1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <assert.h> 18 #include <dirent.h> 19 #include <errno.h> 20 #include <fcntl.h> 21 #include <inttypes.h> 22 #include <memory.h> 23 #include <stdint.h> 24 #include <stdio.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <sys/epoll.h> 28 #include <sys/limits.h> 29 #include <sys/inotify.h> 30 #include <sys/ioctl.h> 31 #include <sys/utsname.h> 32 #include <unistd.h> 33 34 #define LOG_TAG "EventHub" 35 36 // #define LOG_NDEBUG 0 37 38 #include "EventHub.h" 39 40 #include <hardware_legacy/power.h> 41 42 #include <cutils/properties.h> 43 #include <openssl/sha.h> 44 #include <utils/Log.h> 45 #include <utils/Timers.h> 46 #include <utils/threads.h> 47 #include <utils/Errors.h> 48 49 #include <input/KeyLayoutMap.h> 50 #include <input/KeyCharacterMap.h> 51 #include <input/VirtualKeyMap.h> 52 53 /* this macro is used to tell if "bit" is set in "array" 54 * it selects a byte from the array, and does a boolean AND 55 * operation with a byte that only has the relevant bit set. 56 * eg. to check for the 12th bit, we do (array[1] & 1<<4) 57 */ 58 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) 59 60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */ 61 #define sizeof_bit_array(bits) ((bits + 7) / 8) 62 63 #define INDENT " " 64 #define INDENT2 " " 65 #define INDENT3 " " 66 67 namespace android { 68 69 static const char *WAKE_LOCK_ID = "KeyEvents"; 70 static const char *DEVICE_PATH = "/dev/input"; 71 72 /* return the larger integer */ 73 static inline int max(int v1, int v2) 74 { 75 return (v1 > v2) ? v1 : v2; 76 } 77 78 static inline const char* toString(bool value) { 79 return value ? "true" : "false"; 80 } 81 82 static String8 sha1(const String8& in) { 83 SHA_CTX ctx; 84 SHA1_Init(&ctx); 85 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size()); 86 u_char digest[SHA_DIGEST_LENGTH]; 87 SHA1_Final(digest, &ctx); 88 89 String8 out; 90 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) { 91 out.appendFormat("%02x", digest[i]); 92 } 93 return out; 94 } 95 96 static void getLinuxRelease(int* major, int* minor) { 97 struct utsname info; 98 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { 99 *major = 0, *minor = 0; 100 ALOGE("Could not get linux version: %s", strerror(errno)); 101 } 102 } 103 104 // --- Global Functions --- 105 106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { 107 // Touch devices get dibs on touch-related axes. 108 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { 109 switch (axis) { 110 case ABS_X: 111 case ABS_Y: 112 case ABS_PRESSURE: 113 case ABS_TOOL_WIDTH: 114 case ABS_DISTANCE: 115 case ABS_TILT_X: 116 case ABS_TILT_Y: 117 case ABS_MT_SLOT: 118 case ABS_MT_TOUCH_MAJOR: 119 case ABS_MT_TOUCH_MINOR: 120 case ABS_MT_WIDTH_MAJOR: 121 case ABS_MT_WIDTH_MINOR: 122 case ABS_MT_ORIENTATION: 123 case ABS_MT_POSITION_X: 124 case ABS_MT_POSITION_Y: 125 case ABS_MT_TOOL_TYPE: 126 case ABS_MT_BLOB_ID: 127 case ABS_MT_TRACKING_ID: 128 case ABS_MT_PRESSURE: 129 case ABS_MT_DISTANCE: 130 return INPUT_DEVICE_CLASS_TOUCH; 131 } 132 } 133 134 // External stylus gets the pressure axis 135 if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { 136 if (axis == ABS_PRESSURE) { 137 return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS; 138 } 139 } 140 141 // Joystick devices get the rest. 142 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; 143 } 144 145 // --- EventHub::Device --- 146 147 EventHub::Device::Device(int fd, int32_t id, const String8& path, 148 const InputDeviceIdentifier& identifier) : 149 next(NULL), 150 fd(fd), id(id), path(path), identifier(identifier), 151 classes(0), configuration(NULL), virtualKeyMap(NULL), 152 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), 153 timestampOverrideSec(0), timestampOverrideUsec(0) { 154 memset(keyBitmask, 0, sizeof(keyBitmask)); 155 memset(absBitmask, 0, sizeof(absBitmask)); 156 memset(relBitmask, 0, sizeof(relBitmask)); 157 memset(swBitmask, 0, sizeof(swBitmask)); 158 memset(ledBitmask, 0, sizeof(ledBitmask)); 159 memset(ffBitmask, 0, sizeof(ffBitmask)); 160 memset(propBitmask, 0, sizeof(propBitmask)); 161 } 162 163 EventHub::Device::~Device() { 164 close(); 165 delete configuration; 166 delete virtualKeyMap; 167 } 168 169 void EventHub::Device::close() { 170 if (fd >= 0) { 171 ::close(fd); 172 fd = -1; 173 } 174 } 175 176 177 // --- EventHub --- 178 179 const uint32_t EventHub::EPOLL_ID_INOTIFY; 180 const uint32_t EventHub::EPOLL_ID_WAKE; 181 const int EventHub::EPOLL_SIZE_HINT; 182 const int EventHub::EPOLL_MAX_EVENTS; 183 184 EventHub::EventHub(void) : 185 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), 186 mOpeningDevices(0), mClosingDevices(0), 187 mNeedToSendFinishedDeviceScan(false), 188 mNeedToReopenDevices(false), mNeedToScanDevices(true), 189 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { 190 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 191 192 mEpollFd = epoll_create(EPOLL_SIZE_HINT); 193 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); 194 195 mINotifyFd = inotify_init(); 196 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); 197 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", 198 DEVICE_PATH, errno); 199 200 struct epoll_event eventItem; 201 memset(&eventItem, 0, sizeof(eventItem)); 202 eventItem.events = EPOLLIN; 203 eventItem.data.u32 = EPOLL_ID_INOTIFY; 204 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); 205 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); 206 207 int wakeFds[2]; 208 result = pipe(wakeFds); 209 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); 210 211 mWakeReadPipeFd = wakeFds[0]; 212 mWakeWritePipeFd = wakeFds[1]; 213 214 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); 215 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", 216 errno); 217 218 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); 219 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", 220 errno); 221 222 eventItem.data.u32 = EPOLL_ID_WAKE; 223 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); 224 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", 225 errno); 226 227 int major, minor; 228 getLinuxRelease(&major, &minor); 229 // EPOLLWAKEUP was introduced in kernel 3.5 230 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5); 231 } 232 233 EventHub::~EventHub(void) { 234 closeAllDevicesLocked(); 235 236 while (mClosingDevices) { 237 Device* device = mClosingDevices; 238 mClosingDevices = device->next; 239 delete device; 240 } 241 242 ::close(mEpollFd); 243 ::close(mINotifyFd); 244 ::close(mWakeReadPipeFd); 245 ::close(mWakeWritePipeFd); 246 247 release_wake_lock(WAKE_LOCK_ID); 248 } 249 250 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { 251 AutoMutex _l(mLock); 252 Device* device = getDeviceLocked(deviceId); 253 if (device == NULL) return InputDeviceIdentifier(); 254 return device->identifier; 255 } 256 257 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { 258 AutoMutex _l(mLock); 259 Device* device = getDeviceLocked(deviceId); 260 if (device == NULL) return 0; 261 return device->classes; 262 } 263 264 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { 265 AutoMutex _l(mLock); 266 Device* device = getDeviceLocked(deviceId); 267 if (device == NULL) return 0; 268 return device->controllerNumber; 269 } 270 271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { 272 AutoMutex _l(mLock); 273 Device* device = getDeviceLocked(deviceId); 274 if (device && device->configuration) { 275 *outConfiguration = *device->configuration; 276 } else { 277 outConfiguration->clear(); 278 } 279 } 280 281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, 282 RawAbsoluteAxisInfo* outAxisInfo) const { 283 outAxisInfo->clear(); 284 285 if (axis >= 0 && axis <= ABS_MAX) { 286 AutoMutex _l(mLock); 287 288 Device* device = getDeviceLocked(deviceId); 289 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { 290 struct input_absinfo info; 291 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 292 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 293 axis, device->identifier.name.string(), device->fd, errno); 294 return -errno; 295 } 296 297 if (info.minimum != info.maximum) { 298 outAxisInfo->valid = true; 299 outAxisInfo->minValue = info.minimum; 300 outAxisInfo->maxValue = info.maximum; 301 outAxisInfo->flat = info.flat; 302 outAxisInfo->fuzz = info.fuzz; 303 outAxisInfo->resolution = info.resolution; 304 } 305 return OK; 306 } 307 } 308 return -1; 309 } 310 311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { 312 if (axis >= 0 && axis <= REL_MAX) { 313 AutoMutex _l(mLock); 314 315 Device* device = getDeviceLocked(deviceId); 316 if (device) { 317 return test_bit(axis, device->relBitmask); 318 } 319 } 320 return false; 321 } 322 323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const { 324 if (property >= 0 && property <= INPUT_PROP_MAX) { 325 AutoMutex _l(mLock); 326 327 Device* device = getDeviceLocked(deviceId); 328 if (device) { 329 return test_bit(property, device->propBitmask); 330 } 331 } 332 return false; 333 } 334 335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { 336 if (scanCode >= 0 && scanCode <= KEY_MAX) { 337 AutoMutex _l(mLock); 338 339 Device* device = getDeviceLocked(deviceId); 340 if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) { 341 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 342 memset(keyState, 0, sizeof(keyState)); 343 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 344 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 345 } 346 } 347 } 348 return AKEY_STATE_UNKNOWN; 349 } 350 351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { 352 AutoMutex _l(mLock); 353 354 Device* device = getDeviceLocked(deviceId); 355 if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) { 356 Vector<int32_t> scanCodes; 357 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); 358 if (scanCodes.size() != 0) { 359 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 360 memset(keyState, 0, sizeof(keyState)); 361 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 362 for (size_t i = 0; i < scanCodes.size(); i++) { 363 int32_t sc = scanCodes.itemAt(i); 364 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { 365 return AKEY_STATE_DOWN; 366 } 367 } 368 return AKEY_STATE_UP; 369 } 370 } 371 } 372 return AKEY_STATE_UNKNOWN; 373 } 374 375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { 376 if (sw >= 0 && sw <= SW_MAX) { 377 AutoMutex _l(mLock); 378 379 Device* device = getDeviceLocked(deviceId); 380 if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) { 381 uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; 382 memset(swState, 0, sizeof(swState)); 383 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { 384 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 385 } 386 } 387 } 388 return AKEY_STATE_UNKNOWN; 389 } 390 391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { 392 *outValue = 0; 393 394 if (axis >= 0 && axis <= ABS_MAX) { 395 AutoMutex _l(mLock); 396 397 Device* device = getDeviceLocked(deviceId); 398 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { 399 struct input_absinfo info; 400 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 401 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 402 axis, device->identifier.name.string(), device->fd, errno); 403 return -errno; 404 } 405 406 *outValue = info.value; 407 return OK; 408 } 409 } 410 return -1; 411 } 412 413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, 414 const int32_t* keyCodes, uint8_t* outFlags) const { 415 AutoMutex _l(mLock); 416 417 Device* device = getDeviceLocked(deviceId); 418 if (device && device->keyMap.haveKeyLayout()) { 419 Vector<int32_t> scanCodes; 420 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { 421 scanCodes.clear(); 422 423 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( 424 keyCodes[codeIndex], &scanCodes); 425 if (! err) { 426 // check the possible scan codes identified by the layout map against the 427 // map of codes actually emitted by the driver 428 for (size_t sc = 0; sc < scanCodes.size(); sc++) { 429 if (test_bit(scanCodes[sc], device->keyBitmask)) { 430 outFlags[codeIndex] = 1; 431 break; 432 } 433 } 434 } 435 } 436 return true; 437 } 438 return false; 439 } 440 441 status_t EventHub::mapKey(int32_t deviceId, 442 int32_t scanCode, int32_t usageCode, int32_t metaState, 443 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const { 444 AutoMutex _l(mLock); 445 Device* device = getDeviceLocked(deviceId); 446 status_t status = NAME_NOT_FOUND; 447 448 if (device) { 449 // Check the key character map first. 450 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap(); 451 if (kcm != NULL) { 452 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { 453 *outFlags = 0; 454 status = NO_ERROR; 455 } 456 } 457 458 // Check the key layout next. 459 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) { 460 if (!device->keyMap.keyLayoutMap->mapKey( 461 scanCode, usageCode, outKeycode, outFlags)) { 462 status = NO_ERROR; 463 } 464 } 465 466 if (status == NO_ERROR) { 467 if (kcm != NULL) { 468 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState); 469 } else { 470 *outMetaState = metaState; 471 } 472 } 473 } 474 475 if (status != NO_ERROR) { 476 *outKeycode = 0; 477 *outFlags = 0; 478 *outMetaState = metaState; 479 } 480 481 return status; 482 } 483 484 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { 485 AutoMutex _l(mLock); 486 Device* device = getDeviceLocked(deviceId); 487 488 if (device && device->keyMap.haveKeyLayout()) { 489 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); 490 if (err == NO_ERROR) { 491 return NO_ERROR; 492 } 493 } 494 495 return NAME_NOT_FOUND; 496 } 497 498 void EventHub::setExcludedDevices(const Vector<String8>& devices) { 499 AutoMutex _l(mLock); 500 501 mExcludedDevices = devices; 502 } 503 504 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { 505 AutoMutex _l(mLock); 506 Device* device = getDeviceLocked(deviceId); 507 if (device && scanCode >= 0 && scanCode <= KEY_MAX) { 508 if (test_bit(scanCode, device->keyBitmask)) { 509 return true; 510 } 511 } 512 return false; 513 } 514 515 bool EventHub::hasLed(int32_t deviceId, int32_t led) const { 516 AutoMutex _l(mLock); 517 Device* device = getDeviceLocked(deviceId); 518 int32_t sc; 519 if (device && mapLed(device, led, &sc) == NO_ERROR) { 520 if (test_bit(sc, device->ledBitmask)) { 521 return true; 522 } 523 } 524 return false; 525 } 526 527 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { 528 AutoMutex _l(mLock); 529 Device* device = getDeviceLocked(deviceId); 530 setLedStateLocked(device, led, on); 531 } 532 533 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) { 534 int32_t sc; 535 if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) { 536 struct input_event ev; 537 ev.time.tv_sec = 0; 538 ev.time.tv_usec = 0; 539 ev.type = EV_LED; 540 ev.code = sc; 541 ev.value = on ? 1 : 0; 542 543 ssize_t nWrite; 544 do { 545 nWrite = write(device->fd, &ev, sizeof(struct input_event)); 546 } while (nWrite == -1 && errno == EINTR); 547 } 548 } 549 550 void EventHub::getVirtualKeyDefinitions(int32_t deviceId, 551 Vector<VirtualKeyDefinition>& outVirtualKeys) const { 552 outVirtualKeys.clear(); 553 554 AutoMutex _l(mLock); 555 Device* device = getDeviceLocked(deviceId); 556 if (device && device->virtualKeyMap) { 557 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); 558 } 559 } 560 561 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { 562 AutoMutex _l(mLock); 563 Device* device = getDeviceLocked(deviceId); 564 if (device) { 565 return device->getKeyCharacterMap(); 566 } 567 return NULL; 568 } 569 570 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, 571 const sp<KeyCharacterMap>& map) { 572 AutoMutex _l(mLock); 573 Device* device = getDeviceLocked(deviceId); 574 if (device) { 575 if (map != device->overlayKeyMap) { 576 device->overlayKeyMap = map; 577 device->combinedKeyMap = KeyCharacterMap::combine( 578 device->keyMap.keyCharacterMap, map); 579 return true; 580 } 581 } 582 return false; 583 } 584 585 static String8 generateDescriptor(InputDeviceIdentifier& identifier) { 586 String8 rawDescriptor; 587 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, 588 identifier.product); 589 // TODO add handling for USB devices to not uniqueify kbs that show up twice 590 if (!identifier.uniqueId.isEmpty()) { 591 rawDescriptor.append("uniqueId:"); 592 rawDescriptor.append(identifier.uniqueId); 593 } else if (identifier.nonce != 0) { 594 rawDescriptor.appendFormat("nonce:%04x", identifier.nonce); 595 } 596 597 if (identifier.vendor == 0 && identifier.product == 0) { 598 // If we don't know the vendor and product id, then the device is probably 599 // built-in so we need to rely on other information to uniquely identify 600 // the input device. Usually we try to avoid relying on the device name or 601 // location but for built-in input device, they are unlikely to ever change. 602 if (!identifier.name.isEmpty()) { 603 rawDescriptor.append("name:"); 604 rawDescriptor.append(identifier.name); 605 } else if (!identifier.location.isEmpty()) { 606 rawDescriptor.append("location:"); 607 rawDescriptor.append(identifier.location); 608 } 609 } 610 identifier.descriptor = sha1(rawDescriptor); 611 return rawDescriptor; 612 } 613 614 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { 615 // Compute a device descriptor that uniquely identifies the device. 616 // The descriptor is assumed to be a stable identifier. Its value should not 617 // change between reboots, reconnections, firmware updates or new releases 618 // of Android. In practice we sometimes get devices that cannot be uniquely 619 // identified. In this case we enforce uniqueness between connected devices. 620 // Ideally, we also want the descriptor to be short and relatively opaque. 621 622 identifier.nonce = 0; 623 String8 rawDescriptor = generateDescriptor(identifier); 624 if (identifier.uniqueId.isEmpty()) { 625 // If it didn't have a unique id check for conflicts and enforce 626 // uniqueness if necessary. 627 while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) { 628 identifier.nonce++; 629 rawDescriptor = generateDescriptor(identifier); 630 } 631 } 632 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), 633 identifier.descriptor.string()); 634 } 635 636 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { 637 AutoMutex _l(mLock); 638 Device* device = getDeviceLocked(deviceId); 639 if (device && !device->isVirtual()) { 640 ff_effect effect; 641 memset(&effect, 0, sizeof(effect)); 642 effect.type = FF_RUMBLE; 643 effect.id = device->ffEffectId; 644 effect.u.rumble.strong_magnitude = 0xc000; 645 effect.u.rumble.weak_magnitude = 0xc000; 646 effect.replay.length = (duration + 999999LL) / 1000000LL; 647 effect.replay.delay = 0; 648 if (ioctl(device->fd, EVIOCSFF, &effect)) { 649 ALOGW("Could not upload force feedback effect to device %s due to error %d.", 650 device->identifier.name.string(), errno); 651 return; 652 } 653 device->ffEffectId = effect.id; 654 655 struct input_event ev; 656 ev.time.tv_sec = 0; 657 ev.time.tv_usec = 0; 658 ev.type = EV_FF; 659 ev.code = device->ffEffectId; 660 ev.value = 1; 661 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 662 ALOGW("Could not start force feedback effect on device %s due to error %d.", 663 device->identifier.name.string(), errno); 664 return; 665 } 666 device->ffEffectPlaying = true; 667 } 668 } 669 670 void EventHub::cancelVibrate(int32_t deviceId) { 671 AutoMutex _l(mLock); 672 Device* device = getDeviceLocked(deviceId); 673 if (device && !device->isVirtual()) { 674 if (device->ffEffectPlaying) { 675 device->ffEffectPlaying = false; 676 677 struct input_event ev; 678 ev.time.tv_sec = 0; 679 ev.time.tv_usec = 0; 680 ev.type = EV_FF; 681 ev.code = device->ffEffectId; 682 ev.value = 0; 683 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 684 ALOGW("Could not stop force feedback effect on device %s due to error %d.", 685 device->identifier.name.string(), errno); 686 return; 687 } 688 } 689 } 690 } 691 692 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const { 693 size_t size = mDevices.size(); 694 for (size_t i = 0; i < size; i++) { 695 Device* device = mDevices.valueAt(i); 696 if (descriptor.compare(device->identifier.descriptor) == 0) { 697 return device; 698 } 699 } 700 return NULL; 701 } 702 703 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { 704 if (deviceId == BUILT_IN_KEYBOARD_ID) { 705 deviceId = mBuiltInKeyboardId; 706 } 707 ssize_t index = mDevices.indexOfKey(deviceId); 708 return index >= 0 ? mDevices.valueAt(index) : NULL; 709 } 710 711 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { 712 for (size_t i = 0; i < mDevices.size(); i++) { 713 Device* device = mDevices.valueAt(i); 714 if (device->path == devicePath) { 715 return device; 716 } 717 } 718 return NULL; 719 } 720 721 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { 722 ALOG_ASSERT(bufferSize >= 1); 723 724 AutoMutex _l(mLock); 725 726 struct input_event readBuffer[bufferSize]; 727 728 RawEvent* event = buffer; 729 size_t capacity = bufferSize; 730 bool awoken = false; 731 for (;;) { 732 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 733 734 // Reopen input devices if needed. 735 if (mNeedToReopenDevices) { 736 mNeedToReopenDevices = false; 737 738 ALOGI("Reopening all input devices due to a configuration change."); 739 740 closeAllDevicesLocked(); 741 mNeedToScanDevices = true; 742 break; // return to the caller before we actually rescan 743 } 744 745 // Report any devices that had last been added/removed. 746 while (mClosingDevices) { 747 Device* device = mClosingDevices; 748 ALOGV("Reporting device closed: id=%d, name=%s\n", 749 device->id, device->path.string()); 750 mClosingDevices = device->next; 751 event->when = now; 752 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; 753 event->type = DEVICE_REMOVED; 754 event += 1; 755 delete device; 756 mNeedToSendFinishedDeviceScan = true; 757 if (--capacity == 0) { 758 break; 759 } 760 } 761 762 if (mNeedToScanDevices) { 763 mNeedToScanDevices = false; 764 scanDevicesLocked(); 765 mNeedToSendFinishedDeviceScan = true; 766 } 767 768 while (mOpeningDevices != NULL) { 769 Device* device = mOpeningDevices; 770 ALOGV("Reporting device opened: id=%d, name=%s\n", 771 device->id, device->path.string()); 772 mOpeningDevices = device->next; 773 event->when = now; 774 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 775 event->type = DEVICE_ADDED; 776 event += 1; 777 mNeedToSendFinishedDeviceScan = true; 778 if (--capacity == 0) { 779 break; 780 } 781 } 782 783 if (mNeedToSendFinishedDeviceScan) { 784 mNeedToSendFinishedDeviceScan = false; 785 event->when = now; 786 event->type = FINISHED_DEVICE_SCAN; 787 event += 1; 788 if (--capacity == 0) { 789 break; 790 } 791 } 792 793 // Grab the next input event. 794 bool deviceChanged = false; 795 while (mPendingEventIndex < mPendingEventCount) { 796 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; 797 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { 798 if (eventItem.events & EPOLLIN) { 799 mPendingINotify = true; 800 } else { 801 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); 802 } 803 continue; 804 } 805 806 if (eventItem.data.u32 == EPOLL_ID_WAKE) { 807 if (eventItem.events & EPOLLIN) { 808 ALOGV("awoken after wake()"); 809 awoken = true; 810 char buffer[16]; 811 ssize_t nRead; 812 do { 813 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); 814 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); 815 } else { 816 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", 817 eventItem.events); 818 } 819 continue; 820 } 821 822 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); 823 if (deviceIndex < 0) { 824 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", 825 eventItem.events, eventItem.data.u32); 826 continue; 827 } 828 829 Device* device = mDevices.valueAt(deviceIndex); 830 if (eventItem.events & EPOLLIN) { 831 int32_t readSize = read(device->fd, readBuffer, 832 sizeof(struct input_event) * capacity); 833 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { 834 // Device was removed before INotify noticed. 835 ALOGW("could not get event, removed? (fd: %d size: %" PRId32 836 " bufferSize: %zu capacity: %zu errno: %d)\n", 837 device->fd, readSize, bufferSize, capacity, errno); 838 deviceChanged = true; 839 closeDeviceLocked(device); 840 } else if (readSize < 0) { 841 if (errno != EAGAIN && errno != EINTR) { 842 ALOGW("could not get event (errno=%d)", errno); 843 } 844 } else if ((readSize % sizeof(struct input_event)) != 0) { 845 ALOGE("could not get event (wrong size: %d)", readSize); 846 } else { 847 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 848 849 size_t count = size_t(readSize) / sizeof(struct input_event); 850 for (size_t i = 0; i < count; i++) { 851 struct input_event& iev = readBuffer[i]; 852 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", 853 device->path.string(), 854 (int) iev.time.tv_sec, (int) iev.time.tv_usec, 855 iev.type, iev.code, iev.value); 856 857 // Some input devices may have a better concept of the time 858 // when an input event was actually generated than the kernel 859 // which simply timestamps all events on entry to evdev. 860 // This is a custom Android extension of the input protocol 861 // mainly intended for use with uinput based device drivers. 862 if (iev.type == EV_MSC) { 863 if (iev.code == MSC_ANDROID_TIME_SEC) { 864 device->timestampOverrideSec = iev.value; 865 continue; 866 } else if (iev.code == MSC_ANDROID_TIME_USEC) { 867 device->timestampOverrideUsec = iev.value; 868 continue; 869 } 870 } 871 if (device->timestampOverrideSec || device->timestampOverrideUsec) { 872 iev.time.tv_sec = device->timestampOverrideSec; 873 iev.time.tv_usec = device->timestampOverrideUsec; 874 if (iev.type == EV_SYN && iev.code == SYN_REPORT) { 875 device->timestampOverrideSec = 0; 876 device->timestampOverrideUsec = 0; 877 } 878 ALOGV("applied override time %d.%06d", 879 int(iev.time.tv_sec), int(iev.time.tv_usec)); 880 } 881 882 // Use the time specified in the event instead of the current time 883 // so that downstream code can get more accurate estimates of 884 // event dispatch latency from the time the event is enqueued onto 885 // the evdev client buffer. 886 // 887 // The event's timestamp fortuitously uses the same monotonic clock 888 // time base as the rest of Android. The kernel event device driver 889 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). 890 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere 891 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a 892 // system call that also queries ktime_get_ts(). 893 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL 894 + nsecs_t(iev.time.tv_usec) * 1000LL; 895 ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now); 896 897 // Bug 7291243: Add a guard in case the kernel generates timestamps 898 // that appear to be far into the future because they were generated 899 // using the wrong clock source. 900 // 901 // This can happen because when the input device is initially opened 902 // it has a default clock source of CLOCK_REALTIME. Any input events 903 // enqueued right after the device is opened will have timestamps 904 // generated using CLOCK_REALTIME. We later set the clock source 905 // to CLOCK_MONOTONIC but it is already too late. 906 // 907 // Invalid input event timestamps can result in ANRs, crashes and 908 // and other issues that are hard to track down. We must not let them 909 // propagate through the system. 910 // 911 // Log a warning so that we notice the problem and recover gracefully. 912 if (event->when >= now + 10 * 1000000000LL) { 913 // Double-check. Time may have moved on. 914 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); 915 if (event->when > time) { 916 ALOGW("An input event from %s has a timestamp that appears to " 917 "have been generated using the wrong clock source " 918 "(expected CLOCK_MONOTONIC): " 919 "event time %" PRId64 ", current time %" PRId64 920 ", call time %" PRId64 ". " 921 "Using current time instead.", 922 device->path.string(), event->when, time, now); 923 event->when = time; 924 } else { 925 ALOGV("Event time is ok but failed the fast path and required " 926 "an extra call to systemTime: " 927 "event time %" PRId64 ", current time %" PRId64 928 ", call time %" PRId64 ".", 929 event->when, time, now); 930 } 931 } 932 event->deviceId = deviceId; 933 event->type = iev.type; 934 event->code = iev.code; 935 event->value = iev.value; 936 event += 1; 937 capacity -= 1; 938 } 939 if (capacity == 0) { 940 // The result buffer is full. Reset the pending event index 941 // so we will try to read the device again on the next iteration. 942 mPendingEventIndex -= 1; 943 break; 944 } 945 } 946 } else if (eventItem.events & EPOLLHUP) { 947 ALOGI("Removing device %s due to epoll hang-up event.", 948 device->identifier.name.string()); 949 deviceChanged = true; 950 closeDeviceLocked(device); 951 } else { 952 ALOGW("Received unexpected epoll event 0x%08x for device %s.", 953 eventItem.events, device->identifier.name.string()); 954 } 955 } 956 957 // readNotify() will modify the list of devices so this must be done after 958 // processing all other events to ensure that we read all remaining events 959 // before closing the devices. 960 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { 961 mPendingINotify = false; 962 readNotifyLocked(); 963 deviceChanged = true; 964 } 965 966 // Report added or removed devices immediately. 967 if (deviceChanged) { 968 continue; 969 } 970 971 // Return now if we have collected any events or if we were explicitly awoken. 972 if (event != buffer || awoken) { 973 break; 974 } 975 976 // Poll for events. Mind the wake lock dance! 977 // We hold a wake lock at all times except during epoll_wait(). This works due to some 978 // subtle choreography. When a device driver has pending (unread) events, it acquires 979 // a kernel wake lock. However, once the last pending event has been read, the device 980 // driver will release the kernel wake lock. To prevent the system from going to sleep 981 // when this happens, the EventHub holds onto its own user wake lock while the client 982 // is processing events. Thus the system can only sleep if there are no events 983 // pending or currently being processed. 984 // 985 // The timeout is advisory only. If the device is asleep, it will not wake just to 986 // service the timeout. 987 mPendingEventIndex = 0; 988 989 mLock.unlock(); // release lock before poll, must be before release_wake_lock 990 release_wake_lock(WAKE_LOCK_ID); 991 992 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); 993 994 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 995 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock 996 997 if (pollResult == 0) { 998 // Timed out. 999 mPendingEventCount = 0; 1000 break; 1001 } 1002 1003 if (pollResult < 0) { 1004 // An error occurred. 1005 mPendingEventCount = 0; 1006 1007 // Sleep after errors to avoid locking up the system. 1008 // Hopefully the error is transient. 1009 if (errno != EINTR) { 1010 ALOGW("poll failed (errno=%d)\n", errno); 1011 usleep(100000); 1012 } 1013 } else { 1014 // Some events occurred. 1015 mPendingEventCount = size_t(pollResult); 1016 } 1017 } 1018 1019 // All done, return the number of events we read. 1020 return event - buffer; 1021 } 1022 1023 void EventHub::wake() { 1024 ALOGV("wake() called"); 1025 1026 ssize_t nWrite; 1027 do { 1028 nWrite = write(mWakeWritePipeFd, "W", 1); 1029 } while (nWrite == -1 && errno == EINTR); 1030 1031 if (nWrite != 1 && errno != EAGAIN) { 1032 ALOGW("Could not write wake signal, errno=%d", errno); 1033 } 1034 } 1035 1036 void EventHub::scanDevicesLocked() { 1037 status_t res = scanDirLocked(DEVICE_PATH); 1038 if(res < 0) { 1039 ALOGE("scan dir failed for %s\n", DEVICE_PATH); 1040 } 1041 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { 1042 createVirtualKeyboardLocked(); 1043 } 1044 } 1045 1046 // ---------------------------------------------------------------------------- 1047 1048 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { 1049 const uint8_t* end = array + endIndex; 1050 array += startIndex; 1051 while (array != end) { 1052 if (*(array++) != 0) { 1053 return true; 1054 } 1055 } 1056 return false; 1057 } 1058 1059 static const int32_t GAMEPAD_KEYCODES[] = { 1060 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, 1061 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, 1062 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, 1063 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, 1064 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, 1065 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, 1066 }; 1067 1068 status_t EventHub::openDeviceLocked(const char *devicePath) { 1069 char buffer[80]; 1070 1071 ALOGV("Opening device: %s", devicePath); 1072 1073 int fd = open(devicePath, O_RDWR | O_CLOEXEC); 1074 if(fd < 0) { 1075 ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); 1076 return -1; 1077 } 1078 1079 InputDeviceIdentifier identifier; 1080 1081 // Get device name. 1082 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { 1083 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); 1084 } else { 1085 buffer[sizeof(buffer) - 1] = '\0'; 1086 identifier.name.setTo(buffer); 1087 } 1088 1089 // Check to see if the device is on our excluded list 1090 for (size_t i = 0; i < mExcludedDevices.size(); i++) { 1091 const String8& item = mExcludedDevices.itemAt(i); 1092 if (identifier.name == item) { 1093 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); 1094 close(fd); 1095 return -1; 1096 } 1097 } 1098 1099 // Get device driver version. 1100 int driverVersion; 1101 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { 1102 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); 1103 close(fd); 1104 return -1; 1105 } 1106 1107 // Get device identifier. 1108 struct input_id inputId; 1109 if(ioctl(fd, EVIOCGID, &inputId)) { 1110 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); 1111 close(fd); 1112 return -1; 1113 } 1114 identifier.bus = inputId.bustype; 1115 identifier.product = inputId.product; 1116 identifier.vendor = inputId.vendor; 1117 identifier.version = inputId.version; 1118 1119 // Get device physical location. 1120 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { 1121 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); 1122 } else { 1123 buffer[sizeof(buffer) - 1] = '\0'; 1124 identifier.location.setTo(buffer); 1125 } 1126 1127 // Get device unique id. 1128 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { 1129 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); 1130 } else { 1131 buffer[sizeof(buffer) - 1] = '\0'; 1132 identifier.uniqueId.setTo(buffer); 1133 } 1134 1135 // Fill in the descriptor. 1136 assignDescriptorLocked(identifier); 1137 1138 // Make file descriptor non-blocking for use with poll(). 1139 if (fcntl(fd, F_SETFL, O_NONBLOCK)) { 1140 ALOGE("Error %d making device file descriptor non-blocking.", errno); 1141 close(fd); 1142 return -1; 1143 } 1144 1145 // Allocate device. (The device object takes ownership of the fd at this point.) 1146 int32_t deviceId = mNextDeviceId++; 1147 Device* device = new Device(fd, deviceId, String8(devicePath), identifier); 1148 1149 ALOGV("add device %d: %s\n", deviceId, devicePath); 1150 ALOGV(" bus: %04x\n" 1151 " vendor %04x\n" 1152 " product %04x\n" 1153 " version %04x\n", 1154 identifier.bus, identifier.vendor, identifier.product, identifier.version); 1155 ALOGV(" name: \"%s\"\n", identifier.name.string()); 1156 ALOGV(" location: \"%s\"\n", identifier.location.string()); 1157 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); 1158 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); 1159 ALOGV(" driver: v%d.%d.%d\n", 1160 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); 1161 1162 // Load the configuration file for the device. 1163 loadConfigurationLocked(device); 1164 1165 // Figure out the kinds of events the device reports. 1166 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); 1167 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); 1168 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); 1169 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); 1170 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); 1171 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); 1172 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); 1173 1174 // See if this is a keyboard. Ignore everything in the button range except for 1175 // joystick and gamepad buttons which are handled like keyboards for the most part. 1176 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) 1177 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), 1178 sizeof_bit_array(KEY_MAX + 1)); 1179 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), 1180 sizeof_bit_array(BTN_MOUSE)) 1181 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), 1182 sizeof_bit_array(BTN_DIGI)); 1183 if (haveKeyboardKeys || haveGamepadButtons) { 1184 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1185 } 1186 1187 // See if this is a cursor device such as a trackball or mouse. 1188 if (test_bit(BTN_MOUSE, device->keyBitmask) 1189 && test_bit(REL_X, device->relBitmask) 1190 && test_bit(REL_Y, device->relBitmask)) { 1191 device->classes |= INPUT_DEVICE_CLASS_CURSOR; 1192 } 1193 1194 // See if this is a rotary encoder type device. 1195 String8 deviceType = String8(); 1196 if (device->configuration && 1197 device->configuration->tryGetProperty(String8("device.type"), deviceType)) { 1198 if (!deviceType.compare(String8("rotaryEncoder"))) { 1199 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER; 1200 } 1201 } 1202 1203 // See if this is a touch pad. 1204 // Is this a new modern multi-touch driver? 1205 if (test_bit(ABS_MT_POSITION_X, device->absBitmask) 1206 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { 1207 // Some joysticks such as the PS3 controller report axes that conflict 1208 // with the ABS_MT range. Try to confirm that the device really is 1209 // a touch screen. 1210 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { 1211 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; 1212 } 1213 // Is this an old style single-touch driver? 1214 } else if (test_bit(BTN_TOUCH, device->keyBitmask) 1215 && test_bit(ABS_X, device->absBitmask) 1216 && test_bit(ABS_Y, device->absBitmask)) { 1217 device->classes |= INPUT_DEVICE_CLASS_TOUCH; 1218 // Is this a BT stylus? 1219 } else if ((test_bit(ABS_PRESSURE, device->absBitmask) || 1220 test_bit(BTN_TOUCH, device->keyBitmask)) 1221 && !test_bit(ABS_X, device->absBitmask) 1222 && !test_bit(ABS_Y, device->absBitmask)) { 1223 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS; 1224 // Keyboard will try to claim some of the buttons but we really want to reserve those so we 1225 // can fuse it with the touch screen data, so just take them back. Note this means an 1226 // external stylus cannot also be a keyboard device. 1227 device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD; 1228 } 1229 1230 // See if this device is a joystick. 1231 // Assumes that joysticks always have gamepad buttons in order to distinguish them 1232 // from other devices such as accelerometers that also have absolute axes. 1233 if (haveGamepadButtons) { 1234 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; 1235 for (int i = 0; i <= ABS_MAX; i++) { 1236 if (test_bit(i, device->absBitmask) 1237 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { 1238 device->classes = assumedClasses; 1239 break; 1240 } 1241 } 1242 } 1243 1244 // Check whether this device has switches. 1245 for (int i = 0; i <= SW_MAX; i++) { 1246 if (test_bit(i, device->swBitmask)) { 1247 device->classes |= INPUT_DEVICE_CLASS_SWITCH; 1248 break; 1249 } 1250 } 1251 1252 // Check whether this device supports the vibrator. 1253 if (test_bit(FF_RUMBLE, device->ffBitmask)) { 1254 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; 1255 } 1256 1257 // Configure virtual keys. 1258 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { 1259 // Load the virtual keys for the touch screen, if any. 1260 // We do this now so that we can make sure to load the keymap if necessary. 1261 status_t status = loadVirtualKeyMapLocked(device); 1262 if (!status) { 1263 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1264 } 1265 } 1266 1267 // Load the key map. 1268 // We need to do this for joysticks too because the key layout may specify axes. 1269 status_t keyMapStatus = NAME_NOT_FOUND; 1270 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { 1271 // Load the keymap for the device. 1272 keyMapStatus = loadKeyMapLocked(device); 1273 } 1274 1275 // Configure the keyboard, gamepad or virtual keyboard. 1276 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { 1277 // Register the keyboard as a built-in keyboard if it is eligible. 1278 if (!keyMapStatus 1279 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD 1280 && isEligibleBuiltInKeyboard(device->identifier, 1281 device->configuration, &device->keyMap)) { 1282 mBuiltInKeyboardId = device->id; 1283 } 1284 1285 // 'Q' key support = cheap test of whether this is an alpha-capable kbd 1286 if (hasKeycodeLocked(device, AKEYCODE_Q)) { 1287 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; 1288 } 1289 1290 // See if this device has a DPAD. 1291 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && 1292 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && 1293 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && 1294 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && 1295 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { 1296 device->classes |= INPUT_DEVICE_CLASS_DPAD; 1297 } 1298 1299 // See if this device has a gamepad. 1300 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { 1301 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { 1302 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; 1303 break; 1304 } 1305 } 1306 1307 // Disable kernel key repeat since we handle it ourselves 1308 unsigned int repeatRate[] = {0,0}; 1309 if (ioctl(fd, EVIOCSREP, repeatRate)) { 1310 ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno)); 1311 } 1312 } 1313 1314 // If the device isn't recognized as something we handle, don't monitor it. 1315 if (device->classes == 0) { 1316 ALOGV("Dropping device: id=%d, path='%s', name='%s'", 1317 deviceId, devicePath, device->identifier.name.string()); 1318 delete device; 1319 return -1; 1320 } 1321 1322 // Determine whether the device has a mic. 1323 if (deviceHasMicLocked(device)) { 1324 device->classes |= INPUT_DEVICE_CLASS_MIC; 1325 } 1326 1327 // Determine whether the device is external or internal. 1328 if (isExternalDeviceLocked(device)) { 1329 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; 1330 } 1331 1332 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) 1333 && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) { 1334 device->controllerNumber = getNextControllerNumberLocked(device); 1335 setLedForController(device); 1336 } 1337 1338 // Register with epoll. 1339 struct epoll_event eventItem; 1340 memset(&eventItem, 0, sizeof(eventItem)); 1341 eventItem.events = EPOLLIN; 1342 if (mUsingEpollWakeup) { 1343 eventItem.events |= EPOLLWAKEUP; 1344 } 1345 eventItem.data.u32 = deviceId; 1346 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { 1347 ALOGE("Could not add device fd to epoll instance. errno=%d", errno); 1348 delete device; 1349 return -1; 1350 } 1351 1352 String8 wakeMechanism("EPOLLWAKEUP"); 1353 if (!mUsingEpollWakeup) { 1354 #ifndef EVIOCSSUSPENDBLOCK 1355 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels 1356 // will use an epoll flag instead, so as long as we want to support 1357 // this feature, we need to be prepared to define the ioctl ourselves. 1358 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) 1359 #endif 1360 if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) { 1361 wakeMechanism = "<none>"; 1362 } else { 1363 wakeMechanism = "EVIOCSSUSPENDBLOCK"; 1364 } 1365 } 1366 1367 // Tell the kernel that we want to use the monotonic clock for reporting timestamps 1368 // associated with input events. This is important because the input system 1369 // uses the timestamps extensively and assumes they were recorded using the monotonic 1370 // clock. 1371 // 1372 // In older kernel, before Linux 3.4, there was no way to tell the kernel which 1373 // clock to use to input event timestamps. The standard kernel behavior was to 1374 // record a real time timestamp, which isn't what we want. Android kernels therefore 1375 // contained a patch to the evdev_event() function in drivers/input/evdev.c to 1376 // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic 1377 // clock to be used instead of the real time clock. 1378 // 1379 // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock. 1380 // Therefore, we no longer require the Android-specific kernel patch described above 1381 // as long as we make sure to set select the monotonic clock. We do that here. 1382 int clockId = CLOCK_MONOTONIC; 1383 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); 1384 1385 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " 1386 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, " 1387 "wakeMechanism=%s, usingClockIoctl=%s", 1388 deviceId, fd, devicePath, device->identifier.name.string(), 1389 device->classes, 1390 device->configurationFile.string(), 1391 device->keyMap.keyLayoutFile.string(), 1392 device->keyMap.keyCharacterMapFile.string(), 1393 toString(mBuiltInKeyboardId == deviceId), 1394 wakeMechanism.string(), toString(usingClockIoctl)); 1395 1396 addDeviceLocked(device); 1397 return 0; 1398 } 1399 1400 void EventHub::createVirtualKeyboardLocked() { 1401 InputDeviceIdentifier identifier; 1402 identifier.name = "Virtual"; 1403 identifier.uniqueId = "<virtual>"; 1404 assignDescriptorLocked(identifier); 1405 1406 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier); 1407 device->classes = INPUT_DEVICE_CLASS_KEYBOARD 1408 | INPUT_DEVICE_CLASS_ALPHAKEY 1409 | INPUT_DEVICE_CLASS_DPAD 1410 | INPUT_DEVICE_CLASS_VIRTUAL; 1411 loadKeyMapLocked(device); 1412 addDeviceLocked(device); 1413 } 1414 1415 void EventHub::addDeviceLocked(Device* device) { 1416 mDevices.add(device->id, device); 1417 device->next = mOpeningDevices; 1418 mOpeningDevices = device; 1419 } 1420 1421 void EventHub::loadConfigurationLocked(Device* device) { 1422 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( 1423 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); 1424 if (device->configurationFile.isEmpty()) { 1425 ALOGD("No input device configuration file found for device '%s'.", 1426 device->identifier.name.string()); 1427 } else { 1428 status_t status = PropertyMap::load(device->configurationFile, 1429 &device->configuration); 1430 if (status) { 1431 ALOGE("Error loading input device configuration file for device '%s'. " 1432 "Using default configuration.", 1433 device->identifier.name.string()); 1434 } 1435 } 1436 } 1437 1438 status_t EventHub::loadVirtualKeyMapLocked(Device* device) { 1439 // The virtual key map is supplied by the kernel as a system board property file. 1440 String8 path; 1441 path.append("/sys/board_properties/virtualkeys."); 1442 path.append(device->identifier.name); 1443 if (access(path.string(), R_OK)) { 1444 return NAME_NOT_FOUND; 1445 } 1446 return VirtualKeyMap::load(path, &device->virtualKeyMap); 1447 } 1448 1449 status_t EventHub::loadKeyMapLocked(Device* device) { 1450 return device->keyMap.load(device->identifier, device->configuration); 1451 } 1452 1453 bool EventHub::isExternalDeviceLocked(Device* device) { 1454 if (device->configuration) { 1455 bool value; 1456 if (device->configuration->tryGetProperty(String8("device.internal"), value)) { 1457 return !value; 1458 } 1459 } 1460 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; 1461 } 1462 1463 bool EventHub::deviceHasMicLocked(Device* device) { 1464 if (device->configuration) { 1465 bool value; 1466 if (device->configuration->tryGetProperty(String8("audio.mic"), value)) { 1467 return value; 1468 } 1469 } 1470 return false; 1471 } 1472 1473 int32_t EventHub::getNextControllerNumberLocked(Device* device) { 1474 if (mControllerNumbers.isFull()) { 1475 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", 1476 device->identifier.name.string()); 1477 return 0; 1478 } 1479 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by 1480 // one 1481 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); 1482 } 1483 1484 void EventHub::releaseControllerNumberLocked(Device* device) { 1485 int32_t num = device->controllerNumber; 1486 device->controllerNumber= 0; 1487 if (num == 0) { 1488 return; 1489 } 1490 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); 1491 } 1492 1493 void EventHub::setLedForController(Device* device) { 1494 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { 1495 setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1); 1496 } 1497 } 1498 1499 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { 1500 if (!device->keyMap.haveKeyLayout()) { 1501 return false; 1502 } 1503 1504 Vector<int32_t> scanCodes; 1505 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); 1506 const size_t N = scanCodes.size(); 1507 for (size_t i=0; i<N && i<=KEY_MAX; i++) { 1508 int32_t sc = scanCodes.itemAt(i); 1509 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { 1510 return true; 1511 } 1512 } 1513 1514 return false; 1515 } 1516 1517 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const { 1518 if (!device->keyMap.haveKeyLayout()) { 1519 return NAME_NOT_FOUND; 1520 } 1521 1522 int32_t scanCode; 1523 if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) { 1524 if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) { 1525 *outScanCode = scanCode; 1526 return NO_ERROR; 1527 } 1528 } 1529 return NAME_NOT_FOUND; 1530 } 1531 1532 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { 1533 Device* device = getDeviceByPathLocked(devicePath); 1534 if (device) { 1535 closeDeviceLocked(device); 1536 return 0; 1537 } 1538 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); 1539 return -1; 1540 } 1541 1542 void EventHub::closeAllDevicesLocked() { 1543 while (mDevices.size() > 0) { 1544 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); 1545 } 1546 } 1547 1548 void EventHub::closeDeviceLocked(Device* device) { 1549 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", 1550 device->path.string(), device->identifier.name.string(), device->id, 1551 device->fd, device->classes); 1552 1553 if (device->id == mBuiltInKeyboardId) { 1554 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", 1555 device->path.string(), mBuiltInKeyboardId); 1556 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; 1557 } 1558 1559 if (!device->isVirtual()) { 1560 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { 1561 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); 1562 } 1563 } 1564 1565 releaseControllerNumberLocked(device); 1566 1567 mDevices.removeItem(device->id); 1568 device->close(); 1569 1570 // Unlink for opening devices list if it is present. 1571 Device* pred = NULL; 1572 bool found = false; 1573 for (Device* entry = mOpeningDevices; entry != NULL; ) { 1574 if (entry == device) { 1575 found = true; 1576 break; 1577 } 1578 pred = entry; 1579 entry = entry->next; 1580 } 1581 if (found) { 1582 // Unlink the device from the opening devices list then delete it. 1583 // We don't need to tell the client that the device was closed because 1584 // it does not even know it was opened in the first place. 1585 ALOGI("Device %s was immediately closed after opening.", device->path.string()); 1586 if (pred) { 1587 pred->next = device->next; 1588 } else { 1589 mOpeningDevices = device->next; 1590 } 1591 delete device; 1592 } else { 1593 // Link into closing devices list. 1594 // The device will be deleted later after we have informed the client. 1595 device->next = mClosingDevices; 1596 mClosingDevices = device; 1597 } 1598 } 1599 1600 status_t EventHub::readNotifyLocked() { 1601 int res; 1602 char devname[PATH_MAX]; 1603 char *filename; 1604 char event_buf[512]; 1605 int event_size; 1606 int event_pos = 0; 1607 struct inotify_event *event; 1608 1609 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); 1610 res = read(mINotifyFd, event_buf, sizeof(event_buf)); 1611 if(res < (int)sizeof(*event)) { 1612 if(errno == EINTR) 1613 return 0; 1614 ALOGW("could not get event, %s\n", strerror(errno)); 1615 return -1; 1616 } 1617 //printf("got %d bytes of event information\n", res); 1618 1619 strcpy(devname, DEVICE_PATH); 1620 filename = devname + strlen(devname); 1621 *filename++ = '/'; 1622 1623 while(res >= (int)sizeof(*event)) { 1624 event = (struct inotify_event *)(event_buf + event_pos); 1625 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); 1626 if(event->len) { 1627 strcpy(filename, event->name); 1628 if(event->mask & IN_CREATE) { 1629 openDeviceLocked(devname); 1630 } else { 1631 ALOGI("Removing device '%s' due to inotify event\n", devname); 1632 closeDeviceByPathLocked(devname); 1633 } 1634 } 1635 event_size = sizeof(*event) + event->len; 1636 res -= event_size; 1637 event_pos += event_size; 1638 } 1639 return 0; 1640 } 1641 1642 status_t EventHub::scanDirLocked(const char *dirname) 1643 { 1644 char devname[PATH_MAX]; 1645 char *filename; 1646 DIR *dir; 1647 struct dirent *de; 1648 dir = opendir(dirname); 1649 if(dir == NULL) 1650 return -1; 1651 strcpy(devname, dirname); 1652 filename = devname + strlen(devname); 1653 *filename++ = '/'; 1654 while((de = readdir(dir))) { 1655 if(de->d_name[0] == '.' && 1656 (de->d_name[1] == '\0' || 1657 (de->d_name[1] == '.' && de->d_name[2] == '\0'))) 1658 continue; 1659 strcpy(filename, de->d_name); 1660 openDeviceLocked(devname); 1661 } 1662 closedir(dir); 1663 return 0; 1664 } 1665 1666 void EventHub::requestReopenDevices() { 1667 ALOGV("requestReopenDevices() called"); 1668 1669 AutoMutex _l(mLock); 1670 mNeedToReopenDevices = true; 1671 } 1672 1673 void EventHub::dump(String8& dump) { 1674 dump.append("Event Hub State:\n"); 1675 1676 { // acquire lock 1677 AutoMutex _l(mLock); 1678 1679 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); 1680 1681 dump.append(INDENT "Devices:\n"); 1682 1683 for (size_t i = 0; i < mDevices.size(); i++) { 1684 const Device* device = mDevices.valueAt(i); 1685 if (mBuiltInKeyboardId == device->id) { 1686 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", 1687 device->id, device->identifier.name.string()); 1688 } else { 1689 dump.appendFormat(INDENT2 "%d: %s\n", device->id, 1690 device->identifier.name.string()); 1691 } 1692 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); 1693 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); 1694 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); 1695 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string()); 1696 dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); 1697 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); 1698 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " 1699 "product=0x%04x, version=0x%04x\n", 1700 device->identifier.bus, device->identifier.vendor, 1701 device->identifier.product, device->identifier.version); 1702 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", 1703 device->keyMap.keyLayoutFile.string()); 1704 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", 1705 device->keyMap.keyCharacterMapFile.string()); 1706 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", 1707 device->configurationFile.string()); 1708 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", 1709 toString(device->overlayKeyMap != NULL)); 1710 } 1711 } // release lock 1712 } 1713 1714 void EventHub::monitor() { 1715 // Acquire and release the lock to ensure that the event hub has not deadlocked. 1716 mLock.lock(); 1717 mLock.unlock(); 1718 } 1719 1720 1721 }; // namespace android 1722