1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cstdlib> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "stack-protector" 43 44 STATISTIC(NumFunProtected, "Number of functions protected"); 45 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 46 " taken."); 47 48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 49 cl::init(true), cl::Hidden); 50 51 char StackProtector::ID = 0; 52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 53 false, true) 54 55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 56 return new StackProtector(TM); 57 } 58 59 StackProtector::SSPLayoutKind 60 StackProtector::getSSPLayout(const AllocaInst *AI) const { 61 return AI ? Layout.lookup(AI) : SSPLK_None; 62 } 63 64 void StackProtector::adjustForColoring(const AllocaInst *From, 65 const AllocaInst *To) { 66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 67 // tag from the remapped to the target alloca. The remapped alloca should 68 // have a size smaller than or equal to the replacement alloca. 69 SSPLayoutMap::iterator I = Layout.find(From); 70 if (I != Layout.end()) { 71 SSPLayoutKind Kind = I->second; 72 Layout.erase(I); 73 74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 77 I = Layout.find(To); 78 if (I == Layout.end()) 79 Layout.insert(std::make_pair(To, Kind)); 80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 81 I->second = Kind; 82 } 83 } 84 85 bool StackProtector::runOnFunction(Function &Fn) { 86 F = &Fn; 87 M = F->getParent(); 88 DominatorTreeWrapperPass *DTWP = 89 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 90 DT = DTWP ? &DTWP->getDomTree() : nullptr; 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 93 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 94 if (Attr.isStringAttribute() && 95 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 96 return false; // Invalid integer string 97 98 if (!RequiresStackProtector()) 99 return false; 100 101 ++NumFunProtected; 102 return InsertStackProtectors(); 103 } 104 105 /// \param [out] IsLarge is set to true if a protectable array is found and 106 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 107 /// multiple arrays, this gets set if any of them is large. 108 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 109 bool Strong, 110 bool InStruct) const { 111 if (!Ty) 112 return false; 113 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 114 if (!AT->getElementType()->isIntegerTy(8)) { 115 // If we're on a non-Darwin platform or we're inside of a structure, don't 116 // add stack protectors unless the array is a character array. 117 // However, in strong mode any array, regardless of type and size, 118 // triggers a protector. 119 if (!Strong && (InStruct || !Trip.isOSDarwin())) 120 return false; 121 } 122 123 // If an array has more than SSPBufferSize bytes of allocated space, then we 124 // emit stack protectors. 125 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 126 IsLarge = true; 127 return true; 128 } 129 130 if (Strong) 131 // Require a protector for all arrays in strong mode 132 return true; 133 } 134 135 const StructType *ST = dyn_cast<StructType>(Ty); 136 if (!ST) 137 return false; 138 139 bool NeedsProtector = false; 140 for (StructType::element_iterator I = ST->element_begin(), 141 E = ST->element_end(); 142 I != E; ++I) 143 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 144 // If the element is a protectable array and is large (>= SSPBufferSize) 145 // then we are done. If the protectable array is not large, then 146 // keep looking in case a subsequent element is a large array. 147 if (IsLarge) 148 return true; 149 NeedsProtector = true; 150 } 151 152 return NeedsProtector; 153 } 154 155 bool StackProtector::HasAddressTaken(const Instruction *AI) { 156 for (const User *U : AI->users()) { 157 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 158 if (AI == SI->getValueOperand()) 159 return true; 160 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 161 if (AI == SI->getOperand(0)) 162 return true; 163 } else if (isa<CallInst>(U)) { 164 return true; 165 } else if (isa<InvokeInst>(U)) { 166 return true; 167 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 168 if (HasAddressTaken(SI)) 169 return true; 170 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 171 // Keep track of what PHI nodes we have already visited to ensure 172 // they are only visited once. 173 if (VisitedPHIs.insert(PN).second) 174 if (HasAddressTaken(PN)) 175 return true; 176 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 177 if (HasAddressTaken(GEP)) 178 return true; 179 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 180 if (HasAddressTaken(BI)) 181 return true; 182 } 183 } 184 return false; 185 } 186 187 /// \brief Check whether or not this function needs a stack protector based 188 /// upon the stack protector level. 189 /// 190 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 191 /// The standard heuristic which will add a guard variable to functions that 192 /// call alloca with a either a variable size or a size >= SSPBufferSize, 193 /// functions with character buffers larger than SSPBufferSize, and functions 194 /// with aggregates containing character buffers larger than SSPBufferSize. The 195 /// strong heuristic will add a guard variables to functions that call alloca 196 /// regardless of size, functions with any buffer regardless of type and size, 197 /// functions with aggregates that contain any buffer regardless of type and 198 /// size, and functions that contain stack-based variables that have had their 199 /// address taken. 200 bool StackProtector::RequiresStackProtector() { 201 bool Strong = false; 202 bool NeedsProtector = false; 203 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 204 NeedsProtector = true; 205 Strong = true; // Use the same heuristic as strong to determine SSPLayout 206 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 207 Strong = true; 208 else if (!F->hasFnAttribute(Attribute::StackProtect)) 209 return false; 210 211 for (const BasicBlock &BB : *F) { 212 for (const Instruction &I : BB) { 213 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 214 if (AI->isArrayAllocation()) { 215 // SSP-Strong: Enable protectors for any call to alloca, regardless 216 // of size. 217 if (Strong) 218 return true; 219 220 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 221 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 222 // A call to alloca with size >= SSPBufferSize requires 223 // stack protectors. 224 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 225 NeedsProtector = true; 226 } else if (Strong) { 227 // Require protectors for all alloca calls in strong mode. 228 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 229 NeedsProtector = true; 230 } 231 } else { 232 // A call to alloca with a variable size requires protectors. 233 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 234 NeedsProtector = true; 235 } 236 continue; 237 } 238 239 bool IsLarge = false; 240 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 241 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 242 : SSPLK_SmallArray)); 243 NeedsProtector = true; 244 continue; 245 } 246 247 if (Strong && HasAddressTaken(AI)) { 248 ++NumAddrTaken; 249 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 250 NeedsProtector = true; 251 } 252 } 253 } 254 } 255 256 return NeedsProtector; 257 } 258 259 static bool InstructionWillNotHaveChain(const Instruction *I) { 260 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && 261 isSafeToSpeculativelyExecute(I); 262 } 263 264 /// Identify if RI has a previous instruction in the "Tail Position" and return 265 /// it. Otherwise return 0. 266 /// 267 /// This is based off of the code in llvm::isInTailCallPosition. The difference 268 /// is that it inverts the first part of llvm::isInTailCallPosition since 269 /// isInTailCallPosition is checking if a call is in a tail call position, and 270 /// we are searching for an unknown tail call that might be in the tail call 271 /// position. Once we find the call though, the code uses the same refactored 272 /// code, returnTypeIsEligibleForTailCall. 273 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, 274 const TargetLoweringBase *TLI) { 275 // Establish a reasonable upper bound on the maximum amount of instructions we 276 // will look through to find a tail call. 277 unsigned SearchCounter = 0; 278 const unsigned MaxSearch = 4; 279 bool NoInterposingChain = true; 280 281 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend(); 282 I != E && SearchCounter < MaxSearch; ++I) { 283 Instruction *Inst = &*I; 284 285 // Skip over debug intrinsics and do not allow them to affect our MaxSearch 286 // counter. 287 if (isa<DbgInfoIntrinsic>(Inst)) 288 continue; 289 290 // If we find a call and the following conditions are satisifed, then we 291 // have found a tail call that satisfies at least the target independent 292 // requirements of a tail call: 293 // 294 // 1. The call site has the tail marker. 295 // 296 // 2. The call site either will not cause the creation of a chain or if a 297 // chain is necessary there are no instructions in between the callsite and 298 // the call which would create an interposing chain. 299 // 300 // 3. The return type of the function does not impede tail call 301 // optimization. 302 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 303 if (CI->isTailCall() && 304 (InstructionWillNotHaveChain(CI) || NoInterposingChain) && 305 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) 306 return CI; 307 } 308 309 // If we did not find a call see if we have an instruction that may create 310 // an interposing chain. 311 NoInterposingChain = 312 NoInterposingChain && InstructionWillNotHaveChain(Inst); 313 314 // Increment max search. 315 SearchCounter++; 316 } 317 318 return nullptr; 319 } 320 321 /// Insert code into the entry block that stores the __stack_chk_guard 322 /// variable onto the stack: 323 /// 324 /// entry: 325 /// StackGuardSlot = alloca i8* 326 /// StackGuard = load __stack_chk_guard 327 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) 328 /// 329 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 330 /// node. 331 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 332 const TargetLoweringBase *TLI, const Triple &TT, 333 AllocaInst *&AI, Value *&StackGuardVar) { 334 bool SupportsSelectionDAGSP = false; 335 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 336 unsigned AddressSpace, Offset; 337 if (TLI->getStackCookieLocation(AddressSpace, Offset)) { 338 Constant *OffsetVal = 339 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); 340 341 StackGuardVar = 342 ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy, 343 AddressSpace)); 344 } else if (TT.isOSOpenBSD()) { 345 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); 346 cast<GlobalValue>(StackGuardVar) 347 ->setVisibility(GlobalValue::HiddenVisibility); 348 } else { 349 SupportsSelectionDAGSP = true; 350 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); 351 } 352 353 IRBuilder<> B(&F->getEntryBlock().front()); 354 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 355 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); 356 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 357 {LI, AI}); 358 359 return SupportsSelectionDAGSP; 360 } 361 362 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 363 /// function. 364 /// 365 /// - The prologue code loads and stores the stack guard onto the stack. 366 /// - The epilogue checks the value stored in the prologue against the original 367 /// value. It calls __stack_chk_fail if they differ. 368 bool StackProtector::InsertStackProtectors() { 369 bool HasPrologue = false; 370 bool SupportsSelectionDAGSP = 371 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 372 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 373 Value *StackGuardVar = nullptr; // The stack guard variable. 374 375 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 376 BasicBlock *BB = &*I++; 377 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 378 if (!RI) 379 continue; 380 381 if (!HasPrologue) { 382 HasPrologue = true; 383 SupportsSelectionDAGSP &= 384 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); 385 } 386 387 if (SupportsSelectionDAGSP) { 388 // Since we have a potential tail call, insert the special stack check 389 // intrinsic. 390 Instruction *InsertionPt = nullptr; 391 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { 392 InsertionPt = CI; 393 } else { 394 InsertionPt = RI; 395 // At this point we know that BB has a return statement so it *DOES* 396 // have a terminator. 397 assert(InsertionPt != nullptr && 398 "BB must have a terminator instruction at this point."); 399 } 400 401 Function *Intrinsic = 402 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); 403 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); 404 } else { 405 // If we do not support SelectionDAG based tail calls, generate IR level 406 // tail calls. 407 // 408 // For each block with a return instruction, convert this: 409 // 410 // return: 411 // ... 412 // ret ... 413 // 414 // into this: 415 // 416 // return: 417 // ... 418 // %1 = load __stack_chk_guard 419 // %2 = load StackGuardSlot 420 // %3 = cmp i1 %1, %2 421 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 422 // 423 // SP_return: 424 // ret ... 425 // 426 // CallStackCheckFailBlk: 427 // call void @__stack_chk_fail() 428 // unreachable 429 430 // Create the FailBB. We duplicate the BB every time since the MI tail 431 // merge pass will merge together all of the various BB into one including 432 // fail BB generated by the stack protector pseudo instruction. 433 BasicBlock *FailBB = CreateFailBB(); 434 435 // Split the basic block before the return instruction. 436 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 437 438 // Update the dominator tree if we need to. 439 if (DT && DT->isReachableFromEntry(BB)) { 440 DT->addNewBlock(NewBB, BB); 441 DT->addNewBlock(FailBB, BB); 442 } 443 444 // Remove default branch instruction to the new BB. 445 BB->getTerminator()->eraseFromParent(); 446 447 // Move the newly created basic block to the point right after the old 448 // basic block so that it's in the "fall through" position. 449 NewBB->moveAfter(BB); 450 451 // Generate the stack protector instructions in the old basic block. 452 IRBuilder<> B(BB); 453 LoadInst *LI1 = B.CreateLoad(StackGuardVar); 454 LoadInst *LI2 = B.CreateLoad(AI); 455 Value *Cmp = B.CreateICmpEQ(LI1, LI2); 456 unsigned SuccessWeight = 457 BranchProbabilityInfo::getBranchWeightStackProtector(true); 458 unsigned FailureWeight = 459 BranchProbabilityInfo::getBranchWeightStackProtector(false); 460 MDNode *Weights = MDBuilder(F->getContext()) 461 .createBranchWeights(SuccessWeight, FailureWeight); 462 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 463 } 464 } 465 466 // Return if we didn't modify any basic blocks. i.e., there are no return 467 // statements in the function. 468 return HasPrologue; 469 } 470 471 /// CreateFailBB - Create a basic block to jump to when the stack protector 472 /// check fails. 473 BasicBlock *StackProtector::CreateFailBB() { 474 LLVMContext &Context = F->getContext(); 475 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 476 IRBuilder<> B(FailBB); 477 if (Trip.isOSOpenBSD()) { 478 Constant *StackChkFail = 479 M->getOrInsertFunction("__stack_smash_handler", 480 Type::getVoidTy(Context), 481 Type::getInt8PtrTy(Context), nullptr); 482 483 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 484 } else { 485 Constant *StackChkFail = 486 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context), 487 nullptr); 488 B.CreateCall(StackChkFail, {}); 489 } 490 B.CreateUnreachable(); 491 return FailBB; 492 } 493