1 /* 2 * Copyright 2008, 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 /** 25 * \file list.h 26 * \brief Doubly-linked list abstract container type. 27 * 28 * Each doubly-linked list has a sentinel head and tail node. These nodes 29 * contain no data. The head sentinel can be identified by its \c prev 30 * pointer being \c NULL. The tail sentinel can be identified by its 31 * \c next pointer being \c NULL. 32 * 33 * A list is empty if either the head sentinel's \c next pointer points to the 34 * tail sentinel or the tail sentinel's \c prev poiner points to the head 35 * sentinel. 36 * 37 * Instead of tracking two separate \c node structures and a \c list structure 38 * that points to them, the sentinel nodes are in a single structure. Noting 39 * that each sentinel node always has one \c NULL pointer, the \c NULL 40 * pointers occupy the same memory location. In the \c list structure 41 * contains a the following: 42 * 43 * - A \c head pointer that represents the \c next pointer of the 44 * head sentinel node. 45 * - A \c tail pointer that represents the \c prev pointer of the head 46 * sentinel node and the \c next pointer of the tail sentinel node. This 47 * pointer is \b always \c NULL. 48 * - A \c tail_prev pointer that represents the \c prev pointer of the 49 * tail sentinel node. 50 * 51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL, 52 * the list is empty. 53 * 54 * To anyone familiar with "exec lists" on the Amiga, this structure should 55 * be immediately recognizable. See the following link for the original Amiga 56 * operating system documentation on the subject. 57 * 58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html 59 * 60 * \author Ian Romanick <ian.d.romanick (at) intel.com> 61 */ 62 63 #pragma once 64 #ifndef LIST_CONTAINER_H 65 #define LIST_CONTAINER_H 66 67 #ifndef __cplusplus 68 #include <stddef.h> 69 #endif 70 #include <assert.h> 71 72 #include "ralloc.h" 73 74 struct exec_node { 75 struct exec_node *next; 76 struct exec_node *prev; 77 78 #ifdef __cplusplus 79 /* Callers of this ralloc-based new need not call delete. It's 80 * easier to just ralloc_free 'ctx' (or any of its ancestors). */ 81 static void* operator new(size_t size, void *ctx) 82 { 83 void *node; 84 85 node = ralloc_size(ctx, size); 86 assert(node != NULL); 87 88 return node; 89 } 90 91 /* If the user *does* call delete, that's OK, we will just 92 * ralloc_free in that case. */ 93 static void operator delete(void *node) 94 { 95 ralloc_free(node); 96 } 97 98 exec_node() : next(NULL), prev(NULL) 99 { 100 /* empty */ 101 } 102 103 const exec_node *get_next() const 104 { 105 return next; 106 } 107 108 exec_node *get_next() 109 { 110 return next; 111 } 112 113 const exec_node *get_prev() const 114 { 115 return prev; 116 } 117 118 exec_node *get_prev() 119 { 120 return prev; 121 } 122 123 void remove() 124 { 125 next->prev = prev; 126 prev->next = next; 127 next = NULL; 128 prev = NULL; 129 } 130 131 /** 132 * Link a node with itself 133 * 134 * This creates a sort of degenerate list that is occasionally useful. 135 */ 136 void self_link() 137 { 138 next = this; 139 prev = this; 140 } 141 142 /** 143 * Insert a node in the list after the current node 144 */ 145 void insert_after(exec_node *after) 146 { 147 after->next = this->next; 148 after->prev = this; 149 150 this->next->prev = after; 151 this->next = after; 152 } 153 /** 154 * Insert a node in the list before the current node 155 */ 156 void insert_before(exec_node *before) 157 { 158 before->next = this; 159 before->prev = this->prev; 160 161 this->prev->next = before; 162 this->prev = before; 163 } 164 165 /** 166 * Insert another list in the list before the current node 167 */ 168 void insert_before(struct exec_list *before); 169 170 /** 171 * Replace the current node with the given node. 172 */ 173 void replace_with(exec_node *replacement) 174 { 175 replacement->prev = this->prev; 176 replacement->next = this->next; 177 178 this->prev->next = replacement; 179 this->next->prev = replacement; 180 } 181 182 /** 183 * Is this the sentinel at the tail of the list? 184 */ 185 bool is_tail_sentinel() const 186 { 187 return this->next == NULL; 188 } 189 190 /** 191 * Is this the sentinel at the head of the list? 192 */ 193 bool is_head_sentinel() const 194 { 195 return this->prev == NULL; 196 } 197 #endif 198 }; 199 200 201 #ifdef __cplusplus 202 /* This macro will not work correctly if `t' uses virtual inheritance. If you 203 * are using virtual inheritance, you deserve a slow and painful death. Enjoy! 204 */ 205 #define exec_list_offsetof(t, f, p) \ 206 (((char *) &((t *) p)->f) - ((char *) p)) 207 #else 208 #define exec_list_offsetof(t, f, p) offsetof(t, f) 209 #endif 210 211 /** 212 * Get a pointer to the structure containing an exec_node 213 * 214 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to 215 * the containing structure. 216 * 217 * \param type Base type of the structure containing the node 218 * \param node Pointer to the \c exec_node 219 * \param field Name of the field in \c type that is the embedded \c exec_node 220 */ 221 #define exec_node_data(type, node, field) \ 222 ((type *) (((char *) node) - exec_list_offsetof(type, field, node))) 223 224 #ifdef __cplusplus 225 struct exec_node; 226 227 class iterator { 228 public: 229 void next() 230 { 231 } 232 233 void *get() 234 { 235 return NULL; 236 } 237 238 bool has_next() const 239 { 240 return false; 241 } 242 }; 243 244 class exec_list_iterator : public iterator { 245 public: 246 exec_list_iterator(exec_node *n) : node(n), _next(n->next) 247 { 248 /* empty */ 249 } 250 251 void next() 252 { 253 node = _next; 254 _next = node->next; 255 } 256 257 void remove() 258 { 259 node->remove(); 260 } 261 262 exec_node *get() 263 { 264 return node; 265 } 266 267 bool has_next() const 268 { 269 return _next != NULL; 270 } 271 272 private: 273 exec_node *node; 274 exec_node *_next; 275 }; 276 277 #define foreach_iter(iter_type, iter, container) \ 278 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next()) 279 #endif 280 281 282 struct exec_list { 283 struct exec_node *head; 284 struct exec_node *tail; 285 struct exec_node *tail_pred; 286 287 #ifdef __cplusplus 288 /* Callers of this ralloc-based new need not call delete. It's 289 * easier to just ralloc_free 'ctx' (or any of its ancestors). */ 290 static void* operator new(size_t size, void *ctx) 291 { 292 void *node; 293 294 node = ralloc_size(ctx, size); 295 assert(node != NULL); 296 297 return node; 298 } 299 300 /* If the user *does* call delete, that's OK, we will just 301 * ralloc_free in that case. */ 302 static void operator delete(void *node) 303 { 304 ralloc_free(node); 305 } 306 307 exec_list() 308 { 309 make_empty(); 310 } 311 312 void make_empty() 313 { 314 head = (exec_node *) & tail; 315 tail = NULL; 316 tail_pred = (exec_node *) & head; 317 } 318 319 bool is_empty() const 320 { 321 /* There are three ways to test whether a list is empty or not. 322 * 323 * - Check to see if the \c head points to the \c tail. 324 * - Check to see if the \c tail_pred points to the \c head. 325 * - Check to see if the \c head is the sentinel node by test whether its 326 * \c next pointer is \c NULL. 327 * 328 * The first two methods tend to generate better code on modern systems 329 * because they save a pointer dereference. 330 */ 331 return head == (exec_node *) &tail; 332 } 333 334 const exec_node *get_head() const 335 { 336 return !is_empty() ? head : NULL; 337 } 338 339 exec_node *get_head() 340 { 341 return !is_empty() ? head : NULL; 342 } 343 344 const exec_node *get_tail() const 345 { 346 return !is_empty() ? tail_pred : NULL; 347 } 348 349 exec_node *get_tail() 350 { 351 return !is_empty() ? tail_pred : NULL; 352 } 353 354 void push_head(exec_node *n) 355 { 356 n->next = head; 357 n->prev = (exec_node *) &head; 358 359 n->next->prev = n; 360 head = n; 361 } 362 363 void push_tail(exec_node *n) 364 { 365 n->next = (exec_node *) &tail; 366 n->prev = tail_pred; 367 368 n->prev->next = n; 369 tail_pred = n; 370 } 371 372 void push_degenerate_list_at_head(exec_node *n) 373 { 374 assert(n->prev->next == n); 375 376 n->prev->next = head; 377 head->prev = n->prev; 378 n->prev = (exec_node *) &head; 379 head = n; 380 } 381 382 /** 383 * Remove the first node from a list and return it 384 * 385 * \return 386 * The first node in the list or \c NULL if the list is empty. 387 * 388 * \sa exec_list::get_head 389 */ 390 exec_node *pop_head() 391 { 392 exec_node *const n = this->get_head(); 393 if (n != NULL) 394 n->remove(); 395 396 return n; 397 } 398 399 /** 400 * Move all of the nodes from this list to the target list 401 */ 402 void move_nodes_to(exec_list *target) 403 { 404 if (is_empty()) { 405 target->make_empty(); 406 } else { 407 target->head = head; 408 target->tail = NULL; 409 target->tail_pred = tail_pred; 410 411 target->head->prev = (exec_node *) &target->head; 412 target->tail_pred->next = (exec_node *) &target->tail; 413 414 make_empty(); 415 } 416 } 417 418 /** 419 * Append all nodes from the source list to the target list 420 */ 421 void 422 append_list(exec_list *source) 423 { 424 if (source->is_empty()) 425 return; 426 427 /* Link the first node of the source with the last node of the target list. 428 */ 429 this->tail_pred->next = source->head; 430 source->head->prev = this->tail_pred; 431 432 /* Make the tail of the source list be the tail of the target list. 433 */ 434 this->tail_pred = source->tail_pred; 435 this->tail_pred->next = (exec_node *) &this->tail; 436 437 /* Make the source list empty for good measure. 438 */ 439 source->make_empty(); 440 } 441 442 exec_list_iterator iterator() 443 { 444 return exec_list_iterator(head); 445 } 446 447 exec_list_iterator iterator() const 448 { 449 return exec_list_iterator((exec_node *) head); 450 } 451 #endif 452 }; 453 454 455 #ifdef __cplusplus 456 inline void exec_node::insert_before(exec_list *before) 457 { 458 if (before->is_empty()) 459 return; 460 461 before->tail_pred->next = this; 462 before->head->prev = this->prev; 463 464 this->prev->next = before->head; 465 this->prev = before->tail_pred; 466 467 before->make_empty(); 468 } 469 #endif 470 471 /** 472 * This version is safe even if the current node is removed. 473 */ 474 #define foreach_list_safe(__node, __list) \ 475 for (exec_node * __node = (__list)->head, * __next = __node->next \ 476 ; __next != NULL \ 477 ; __node = __next, __next = __next->next) 478 479 #define foreach_list(__node, __list) \ 480 for (exec_node * __node = (__list)->head \ 481 ; (__node)->next != NULL \ 482 ; (__node) = (__node)->next) 483 484 #define foreach_list_const(__node, __list) \ 485 for (const exec_node * __node = (__list)->head \ 486 ; (__node)->next != NULL \ 487 ; (__node) = (__node)->next) 488 489 #define foreach_list_typed(__type, __node, __field, __list) \ 490 for (__type * __node = \ 491 exec_node_data(__type, (__list)->head, __field); \ 492 (__node)->__field.next != NULL; \ 493 (__node) = exec_node_data(__type, (__node)->__field.next, __field)) 494 495 #define foreach_list_typed_const(__type, __node, __field, __list) \ 496 for (const __type * __node = \ 497 exec_node_data(__type, (__list)->head, __field); \ 498 (__node)->__field.next != NULL; \ 499 (__node) = exec_node_data(__type, (__node)->__field.next, __field)) 500 501 #endif /* LIST_CONTAINER_H */ 502