Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkGeometry_DEFINED
      9 #define SkGeometry_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkNx.h"
     13 
     14 static inline Sk2s from_point(const SkPoint& point) {
     15     return Sk2s::Load(&point);
     16 }
     17 
     18 static inline SkPoint to_point(const Sk2s& x) {
     19     SkPoint point;
     20     x.store(&point);
     21     return point;
     22 }
     23 
     24 static Sk2s times_2(const Sk2s& value) {
     25     return value + value;
     26 }
     27 
     28 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
     29     equation.
     30 */
     31 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
     32 
     33 ///////////////////////////////////////////////////////////////////////////////
     34 
     35 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
     36 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
     37 
     38 /** Set pt to the point on the src quadratic specified by t. t must be
     39     0 <= t <= 1.0
     40 */
     41 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
     42 
     43 /** Given a src quadratic bezier, chop it at the specified t value,
     44     where 0 < t < 1, and return the two new quadratics in dst:
     45     dst[0..2] and dst[2..4]
     46 */
     47 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
     48 
     49 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
     50     The new quads are returned in dst[0..2] and dst[2..4]
     51 */
     52 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
     53 
     54 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
     55     for extrema, and return the number of t-values that are found that represent
     56     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
     57     function returns 0.
     58     Returned count      tValues[]
     59     0                   ignored
     60     1                   0 < tValues[0] < 1
     61 */
     62 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
     63 
     64 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
     65     the resulting beziers are monotonic in Y. This is called by the scan converter.
     66     Depending on what is returned, dst[] is treated as follows
     67     0   dst[0..2] is the original quad
     68     1   dst[0..2] and dst[2..4] are the two new quads
     69 */
     70 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
     71 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
     72 
     73 /** Given 3 points on a quadratic bezier, if the point of maximum
     74     curvature exists on the segment, returns the t value for this
     75     point along the curve. Otherwise it will return a value of 0.
     76 */
     77 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
     78 
     79 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
     80     if the point of maximum curvature exists on the quad segment.
     81     Depending on what is returned, dst[] is treated as follows
     82     1   dst[0..2] is the original quad
     83     2   dst[0..2] and dst[2..4] are the two new quads
     84     If dst == null, it is ignored and only the count is returned.
     85 */
     86 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
     87 
     88 /** Given 3 points on a quadratic bezier, use degree elevation to
     89     convert it into the cubic fitting the same curve. The new cubic
     90     curve is returned in dst[0..3].
     91 */
     92 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
     93 
     94 ///////////////////////////////////////////////////////////////////////////////
     95 
     96 /** Set pt to the point on the src cubic specified by t. t must be
     97     0 <= t <= 1.0
     98 */
     99 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
    100                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
    101 
    102 /** Given a src cubic bezier, chop it at the specified t value,
    103     where 0 < t < 1, and return the two new cubics in dst:
    104     dst[0..3] and dst[3..6]
    105 */
    106 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
    107 
    108 /** Given a src cubic bezier, chop it at the specified t values,
    109     where 0 < t < 1, and return the new cubics in dst:
    110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
    111 */
    112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
    113                    int t_count);
    114 
    115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
    116     The new cubics are returned in dst[0..3] and dst[3..6]
    117 */
    118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
    119 
    120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    121     for extrema, and return the number of t-values that are found that represent
    122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    123     function returns 0.
    124     Returned count      tValues[]
    125     0                   ignored
    126     1                   0 < tValues[0] < 1
    127     2                   0 < tValues[0] < tValues[1] < 1
    128 */
    129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    130                        SkScalar tValues[2]);
    131 
    132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    133     the resulting beziers are monotonic in Y. This is called by the scan converter.
    134     Depending on what is returned, dst[] is treated as follows
    135     0   dst[0..3] is the original cubic
    136     1   dst[0..3] and dst[3..6] are the two new cubics
    137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    138     If dst == null, it is ignored and only the count is returned.
    139 */
    140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
    141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
    142 
    143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    144     inflection points.
    145 */
    146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
    147 
    148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
    149     inflection point, 3 for having chopped at 2 inflection points.
    150     dst will hold the resulting 1, 2, or 3 cubics.
    151 */
    152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
    153 
    154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
    155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    156                               SkScalar tValues[3] = nullptr);
    157 
    158 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
    159 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
    160 
    161 enum SkCubicType {
    162     kSerpentine_SkCubicType,
    163     kCusp_SkCubicType,
    164     kLoop_SkCubicType,
    165     kQuadratic_SkCubicType,
    166     kLine_SkCubicType,
    167     kPoint_SkCubicType
    168 };
    169 
    170 /** Returns the cubic classification. Pass scratch storage for computing inflection data,
    171     which can be used with additional work to find the loop intersections and so on.
    172 */
    173 SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar inflection[3]);
    174 
    175 ///////////////////////////////////////////////////////////////////////////////
    176 
    177 enum SkRotationDirection {
    178     kCW_SkRotationDirection,
    179     kCCW_SkRotationDirection
    180 };
    181 
    182 struct SkConic {
    183     SkConic() {}
    184     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    185         fPts[0] = p0;
    186         fPts[1] = p1;
    187         fPts[2] = p2;
    188         fW = w;
    189     }
    190     SkConic(const SkPoint pts[3], SkScalar w) {
    191         memcpy(fPts, pts, sizeof(fPts));
    192         fW = w;
    193     }
    194 
    195     SkPoint  fPts[3];
    196     SkScalar fW;
    197 
    198     void set(const SkPoint pts[3], SkScalar w) {
    199         memcpy(fPts, pts, 3 * sizeof(SkPoint));
    200         fW = w;
    201     }
    202 
    203     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    204         fPts[0] = p0;
    205         fPts[1] = p1;
    206         fPts[2] = p2;
    207         fW = w;
    208     }
    209 
    210     /**
    211      *  Given a t-value [0...1] return its position and/or tangent.
    212      *  If pos is not null, return its position at the t-value.
    213      *  If tangent is not null, return its tangent at the t-value. NOTE the
    214      *  tangent value's length is arbitrary, and only its direction should
    215      *  be used.
    216      */
    217     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
    218     void chopAt(SkScalar t, SkConic dst[2]) const;
    219     void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
    220     void chop(SkConic dst[2]) const;
    221 
    222     SkPoint evalAt(SkScalar t) const;
    223     SkVector evalTangentAt(SkScalar t) const;
    224 
    225     void computeAsQuadError(SkVector* err) const;
    226     bool asQuadTol(SkScalar tol) const;
    227 
    228     /**
    229      *  return the power-of-2 number of quads needed to approximate this conic
    230      *  with a sequence of quads. Will be >= 0.
    231      */
    232     int computeQuadPOW2(SkScalar tol) const;
    233 
    234     /**
    235      *  Chop this conic into N quads, stored continguously in pts[], where
    236      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
    237      */
    238     int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
    239 
    240     bool findXExtrema(SkScalar* t) const;
    241     bool findYExtrema(SkScalar* t) const;
    242     bool chopAtXExtrema(SkConic dst[2]) const;
    243     bool chopAtYExtrema(SkConic dst[2]) const;
    244 
    245     void computeTightBounds(SkRect* bounds) const;
    246     void computeFastBounds(SkRect* bounds) const;
    247 
    248     /** Find the parameter value where the conic takes on its maximum curvature.
    249      *
    250      *  @param t   output scalar for max curvature.  Will be unchanged if
    251      *             max curvature outside 0..1 range.
    252      *
    253      *  @return  true if max curvature found inside 0..1 range, false otherwise
    254      */
    255 //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented
    256 
    257     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
    258 
    259     enum {
    260         kMaxConicsForArc = 5
    261     };
    262     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
    263                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
    264 };
    265 
    266 // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
    267 namespace {
    268 
    269 /**
    270  *  use for : eval(t) == A * t^2 + B * t + C
    271  */
    272 struct SkQuadCoeff {
    273     SkQuadCoeff() {}
    274 
    275     SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
    276         : fA(A)
    277         , fB(B)
    278         , fC(C)
    279     {
    280     }
    281 
    282     SkQuadCoeff(const SkPoint src[3]) {
    283         fC = from_point(src[0]);
    284         Sk2s P1 = from_point(src[1]);
    285         Sk2s P2 = from_point(src[2]);
    286         fB = times_2(P1 - fC);
    287         fA = P2 - times_2(P1) + fC;
    288     }
    289 
    290     Sk2s eval(SkScalar t) {
    291         Sk2s tt(t);
    292         return eval(tt);
    293     }
    294 
    295     Sk2s eval(const Sk2s& tt) {
    296         return (fA * tt + fB) * tt + fC;
    297     }
    298 
    299     Sk2s fA;
    300     Sk2s fB;
    301     Sk2s fC;
    302 };
    303 
    304 struct SkConicCoeff {
    305     SkConicCoeff(const SkConic& conic) {
    306         Sk2s p0 = from_point(conic.fPts[0]);
    307         Sk2s p1 = from_point(conic.fPts[1]);
    308         Sk2s p2 = from_point(conic.fPts[2]);
    309         Sk2s ww(conic.fW);
    310 
    311         Sk2s p1w = p1 * ww;
    312         fNumer.fC = p0;
    313         fNumer.fA = p2 - times_2(p1w) + p0;
    314         fNumer.fB = times_2(p1w - p0);
    315 
    316         fDenom.fC = Sk2s(1);
    317         fDenom.fB = times_2(ww - fDenom.fC);
    318         fDenom.fA = Sk2s(0) - fDenom.fB;
    319     }
    320 
    321     Sk2s eval(SkScalar t) {
    322         Sk2s tt(t);
    323         Sk2s numer = fNumer.eval(tt);
    324         Sk2s denom = fDenom.eval(tt);
    325         return numer / denom;
    326     }
    327 
    328     SkQuadCoeff fNumer;
    329     SkQuadCoeff fDenom;
    330 };
    331 
    332 struct SkCubicCoeff {
    333     SkCubicCoeff(const SkPoint src[4]) {
    334         Sk2s P0 = from_point(src[0]);
    335         Sk2s P1 = from_point(src[1]);
    336         Sk2s P2 = from_point(src[2]);
    337         Sk2s P3 = from_point(src[3]);
    338         Sk2s three(3);
    339         fA = P3 + three * (P1 - P2) - P0;
    340         fB = three * (P2 - times_2(P1) + P0);
    341         fC = three * (P1 - P0);
    342         fD = P0;
    343     }
    344 
    345     Sk2s eval(SkScalar t) {
    346         Sk2s tt(t);
    347         return eval(tt);
    348     }
    349 
    350     Sk2s eval(const Sk2s& t) {
    351         return ((fA * t + fB) * t + fC) * t + fD;
    352     }
    353 
    354     Sk2s fA;
    355     Sk2s fB;
    356     Sk2s fC;
    357     Sk2s fD;
    358 };
    359 
    360 }
    361 
    362 #include "SkTemplates.h"
    363 
    364 /**
    365  *  Help class to allocate storage for approximating a conic with N quads.
    366  */
    367 class SkAutoConicToQuads {
    368 public:
    369     SkAutoConicToQuads() : fQuadCount(0) {}
    370 
    371     /**
    372      *  Given a conic and a tolerance, return the array of points for the
    373      *  approximating quad(s). Call countQuads() to know the number of quads
    374      *  represented in these points.
    375      *
    376      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
    377      *  there will be 9 points allocated as follows
    378      *      quad[0] == pts[0..2]
    379      *      quad[1] == pts[2..4]
    380      *      quad[2] == pts[4..6]
    381      *      quad[3] == pts[6..8]
    382      */
    383     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
    384         int pow2 = conic.computeQuadPOW2(tol);
    385         fQuadCount = 1 << pow2;
    386         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
    387         conic.chopIntoQuadsPOW2(pts, pow2);
    388         return pts;
    389     }
    390 
    391     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
    392                                 SkScalar tol) {
    393         SkConic conic;
    394         conic.set(pts, weight);
    395         return computeQuads(conic, tol);
    396     }
    397 
    398     int countQuads() const { return fQuadCount; }
    399 
    400 private:
    401     enum {
    402         kQuadCount = 8, // should handle most conics
    403         kPointCount = 1 + 2 * kQuadCount,
    404     };
    405     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    406     int fQuadCount; // #quads for current usage
    407 };
    408 
    409 #endif
    410