
   1430     case Instruction::ShuffleVector: {
   1431       // If this is not an alternate sequence of opcode like add-sub
   1432       // then do not vectorize this instruction.
   1433       if (!isAltShuffle) {
   1434         BS.cancelScheduling(VL);
   1435         newTreeEntry(VL, false);
   1436         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
   1437         return;
   1438       }
   1439       newTreeEntry(VL, true);
   1440       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
   1441 
   1442       // Reorder operands if reordering would enable vectorization.
   1443       if (isa<BinaryOperator>(VL0)) {
   1444         ValueList Left, Right;
   1445         reorderAltShuffleOperands(VL, Left, Right);
   1446         buildTree_rec(Left, Depth + 1);
   1447         buildTree_rec(Right, Depth + 1);
   1448         return;
   1449       }
   1450 
   1451       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1452         ValueList Operands;
   1453         // Prepare the operand vector.
   1454         for (unsigned j = 0; j < VL.size(); ++j)
   1455           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
   1456 
   1457         buildTree_rec(Operands, Depth + 1);
   1458       }
   1459       return;
   1460     }
   1461     default:
   1462       BS.cancelScheduling(VL);
   1463       newTreeEntry(VL, false);
   1464       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
   1465       return;
   1466   }
   1467 }
   1468 
   1469 int BoUpSLP::getEntryCost(TreeEntry *E) {
   1470   ArrayRef<Value*> VL = E->Scalars;
   1471 
   1472   Type *ScalarTy = VL[0]->getType();
   1473   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1474     ScalarTy = SI->getValueOperand()->getType();
   1475   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   1476 
   1477   if (E->NeedToGather) {
   1478     if (allConstant(VL))
   1479       return 0;
   1480     if (isSplat(VL)) {
   1481       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
   1482     }
   1483     return getGatherCost(E->Scalars);
   1484   }
   1485   unsigned Opcode = getSameOpcode(VL);
   1486   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
   1487   Instruction *VL0 = cast<Instruction>(VL[0]);
   1488   switch (Opcode) {
   1489     case Instruction::PHI: {
   1490       return 0;
   1491     }
   1492     case Instruction::ExtractElement: {
   1493       if (CanReuseExtract(VL)) {
   1494         int DeadCost = 0;
   1495         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
   1496           ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
   1497           if (E->hasOneUse())
   1498             // Take credit for instruction that will become dead.
   1499             DeadCost +=
   1500                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
   1501         }
   1502         return -DeadCost;
   1503       }
   1504       return getGatherCost(VecTy);
   1505     }
   1506     case Instruction::ZExt:
   1507     case Instruction::SExt:
   1508     case Instruction::FPToUI:
   1509     case Instruction::FPToSI:
   1510     case Instruction::FPExt:
   1511     case Instruction::PtrToInt:
   1512     case Instruction::IntToPtr:
   1513     case Instruction::SIToFP:
   1514     case Instruction::UIToFP:
   1515     case Instruction::Trunc:
   1516     case Instruction::FPTrunc:
   1517     case Instruction::BitCast: {
   1518       Type *SrcTy = VL0->getOperand(0)->getType();
   1519 
   1520       // Calculate the cost of this instruction.
   1521       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
   1522                                                          VL0->getType(), SrcTy);
   1523 
   1524       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
   1525       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
   1526       return VecCost - ScalarCost;
   1527     }
   1528     case Instruction::FCmp:
   1529     case Instruction::ICmp:
   1530     case Instruction::Select:
   1531     case Instruction::Add:
   1532     case Instruction::FAdd:
   1533     case Instruction::Sub:
   1534     case Instruction::FSub:
   1535     case Instruction::Mul:
   1536     case Instruction::FMul:
   1537     case Instruction::UDiv:
   1538     case Instruction::SDiv:
   1539     case Instruction::FDiv:
   1540     case Instruction::URem:
   1541     case Instruction::SRem:
   1542     case Instruction::FRem:
   1543     case Instruction::Shl:
   1544     case Instruction::LShr:
   1545     case Instruction::AShr:
   1546     case Instruction::And:
   1547     case Instruction::Or:
   1548     case Instruction::Xor: {
   1549       // Calculate the cost of this instruction.
   1550       int ScalarCost = 0;
   1551       int VecCost = 0;
   1552       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
   1553           Opcode == Instruction::Select) {
   1554         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
   1555         ScalarCost = VecTy->getNumElements() *
   1556         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
   1557         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
   1558       } else {
   1559         // Certain instructions can be cheaper to vectorize if they have a
   1560         // constant second vector operand.
   1561         TargetTransformInfo::OperandValueKind Op1VK =
   1562             TargetTransformInfo::OK_AnyValue;
   1563         TargetTransformInfo::OperandValueKind Op2VK =
   1564             TargetTransformInfo::OK_UniformConstantValue;
   1565         TargetTransformInfo::OperandValueProperties Op1VP =
   1566             TargetTransformInfo::OP_None;
   1567         TargetTransformInfo::OperandValueProperties Op2VP =
   1568             TargetTransformInfo::OP_None;
   1569 
   1570         // If all operands are exactly the same ConstantInt then set the
   1571         // operand kind to OK_UniformConstantValue.
   1572         // If instead not all operands are constants, then set the operand kind
   1573         // to OK_AnyValue. If all operands are constants but not the same,
   1574         // then set the operand kind to OK_NonUniformConstantValue.
   1575         ConstantInt *CInt = nullptr;
   1576         for (unsigned i = 0; i < VL.size(); ++i) {
   1577           const Instruction *I = cast<Instruction>(VL[i]);
   1578           if (!isa<ConstantInt>(I->getOperand(1))) {
   1579             Op2VK = TargetTransformInfo::OK_AnyValue;
   1580             break;
   1581           }
   1582           if (i == 0) {
   1583             CInt = cast<ConstantInt>(I->getOperand(1));
   1584             continue;
   1585           }
   1586           if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
   1587               CInt != cast<ConstantInt>(I->getOperand(1)))
   1588             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
   1589         }
   1590         // FIXME: Currently cost of model modification for division by
   1591         // power of 2 is handled only for X86. Add support for other targets.
   1592         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
   1593             CInt->getValue().isPowerOf2())
   1594           Op2VP = TargetTransformInfo::OP_PowerOf2;
   1595 
   1596         ScalarCost = VecTy->getNumElements() *
   1597                      TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
   1598                                                  Op1VP, Op2VP);
   1599         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
   1600                                               Op1VP, Op2VP);
   1601       }
   1602       return VecCost - ScalarCost;
   1603     }
   1604     case Instruction::GetElementPtr: {
   1605       TargetTransformInfo::OperandValueKind Op1VK =
   1606           TargetTransformInfo::OK_AnyValue;
   1607       TargetTransformInfo::OperandValueKind Op2VK =
   1608           TargetTransformInfo::OK_UniformConstantValue;
   1609 
   1610       int ScalarCost =
   1611           VecTy->getNumElements() *
   1612           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
   1613       int VecCost =
   1614           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
   1615 
   1616       return VecCost - ScalarCost;
   1617     }
   1618     case Instruction::Load: {
   1619       // Cost of wide load - cost of scalar loads.
   1620       int ScalarLdCost = VecTy->getNumElements() *
   1621       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
   1622       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
   1623       return VecLdCost - ScalarLdCost;
   1624     }
   1625     case Instruction::Store: {
   1626       // We know that we can merge the stores. Calculate the cost.
   1627       int ScalarStCost = VecTy->getNumElements() *
   1628       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
   1629       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
   1630       return VecStCost - ScalarStCost;
   1631     }
   1632     case Instruction::Call: {
   1633       CallInst *CI = cast<CallInst>(VL0);
   1634       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   1635 
   1636       // Calculate the cost of the scalar and vector calls.
   1637       SmallVector<Type*, 4> ScalarTys, VecTys;
   1638       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
   1639         ScalarTys.push_back(CI->getArgOperand(op)->getType());
   1640         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
   1641                                          VecTy->getNumElements()));
   1642       }
   1643 
   1644       int ScalarCallCost = VecTy->getNumElements() *
   1645           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
   1646 
   1647       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
   1648 
   1649       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
   1650             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
   1651             << " for " << *CI << "\n");
   1652 
   1653       return VecCallCost - ScalarCallCost;
   1654     }
   1655     case Instruction::ShuffleVector: {
   1656       TargetTransformInfo::OperandValueKind Op1VK =
   1657           TargetTransformInfo::OK_AnyValue;
   1658       TargetTransformInfo::OperandValueKind Op2VK =
   1659           TargetTransformInfo::OK_AnyValue;
   1660       int ScalarCost = 0;
   1661       int VecCost = 0;
   1662       for (unsigned i = 0; i < VL.size(); ++i) {
   1663         Instruction *I = cast<Instruction>(VL[i]);
   1664         if (!I)
   1665           break;
   1666         ScalarCost +=
   1667             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
   1668       }
   1669       // VecCost is equal to sum of the cost of creating 2 vectors
   1670       // and the cost of creating shuffle.
   1671       Instruction *I0 = cast<Instruction>(VL[0]);
   1672       VecCost =
   1673           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
   1674       Instruction *I1 = cast<Instruction>(VL[1]);
   1675       VecCost +=
   1676           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
   1677       VecCost +=
   1678           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
   1679       return VecCost - ScalarCost;
   1680     }
   1681     default:
   1682       llvm_unreachable("Unknown instruction");
   1683   }
   1684 }
   1685 
   1686 bool BoUpSLP::isFullyVectorizableTinyTree() {
   1687   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
   1688         VectorizableTree.size() << " is fully vectorizable .\n");
   1689 
   1690   // We only handle trees of height 2.
   1691   if (VectorizableTree.size() != 2)
   1692     return false;
   1693 
   1694   // Handle splat and all-constants stores.
   1695   if (!VectorizableTree[0].NeedToGather &&
   1696       (allConstant(VectorizableTree[1].Scalars) ||
   1697        isSplat(VectorizableTree[1].Scalars)))
   1698     return true;
   1699 
   1700   // Gathering cost would be too much for tiny trees.
   1701   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
   1702     return false;
   1703 
   1704   return true;
   1705 }
   1706 
   1707 int BoUpSLP::getSpillCost() {
   1708   // Walk from the bottom of the tree to the top, tracking which values are
   1709   // live. When we see a call instruction that is not part of our tree,
   1710   // query TTI to see if there is a cost to keeping values live over it
   1711   // (for example, if spills and fills are required).
   1712   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
   1713   int Cost = 0;
   1714 
   1715   SmallPtrSet<Instruction*, 4> LiveValues;
   1716   Instruction *PrevInst = nullptr;
   1717 
   1718   for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
   1719     Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
   1720     if (!Inst)
   1721       continue;
   1722 
   1723     if (!PrevInst) {
   1724       PrevInst = Inst;
   1725       continue;
   1726     }
   1727 
   1728     DEBUG(
   1729       dbgs() << "SLP: #LV: " << LiveValues.size();
   1730       for (auto *X : LiveValues)
   1731         dbgs() << " " << X->getName();
   1732       dbgs() << ", Looking at ";
   1733       Inst->dump();
   1734       );
   1735 
   1736     // Update LiveValues.
   1737     LiveValues.erase(PrevInst);
   1738     for (auto &J : PrevInst->operands()) {
   1739       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
   1740         LiveValues.insert(cast<Instruction>(&*J));
   1741     }
   1742 
   1743     // Now find the sequence of instructions between PrevInst and Inst.
   1744     BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
   1745         PrevInstIt(PrevInst->getIterator());
   1746     --PrevInstIt;
   1747     while (InstIt != PrevInstIt) {
   1748       if (PrevInstIt == PrevInst->getParent()->rend()) {
   1749         PrevInstIt = Inst->getParent()->rbegin();
   1750         continue;
   1751       }
   1752 
   1753       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
   1754         SmallVector<Type*, 4> V;
   1755         for (auto *II : LiveValues)
   1756           V.push_back(VectorType::get(II->getType(), BundleWidth));
   1757         Cost += TTI->getCostOfKeepingLiveOverCall(V);
   1758       }
   1759 
   1760       ++PrevInstIt;
   1761     }
   1762 
   1763     PrevInst = Inst;
   1764   }
   1765 
   1766   DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
   1767   return Cost;
   1768 }
   1769 
   1770 int BoUpSLP::getTreeCost() {
   1771   int Cost = 0;
   1772   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
   1773         VectorizableTree.size() << ".\n");
   1774 
   1775   // We only vectorize tiny trees if it is fully vectorizable.
   1776   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
   1777     if (VectorizableTree.empty()) {
   1778       assert(!ExternalUses.size() && "We should not have any external users");
   1779     }
   1780     return INT_MAX;
   1781   }
   1782 
   1783   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
   1784 
   1785   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
   1786     int C = getEntryCost(&VectorizableTree[i]);
   1787     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
   1788           << *VectorizableTree[i].Scalars[0] << " .\n");
   1789     Cost += C;
   1790   }
   1791 
   1792   SmallSet<Value *, 16> ExtractCostCalculated;
   1793   int ExtractCost = 0;
   1794   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
   1795        I != E; ++I) {
   1796     // We only add extract cost once for the same scalar.
   1797     if (!ExtractCostCalculated.insert(I->Scalar).second)
   1798       continue;
   1799 
   1800     // Uses by ephemeral values are free (because the ephemeral value will be
   1801     // removed prior to code generation, and so the extraction will be
   1802     // removed as well).
   1803     if (EphValues.count(I->User))
   1804       continue;
   1805 
   1806     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
   1807     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
   1808                                            I->Lane);
   1809   }
   1810 
   1811   Cost += getSpillCost();
   1812 
   1813   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
   1814   return  Cost + ExtractCost;
   1815 }
   1816 
   1817 int BoUpSLP::getGatherCost(Type *Ty) {
   1818   int Cost = 0;
   1819   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
   1820     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
   1821   return Cost;
   1822 }
   1823 
   1824 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
   1825   // Find the type of the operands in VL.
   1826   Type *ScalarTy = VL[0]->getType();
   1827   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1828     ScalarTy = SI->getValueOperand()->getType();
   1829   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   1830   // Find the cost of inserting/extracting values from the vector.
   1831   return getGatherCost(VecTy);
   1832 }
   1833 
   1834 Value *BoUpSLP::getPointerOperand(Value *I) {
   1835   if (LoadInst *LI = dyn_cast<LoadInst>(I))
   1836     return LI->getPointerOperand();
   1837   if (StoreInst *SI = dyn_cast<StoreInst>(I))
   1838     return SI->getPointerOperand();
   1839   return nullptr;
   1840 }
   1841 
   1842 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
   1843   if (LoadInst *L = dyn_cast<LoadInst>(I))
   1844     return L->getPointerAddressSpace();
   1845   if (StoreInst *S = dyn_cast<StoreInst>(I))
   1846     return S->getPointerAddressSpace();
   1847   return -1;
   1848 }
   1849 
   1850 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
   1851   Value *PtrA = getPointerOperand(A);
   1852   Value *PtrB = getPointerOperand(B);
   1853   unsigned ASA = getAddressSpaceOperand(A);
   1854   unsigned ASB = getAddressSpaceOperand(B);
   1855 
   1856   // Check that the address spaces match and that the pointers are valid.
   1857   if (!PtrA || !PtrB || (ASA != ASB))
   1858     return false;
   1859 
   1860   // Make sure that A and B are different pointers of the same type.
   1861   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
   1862     return false;
   1863 
   1864   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
   1865   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
   1866   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
   1867 
   1868   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
   1869   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
   1870   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
   1871 
   1872   APInt OffsetDelta = OffsetB - OffsetA;
   1873 
   1874   // Check if they are based on the same pointer. That makes the offsets
   1875   // sufficient.
   1876   if (PtrA == PtrB)
   1877     return OffsetDelta == Size;
   1878 
   1879   // Compute the necessary base pointer delta to have the necessary final delta
   1880   // equal to the size.
   1881   APInt BaseDelta = Size - OffsetDelta;
   1882 
   1883   // Otherwise compute the distance with SCEV between the base pointers.
   1884   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
   1885   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
   1886   const SCEV *C = SE->getConstant(BaseDelta);
   1887   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
   1888   return X == PtrSCEVB;
   1889 }
   1890 
   1891 // Reorder commutative operations in alternate shuffle if the resulting vectors
   1892 // are consecutive loads. This would allow us to vectorize the tree.
   1893 // If we have something like-
   1894 // load a[0] - load b[0]
   1895 // load b[1] + load a[1]
   1896 // load a[2] - load b[2]
   1897 // load a[3] + load b[3]
   1898 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
   1899 // code.
   1900 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
   1901                                         SmallVectorImpl<Value *> &Left,
   1902                                         SmallVectorImpl<Value *> &Right) {
   1903   const DataLayout &DL = F->getParent()->getDataLayout();
   1904 
   1905   // Push left and right operands of binary operation into Left and Right
   1906   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
   1907     Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
   1908     Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
   1909   }
   1910 
   1911   // Reorder if we have a commutative operation and consecutive access
   1912   // are on either side of the alternate instructions.
   1913   for (unsigned j = 0; j < VL.size() - 1; ++j) {
   1914     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
   1915       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
   1916         Instruction *VL1 = cast<Instruction>(VL[j]);
   1917         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
   1918         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
   1919           std::swap(Left[j], Right[j]);
   1920           continue;
   1921         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
   1922           std::swap(Left[j + 1], Right[j + 1]);
   1923           continue;
   1924         }
   1925         // else unchanged
   1926       }
   1927     }
   1928     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
   1929       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
   1930         Instruction *VL1 = cast<Instruction>(VL[j]);
   1931         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
   1932         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
   1933           std::swap(Left[j], Right[j]);
   1934           continue;
   1935         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
   1936           std::swap(Left[j + 1], Right[j + 1]);
   1937           continue;
   1938         }
   1939         // else unchanged
   1940       }
   1941     }
   1942   }
   1943 }
   1944 
   1945 // Return true if I should be commuted before adding it's left and right
   1946 // operands to the arrays Left and Right.
   1947 //
   1948 // The vectorizer is trying to either have all elements one side being
   1949 // instruction with the same opcode to enable further vectorization, or having
   1950 // a splat to lower the vectorizing cost.
   1951 static bool shouldReorderOperands(int i, Instruction &I,
   1952                                   SmallVectorImpl<Value *> &Left,
   1953                                   SmallVectorImpl<Value *> &Right,
   1954                                   bool AllSameOpcodeLeft,
   1955                                   bool AllSameOpcodeRight, bool SplatLeft,
   1956                                   bool SplatRight) {
   1957   Value *VLeft = I.getOperand(0);
   1958   Value *VRight = I.getOperand(1);
   1959   // If we have "SplatRight", try to see if commuting is needed to preserve it.
   1960   if (SplatRight) {
   1961     if (VRight == Right[i - 1])
   1962       // Preserve SplatRight
   1963       return false;
   1964     if (VLeft == Right[i - 1]) {
   1965       // Commuting would preserve SplatRight, but we don't want to break
   1966       // SplatLeft either, i.e. preserve the original order if possible.
   1967       // (FIXME: why do we care?)
   1968       if (SplatLeft && VLeft == Left[i - 1])
   1969         return false;
   1970       return true;
   1971     }
   1972   }
   1973   // Symmetrically handle Right side.
   1974   if (SplatLeft) {
   1975     if (VLeft == Left[i - 1])
   1976       // Preserve SplatLeft
   1977       return false;
   1978     if (VRight == Left[i - 1])
   1979       return true;
   1980   }
   1981 
   1982   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
   1983   Instruction *IRight = dyn_cast<Instruction>(VRight);
   1984 
   1985   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
   1986   // it and not the right, in this case we want to commute.
   1987   if (AllSameOpcodeRight) {
   1988     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
   1989     if (IRight && RightPrevOpcode == IRight->getOpcode())
   1990       // Do not commute, a match on the right preserves AllSameOpcodeRight
   1991       return false;
   1992     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
   1993       // We have a match and may want to commute, but first check if there is
   1994       // not also a match on the existing operands on the Left to preserve
   1995       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
   1996       // (FIXME: why do we care?)
   1997       if (AllSameOpcodeLeft && ILeft &&
   1998           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
   1999         return false;
   2000       return true;
   2001     }
   2002   }
   2003   // Symmetrically handle Left side.
   2004   if (AllSameOpcodeLeft) {
   2005     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
   2006     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
   2007       return false;
   2008     if (IRight && LeftPrevOpcode == IRight->getOpcode())
   2009       return true;
   2010   }
   2011   return false;
   2012 }
   2013 
   2014 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
   2015                                              SmallVectorImpl<Value *> &Left,
   2016                                              SmallVectorImpl<Value *> &Right) {
   2017 
   2018   if (VL.size()) {
   2019     // Peel the first iteration out of the loop since there's nothing
   2020     // interesting to do anyway and it simplifies the checks in the loop.
   2021     auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
   2022     auto VRight = cast<Instruction>(VL[0])->getOperand(1);
   2023     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
   2024       // Favor having instruction to the right. FIXME: why?
   2025       std::swap(VLeft, VRight);
   2026     Left.push_back(VLeft);
   2027     Right.push_back(VRight);
   2028   }
   2029 
   2030   // Keep track if we have instructions with all the same opcode on one side.
   2031   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
   2032   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
   2033   // Keep track if we have one side with all the same value (broadcast).
   2034   bool SplatLeft = true;
   2035   bool SplatRight = true;
   2036 
   2037   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
   2038     Instruction *I = cast<Instruction>(VL[i]);
   2039     assert(I->isCommutative() && "Can only process commutative instruction");
   2040     // Commute to favor either a splat or maximizing having the same opcodes on
   2041     // one side.
   2042     if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
   2043                               AllSameOpcodeRight, SplatLeft, SplatRight)) {
   2044       Left.push_back(I->getOperand(1));
   2045       Right.push_back(I->getOperand(0));
   2046     } else {
   2047       Left.push_back(I->getOperand(0));
   2048       Right.push_back(I->getOperand(1));
   2049     }
   2050     // Update Splat* and AllSameOpcode* after the insertion.
   2051     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
   2052     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
   2053     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
   2054                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
   2055                          cast<Instruction>(Left[i])->getOpcode());
   2056     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
   2057                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
   2058                           cast<Instruction>(Right[i])->getOpcode());
   2059   }
   2060 
   2061   // If one operand end up being broadcast, return this operand order.
   2062   if (SplatRight || SplatLeft)
   2063     return;
   2064 
   2065   const DataLayout &DL = F->getParent()->getDataLayout();
   2066 
   2067   // Finally check if we can get longer vectorizable chain by reordering
   2068   // without breaking the good operand order detected above.
   2069   // E.g. If we have something like-
   2070   // load a[0]  load b[0]
   2071   // load b[1]  load a[1]
   2072   // load a[2]  load b[2]
   2073   // load a[3]  load b[3]
   2074   // Reordering the second load b[1]  load a[1] would allow us to vectorize
   2075   // this code and we still retain AllSameOpcode property.
   2076   // FIXME: This load reordering might break AllSameOpcode in some rare cases
   2077   // such as-
   2078   // add a[0],c[0]  load b[0]
   2079   // add a[1],c[2]  load b[1]
   2080   // b[2]           load b[2]
   2081   // add a[3],c[3]  load b[3]
   2082   for (unsigned j = 0; j < VL.size() - 1; ++j) {
   2083     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
   2084       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
   2085         if (isConsecutiveAccess(L, L1, DL)) {
   2086           std::swap(Left[j + 1], Right[j + 1]);
   2087           continue;
   2088         }
   2089       }
   2090     }
   2091     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
   2092       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
   2093         if (isConsecutiveAccess(L, L1, DL)) {
   2094           std::swap(Left[j + 1], Right[j + 1]);
   2095           continue;
   2096         }
   2097       }
   2098     }
   2099     // else unchanged
   2100   }
   2101 }
   2102 
   2103 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
   2104   Instruction *VL0 = cast<Instruction>(VL[0]);
   2105   BasicBlock::iterator NextInst(VL0);
   2106   ++NextInst;
   2107   Builder.SetInsertPoint(VL0->getParent(), NextInst);
   2108   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   2109 }
   2110 
   2111 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
   2112   Value *Vec = UndefValue::get(Ty);
   2113   // Generate the 'InsertElement' instruction.
   2114   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
   2115     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
   2116     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
   2117       GatherSeq.insert(Insrt);
   2118       CSEBlocks.insert(Insrt->getParent());
   2119 
   2120       // Add to our 'need-to-extract' list.
   2121       if (ScalarToTreeEntry.count(VL[i])) {
   2122         int Idx = ScalarToTreeEntry[VL[i]];
   2123         TreeEntry *E = &VectorizableTree[Idx];
   2124         // Find which lane we need to extract.
   2125         int FoundLane = -1;
   2126         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
   2127           // Is this the lane of the scalar that we are looking for ?
   2128           if (E->Scalars[Lane] == VL[i]) {
   2129             FoundLane = Lane;
   2130             break;
   2131           }
   2132         }
   2133         assert(FoundLane >= 0 && "Could not find the correct lane");
   2134         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
   2135       }
   2136     }
   2137   }
   2138 
   2139   return Vec;
   2140 }
   2141 
   2142 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
   2143   SmallDenseMap<Value*, int>::const_iterator Entry
   2144     = ScalarToTreeEntry.find(VL[0]);
   2145   if (Entry != ScalarToTreeEntry.end()) {
   2146     int Idx = Entry->second;
   2147     const TreeEntry *En = &VectorizableTree[Idx];
   2148     if (En->isSame(VL) && En->VectorizedValue)
   2149       return En->VectorizedValue;
   2150   }
   2151   return nullptr;
   2152 }
   2153 
   2154 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
   2155   if (ScalarToTreeEntry.count(VL[0])) {
   2156     int Idx = ScalarToTreeEntry[VL[0]];
   2157     TreeEntry *E = &VectorizableTree[Idx];
   2158     if (E->isSame(VL))
   2159       return vectorizeTree(E);
   2160   }
   2161 
   2162   Type *ScalarTy = VL[0]->getType();
   2163   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   2164     ScalarTy = SI->getValueOperand()->getType();
   2165   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   2166 
   2167   return Gather(VL, VecTy);
   2168 }
   2169 
   2170 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
   2171   IRBuilder<>::InsertPointGuard Guard(Builder);
   2172 
   2173   if (E->VectorizedValue) {
   2174     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
   2175     return E->VectorizedValue;
   2176   }
   2177 
   2178   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
   2179   Type *ScalarTy = VL0->getType();
   2180   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
   2181     ScalarTy = SI->getValueOperand()->getType();
   2182   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
   2183 
   2184   if (E->NeedToGather) {
   2185     setInsertPointAfterBundle(E->Scalars);
   2186     return Gather(E->Scalars, VecTy);
   2187   }
   2188 
   2189   const DataLayout &DL = F->getParent()->getDataLayout();
   2190   unsigned Opcode = getSameOpcode(E->Scalars);
   2191 
   2192   switch (Opcode) {
   2193     case Instruction::PHI: {
   2194       PHINode *PH = dyn_cast<PHINode>(VL0);
   2195       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
   2196       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   2197       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
   2198       E->VectorizedValue = NewPhi;
   2199 
   2200       // PHINodes may have multiple entries from the same block. We want to
   2201       // visit every block once.
   2202       SmallSet<BasicBlock*, 4> VisitedBBs;
   2203 
   2204       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   2205         ValueList Operands;
   2206         BasicBlock *IBB = PH->getIncomingBlock(i);
   2207 
   2208         if (!VisitedBBs.insert(IBB).second) {
   2209           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
   2210           continue;
   2211         }
   2212 
   2213         // Prepare the operand vector.
   2214         for (Value *V : E->Scalars)
   2215           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
   2216 
   2217         Builder.SetInsertPoint(IBB->getTerminator());
   2218         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   2219         Value *Vec = vectorizeTree(Operands);
   2220         NewPhi->addIncoming(Vec, IBB);
   2221       }
   2222 
   2223       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
   2224              "Invalid number of incoming values");
   2225       return NewPhi;
   2226     }
   2227 
   2228     case Instruction::ExtractElement: {
   2229       if (CanReuseExtract(E->Scalars)) {
   2230         Value *V = VL0->getOperand(0);
   2231         E->VectorizedValue = V;
   2232         return V;
   2233       }
   2234       return Gather(E->Scalars, VecTy);
   2235     }
   2236     case Instruction::ZExt:
   2237     case Instruction::SExt:
   2238     case Instruction::FPToUI:
   2239     case Instruction::FPToSI:
   2240     case Instruction::FPExt:
   2241     case Instruction::PtrToInt:
   2242     case Instruction::IntToPtr:
   2243     case Instruction::SIToFP:
   2244     case Instruction::UIToFP:
   2245     case Instruction::Trunc:
   2246     case Instruction::FPTrunc:
   2247     case Instruction::BitCast: {
   2248       ValueList INVL;
   2249       for (Value *V : E->Scalars)
   2250         INVL.push_back(cast<Instruction>(V)->getOperand(0));
   2251 
   2252       setInsertPointAfterBundle(E->Scalars);
   2253 
   2254       Value *InVec = vectorizeTree(INVL);
   2255 
   2256       if (Value *V = alreadyVectorized(E->Scalars))
   2257         return V;
   2258 
   2259       CastInst *CI = dyn_cast<CastInst>(VL0);
   2260       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
   2261       E->VectorizedValue = V;
   2262       ++NumVectorInstructions;
   2263       return V;
   2264     }
   2265     case Instruction::FCmp:
   2266     case Instruction::ICmp: {
   2267       ValueList LHSV, RHSV;
   2268       for (Value *V : E->Scalars) {
   2269         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
   2270         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
   2271       }
   2272 
   2273       setInsertPointAfterBundle(E->Scalars);
   2274 
   2275       Value *L = vectorizeTree(LHSV);
   2276       Value *R = vectorizeTree(RHSV);
   2277 
   2278       if (Value *V = alreadyVectorized(E->Scalars))
   2279         return V;
   2280 
   2281       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
   2282       Value *V;
   2283       if (Opcode == Instruction::FCmp)
   2284         V = Builder.CreateFCmp(P0, L, R);
   2285       else
   2286         V = Builder.CreateICmp(P0, L, R);
   2287 
   2288       E->VectorizedValue = V;
   2289       ++NumVectorInstructions;
   2290       return V;
   2291     }
   2292     case Instruction::Select: {
   2293       ValueList TrueVec, FalseVec, CondVec;
   2294       for (Value *V : E->Scalars) {
   2295         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
   2296         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
   2297         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
   2298       }
   2299 
   2300       setInsertPointAfterBundle(E->Scalars);
   2301 
   2302       Value *Cond = vectorizeTree(CondVec);
   2303       Value *True = vectorizeTree(TrueVec);
   2304       Value *False = vectorizeTree(FalseVec);
   2305 
   2306       if (Value *V = alreadyVectorized(E->Scalars))
   2307         return V;
   2308 
   2309       Value *V = Builder.CreateSelect(Cond, True, False);
   2310       E->VectorizedValue = V;
   2311       ++NumVectorInstructions;
   2312       return V;
   2313     }
   2314     case Instruction::Add:
   2315     case Instruction::FAdd:
   2316     case Instruction::Sub:
   2317     case Instruction::FSub:
   2318     case Instruction::Mul:
   2319     case Instruction::FMul:
   2320     case Instruction::UDiv:
   2321     case Instruction::SDiv:
   2322     case Instruction::FDiv:
   2323     case Instruction::URem:
   2324     case Instruction::SRem:
   2325     case Instruction::FRem:
   2326     case Instruction::Shl:
   2327     case Instruction::LShr:
   2328     case Instruction::AShr:
   2329     case Instruction::And:
   2330     case Instruction::Or:
   2331     case Instruction::Xor: {
   2332       ValueList LHSVL, RHSVL;
   2333       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
   2334         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
   2335       else
   2336         for (Value *V : E->Scalars) {
   2337           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
   2338           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
   2339         }
   2340 
   2341       setInsertPointAfterBundle(E->Scalars);
   2342 
   2343       Value *LHS = vectorizeTree(LHSVL);
   2344       Value *RHS = vectorizeTree(RHSVL);
   2345 
   2346       if (LHS == RHS && isa<Instruction>(LHS)) {
   2347         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
   2348       }
   2349 
   2350       if (Value *V = alreadyVectorized(E->Scalars))
   2351         return V;
   2352 
   2353       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
   2354       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
   2355       E->VectorizedValue = V;
   2356       propagateIRFlags(E->VectorizedValue, E->Scalars);
   2357       ++NumVectorInstructions;
   2358 
   2359       if (Instruction *I = dyn_cast<Instruction>(V))
   2360         return propagateMetadata(I, E->Scalars);
   2361 
   2362       return V;
   2363     }
   2364     case Instruction::Load: {
   2365       // Loads are inserted at the head of the tree because we don't want to
   2366       // sink them all the way down past store instructions.
   2367       setInsertPointAfterBundle(E->Scalars);
   2368 
   2369       LoadInst *LI = cast<LoadInst>(VL0);
   2370       Type *ScalarLoadTy = LI->getType();
   2371       unsigned AS = LI->getPointerAddressSpace();
   2372 
   2373       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
   2374                                             VecTy->getPointerTo(AS));
   2375 
   2376       // The pointer operand uses an in-tree scalar so we add the new BitCast to
   2377       // ExternalUses list to make sure that an extract will be generated in the
   2378       // future.
   2379       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
   2380         ExternalUses.push_back(
   2381             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
   2382 
   2383       unsigned Alignment = LI->getAlignment();
   2384       LI = Builder.CreateLoad(VecPtr);
   2385       if (!Alignment) {
   2386         Alignment = DL.getABITypeAlignment(ScalarLoadTy);
   2387       }
   2388       LI->setAlignment(Alignment);
   2389       E->VectorizedValue = LI;
   2390       ++NumVectorInstructions;
   2391       return propagateMetadata(LI, E->Scalars);
   2392     }
   2393     case Instruction::Store: {
   2394       StoreInst *SI = cast<StoreInst>(VL0);
   2395       unsigned Alignment = SI->getAlignment();
   2396       unsigned AS = SI->getPointerAddressSpace();
   2397 
   2398       ValueList ValueOp;
   2399       for (Value *V : E->Scalars)
   2400         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
   2401 
   2402       setInsertPointAfterBundle(E->Scalars);
   2403 
   2404       Value *VecValue = vectorizeTree(ValueOp);
   2405       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
   2406                                             VecTy->getPointerTo(AS));
   2407       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
   2408 
   2409       // The pointer operand uses an in-tree scalar so we add the new BitCast to
   2410       // ExternalUses list to make sure that an extract will be generated in the
   2411       // future.
   2412       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
   2413         ExternalUses.push_back(
   2414             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
   2415 
   2416       if (!Alignment) {
   2417         Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
   2418       }
   2419       S->setAlignment(Alignment);
   2420       E->VectorizedValue = S;
   2421       ++NumVectorInstructions;
   2422       return propagateMetadata(S, E->Scalars);
   2423     }
   2424     case Instruction::GetElementPtr: {
   2425       setInsertPointAfterBundle(E->Scalars);
   2426 
   2427       ValueList Op0VL;
   2428       for (Value *V : E->Scalars)
   2429         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
   2430 
   2431       Value *Op0 = vectorizeTree(Op0VL);
   2432 
   2433       std::vector<Value *> OpVecs;
   2434       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
   2435            ++j) {
   2436         ValueList OpVL;
   2437         for (Value *V : E->Scalars)
   2438           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
   2439 
   2440         Value *OpVec = vectorizeTree(OpVL);
   2441         OpVecs.push_back(OpVec);
   2442       }
   2443 
   2444       Value *V = Builder.CreateGEP(
   2445           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
   2446       E->VectorizedValue = V;
   2447       ++NumVectorInstructions;
   2448 
   2449       if (Instruction *I = dyn_cast<Instruction>(V))
   2450         return propagateMetadata(I, E->Scalars);
   2451 
   2452       return V;
   2453     }
   2454     case Instruction::Call: {
   2455       CallInst *CI = cast<CallInst>(VL0);
   2456       setInsertPointAfterBundle(E->Scalars);
   2457       Function *FI;
   2458       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
   2459       Value *ScalarArg = nullptr;
   2460       if (CI && (FI = CI->getCalledFunction())) {
   2461         IID = FI->getIntrinsicID();
   2462       }
   2463       std::vector<Value *> OpVecs;
   2464       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
   2465         ValueList OpVL;
   2466         // ctlz,cttz and powi are special intrinsics whose second argument is
   2467         // a scalar. This argument should not be vectorized.
   2468         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
   2469           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
   2470           ScalarArg = CEI->getArgOperand(j);
   2471           OpVecs.push_back(CEI->getArgOperand(j));
   2472           continue;
   2473         }
   2474         for (Value *V : E->Scalars) {
   2475           CallInst *CEI = cast<CallInst>(V);
   2476           OpVL.push_back(CEI->getArgOperand(j));
   2477         }
   2478 
   2479         Value *OpVec = vectorizeTree(OpVL);
   2480         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
   2481         OpVecs.push_back(OpVec);
   2482       }
   2483 
   2484       Module *M = F->getParent();
   2485       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   2486       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
   2487       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
   2488       Value *V = Builder.CreateCall(CF, OpVecs);
   2489 
   2490       // The scalar argument uses an in-tree scalar so we add the new vectorized
   2491       // call to ExternalUses list to make sure that an extract will be
   2492       // generated in the future.
   2493       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
   2494         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
   2495 
   2496       E->VectorizedValue = V;
   2497       ++NumVectorInstructions;
   2498       return V;
   2499     }
   2500     case Instruction::ShuffleVector: {
   2501       ValueList LHSVL, RHSVL;
   2502       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
   2503       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
   2504       setInsertPointAfterBundle(E->Scalars);
   2505 
   2506       Value *LHS = vectorizeTree(LHSVL);
   2507       Value *RHS = vectorizeTree(RHSVL);
   2508 
   2509       if (Value *V = alreadyVectorized(E->Scalars))
   2510         return V;
   2511 
   2512       // Create a vector of LHS op1 RHS
   2513       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
   2514       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
   2515 
   2516       // Create a vector of LHS op2 RHS
   2517       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
   2518       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
   2519       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
   2520 
   2521       // Create shuffle to take alternate operations from the vector.
   2522       // Also, gather up odd and even scalar ops to propagate IR flags to
   2523       // each vector operation.
   2524       ValueList OddScalars, EvenScalars;
   2525       unsigned e = E->Scalars.size();
   2526       SmallVector<Constant *, 8> Mask(e);
   2527       for (unsigned i = 0; i < e; ++i) {
   2528         if (i & 1) {
   2529           Mask[i] = Builder.getInt32(e + i);
   2530           OddScalars.push_back(E->Scalars[i]);
   2531         } else {
   2532           Mask[i] = Builder.getInt32(i);
   2533           EvenScalars.push_back(E->Scalars[i]);
   2534         }
   2535       }
   2536 
   2537       Value *ShuffleMask = ConstantVector::get(Mask);
   2538       propagateIRFlags(V0, EvenScalars);
   2539       propagateIRFlags(V1, OddScalars);
   2540 
   2541       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
   2542       E->VectorizedValue = V;
   2543       ++NumVectorInstructions;
   2544       if (Instruction *I = dyn_cast<Instruction>(V))
   2545         return propagateMetadata(I, E->Scalars);
   2546 
   2547       return V;
   2548     }
   2549     default:
   2550     llvm_unreachable("unknown inst");
   2551   }
   2552   return nullptr;
   2553 }
   2554 
   2555 Value *BoUpSLP::vectorizeTree() {
   2556 
   2557   // All blocks must be scheduled before any instructions are inserted.
   2558   for (auto &BSIter : BlocksSchedules) {
   2559     scheduleBlock(BSIter.second.get());
   2560   }
   2561 
   2562   Builder.SetInsertPoint(&F->getEntryBlock().front());
   2563   vectorizeTree(&VectorizableTree[0]);
   2564 
   2565   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
   2566 
   2567   // Extract all of the elements with the external uses.
   2568   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
   2569        it != e; ++it) {
   2570     Value *Scalar = it->Scalar;
   2571     llvm::User *User = it->User;
   2572 
   2573     // Skip users that we already RAUW. This happens when one instruction
   2574     // has multiple uses of the same value.
   2575     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
   2576         Scalar->user_end())
   2577       continue;
   2578     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
   2579 
   2580     int Idx = ScalarToTreeEntry[Scalar];
   2581     TreeEntry *E = &VectorizableTree[Idx];
   2582     assert(!E->NeedToGather && "Extracting from a gather list");
   2583 
   2584     Value *Vec = E->VectorizedValue;
   2585     assert(Vec && "Can't find vectorizable value");
   2586 
   2587     Value *Lane = Builder.getInt32(it->Lane);
   2588     // Generate extracts for out-of-tree users.
   2589     // Find the insertion point for the extractelement lane.
   2590     if (isa<Instruction>(Vec)){
   2591       if (PHINode *PH = dyn_cast<PHINode>(User)) {
   2592         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
   2593           if (PH->getIncomingValue(i) == Scalar) {
   2594             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
   2595             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2596             CSEBlocks.insert(PH->getIncomingBlock(i));
   2597             PH->setOperand(i, Ex);
   2598           }
   2599         }
   2600       } else {
   2601         Builder.SetInsertPoint(cast<Instruction>(User));
   2602         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2603         CSEBlocks.insert(cast<Instruction>(User)->getParent());
   2604         User->replaceUsesOfWith(Scalar, Ex);
   2605      }
   2606     } else {
   2607       Builder.SetInsertPoint(&F->getEntryBlock().front());
   2608       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2609       CSEBlocks.insert(&F->getEntryBlock());
   2610       User->replaceUsesOfWith(Scalar, Ex);
   2611     }
   2612 
   2613     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
   2614   }
   2615 
   2616   // For each vectorized value:
   2617   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
   2618     TreeEntry *Entry = &VectorizableTree[EIdx];
   2619 
   2620     // For each lane:
   2621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
   2622       Value *Scalar = Entry->Scalars[Lane];
   2623       // No need to handle users of gathered values.
   2624       if (Entry->NeedToGather)
   2625         continue;
   2626 
   2627       assert(Entry->VectorizedValue && "Can't find vectorizable value");
   2628 
   2629       Type *Ty = Scalar->getType();
   2630       if (!Ty->isVoidTy()) {
   2631 #ifndef NDEBUG
   2632         for (User *U : Scalar->users()) {
   2633           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
   2634 
   2635           assert((ScalarToTreeEntry.count(U) ||
   2636                   // It is legal to replace users in the ignorelist by undef.
   2637                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
   2638                    UserIgnoreList.end())) &&
   2639                  "Replacing out-of-tree value with undef");
   2640         }
   2641 #endif
   2642         Value *Undef = UndefValue::get(Ty);
   2643         Scalar->replaceAllUsesWith(Undef);
   2644       }
   2645       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
   2646       eraseInstruction(cast<Instruction>(Scalar));
   2647     }
   2648   }
   2649 
   2650   Builder.ClearInsertionPoint();
   2651 
   2652   return VectorizableTree[0].VectorizedValue;
   2653 }
   2654 
   2655 void BoUpSLP::optimizeGatherSequence() {
   2656   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
   2657         << " gather sequences instructions.\n");
   2658   // LICM InsertElementInst sequences.
   2659   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
   2660        e = GatherSeq.end(); it != e; ++it) {
   2661     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
   2662 
   2663     if (!Insert)
   2664       continue;
   2665 
   2666     // Check if this block is inside a loop.
   2667     Loop *L = LI->getLoopFor(Insert->getParent());
   2668     if (!L)
   2669       continue;
   2670 
   2671     // Check if it has a preheader.
   2672     BasicBlock *PreHeader = L->getLoopPreheader();
   2673     if (!PreHeader)
   2674       continue;
   2675 
   2676     // If the vector or the element that we insert into it are
   2677     // instructions that are defined in this basic block then we can't
   2678     // hoist this instruction.
   2679     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
   2680     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
   2681     if (CurrVec && L->contains(CurrVec))
   2682       continue;
   2683     if (NewElem && L->contains(NewElem))
   2684       continue;
   2685 
   2686     // We can hoist this instruction. Move it to the pre-header.
   2687     Insert->moveBefore(PreHeader->getTerminator());
   2688   }
   2689 
   2690   // Make a list of all reachable blocks in our CSE queue.
   2691   SmallVector<const DomTreeNode *, 8> CSEWorkList;
   2692   CSEWorkList.reserve(CSEBlocks.size());
   2693   for (BasicBlock *BB : CSEBlocks)
   2694     if (DomTreeNode *N = DT->getNode(BB)) {
   2695       assert(DT->isReachableFromEntry(N));
   2696       CSEWorkList.push_back(N);
   2697     }
   2698 
   2699   // Sort blocks by domination. This ensures we visit a block after all blocks
   2700   // dominating it are visited.
   2701   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
   2702                    [this](const DomTreeNode *A, const DomTreeNode *B) {
   2703     return DT->properlyDominates(A, B);
   2704   });
   2705 
   2706   // Perform O(N^2) search over the gather sequences and merge identical
   2707   // instructions. TODO: We can further optimize this scan if we split the
   2708   // instructions into different buckets based on the insert lane.
   2709   SmallVector<Instruction *, 16> Visited;
   2710   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
   2711     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
   2712            "Worklist not sorted properly!");
   2713     BasicBlock *BB = (*I)->getBlock();
   2714     // For all instructions in blocks containing gather sequences:
   2715     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
   2716       Instruction *In = &*it++;
   2717       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
   2718         continue;
   2719 
   2720       // Check if we can replace this instruction with any of the
   2721       // visited instructions.
   2722       for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
   2723                                                     ve = Visited.end();
   2724            v != ve; ++v) {
   2725         if (In->isIdenticalTo(*v) &&
   2726             DT->dominates((*v)->getParent(), In->getParent())) {
   2727           In->replaceAllUsesWith(*v);
   2728           eraseInstruction(In);
   2729           In = nullptr;
   2730           break;
   2731         }
   2732       }
   2733       if (In) {
   2734         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
   2735         Visited.push_back(In);
   2736       }
   2737     }
   2738   }
   2739   CSEBlocks.clear();
   2740   GatherSeq.clear();
   2741 }
   2742 
   2743 // Groups the instructions to a bundle (which is then a single scheduling entity)
   2744 // and schedules instructions until the bundle gets ready.
   2745 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
   2746                                                  BoUpSLP *SLP) {
   2747   if (isa<PHINode>(VL[0]))
   2748     return true;
   2749 
   2750   // Initialize the instruction bundle.
   2751   Instruction *OldScheduleEnd = ScheduleEnd;
   2752   ScheduleData *PrevInBundle = nullptr;
   2753   ScheduleData *Bundle = nullptr;
   2754   bool ReSchedule = false;
   2755   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
   2756 
   2757   // Make sure that the scheduling region contains all
   2758   // instructions of the bundle.
   2759   for (Value *V : VL) {
   2760     if (!extendSchedulingRegion(V))
   2761       return false;
   2762   }
   2763 
   2764   for (Value *V : VL) {
   2765     ScheduleData *BundleMember = getScheduleData(V);
   2766     assert(BundleMember &&
   2767            "no ScheduleData for bundle member (maybe not in same basic block)");
   2768     if (BundleMember->IsScheduled) {
   2769       // A bundle member was scheduled as single instruction before and now
   2770       // needs to be scheduled as part of the bundle. We just get rid of the
   2771       // existing schedule.
   2772       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
   2773                    << " was already scheduled\n");
   2774       ReSchedule = true;
   2775     }
   2776     assert(BundleMember->isSchedulingEntity() &&
   2777            "bundle member already part of other bundle");
   2778     if (PrevInBundle) {
   2779       PrevInBundle->NextInBundle = BundleMember;
   2780     } else {
   2781       Bundle = BundleMember;
   2782     }
   2783     BundleMember->UnscheduledDepsInBundle = 0;
   2784     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
   2785 
   2786     // Group the instructions to a bundle.
   2787     BundleMember->FirstInBundle = Bundle;
   2788     PrevInBundle = BundleMember;
   2789   }
   2790   if (ScheduleEnd != OldScheduleEnd) {
   2791     // The scheduling region got new instructions at the lower end (or it is a
   2792     // new region for the first bundle). This makes it necessary to
   2793     // recalculate all dependencies.
   2794     // It is seldom that this needs to be done a second time after adding the
   2795     // initial bundle to the region.
   2796     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
   2797       ScheduleData *SD = getScheduleData(I);
   2798       SD->clearDependencies();
   2799     }
   2800     ReSchedule = true;
   2801   }
   2802   if (ReSchedule) {
   2803     resetSchedule();
   2804     initialFillReadyList(ReadyInsts);
   2805   }
   2806 
   2807   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
   2808                << BB->getName() << "\n");
   2809 
   2810   calculateDependencies(Bundle, true, SLP);
   2811 
   2812   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
   2813   // means that there are no cyclic dependencies and we can schedule it.
   2814   // Note that's important that we don't "schedule" the bundle yet (see
   2815   // cancelScheduling).
   2816   while (!Bundle->isReady() && !ReadyInsts.empty()) {
   2817 
   2818     ScheduleData *pickedSD = ReadyInsts.back();
   2819     ReadyInsts.pop_back();
   2820 
   2821     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
   2822       schedule(pickedSD, ReadyInsts);
   2823     }
   2824   }
   2825   if (!Bundle->isReady()) {
   2826     cancelScheduling(VL);
   2827     return false;
   2828   }
   2829   return true;
   2830 }
   2831 
   2832 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
   2833   if (isa<PHINode>(VL[0]))
   2834     return;
   2835 
   2836   ScheduleData *Bundle = getScheduleData(VL[0]);
   2837   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
   2838   assert(!Bundle->IsScheduled &&
   2839          "Can't cancel bundle which is already scheduled");
   2840   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
   2841          "tried to unbundle something which is not a bundle");
   2842 
   2843   // Un-bundle: make single instructions out of the bundle.
   2844   ScheduleData *BundleMember = Bundle;
   2845   while (BundleMember) {
   2846     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
   2847     BundleMember->FirstInBundle = BundleMember;
   2848     ScheduleData *Next = BundleMember->NextInBundle;
   2849     BundleMember->NextInBundle = nullptr;
   2850     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
   2851     if (BundleMember->UnscheduledDepsInBundle == 0) {
   2852       ReadyInsts.insert(BundleMember);
   2853     }
   2854     BundleMember = Next;
   2855   }
   2856 }
   2857 
   2858 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
   2859   if (getScheduleData(V))
   2860     return true;
   2861   Instruction *I = dyn_cast<Instruction>(V);
   2862   assert(I && "bundle member must be an instruction");
   2863   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
   2864   if (!ScheduleStart) {
   2865     // It's the first instruction in the new region.
   2866     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
   2867     ScheduleStart = I;
   2868     ScheduleEnd = I->getNextNode();
   2869     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
   2870     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
   2871     return true;
   2872   }
   2873   // Search up and down at the same time, because we don't know if the new
   2874   // instruction is above or below the existing scheduling region.
   2875   BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
   2876   BasicBlock::reverse_iterator UpperEnd = BB->rend();
   2877   BasicBlock::iterator DownIter(ScheduleEnd);
   2878   BasicBlock::iterator LowerEnd = BB->end();
   2879   for (;;) {
   2880     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
   2881       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
   2882       return false;
   2883     }
   2884 
   2885     if (UpIter != UpperEnd) {
   2886       if (&*UpIter == I) {
   2887         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
   2888         ScheduleStart = I;
   2889         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
   2890         return true;
   2891       }
   2892       UpIter++;
   2893     }
   2894     if (DownIter != LowerEnd) {
   2895       if (&*DownIter == I) {
   2896         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
   2897                          nullptr);
   2898         ScheduleEnd = I->getNextNode();
   2899         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
   2900         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
   2901         return true;
   2902       }
   2903       DownIter++;
   2904     }
   2905     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
   2906            "instruction not found in block");
   2907   }
   2908   return true;
   2909 }
   2910 
   2911 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
   2912                                                 Instruction *ToI,
   2913                                                 ScheduleData *PrevLoadStore,
   2914                                                 ScheduleData *NextLoadStore) {
   2915   ScheduleData *CurrentLoadStore = PrevLoadStore;
   2916   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
   2917     ScheduleData *SD = ScheduleDataMap[I];
   2918     if (!SD) {
   2919       // Allocate a new ScheduleData for the instruction.
   2920       if (ChunkPos >= ChunkSize) {
   2921         ScheduleDataChunks.push_back(
   2922             llvm::make_unique<ScheduleData[]>(ChunkSize));
   2923         ChunkPos = 0;
   2924       }
   2925       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
   2926       ScheduleDataMap[I] = SD;
   2927       SD->Inst = I;
   2928     }
   2929     assert(!isInSchedulingRegion(SD) &&
   2930            "new ScheduleData already in scheduling region");
   2931     SD->init(SchedulingRegionID);
   2932 
   2933     if (I->mayReadOrWriteMemory()) {
   2934       // Update the linked list of memory accessing instructions.
   2935       if (CurrentLoadStore) {
   2936         CurrentLoadStore->NextLoadStore = SD;
   2937       } else {
   2938         FirstLoadStoreInRegion = SD;
   2939       }
   2940       CurrentLoadStore = SD;
   2941     }
   2942   }
   2943   if (NextLoadStore) {
   2944     if (CurrentLoadStore)
   2945       CurrentLoadStore->NextLoadStore = NextLoadStore;
   2946   } else {
   2947     LastLoadStoreInRegion = CurrentLoadStore;
   2948   }
   2949 }
   2950 
   2951 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
   2952                                                      bool InsertInReadyList,
   2953                                                      BoUpSLP *SLP) {
   2954   assert(SD->isSchedulingEntity());
   2955 
   2956   SmallVector<ScheduleData *, 10> WorkList;
   2957   WorkList.push_back(SD);
   2958 
   2959   while (!WorkList.empty()) {
   2960     ScheduleData *SD = WorkList.back();
   2961     WorkList.pop_back();
   2962 
   2963     ScheduleData *BundleMember = SD;
   2964     while (BundleMember) {
   2965       assert(isInSchedulingRegion(BundleMember));
   2966       if (!BundleMember->hasValidDependencies()) {
   2967 
   2968         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
   2969         BundleMember->Dependencies = 0;
   2970         BundleMember->resetUnscheduledDeps();
   2971 
   2972         // Handle def-use chain dependencies.
   2973         for (User *U : BundleMember->Inst->users()) {
   2974           if (isa<Instruction>(U)) {
   2975             ScheduleData *UseSD = getScheduleData(U);
   2976             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
   2977               BundleMember->Dependencies++;
   2978               ScheduleData *DestBundle = UseSD->FirstInBundle;
   2979               if (!DestBundle->IsScheduled) {
   2980                 BundleMember->incrementUnscheduledDeps(1);
   2981               }
   2982               if (!DestBundle->hasValidDependencies()) {
   2983                 WorkList.push_back(DestBundle);
   2984               }
   2985             }
   2986           } else {
   2987             // I'm not sure if this can ever happen. But we need to be safe.
   2988             // This lets the instruction/bundle never be scheduled and
   2989             // eventually disable vectorization.
   2990             BundleMember->Dependencies++;
   2991             BundleMember->incrementUnscheduledDeps(1);
   2992           }
   2993         }
   2994 
   2995         // Handle the memory dependencies.
   2996         ScheduleData *DepDest = BundleMember->NextLoadStore;
   2997         if (DepDest) {
   2998           Instruction *SrcInst = BundleMember->Inst;
   2999           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
   3000           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
   3001           unsigned numAliased = 0;
   3002           unsigned DistToSrc = 1;
   3003 
   3004           while (DepDest) {
   3005             assert(isInSchedulingRegion(DepDest));
   3006 
   3007             // We have two limits to reduce the complexity:
   3008             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
   3009             //    SLP->isAliased (which is the expensive part in this loop).
   3010             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
   3011             //    the whole loop (even if the loop is fast, it's quadratic).
   3012             //    It's important for the loop break condition (see below) to
   3013             //    check this limit even between two read-only instructions.
   3014             if (DistToSrc >= MaxMemDepDistance ||
   3015                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
   3016                      (numAliased >= AliasedCheckLimit ||
   3017                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
   3018 
   3019               // We increment the counter only if the locations are aliased
   3020               // (instead of counting all alias checks). This gives a better
   3021               // balance between reduced runtime and accurate dependencies.
   3022               numAliased++;
   3023 
   3024               DepDest->MemoryDependencies.push_back(BundleMember);
   3025               BundleMember->Dependencies++;
   3026               ScheduleData *DestBundle = DepDest->FirstInBundle;
   3027               if (!DestBundle->IsScheduled) {
   3028                 BundleMember->incrementUnscheduledDeps(1);
   3029               }
   3030               if (!DestBundle->hasValidDependencies()) {
   3031                 WorkList.push_back(DestBundle);
   3032               }
   3033             }
   3034             DepDest = DepDest->NextLoadStore;
   3035 
   3036             // Example, explaining the loop break condition: Let's assume our
   3037             // starting instruction is i0 and MaxMemDepDistance = 3.
   3038             //
   3039             //                      +--------v--v--v
   3040             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
   3041             //             +--------^--^--^
   3042             //
   3043             // MaxMemDepDistance let us stop alias-checking at i3 and we add
   3044             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
   3045             // Previously we already added dependencies from i3 to i6,i7,i8
   3046             // (because of MaxMemDepDistance). As we added a dependency from
   3047             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
   3048             // and we can abort this loop at i6.
   3049             if (DistToSrc >= 2 * MaxMemDepDistance)
   3050                 break;
   3051             DistToSrc++;
   3052           }
   3053         }
   3054       }
   3055       BundleMember = BundleMember->NextInBundle;
   3056     }
   3057     if (InsertInReadyList && SD->isReady()) {
   3058       ReadyInsts.push_back(SD);
   3059       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
   3060     }
   3061   }
   3062 }
   3063 
   3064 void BoUpSLP::BlockScheduling::resetSchedule() {
   3065   assert(ScheduleStart &&
   3066          "tried to reset schedule on block which has not been scheduled");
   3067   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
   3068     ScheduleData *SD = getScheduleData(I);
   3069     assert(isInSchedulingRegion(SD));
   3070     SD->IsScheduled = false;
   3071     SD->resetUnscheduledDeps();
   3072   }
   3073   ReadyInsts.clear();
   3074 }
   3075 
   3076 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
   3077 
   3078   if (!BS->ScheduleStart)
   3079     return;
   3080 
   3081   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
   3082 
   3083   BS->resetSchedule();
   3084 
   3085   // For the real scheduling we use a more sophisticated ready-list: it is
   3086   // sorted by the original instruction location. This lets the final schedule
   3087   // be as  close as possible to the original instruction order.
   3088   struct ScheduleDataCompare {
   3089     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
   3090       return SD2->SchedulingPriority < SD1->SchedulingPriority;
   3091     }
   3092   };
   3093   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
   3094 
   3095   // Ensure that all dependency data is updated and fill the ready-list with
   3096   // initial instructions.
   3097   int Idx = 0;
   3098   int NumToSchedule = 0;
   3099   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
   3100        I = I->getNextNode()) {
   3101     ScheduleData *SD = BS->getScheduleData(I);
   3102     assert(
   3103         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
   3104         "scheduler and vectorizer have different opinion on what is a bundle");
   3105     SD->FirstInBundle->SchedulingPriority = Idx++;
   3106     if (SD->isSchedulingEntity()) {
   3107       BS->calculateDependencies(SD, false, this);
   3108       NumToSchedule++;
   3109     }
   3110   }
   3111   BS->initialFillReadyList(ReadyInsts);
   3112 
   3113   Instruction *LastScheduledInst = BS->ScheduleEnd;
   3114 
   3115   // Do the "real" scheduling.
   3116   while (!ReadyInsts.empty()) {
   3117     ScheduleData *picked = *ReadyInsts.begin();
   3118     ReadyInsts.erase(ReadyInsts.begin());
   3119 
   3120     // Move the scheduled instruction(s) to their dedicated places, if not
   3121     // there yet.
   3122     ScheduleData *BundleMember = picked;
   3123     while (BundleMember) {
   3124       Instruction *pickedInst = BundleMember->Inst;
   3125       if (LastScheduledInst->getNextNode() != pickedInst) {
   3126         BS->BB->getInstList().remove(pickedInst);
   3127         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
   3128                                      pickedInst);
   3129       }
   3130       LastScheduledInst = pickedInst;
   3131       BundleMember = BundleMember->NextInBundle;
   3132     }
   3133 
   3134     BS->schedule(picked, ReadyInsts);
   3135     NumToSchedule--;
   3136   }
   3137   assert(NumToSchedule == 0 && "could not schedule all instructions");
   3138 
   3139   // Avoid duplicate scheduling of the block.
   3140   BS->ScheduleStart = nullptr;
   3141 }
   3142 
   3143 /// The SLPVectorizer Pass.
   3144 struct SLPVectorizer : public FunctionPass {
   3145   typedef SmallVector<StoreInst *, 8> StoreList;
   3146   typedef MapVector<Value *, StoreList> StoreListMap;
   3147 
   3148   /// Pass identification, replacement for typeid
   3149   static char ID;
   3150 
   3151   explicit SLPVectorizer() : FunctionPass(ID) {
   3152     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
   3153   }
   3154 
   3155   ScalarEvolution *SE;
   3156   TargetTransformInfo *TTI;
   3157   TargetLibraryInfo *TLI;
   3158   AliasAnalysis *AA;
   3159   LoopInfo *LI;
   3160   DominatorTree *DT;
   3161   AssumptionCache *AC;
   3162 
   3163   bool runOnFunction(Function &F) override {
   3164     if (skipOptnoneFunction(F))
   3165       return false;
   3166 
   3167     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   3168     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   3169     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   3170     TLI = TLIP ? &TLIP->getTLI() : nullptr;
   3171     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   3172     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   3173     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   3174     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   3175 
   3176     StoreRefs.clear();
   3177     bool Changed = false;
   3178 
   3179     // If the target claims to have no vector registers don't attempt
   3180     // vectorization.
   3181     if (!TTI->getNumberOfRegisters(true))
   3182       return false;
   3183 
   3184     // Use the vector register size specified by the target unless overridden
   3185     // by a command-line option.
   3186     // TODO: It would be better to limit the vectorization factor based on
   3187     //       data type rather than just register size. For example, x86 AVX has
   3188     //       256-bit registers, but it does not support integer operations
   3189     //       at that width (that requires AVX2).
   3190     if (MaxVectorRegSizeOption.getNumOccurrences())
   3191       MaxVecRegSize = MaxVectorRegSizeOption;
   3192     else
   3193       MaxVecRegSize = TTI->getRegisterBitWidth(true);
   3194 
   3195     // Don't vectorize when the attribute NoImplicitFloat is used.
   3196     if (F.hasFnAttribute(Attribute::NoImplicitFloat))
   3197       return false;
   3198 
   3199     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
   3200 
   3201     // Use the bottom up slp vectorizer to construct chains that start with
   3202     // store instructions.
   3203     BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
   3204 
   3205     // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
   3206     // delete instructions.
   3207 
   3208     // Scan the blocks in the function in post order.
   3209     for (auto BB : post_order(&F.getEntryBlock())) {
   3210       // Vectorize trees that end at stores.
   3211       if (unsigned count = collectStores(BB, R)) {
   3212         (void)count;
   3213         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
   3214         Changed |= vectorizeStoreChains(R);
   3215       }
   3216 
   3217       // Vectorize trees that end at reductions.
   3218       Changed |= vectorizeChainsInBlock(BB, R);
   3219     }
   3220 
   3221     if (Changed) {
   3222       R.optimizeGatherSequence();
   3223       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
   3224       DEBUG(verifyFunction(F));
   3225     }
   3226     return Changed;
   3227   }
   3228 
   3229   void getAnalysisUsage(AnalysisUsage &AU) const override {
   3230     FunctionPass::getAnalysisUsage(AU);
   3231     AU.addRequired<AssumptionCacheTracker>();
   3232     AU.addRequired<ScalarEvolutionWrapperPass>();
   3233     AU.addRequired<AAResultsWrapperPass>();
   3234     AU.addRequired<TargetTransformInfoWrapperPass>();
   3235     AU.addRequired<LoopInfoWrapperPass>();
   3236     AU.addRequired<DominatorTreeWrapperPass>();
   3237     AU.addPreserved<LoopInfoWrapperPass>();
   3238     AU.addPreserved<DominatorTreeWrapperPass>();
   3239     AU.addPreserved<AAResultsWrapperPass>();
   3240     AU.addPreserved<GlobalsAAWrapperPass>();
   3241     AU.setPreservesCFG();
   3242   }
   3243 
   3244 private:
   3245 
   3246   /// \brief Collect memory references and sort them according to their base
   3247   /// object. We sort the stores to their base objects to reduce the cost of the
   3248   /// quadratic search on the stores. TODO: We can further reduce this cost
   3249   /// if we flush the chain creation every time we run into a memory barrier.
   3250   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
   3251 
   3252   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
   3253   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
   3254 
   3255   /// \brief Try to vectorize a list of operands.
   3256   /// \@param BuildVector A list of users to ignore for the purpose of
   3257   ///                     scheduling and that don't need extracting.
   3258   /// \returns true if a value was vectorized.
   3259   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
   3260                           ArrayRef<Value *> BuildVector = None,
   3261                           bool allowReorder = false);
   3262 
   3263   /// \brief Try to vectorize a chain that may start at the operands of \V;
   3264   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
   3265 
   3266   /// \brief Vectorize the stores that were collected in StoreRefs.
   3267   bool vectorizeStoreChains(BoUpSLP &R);
   3268 
   3269   /// \brief Scan the basic block and look for patterns that are likely to start
   3270   /// a vectorization chain.
   3271   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
   3272 
   3273   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
   3274                            BoUpSLP &R, unsigned VecRegSize);
   3275 
   3276   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
   3277                        BoUpSLP &R);
   3278 private:
   3279   StoreListMap StoreRefs;
   3280   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
   3281 };
   3282 
   3283 /// \brief Check that the Values in the slice in VL array are still existent in
   3284 /// the WeakVH array.
   3285 /// Vectorization of part of the VL array may cause later values in the VL array
   3286 /// to become invalid. We track when this has happened in the WeakVH array.
   3287 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
   3288                                unsigned SliceBegin, unsigned SliceSize) {
   3289   VL = VL.slice(SliceBegin, SliceSize);
   3290   VH = VH.slice(SliceBegin, SliceSize);
   3291   return !std::equal(VL.begin(), VL.end(), VH.begin());
   3292 }
   3293 
   3294 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
   3295                                         int CostThreshold, BoUpSLP &R,
   3296                                         unsigned VecRegSize) {
   3297   unsigned ChainLen = Chain.size();
   3298   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
   3299         << "\n");
   3300   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
   3301   auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
   3302   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
   3303   unsigned VF = VecRegSize / Sz;
   3304 
   3305   if (!isPowerOf2_32(Sz) || VF < 2)
   3306     return false;
   3307 
   3308   // Keep track of values that were deleted by vectorizing in the loop below.
   3309   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
   3310 
   3311   bool Changed = false;
   3312   // Look for profitable vectorizable trees at all offsets, starting at zero.
   3313   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
   3314     if (i + VF > e)
   3315       break;
   3316 
   3317     // Check that a previous iteration of this loop did not delete the Value.
   3318     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
   3319       continue;
   3320 
   3321     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
   3322           << "\n");
   3323     ArrayRef<Value *> Operands = Chain.slice(i, VF);
   3324 
   3325     R.buildTree(Operands);
   3326 
   3327     int Cost = R.getTreeCost();
   3328 
   3329     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
   3330     if (Cost < CostThreshold) {
   3331       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
   3332       R.vectorizeTree();
   3333 
   3334       // Move to the next bundle.
   3335       i += VF - 1;
   3336       Changed = true;
   3337     }
   3338   }
   3339 
   3340   return Changed;
   3341 }
   3342 
   3343 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
   3344                                     int costThreshold, BoUpSLP &R) {
   3345   SetVector<StoreInst *> Heads, Tails;
   3346   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
   3347 
   3348   // We may run into multiple chains that merge into a single chain. We mark the
   3349   // stores that we vectorized so that we don't visit the same store twice.
   3350   BoUpSLP::ValueSet VectorizedStores;
   3351   bool Changed = false;
   3352 
   3353   // Do a quadratic search on all of the given stores and find
   3354   // all of the pairs of stores that follow each other.
   3355   SmallVector<unsigned, 16> IndexQueue;
   3356   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
   3357     const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
   3358     IndexQueue.clear();
   3359     // If a store has multiple consecutive store candidates, search Stores
   3360     // array according to the sequence: from i+1 to e, then from i-1 to 0.
   3361     // This is because usually pairing with immediate succeeding or preceding
   3362     // candidate create the best chance to find slp vectorization opportunity.
   3363     unsigned j = 0;
   3364     for (j = i + 1; j < e; ++j)
   3365       IndexQueue.push_back(j);
   3366     for (j = i; j > 0; --j)
   3367       IndexQueue.push_back(j - 1);
   3368 
   3369     for (auto &k : IndexQueue) {
   3370       if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
   3371         Tails.insert(Stores[k]);
   3372         Heads.insert(Stores[i]);
   3373         ConsecutiveChain[Stores[i]] = Stores[k];
   3374         break;
   3375       }
   3376     }
   3377   }
   3378 
   3379   // For stores that start but don't end a link in the chain:
   3380   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
   3381        it != e; ++it) {
   3382     if (Tails.count(*it))
   3383       continue;
   3384 
   3385     // We found a store instr that starts a chain. Now follow the chain and try
   3386     // to vectorize it.
   3387     BoUpSLP::ValueList Operands;
   3388     StoreInst *I = *it;
   3389     // Collect the chain into a list.
   3390     while (Tails.count(I) || Heads.count(I)) {
   3391       if (VectorizedStores.count(I))
   3392         break;
   3393       Operands.push_back(I);
   3394       // Move to the next value in the chain.
   3395       I = ConsecutiveChain[I];
   3396     }
   3397 
   3398     // FIXME: Is division-by-2 the correct step? Should we assert that the
   3399     // register size is a power-of-2?
   3400     for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
   3401       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
   3402         // Mark the vectorized stores so that we don't vectorize them again.
   3403         VectorizedStores.insert(Operands.begin(), Operands.end());
   3404         Changed = true;
   3405         break;
   3406       }
   3407     }
   3408   }
   3409 
   3410   return Changed;
   3411 }
   3412 
   3413 
   3414 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
   3415   unsigned count = 0;
   3416   StoreRefs.clear();
   3417   const DataLayout &DL = BB->getModule()->getDataLayout();
   3418   for (Instruction &I : *BB) {
   3419     StoreInst *SI = dyn_cast<StoreInst>(&I);
   3420     if (!SI)
   3421       continue;
   3422 
   3423     // Don't touch volatile stores.
   3424     if (!SI->isSimple())
   3425       continue;
   3426 
   3427     // Check that the pointer points to scalars.
   3428     Type *Ty = SI->getValueOperand()->getType();
   3429     if (!isValidElementType(Ty))
   3430       continue;
   3431 
   3432     // Find the base pointer.
   3433     Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
   3434 
   3435     // Save the store locations.
   3436     StoreRefs[Ptr].push_back(SI);
   3437     count++;
   3438   }
   3439   return count;
   3440 }
   3441 
   3442 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
   3443   if (!A || !B)
   3444     return false;
   3445   Value *VL[] = { A, B };
   3446   return tryToVectorizeList(VL, R, None, true);
   3447 }
   3448 
   3449 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
   3450                                        ArrayRef<Value *> BuildVector,
   3451                                        bool allowReorder) {
   3452   if (VL.size() < 2)
   3453     return false;
   3454 
   3455   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
   3456 
   3457   // Check that all of the parts are scalar instructions of the same type.
   3458   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
   3459   if (!I0)
   3460     return false;
   3461 
   3462   unsigned Opcode0 = I0->getOpcode();
   3463   const DataLayout &DL = I0->getModule()->getDataLayout();
   3464 
   3465   Type *Ty0 = I0->getType();
   3466   unsigned Sz = DL.getTypeSizeInBits(Ty0);
   3467   // FIXME: Register size should be a parameter to this function, so we can
   3468   // try different vectorization factors.
   3469   unsigned VF = MinVecRegSize / Sz;
   3470 
   3471   for (Value *V : VL) {
   3472     Type *Ty = V->getType();
   3473     if (!isValidElementType(Ty))
   3474       return false;
   3475     Instruction *Inst = dyn_cast<Instruction>(V);
   3476     if (!Inst || Inst->getOpcode() != Opcode0)
   3477       return false;
   3478   }
   3479 
   3480   bool Changed = false;
   3481 
   3482   // Keep track of values that were deleted by vectorizing in the loop below.
   3483   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
   3484 
   3485   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
   3486     unsigned OpsWidth = 0;
   3487 
   3488     if (i + VF > e)
   3489       OpsWidth = e - i;
   3490     else
   3491       OpsWidth = VF;
   3492 
   3493     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
   3494       break;
   3495 
   3496     // Check that a previous iteration of this loop did not delete the Value.
   3497     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
   3498       continue;
   3499 
   3500     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
   3501                  << "\n");
   3502     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
   3503 
   3504     ArrayRef<Value *> BuildVectorSlice;
   3505     if (!BuildVector.empty())
   3506       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
   3507 
   3508     R.buildTree(Ops, BuildVectorSlice);
   3509     // TODO: check if we can allow reordering also for other cases than
   3510     // tryToVectorizePair()
   3511     if (allowReorder && R.shouldReorder()) {
   3512       assert(Ops.size() == 2);
   3513       assert(BuildVectorSlice.empty());
   3514       Value *ReorderedOps[] = { Ops[1], Ops[0] };
   3515       R.buildTree(ReorderedOps, None);
   3516     }
   3517     int Cost = R.getTreeCost();
   3518 
   3519     if (Cost < -SLPCostThreshold) {
   3520       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
   3521       Value *VectorizedRoot = R.vectorizeTree();
   3522 
   3523       // Reconstruct the build vector by extracting the vectorized root. This
   3524       // way we handle the case where some elements of the vector are undefined.
   3525       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
   3526       if (!BuildVectorSlice.empty()) {
   3527         // The insert point is the last build vector instruction. The vectorized
   3528         // root will precede it. This guarantees that we get an instruction. The
   3529         // vectorized tree could have been constant folded.
   3530         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
   3531         unsigned VecIdx = 0;
   3532         for (auto &V : BuildVectorSlice) {
   3533           IRBuilder<true, NoFolder> Builder(
   3534               InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter));
   3535           InsertElementInst *IE = cast<InsertElementInst>(V);
   3536           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
   3537               VectorizedRoot, Builder.getInt32(VecIdx++)));
   3538           IE->setOperand(1, Extract);
   3539           IE->removeFromParent();
   3540           IE->insertAfter(Extract);
   3541           InsertAfter = IE;
   3542         }
   3543       }
   3544       // Move to the next bundle.
   3545       i += VF - 1;
   3546       Changed = true;
   3547     }
   3548   }
   3549 
   3550   return Changed;
   3551 }
   3552 
   3553 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
   3554   if (!V)
   3555     return false;
   3556 
   3557   // Try to vectorize V.
   3558   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
   3559     return true;
   3560 
   3561   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
   3562   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
   3563   // Try to skip B.
   3564   if (B && B->hasOneUse()) {
   3565     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
   3566     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
   3567     if (tryToVectorizePair(A, B0, R)) {
   3568       return true;
   3569     }
   3570     if (tryToVectorizePair(A, B1, R)) {
   3571       return true;
   3572     }
   3573   }
   3574 
   3575   // Try to skip A.
   3576   if (A && A->hasOneUse()) {
   3577     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
   3578     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
   3579     if (tryToVectorizePair(A0, B, R)) {
   3580       return true;
   3581     }
   3582     if (tryToVectorizePair(A1, B, R)) {
   3583       return true;
   3584     }
   3585   }
   3586   return 0;
   3587 }
   3588 
   3589 /// \brief Generate a shuffle mask to be used in a reduction tree.
   3590 ///
   3591 /// \param VecLen The length of the vector to be reduced.
   3592 /// \param NumEltsToRdx The number of elements that should be reduced in the
   3593 ///        vector.
   3594 /// \param IsPairwise Whether the reduction is a pairwise or splitting
   3595 ///        reduction. A pairwise reduction will generate a mask of
   3596 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
   3597 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
   3598 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
   3599 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
   3600                                    bool IsPairwise, bool IsLeft,
   3601                                    IRBuilder<> &Builder) {
   3602   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
   3603 
   3604   SmallVector<Constant *, 32> ShuffleMask(
   3605       VecLen, UndefValue::get(Builder.getInt32Ty()));
   3606 
   3607   if (IsPairwise)
   3608     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
   3609     for (unsigned i = 0; i != NumEltsToRdx; ++i)
   3610       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
   3611   else
   3612     // Move the upper half of the vector to the lower half.
   3613     for (unsigned i = 0; i != NumEltsToRdx; ++i)
   3614       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
   3615 
   3616   return ConstantVector::get(ShuffleMask);
   3617 }
   3618 
   3619 
   3620 /// Model horizontal reductions.
   3621 ///
   3622 /// A horizontal reduction is a tree of reduction operations (currently add and
   3623 /// fadd) that has operations that can be put into a vector as its leaf.
   3624 /// For example, this tree:
   3625 ///
   3626 /// mul mul mul mul
   3627 ///  \  /    \  /
   3628 ///   +       +
   3629 ///    \     /
   3630 ///       +
   3631 /// This tree has "mul" as its reduced values and "+" as its reduction
   3632 /// operations. A reduction might be feeding into a store or a binary operation
   3633 /// feeding a phi.
   3634 ///    ...
   3635 ///    \  /
   3636 ///     +
   3637 ///     |
   3638 ///  phi +=
   3639 ///
   3640 ///  Or:
   3641 ///    ...
   3642 ///    \  /
   3643 ///     +
   3644 ///     |
   3645 ///   *p =
   3646 ///
   3647 class HorizontalReduction {
   3648   SmallVector<Value *, 16> ReductionOps;
   3649   SmallVector<Value *, 32> ReducedVals;
   3650 
   3651   BinaryOperator *ReductionRoot;
   3652   PHINode *ReductionPHI;
   3653 
   3654   /// The opcode of the reduction.
   3655   unsigned ReductionOpcode;
   3656   /// The opcode of the values we perform a reduction on.
   3657   unsigned ReducedValueOpcode;
   3658   /// Should we model this reduction as a pairwise reduction tree or a tree that
   3659   /// splits the vector in halves and adds those halves.
   3660   bool IsPairwiseReduction;
   3661 
   3662 public:
   3663   /// The width of one full horizontal reduction operation.
   3664   unsigned ReduxWidth;
   3665 
   3666   HorizontalReduction()
   3667     : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
   3668     ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {}
   3669 
   3670   /// \brief Try to find a reduction tree.
   3671   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
   3672     assert((!Phi ||
   3673             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
   3674            "Thi phi needs to use the binary operator");
   3675 
   3676     // We could have a initial reductions that is not an add.
   3677     //  r *= v1 + v2 + v3 + v4
   3678     // In such a case start looking for a tree rooted in the first '+'.
   3679     if (Phi) {
   3680       if (B->getOperand(0) == Phi) {
   3681         Phi = nullptr;
   3682         B = dyn_cast<BinaryOperator>(B->getOperand(1));
   3683       } else if (B->getOperand(1) == Phi) {
   3684         Phi = nullptr;
   3685         B = dyn_cast<BinaryOperator>(B->getOperand(0));
   3686       }
   3687     }
   3688 
   3689     if (!B)
   3690       return false;
   3691 
   3692     Type *Ty = B->getType();
   3693     if (!isValidElementType(Ty))
   3694       return false;
   3695 
   3696     const DataLayout &DL = B->getModule()->getDataLayout();
   3697     ReductionOpcode = B->getOpcode();
   3698     ReducedValueOpcode = 0;
   3699     // FIXME: Register size should be a parameter to this function, so we can
   3700     // try different vectorization factors.
   3701     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
   3702     ReductionRoot = B;
   3703     ReductionPHI = Phi;
   3704 
   3705     if (ReduxWidth < 4)
   3706       return false;
   3707 
   3708     // We currently only support adds.
   3709     if (ReductionOpcode != Instruction::Add &&
   3710         ReductionOpcode != Instruction::FAdd)
   3711       return false;
   3712 
   3713     // Post order traverse the reduction tree starting at B. We only handle true
   3714     // trees containing only binary operators or selects.
   3715     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
   3716     Stack.push_back(std::make_pair(B, 0));
   3717     while (!Stack.empty()) {
   3718       Instruction *TreeN = Stack.back().first;
   3719       unsigned EdgeToVist = Stack.back().second++;
   3720       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
   3721 
   3722       // Only handle trees in the current basic block.
   3723       if (TreeN->getParent() != B->getParent())
   3724         return false;
   3725 
   3726       // Each tree node needs to have one user except for the ultimate
   3727       // reduction.
   3728       if (!TreeN->hasOneUse() && TreeN != B)
   3729         return false;
   3730 
   3731       // Postorder vist.
   3732       if (EdgeToVist == 2 || IsReducedValue) {
   3733         if (IsReducedValue) {
   3734           // Make sure that the opcodes of the operations that we are going to
   3735           // reduce match.
   3736           if (!ReducedValueOpcode)
   3737             ReducedValueOpcode = TreeN->getOpcode();
   3738           else if (ReducedValueOpcode != TreeN->getOpcode())
   3739             return false;
   3740           ReducedVals.push_back(TreeN);
   3741         } else {
   3742           // We need to be able to reassociate the adds.
   3743           if (!TreeN->isAssociative())
   3744             return false;
   3745           ReductionOps.push_back(TreeN);
   3746         }
   3747         // Retract.
   3748         Stack.pop_back();
   3749         continue;
   3750       }
   3751 
   3752       // Visit left or right.
   3753       Value *NextV = TreeN->getOperand(EdgeToVist);
   3754       // We currently only allow BinaryOperator's and SelectInst's as reduction
   3755       // values in our tree.
   3756       if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
   3757         Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
   3758       else if (NextV != Phi)
   3759         return false;
   3760     }
   3761     return true;
   3762   }
   3763 
   3764   /// \brief Attempt to vectorize the tree found by
   3765   /// matchAssociativeReduction.
   3766   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
   3767     if (ReducedVals.empty())
   3768       return false;
   3769 
   3770     unsigned NumReducedVals = ReducedVals.size();
   3771     if (NumReducedVals < ReduxWidth)
   3772       return false;
   3773 
   3774     Value *VectorizedTree = nullptr;
   3775     IRBuilder<> Builder(ReductionRoot);
   3776     FastMathFlags Unsafe;
   3777     Unsafe.setUnsafeAlgebra();
   3778     Builder.SetFastMathFlags(Unsafe);
   3779     unsigned i = 0;
   3780 
   3781     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
   3782       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
   3783 
   3784       // Estimate cost.
   3785       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
   3786       if (Cost >= -SLPCostThreshold)
   3787         break;
   3788 
   3789       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
   3790                    << ". (HorRdx)\n");
   3791 
   3792       // Vectorize a tree.
   3793       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
   3794       Value *VectorizedRoot = V.vectorizeTree();
   3795 
   3796       // Emit a reduction.
   3797       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
   3798       if (VectorizedTree) {
   3799         Builder.SetCurrentDebugLocation(Loc);
   3800         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
   3801                                      ReducedSubTree, "bin.rdx");
   3802       } else
   3803         VectorizedTree = ReducedSubTree;
   3804     }
   3805 
   3806     if (VectorizedTree) {
   3807       // Finish the reduction.
   3808       for (; i < NumReducedVals; ++i) {
   3809         Builder.SetCurrentDebugLocation(
   3810           cast<Instruction>(ReducedVals[i])->getDebugLoc());
   3811         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
   3812                                      ReducedVals[i]);
   3813       }
   3814       // Update users.
   3815       if (ReductionPHI) {
   3816         assert(ReductionRoot && "Need a reduction operation");
   3817         ReductionRoot->setOperand(0, VectorizedTree);
   3818         ReductionRoot->setOperand(1, ReductionPHI);
   3819       } else
   3820         ReductionRoot->replaceAllUsesWith(VectorizedTree);
   3821     }
   3822     return VectorizedTree != nullptr;
   3823   }
   3824 
   3825   unsigned numReductionValues() const {
   3826     return ReducedVals.size();
   3827   }
   3828 
   3829 private:
   3830   /// \brief Calculate the cost of a reduction.
   3831   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
   3832     Type *ScalarTy = FirstReducedVal->getType();
   3833     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
   3834 
   3835     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
   3836     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
   3837 
   3838     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
   3839     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
   3840 
   3841     int ScalarReduxCost =
   3842         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
   3843 
   3844     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
   3845                  << " for reduction that starts with " << *FirstReducedVal
   3846                  << " (It is a "
   3847                  << (IsPairwiseReduction ? "pairwise" : "splitting")
   3848                  << " reduction)\n");
   3849 
   3850     return VecReduxCost - ScalarReduxCost;
   3851   }
   3852 
   3853   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
   3854                             Value *R, const Twine &Name = "") {
   3855     if (Opcode == Instruction::FAdd)
   3856       return Builder.CreateFAdd(L, R, Name);
   3857     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
   3858   }
   3859 
   3860   /// \brief Emit a horizontal reduction of the vectorized value.
   3861   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
   3862     assert(VectorizedValue && "Need to have a vectorized tree node");
   3863     assert(isPowerOf2_32(ReduxWidth) &&
   3864            "We only handle power-of-two reductions for now");
   3865 
   3866     Value *TmpVec = VectorizedValue;
   3867     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
   3868       if (IsPairwiseReduction) {
   3869         Value *LeftMask =
   3870           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
   3871         Value *RightMask =
   3872           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
   3873 
   3874         Value *LeftShuf = Builder.CreateShuffleVector(
   3875           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
   3876         Value *RightShuf = Builder.CreateShuffleVector(
   3877           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
   3878           "rdx.shuf.r");
   3879         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
   3880                              "bin.rdx");
   3881       } else {
   3882         Value *UpperHalf =
   3883           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
   3884         Value *Shuf = Builder.CreateShuffleVector(
   3885           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
   3886         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
   3887       }
   3888     }
   3889 
   3890     // The result is in the first element of the vector.
   3891     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
   3892   }
   3893 };
   3894 
   3895 /// \brief Recognize construction of vectors like
   3896 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
   3897 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
   3898 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
   3899 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
   3900 ///
   3901 /// Returns true if it matches
   3902 ///
   3903 static bool findBuildVector(InsertElementInst *FirstInsertElem,
   3904                             SmallVectorImpl<Value *> &BuildVector,
   3905                             SmallVectorImpl<Value *> &BuildVectorOpds) {
   3906   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
   3907     return false;
   3908 
   3909   InsertElementInst *IE = FirstInsertElem;
   3910   while (true) {
   3911     BuildVector.push_back(IE);
   3912     BuildVectorOpds.push_back(IE->getOperand(1));
   3913 
   3914     if (IE->use_empty())
   3915       return false;
   3916 
   3917     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
   3918     if (!NextUse)
   3919       return true;
   3920 
   3921     // If this isn't the final use, make sure the next insertelement is the only
   3922     // use. It's OK if the final constructed vector is used multiple times
   3923     if (!IE->hasOneUse())
   3924       return false;
   3925 
   3926     IE = NextUse;
   3927   }
   3928 
   3929   return false;
   3930 }
   3931 
   3932 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
   3933   return V->getType() < V2->getType();
   3934 }
   3935 
   3936 /// \brief Try and get a reduction value from a phi node.
   3937 ///
   3938 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
   3939 /// if they come from either \p ParentBB or a containing loop latch.
   3940 ///
   3941 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
   3942 /// if not possible.
   3943 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
   3944                                 BasicBlock *ParentBB, LoopInfo *LI) {
   3945   // There are situations where the reduction value is not dominated by the
   3946   // reduction phi. Vectorizing such cases has been reported to cause
   3947   // miscompiles. See PR25787.
   3948   auto DominatedReduxValue = [&](Value *R) {
   3949     return (
   3950         dyn_cast<Instruction>(R) &&
   3951         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
   3952   };
   3953 
   3954   Value *Rdx = nullptr;
   3955 
   3956   // Return the incoming value if it comes from the same BB as the phi node.
   3957   if (P->getIncomingBlock(0) == ParentBB) {
   3958     Rdx = P->getIncomingValue(0);
   3959   } else if (P->getIncomingBlock(1) == ParentBB) {
   3960     Rdx = P->getIncomingValue(1);
   3961   }
   3962 
   3963   if (Rdx && DominatedReduxValue(Rdx))
   3964     return Rdx;
   3965 
   3966   // Otherwise, check whether we have a loop latch to look at.
   3967   Loop *BBL = LI->getLoopFor(ParentBB);
   3968   if (!BBL)
   3969     return nullptr;
   3970   BasicBlock *BBLatch = BBL->getLoopLatch();
   3971   if (!BBLatch)
   3972     return nullptr;
   3973 
   3974   // There is a loop latch, return the incoming value if it comes from
   3975   // that. This reduction pattern occassionaly turns up.
   3976   if (P->getIncomingBlock(0) == BBLatch) {
   3977     Rdx = P->getIncomingValue(0);
   3978   } else if (P->getIncomingBlock(1) == BBLatch) {
   3979     Rdx = P->getIncomingValue(1);
   3980   }
   3981 
   3982   if (Rdx && DominatedReduxValue(Rdx))
   3983     return Rdx;
   3984 
   3985   return nullptr;
   3986 }
   3987 
   3988 /// \brief Attempt to reduce a horizontal reduction.
   3989 /// If it is legal to match a horizontal reduction feeding
   3990 /// the phi node P with reduction operators BI, then check if it
   3991 /// can be done.
   3992 /// \returns true if a horizontal reduction was matched and reduced.
   3993 /// \returns false if a horizontal reduction was not matched.
   3994 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
   3995                                         BoUpSLP &R, TargetTransformInfo *TTI) {
   3996   if (!ShouldVectorizeHor)
   3997     return false;
   3998 
   3999   HorizontalReduction HorRdx;
   4000   if (!HorRdx.matchAssociativeReduction(P, BI))
   4001     return false;
   4002 
   4003   // If there is a sufficient number of reduction values, reduce
   4004   // to a nearby power-of-2. Can safely generate oversized
   4005   // vectors and rely on the backend to split them to legal sizes.
   4006   HorRdx.ReduxWidth =
   4007     std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
   4008 
   4009   return HorRdx.tryToReduce(R, TTI);
   4010 }
   4011 
   4012 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
   4013   bool Changed = false;
   4014   SmallVector<Value *, 4> Incoming;
   4015   SmallSet<Value *, 16> VisitedInstrs;
   4016 
   4017   bool HaveVectorizedPhiNodes = true;
   4018   while (HaveVectorizedPhiNodes) {
   4019     HaveVectorizedPhiNodes = false;
   4020 
   4021     // Collect the incoming values from the PHIs.
   4022     Incoming.clear();
   4023     for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
   4024          ++instr) {
   4025       PHINode *P = dyn_cast<PHINode>(instr);
   4026       if (!P)
   4027         break;
   4028 
   4029       if (!VisitedInstrs.count(P))
   4030         Incoming.push_back(P);
   4031     }
   4032 
   4033     // Sort by type.
   4034     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
   4035 
   4036     // Try to vectorize elements base on their type.
   4037     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
   4038                                            E = Incoming.end();
   4039          IncIt != E;) {
   4040 
   4041       // Look for the next elements with the same type.
   4042       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
   4043       while (SameTypeIt != E &&
   4044              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
   4045         VisitedInstrs.insert(*SameTypeIt);
   4046         ++SameTypeIt;
   4047       }
   4048 
   4049       // Try to vectorize them.
   4050       unsigned NumElts = (SameTypeIt - IncIt);
   4051       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
   4052       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
   4053         // Success start over because instructions might have been changed.
   4054         HaveVectorizedPhiNodes = true;
   4055         Changed = true;
   4056         break;
   4057       }
   4058 
   4059       // Start over at the next instruction of a different type (or the end).
   4060       IncIt = SameTypeIt;
   4061     }
   4062   }
   4063 
   4064   VisitedInstrs.clear();
   4065 
   4066   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
   4067     // We may go through BB multiple times so skip the one we have checked.
   4068     if (!VisitedInstrs.insert(&*it).second)
   4069       continue;
   4070 
   4071     if (isa<DbgInfoIntrinsic>(it))
   4072       continue;
   4073 
   4074     // Try to vectorize reductions that use PHINodes.
   4075     if (PHINode *P = dyn_cast<PHINode>(it)) {
   4076       // Check that the PHI is a reduction PHI.
   4077       if (P->getNumIncomingValues() != 2)
   4078         return Changed;
   4079 
   4080       Value *Rdx = getReductionValue(DT, P, BB, LI);
   4081 
   4082       // Check if this is a Binary Operator.
   4083       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
   4084       if (!BI)
   4085         continue;
   4086 
   4087       // Try to match and vectorize a horizontal reduction.
   4088       if (canMatchHorizontalReduction(P, BI, R, TTI)) {
   4089         Changed = true;
   4090         it = BB->begin();
   4091         e = BB->end();
   4092         continue;
   4093       }
   4094 
   4095      Value *Inst = BI->getOperand(0);
   4096       if (Inst == P)
   4097         Inst = BI->getOperand(1);
   4098 
   4099       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
   4100         // We would like to start over since some instructions are deleted
   4101         // and the iterator may become invalid value.
   4102         Changed = true;
   4103         it = BB->begin();
   4104         e = BB->end();
   4105         continue;
   4106       }
   4107 
   4108       continue;
   4109     }
   4110 
   4111     if (ShouldStartVectorizeHorAtStore)
   4112       if (StoreInst *SI = dyn_cast<StoreInst>(it))
   4113         if (BinaryOperator *BinOp =
   4114                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
   4115           if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) ||
   4116               tryToVectorize(BinOp, R)) {
   4117             Changed = true;
   4118             it = BB->begin();
   4119             e = BB->end();
   4120             continue;
   4121           }
   4122         }
   4123 
   4124     // Try to vectorize horizontal reductions feeding into a return.
   4125     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
   4126       if (RI->getNumOperands() != 0)
   4127         if (BinaryOperator *BinOp =
   4128                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
   4129           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
   4130           if (tryToVectorizePair(BinOp->getOperand(0),
   4131                                  BinOp->getOperand(1), R)) {
   4132             Changed = true;
   4133             it = BB->begin();
   4134             e = BB->end();
   4135             continue;
   4136           }
   4137         }
   4138 
   4139     // Try to vectorize trees that start at compare instructions.
   4140     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
   4141       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
   4142         Changed = true;
   4143         // We would like to start over since some instructions are deleted
   4144         // and the iterator may become invalid value.
   4145         it = BB->begin();
   4146         e = BB->end();
   4147         continue;
   4148       }
   4149 
   4150       for (int i = 0; i < 2; ++i) {
   4151         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
   4152           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
   4153             Changed = true;
   4154             // We would like to start over since some instructions are deleted
   4155             // and the iterator may become invalid value.
   4156             it = BB->begin();
   4157             e = BB->end();
   4158             break;
   4159           }
   4160         }
   4161       }
   4162       continue;
   4163     }
   4164 
   4165     // Try to vectorize trees that start at insertelement instructions.
   4166     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
   4167       SmallVector<Value *, 16> BuildVector;
   4168       SmallVector<Value *, 16> BuildVectorOpds;
   4169       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
   4170         continue;
   4171 
   4172       // Vectorize starting with the build vector operands ignoring the
   4173       // BuildVector instructions for the purpose of scheduling and user
   4174       // extraction.
   4175       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
   4176         Changed = true;
   4177         it = BB->begin();
   4178         e = BB->end();
   4179       }
   4180 
   4181       continue;
   4182     }
   4183   }
   4184 
   4185   return Changed;
   4186 }
   4187 
   4188 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
   4189   bool Changed = false;
   4190   // Attempt to sort and vectorize each of the store-groups.
   4191   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
   4192        it != e; ++it) {
   4193     if (it->second.size() < 2)
   4194       continue;
   4195 
   4196     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
   4197           << it->second.size() << ".\n");
   4198 
   4199     // Process the stores in chunks of 16.
   4200     // TODO: The limit of 16 inhibits greater vectorization factors.
   4201     //       For example, AVX2 supports v32i8. Increasing this limit, however,
   4202     //       may cause a significant compile-time increase.
   4203     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
   4204       unsigned Len = std::min<unsigned>(CE - CI, 16);
   4205       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
   4206                                  -SLPCostThreshold, R);
   4207     }
   4208   }
   4209   return Changed;
   4210 }
   4211 
   4212 } // end anonymous namespace
   4213 
   4214 char SLPVectorizer::ID = 0;
   4215 static const char lv_name[] = "SLP Vectorizer";
   4216 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
   4217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   4218 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   4219 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   4220 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
   4221 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4222 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
   4223 
   4224 namespace llvm {
   4225 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
   4226 }
   4227