Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 #include "SkNx.h"
     11 
     12 static SkVector to_vector(const Sk2s& x) {
     13     SkVector vector;
     14     x.store(&vector);
     15     return vector;
     16 }
     17 
     18 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
     19     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
     20     May also introduce overflow of fixed when we compute our setup.
     21 */
     22 //    #define DIRECT_EVAL_OF_POLYNOMIALS
     23 
     24 ////////////////////////////////////////////////////////////////////////
     25 
     26 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     27     SkScalar ab = a - b;
     28     SkScalar bc = b - c;
     29     if (ab < 0) {
     30         bc = -bc;
     31     }
     32     return ab == 0 || bc < 0;
     33 }
     34 
     35 ////////////////////////////////////////////////////////////////////////
     36 
     37 static bool is_unit_interval(SkScalar x) {
     38     return x > 0 && x < SK_Scalar1;
     39 }
     40 
     41 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     42     SkASSERT(ratio);
     43 
     44     if (numer < 0) {
     45         numer = -numer;
     46         denom = -denom;
     47     }
     48 
     49     if (denom == 0 || numer == 0 || numer >= denom) {
     50         return 0;
     51     }
     52 
     53     SkScalar r = numer / denom;
     54     if (SkScalarIsNaN(r)) {
     55         return 0;
     56     }
     57     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
     58     if (r == 0) { // catch underflow if numer <<<< denom
     59         return 0;
     60     }
     61     *ratio = r;
     62     return 1;
     63 }
     64 
     65 /** From Numerical Recipes in C.
     66 
     67     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
     68     x1 = Q / A
     69     x2 = C / Q
     70 */
     71 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
     72     SkASSERT(roots);
     73 
     74     if (A == 0) {
     75         return valid_unit_divide(-C, B, roots);
     76     }
     77 
     78     SkScalar* r = roots;
     79 
     80     SkScalar R = B*B - 4*A*C;
     81     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
     82         // if R is infinite, it's possible that it may still produce
     83         // useful results if the operation was repeated in doubles
     84         // the flipside is determining if the more precise answer
     85         // isn't useful because surrounding machinery (e.g., subtracting
     86         // the axis offset from C) already discards the extra precision
     87         // more investigation and unit tests required...
     88         return 0;
     89     }
     90     R = SkScalarSqrt(R);
     91 
     92     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
     93     r += valid_unit_divide(Q, A, r);
     94     r += valid_unit_divide(C, Q, r);
     95     if (r - roots == 2) {
     96         if (roots[0] > roots[1])
     97             SkTSwap<SkScalar>(roots[0], roots[1]);
     98         else if (roots[0] == roots[1])  // nearly-equal?
     99             r -= 1; // skip the double root
    100     }
    101     return (int)(r - roots);
    102 }
    103 
    104 ///////////////////////////////////////////////////////////////////////////////
    105 ///////////////////////////////////////////////////////////////////////////////
    106 
    107 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
    108     SkASSERT(src);
    109     SkASSERT(t >= 0 && t <= SK_Scalar1);
    110 
    111     if (pt) {
    112         *pt = SkEvalQuadAt(src, t);
    113     }
    114     if (tangent) {
    115         *tangent = SkEvalQuadTangentAt(src, t);
    116     }
    117 }
    118 
    119 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
    120     return to_point(SkQuadCoeff(src).eval(t));
    121 }
    122 
    123 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
    124     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
    125     // zero tangent vector when t is 0 or 1, and the control point is equal
    126     // to the end point. In this case, use the quad end points to compute the tangent.
    127     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
    128         return src[2] - src[0];
    129     }
    130     SkASSERT(src);
    131     SkASSERT(t >= 0 && t <= SK_Scalar1);
    132 
    133     Sk2s P0 = from_point(src[0]);
    134     Sk2s P1 = from_point(src[1]);
    135     Sk2s P2 = from_point(src[2]);
    136 
    137     Sk2s B = P1 - P0;
    138     Sk2s A = P2 - P1 - B;
    139     Sk2s T = A * Sk2s(t) + B;
    140 
    141     return to_vector(T + T);
    142 }
    143 
    144 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
    145     return v0 + (v1 - v0) * t;
    146 }
    147 
    148 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    149     SkASSERT(t > 0 && t < SK_Scalar1);
    150 
    151     Sk2s p0 = from_point(src[0]);
    152     Sk2s p1 = from_point(src[1]);
    153     Sk2s p2 = from_point(src[2]);
    154     Sk2s tt(t);
    155 
    156     Sk2s p01 = interp(p0, p1, tt);
    157     Sk2s p12 = interp(p1, p2, tt);
    158 
    159     dst[0] = to_point(p0);
    160     dst[1] = to_point(p01);
    161     dst[2] = to_point(interp(p01, p12, tt));
    162     dst[3] = to_point(p12);
    163     dst[4] = to_point(p2);
    164 }
    165 
    166 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    167     SkChopQuadAt(src, dst, 0.5f);
    168 }
    169 
    170 /** Quad'(t) = At + B, where
    171     A = 2(a - 2b + c)
    172     B = 2(b - a)
    173     Solve for t, only if it fits between 0 < t < 1
    174 */
    175 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    176     /*  At + B == 0
    177         t = -B / A
    178     */
    179     return valid_unit_divide(a - b, a - b - b + c, tValue);
    180 }
    181 
    182 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    183     coords[2] = coords[6] = coords[4];
    184 }
    185 
    186 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    187  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    188  */
    189 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    190     SkASSERT(src);
    191     SkASSERT(dst);
    192 
    193     SkScalar a = src[0].fY;
    194     SkScalar b = src[1].fY;
    195     SkScalar c = src[2].fY;
    196 
    197     if (is_not_monotonic(a, b, c)) {
    198         SkScalar    tValue;
    199         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    200             SkChopQuadAt(src, dst, tValue);
    201             flatten_double_quad_extrema(&dst[0].fY);
    202             return 1;
    203         }
    204         // if we get here, we need to force dst to be monotonic, even though
    205         // we couldn't compute a unit_divide value (probably underflow).
    206         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    207     }
    208     dst[0].set(src[0].fX, a);
    209     dst[1].set(src[1].fX, b);
    210     dst[2].set(src[2].fX, c);
    211     return 0;
    212 }
    213 
    214 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    215     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    216  */
    217 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    218     SkASSERT(src);
    219     SkASSERT(dst);
    220 
    221     SkScalar a = src[0].fX;
    222     SkScalar b = src[1].fX;
    223     SkScalar c = src[2].fX;
    224 
    225     if (is_not_monotonic(a, b, c)) {
    226         SkScalar tValue;
    227         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    228             SkChopQuadAt(src, dst, tValue);
    229             flatten_double_quad_extrema(&dst[0].fX);
    230             return 1;
    231         }
    232         // if we get here, we need to force dst to be monotonic, even though
    233         // we couldn't compute a unit_divide value (probably underflow).
    234         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    235     }
    236     dst[0].set(a, src[0].fY);
    237     dst[1].set(b, src[1].fY);
    238     dst[2].set(c, src[2].fY);
    239     return 0;
    240 }
    241 
    242 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    243 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    244 //  F''(t)  = 2 (a - 2b + c)
    245 //
    246 //  A = 2 (b - a)
    247 //  B = 2 (a - 2b + c)
    248 //
    249 //  Maximum curvature for a quadratic means solving
    250 //  Fx' Fx'' + Fy' Fy'' = 0
    251 //
    252 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    253 //
    254 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    255     SkScalar    Ax = src[1].fX - src[0].fX;
    256     SkScalar    Ay = src[1].fY - src[0].fY;
    257     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    258     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    259     SkScalar    t = 0;  // 0 means don't chop
    260 
    261     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    262     return t;
    263 }
    264 
    265 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    266     SkScalar t = SkFindQuadMaxCurvature(src);
    267     if (t == 0) {
    268         memcpy(dst, src, 3 * sizeof(SkPoint));
    269         return 1;
    270     } else {
    271         SkChopQuadAt(src, dst, t);
    272         return 2;
    273     }
    274 }
    275 
    276 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    277     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
    278     Sk2s s0 = from_point(src[0]);
    279     Sk2s s1 = from_point(src[1]);
    280     Sk2s s2 = from_point(src[2]);
    281 
    282     dst[0] = src[0];
    283     dst[1] = to_point(s0 + (s1 - s0) * scale);
    284     dst[2] = to_point(s2 + (s1 - s2) * scale);
    285     dst[3] = src[2];
    286 }
    287 
    288 //////////////////////////////////////////////////////////////////////////////
    289 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    290 //////////////////////////////////////////////////////////////////////////////
    291 
    292 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
    293 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
    294     SkASSERT(src);
    295     SkASSERT(t >= 0 && t <= SK_Scalar1);
    296 
    297     if (t == 0) {
    298         return src[0];
    299     }
    300 
    301 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    302     SkScalar D = src[0];
    303     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    304     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    305     SkScalar C = 3*(src[2] - D);
    306 
    307     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
    308 #else
    309     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    310     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    311     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    312     SkScalar    abc = SkScalarInterp(ab, bc, t);
    313     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    314     return SkScalarInterp(abc, bcd, t);
    315 #endif
    316 }
    317 #endif
    318 
    319 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
    320     SkQuadCoeff coeff;
    321     Sk2s P0 = from_point(src[0]);
    322     Sk2s P1 = from_point(src[1]);
    323     Sk2s P2 = from_point(src[2]);
    324     Sk2s P3 = from_point(src[3]);
    325 
    326     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
    327     coeff.fB = times_2(P2 - times_2(P1) + P0);
    328     coeff.fC = P1 - P0;
    329     return to_vector(coeff.eval(t));
    330 }
    331 
    332 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
    333     Sk2s P0 = from_point(src[0]);
    334     Sk2s P1 = from_point(src[1]);
    335     Sk2s P2 = from_point(src[2]);
    336     Sk2s P3 = from_point(src[3]);
    337     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
    338     Sk2s B = P2 - times_2(P1) + P0;
    339 
    340     return to_vector(A * Sk2s(t) + B);
    341 }
    342 
    343 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    344                    SkVector* tangent, SkVector* curvature) {
    345     SkASSERT(src);
    346     SkASSERT(t >= 0 && t <= SK_Scalar1);
    347 
    348     if (loc) {
    349 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
    350         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    351 #else
    352         *loc = to_point(SkCubicCoeff(src).eval(t));
    353 #endif
    354     }
    355     if (tangent) {
    356         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
    357         // adjacent control point is equal to the end point. In this case, use the
    358         // next control point or the end points to compute the tangent.
    359         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
    360             if (t == 0) {
    361                 *tangent = src[2] - src[0];
    362             } else {
    363                 *tangent = src[3] - src[1];
    364             }
    365             if (!tangent->fX && !tangent->fY) {
    366                 *tangent = src[3] - src[0];
    367             }
    368         } else {
    369             *tangent = eval_cubic_derivative(src, t);
    370         }
    371     }
    372     if (curvature) {
    373         *curvature = eval_cubic_2ndDerivative(src, t);
    374     }
    375 }
    376 
    377 /** Cubic'(t) = At^2 + Bt + C, where
    378     A = 3(-a + 3(b - c) + d)
    379     B = 6(a - 2b + c)
    380     C = 3(b - a)
    381     Solve for t, keeping only those that fit betwee 0 < t < 1
    382 */
    383 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    384                        SkScalar tValues[2]) {
    385     // we divide A,B,C by 3 to simplify
    386     SkScalar A = d - a + 3*(b - c);
    387     SkScalar B = 2*(a - b - b + c);
    388     SkScalar C = b - a;
    389 
    390     return SkFindUnitQuadRoots(A, B, C, tValues);
    391 }
    392 
    393 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    394     SkASSERT(t > 0 && t < SK_Scalar1);
    395 
    396     Sk2s    p0 = from_point(src[0]);
    397     Sk2s    p1 = from_point(src[1]);
    398     Sk2s    p2 = from_point(src[2]);
    399     Sk2s    p3 = from_point(src[3]);
    400     Sk2s    tt(t);
    401 
    402     Sk2s    ab = interp(p0, p1, tt);
    403     Sk2s    bc = interp(p1, p2, tt);
    404     Sk2s    cd = interp(p2, p3, tt);
    405     Sk2s    abc = interp(ab, bc, tt);
    406     Sk2s    bcd = interp(bc, cd, tt);
    407     Sk2s    abcd = interp(abc, bcd, tt);
    408 
    409     dst[0] = src[0];
    410     dst[1] = to_point(ab);
    411     dst[2] = to_point(abc);
    412     dst[3] = to_point(abcd);
    413     dst[4] = to_point(bcd);
    414     dst[5] = to_point(cd);
    415     dst[6] = src[3];
    416 }
    417 
    418 /*  http://code.google.com/p/skia/issues/detail?id=32
    419 
    420     This test code would fail when we didn't check the return result of
    421     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    422     that after the first chop, the parameters to valid_unit_divide are equal
    423     (thanks to finite float precision and rounding in the subtracts). Thus
    424     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    425     up with 1.0, hence the need to check and just return the last cubic as
    426     a degenerate clump of 4 points in the sampe place.
    427 
    428     static void test_cubic() {
    429         SkPoint src[4] = {
    430             { 556.25000, 523.03003 },
    431             { 556.23999, 522.96002 },
    432             { 556.21997, 522.89001 },
    433             { 556.21997, 522.82001 }
    434         };
    435         SkPoint dst[10];
    436         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    437         SkChopCubicAt(src, dst, tval, 2);
    438     }
    439  */
    440 
    441 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    442                    const SkScalar tValues[], int roots) {
    443 #ifdef SK_DEBUG
    444     {
    445         for (int i = 0; i < roots - 1; i++)
    446         {
    447             SkASSERT(is_unit_interval(tValues[i]));
    448             SkASSERT(is_unit_interval(tValues[i+1]));
    449             SkASSERT(tValues[i] < tValues[i+1]);
    450         }
    451     }
    452 #endif
    453 
    454     if (dst) {
    455         if (roots == 0) { // nothing to chop
    456             memcpy(dst, src, 4*sizeof(SkPoint));
    457         } else {
    458             SkScalar    t = tValues[0];
    459             SkPoint     tmp[4];
    460 
    461             for (int i = 0; i < roots; i++) {
    462                 SkChopCubicAt(src, dst, t);
    463                 if (i == roots - 1) {
    464                     break;
    465                 }
    466 
    467                 dst += 3;
    468                 // have src point to the remaining cubic (after the chop)
    469                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    470                 src = tmp;
    471 
    472                 // watch out in case the renormalized t isn't in range
    473                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    474                                        SK_Scalar1 - tValues[i], &t)) {
    475                     // if we can't, just create a degenerate cubic
    476                     dst[4] = dst[5] = dst[6] = src[3];
    477                     break;
    478                 }
    479             }
    480         }
    481     }
    482 }
    483 
    484 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    485     SkChopCubicAt(src, dst, 0.5f);
    486 }
    487 
    488 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    489     coords[4] = coords[8] = coords[6];
    490 }
    491 
    492 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    493     the resulting beziers are monotonic in Y. This is called by the scan
    494     converter.  Depending on what is returned, dst[] is treated as follows:
    495     0   dst[0..3] is the original cubic
    496     1   dst[0..3] and dst[3..6] are the two new cubics
    497     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    498     If dst == null, it is ignored and only the count is returned.
    499 */
    500 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    501     SkScalar    tValues[2];
    502     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    503                                            src[3].fY, tValues);
    504 
    505     SkChopCubicAt(src, dst, tValues, roots);
    506     if (dst && roots > 0) {
    507         // we do some cleanup to ensure our Y extrema are flat
    508         flatten_double_cubic_extrema(&dst[0].fY);
    509         if (roots == 2) {
    510             flatten_double_cubic_extrema(&dst[3].fY);
    511         }
    512     }
    513     return roots;
    514 }
    515 
    516 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    517     SkScalar    tValues[2];
    518     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    519                                            src[3].fX, tValues);
    520 
    521     SkChopCubicAt(src, dst, tValues, roots);
    522     if (dst && roots > 0) {
    523         // we do some cleanup to ensure our Y extrema are flat
    524         flatten_double_cubic_extrema(&dst[0].fX);
    525         if (roots == 2) {
    526             flatten_double_cubic_extrema(&dst[3].fX);
    527         }
    528     }
    529     return roots;
    530 }
    531 
    532 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    533 
    534     Inflection means that curvature is zero.
    535     Curvature is [F' x F''] / [F'^3]
    536     So we solve F'x X F''y - F'y X F''y == 0
    537     After some canceling of the cubic term, we get
    538     A = b - a
    539     B = c - 2b + a
    540     C = d - 3c + 3b - a
    541     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    542 */
    543 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    544     SkScalar    Ax = src[1].fX - src[0].fX;
    545     SkScalar    Ay = src[1].fY - src[0].fY;
    546     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    547     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    548     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    549     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    550 
    551     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    552                                Ax*Cy - Ay*Cx,
    553                                Ax*By - Ay*Bx,
    554                                tValues);
    555 }
    556 
    557 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    558     SkScalar    tValues[2];
    559     int         count = SkFindCubicInflections(src, tValues);
    560 
    561     if (dst) {
    562         if (count == 0) {
    563             memcpy(dst, src, 4 * sizeof(SkPoint));
    564         } else {
    565             SkChopCubicAt(src, dst, tValues, count);
    566         }
    567     }
    568     return count + 1;
    569 }
    570 
    571 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
    572 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
    573 // Classification:
    574 // discr(I) > 0        Serpentine
    575 // discr(I) = 0        Cusp
    576 // discr(I) < 0        Loop
    577 // d0 = d1 = 0         Quadratic
    578 // d0 = d1 = d2 = 0    Line
    579 // p0 = p1 = p2 = p3   Point
    580 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
    581     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
    582         return kPoint_SkCubicType;
    583     }
    584     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
    585     if (discr > SK_ScalarNearlyZero) {
    586         return kSerpentine_SkCubicType;
    587     } else if (discr < -SK_ScalarNearlyZero) {
    588         return kLoop_SkCubicType;
    589     } else {
    590         if (0.f == d[0] && 0.f == d[1]) {
    591             return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
    592         } else {
    593             return kCusp_SkCubicType;
    594         }
    595     }
    596 }
    597 
    598 // Assumes the third component of points is 1.
    599 // Calcs p0 . (p1 x p2)
    600 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    601     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
    602     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
    603     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
    604     return (xComp + yComp + wComp);
    605 }
    606 
    607 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    608 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    609 // d0 = a1 - 2*a2+3*a3
    610 // d1 = -a2 + 3*a3
    611 // d2 = 3*a3
    612 // a1 = p0 . (p3 x p2)
    613 // a2 = p1 . (p0 x p3)
    614 // a3 = p2 . (p1 x p0)
    615 // Places the values of d1, d2, d3 in array d passed in
    616 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
    617     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    618     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    619     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    620 
    621     // need to scale a's or values in later calculations will grow to high
    622     SkScalar max = SkScalarAbs(a1);
    623     max = SkMaxScalar(max, SkScalarAbs(a2));
    624     max = SkMaxScalar(max, SkScalarAbs(a3));
    625     max = 1.f/max;
    626     a1 = a1 * max;
    627     a2 = a2 * max;
    628     a3 = a3 * max;
    629 
    630     d[2] = 3.f * a3;
    631     d[1] = d[2] - a2;
    632     d[0] = d[1] - a2 + a1;
    633 }
    634 
    635 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
    636     calc_cubic_inflection_func(src, d);
    637     return classify_cubic(src, d);
    638 }
    639 
    640 template <typename T> void bubble_sort(T array[], int count) {
    641     for (int i = count - 1; i > 0; --i)
    642         for (int j = i; j > 0; --j)
    643             if (array[j] < array[j-1])
    644             {
    645                 T   tmp(array[j]);
    646                 array[j] = array[j-1];
    647                 array[j-1] = tmp;
    648             }
    649 }
    650 
    651 /**
    652  *  Given an array and count, remove all pair-wise duplicates from the array,
    653  *  keeping the existing sorting, and return the new count
    654  */
    655 static int collaps_duplicates(SkScalar array[], int count) {
    656     for (int n = count; n > 1; --n) {
    657         if (array[0] == array[1]) {
    658             for (int i = 1; i < n; ++i) {
    659                 array[i - 1] = array[i];
    660             }
    661             count -= 1;
    662         } else {
    663             array += 1;
    664         }
    665     }
    666     return count;
    667 }
    668 
    669 #ifdef SK_DEBUG
    670 
    671 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    672 
    673 static void test_collaps_duplicates() {
    674     static bool gOnce;
    675     if (gOnce) { return; }
    676     gOnce = true;
    677     const SkScalar src0[] = { 0 };
    678     const SkScalar src1[] = { 0, 0 };
    679     const SkScalar src2[] = { 0, 1 };
    680     const SkScalar src3[] = { 0, 0, 0 };
    681     const SkScalar src4[] = { 0, 0, 1 };
    682     const SkScalar src5[] = { 0, 1, 1 };
    683     const SkScalar src6[] = { 0, 1, 2 };
    684     const struct {
    685         const SkScalar* fData;
    686         int fCount;
    687         int fCollapsedCount;
    688     } data[] = {
    689         { TEST_COLLAPS_ENTRY(src0), 1 },
    690         { TEST_COLLAPS_ENTRY(src1), 1 },
    691         { TEST_COLLAPS_ENTRY(src2), 2 },
    692         { TEST_COLLAPS_ENTRY(src3), 1 },
    693         { TEST_COLLAPS_ENTRY(src4), 2 },
    694         { TEST_COLLAPS_ENTRY(src5), 2 },
    695         { TEST_COLLAPS_ENTRY(src6), 3 },
    696     };
    697     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    698         SkScalar dst[3];
    699         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    700         int count = collaps_duplicates(dst, data[i].fCount);
    701         SkASSERT(data[i].fCollapsedCount == count);
    702         for (int j = 1; j < count; ++j) {
    703             SkASSERT(dst[j-1] < dst[j]);
    704         }
    705     }
    706 }
    707 #endif
    708 
    709 static SkScalar SkScalarCubeRoot(SkScalar x) {
    710     return SkScalarPow(x, 0.3333333f);
    711 }
    712 
    713 /*  Solve coeff(t) == 0, returning the number of roots that
    714     lie withing 0 < t < 1.
    715     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    716 
    717     Eliminates repeated roots (so that all tValues are distinct, and are always
    718     in increasing order.
    719 */
    720 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    721     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    722         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    723     }
    724 
    725     SkScalar a, b, c, Q, R;
    726 
    727     {
    728         SkASSERT(coeff[0] != 0);
    729 
    730         SkScalar inva = SkScalarInvert(coeff[0]);
    731         a = coeff[1] * inva;
    732         b = coeff[2] * inva;
    733         c = coeff[3] * inva;
    734     }
    735     Q = (a*a - b*3) / 9;
    736     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    737 
    738     SkScalar Q3 = Q * Q * Q;
    739     SkScalar R2MinusQ3 = R * R - Q3;
    740     SkScalar adiv3 = a / 3;
    741 
    742     SkScalar*   roots = tValues;
    743     SkScalar    r;
    744 
    745     if (R2MinusQ3 < 0) { // we have 3 real roots
    746         SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
    747         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    748 
    749         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    750         if (is_unit_interval(r)) {
    751             *roots++ = r;
    752         }
    753         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    754         if (is_unit_interval(r)) {
    755             *roots++ = r;
    756         }
    757         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    758         if (is_unit_interval(r)) {
    759             *roots++ = r;
    760         }
    761         SkDEBUGCODE(test_collaps_duplicates();)
    762 
    763         // now sort the roots
    764         int count = (int)(roots - tValues);
    765         SkASSERT((unsigned)count <= 3);
    766         bubble_sort(tValues, count);
    767         count = collaps_duplicates(tValues, count);
    768         roots = tValues + count;    // so we compute the proper count below
    769     } else {              // we have 1 real root
    770         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    771         A = SkScalarCubeRoot(A);
    772         if (R > 0) {
    773             A = -A;
    774         }
    775         if (A != 0) {
    776             A += Q / A;
    777         }
    778         r = A - adiv3;
    779         if (is_unit_interval(r)) {
    780             *roots++ = r;
    781         }
    782     }
    783 
    784     return (int)(roots - tValues);
    785 }
    786 
    787 /*  Looking for F' dot F'' == 0
    788 
    789     A = b - a
    790     B = c - 2b + a
    791     C = d - 3c + 3b - a
    792 
    793     F' = 3Ct^2 + 6Bt + 3A
    794     F'' = 6Ct + 6B
    795 
    796     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    797 */
    798 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    799     SkScalar    a = src[2] - src[0];
    800     SkScalar    b = src[4] - 2 * src[2] + src[0];
    801     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    802 
    803     coeff[0] = c * c;
    804     coeff[1] = 3 * b * c;
    805     coeff[2] = 2 * b * b + c * a;
    806     coeff[3] = a * b;
    807 }
    808 
    809 /*  Looking for F' dot F'' == 0
    810 
    811     A = b - a
    812     B = c - 2b + a
    813     C = d - 3c + 3b - a
    814 
    815     F' = 3Ct^2 + 6Bt + 3A
    816     F'' = 6Ct + 6B
    817 
    818     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    819 */
    820 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    821     SkScalar coeffX[4], coeffY[4];
    822     int      i;
    823 
    824     formulate_F1DotF2(&src[0].fX, coeffX);
    825     formulate_F1DotF2(&src[0].fY, coeffY);
    826 
    827     for (i = 0; i < 4; i++) {
    828         coeffX[i] += coeffY[i];
    829     }
    830 
    831     SkScalar    t[3];
    832     int         count = solve_cubic_poly(coeffX, t);
    833     int         maxCount = 0;
    834 
    835     // now remove extrema where the curvature is zero (mins)
    836     // !!!! need a test for this !!!!
    837     for (i = 0; i < count; i++) {
    838         // if (not_min_curvature())
    839         if (t[i] > 0 && t[i] < SK_Scalar1) {
    840             tValues[maxCount++] = t[i];
    841         }
    842     }
    843     return maxCount;
    844 }
    845 
    846 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    847                               SkScalar tValues[3]) {
    848     SkScalar    t_storage[3];
    849 
    850     if (tValues == nullptr) {
    851         tValues = t_storage;
    852     }
    853 
    854     int count = SkFindCubicMaxCurvature(src, tValues);
    855 
    856     if (dst) {
    857         if (count == 0) {
    858             memcpy(dst, src, 4 * sizeof(SkPoint));
    859         } else {
    860             SkChopCubicAt(src, dst, tValues, count);
    861         }
    862     }
    863     return count + 1;
    864 }
    865 
    866 #include "../pathops/SkPathOpsCubic.h"
    867 
    868 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
    869 
    870 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
    871                                      InterceptProc method) {
    872     SkDCubic cubic;
    873     double roots[3];
    874     int count = (cubic.set(src).*method)(intercept, roots);
    875     if (count > 0) {
    876         SkDCubicPair pair = cubic.chopAt(roots[0]);
    877         for (int i = 0; i < 7; ++i) {
    878             dst[i] = pair.pts[i].asSkPoint();
    879         }
    880         return true;
    881     }
    882     return false;
    883 }
    884 
    885 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
    886     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
    887 }
    888 
    889 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
    890     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
    891 }
    892 
    893 ///////////////////////////////////////////////////////////////////////////////
    894 //
    895 // NURB representation for conics.  Helpful explanations at:
    896 //
    897 // http://citeseerx.ist.psu.edu/viewdoc/
    898 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
    899 // and
    900 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
    901 //
    902 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
    903 //     ------------------------------------------
    904 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
    905 //
    906 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
    907 //     ------------------------------------------------
    908 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
    909 //
    910 
    911 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
    912 //
    913 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
    914 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
    915 //  t^0 : -2 P0 w + 2 P1 w
    916 //
    917 //  We disregard magnitude, so we can freely ignore the denominator of F', and
    918 //  divide the numerator by 2
    919 //
    920 //    coeff[0] for t^2
    921 //    coeff[1] for t^1
    922 //    coeff[2] for t^0
    923 //
    924 static void conic_deriv_coeff(const SkScalar src[],
    925                               SkScalar w,
    926                               SkScalar coeff[3]) {
    927     const SkScalar P20 = src[4] - src[0];
    928     const SkScalar P10 = src[2] - src[0];
    929     const SkScalar wP10 = w * P10;
    930     coeff[0] = w * P20 - P20;
    931     coeff[1] = P20 - 2 * wP10;
    932     coeff[2] = wP10;
    933 }
    934 
    935 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
    936     SkScalar coeff[3];
    937     conic_deriv_coeff(src, w, coeff);
    938 
    939     SkScalar tValues[2];
    940     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
    941     SkASSERT(0 == roots || 1 == roots);
    942 
    943     if (1 == roots) {
    944         *t = tValues[0];
    945         return true;
    946     }
    947     return false;
    948 }
    949 
    950 struct SkP3D {
    951     SkScalar fX, fY, fZ;
    952 
    953     void set(SkScalar x, SkScalar y, SkScalar z) {
    954         fX = x; fY = y; fZ = z;
    955     }
    956 
    957     void projectDown(SkPoint* dst) const {
    958         dst->set(fX / fZ, fY / fZ);
    959     }
    960 };
    961 
    962 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
    963 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
    964     SkScalar ab = SkScalarInterp(src[0], src[3], t);
    965     SkScalar bc = SkScalarInterp(src[3], src[6], t);
    966     dst[0] = ab;
    967     dst[3] = SkScalarInterp(ab, bc, t);
    968     dst[6] = bc;
    969 }
    970 
    971 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
    972     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
    973     dst[1].set(src[1].fX * w, src[1].fY * w, w);
    974     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
    975 }
    976 
    977 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
    978     SkP3D tmp[3], tmp2[3];
    979 
    980     ratquad_mapTo3D(fPts, fW, tmp);
    981 
    982     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
    983     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
    984     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
    985 
    986     dst[0].fPts[0] = fPts[0];
    987     tmp2[0].projectDown(&dst[0].fPts[1]);
    988     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
    989     tmp2[2].projectDown(&dst[1].fPts[1]);
    990     dst[1].fPts[2] = fPts[2];
    991 
    992     // to put in "standard form", where w0 and w2 are both 1, we compute the
    993     // new w1 as sqrt(w1*w1/w0*w2)
    994     // or
    995     // w1 /= sqrt(w0*w2)
    996     //
    997     // However, in our case, we know that for dst[0]:
    998     //     w0 == 1, and for dst[1], w2 == 1
    999     //
   1000     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1001     dst[0].fW = tmp2[0].fZ / root;
   1002     dst[1].fW = tmp2[2].fZ / root;
   1003 }
   1004 
   1005 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
   1006     if (0 == t1 || 1 == t2) {
   1007         if (0 == t1 && 1 == t2) {
   1008             *dst = *this;
   1009         } else {
   1010             SkConic pair[2];
   1011             this->chopAt(t1 ? t1 : t2, pair);
   1012             *dst = pair[SkToBool(t1)];
   1013         }
   1014         return;
   1015     }
   1016     SkConicCoeff coeff(*this);
   1017     Sk2s tt1(t1);
   1018     Sk2s aXY = coeff.fNumer.eval(tt1);
   1019     Sk2s aZZ = coeff.fDenom.eval(tt1);
   1020     Sk2s midTT((t1 + t2) / 2);
   1021     Sk2s dXY = coeff.fNumer.eval(midTT);
   1022     Sk2s dZZ = coeff.fDenom.eval(midTT);
   1023     Sk2s tt2(t2);
   1024     Sk2s cXY = coeff.fNumer.eval(tt2);
   1025     Sk2s cZZ = coeff.fDenom.eval(tt2);
   1026     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
   1027     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
   1028     dst->fPts[0] = to_point(aXY / aZZ);
   1029     dst->fPts[1] = to_point(bXY / bZZ);
   1030     dst->fPts[2] = to_point(cXY / cZZ);
   1031     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
   1032     dst->fW = ww[0];
   1033 }
   1034 
   1035 SkPoint SkConic::evalAt(SkScalar t) const {
   1036     return to_point(SkConicCoeff(*this).eval(t));
   1037 }
   1038 
   1039 SkVector SkConic::evalTangentAt(SkScalar t) const {
   1040     // The derivative equation returns a zero tangent vector when t is 0 or 1,
   1041     // and the control point is equal to the end point.
   1042     // In this case, use the conic endpoints to compute the tangent.
   1043     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
   1044         return fPts[2] - fPts[0];
   1045     }
   1046     Sk2s p0 = from_point(fPts[0]);
   1047     Sk2s p1 = from_point(fPts[1]);
   1048     Sk2s p2 = from_point(fPts[2]);
   1049     Sk2s ww(fW);
   1050 
   1051     Sk2s p20 = p2 - p0;
   1052     Sk2s p10 = p1 - p0;
   1053 
   1054     Sk2s C = ww * p10;
   1055     Sk2s A = ww * p20 - p20;
   1056     Sk2s B = p20 - C - C;
   1057 
   1058     return to_vector(SkQuadCoeff(A, B, C).eval(t));
   1059 }
   1060 
   1061 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1062     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1063 
   1064     if (pt) {
   1065         *pt = this->evalAt(t);
   1066     }
   1067     if (tangent) {
   1068         *tangent = this->evalTangentAt(t);
   1069     }
   1070 }
   1071 
   1072 static SkScalar subdivide_w_value(SkScalar w) {
   1073     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1074 }
   1075 
   1076 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
   1077     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
   1078     SkScalar newW = subdivide_w_value(fW);
   1079 
   1080     Sk2s p0 = from_point(fPts[0]);
   1081     Sk2s p1 = from_point(fPts[1]);
   1082     Sk2s p2 = from_point(fPts[2]);
   1083     Sk2s ww(fW);
   1084 
   1085     Sk2s wp1 = ww * p1;
   1086     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
   1087 
   1088     dst[0].fPts[0] = fPts[0];
   1089     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
   1090     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
   1091     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
   1092     dst[1].fPts[2] = fPts[2];
   1093 
   1094     dst[0].fW = dst[1].fW = newW;
   1095 }
   1096 
   1097 /*
   1098  *  "High order approximation of conic sections by quadratic splines"
   1099  *      by Michael Floater, 1993
   1100  */
   1101 #define AS_QUAD_ERROR_SETUP                                         \
   1102     SkScalar a = fW - 1;                                            \
   1103     SkScalar k = a / (4 * (2 + a));                                 \
   1104     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1105     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1106 
   1107 void SkConic::computeAsQuadError(SkVector* err) const {
   1108     AS_QUAD_ERROR_SETUP
   1109     err->set(x, y);
   1110 }
   1111 
   1112 bool SkConic::asQuadTol(SkScalar tol) const {
   1113     AS_QUAD_ERROR_SETUP
   1114     return (x * x + y * y) <= tol * tol;
   1115 }
   1116 
   1117 // Limit the number of suggested quads to approximate a conic
   1118 #define kMaxConicToQuadPOW2     5
   1119 
   1120 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1121     if (tol < 0 || !SkScalarIsFinite(tol)) {
   1122         return 0;
   1123     }
   1124 
   1125     AS_QUAD_ERROR_SETUP
   1126 
   1127     SkScalar error = SkScalarSqrt(x * x + y * y);
   1128     int pow2;
   1129     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
   1130         if (error <= tol) {
   1131             break;
   1132         }
   1133         error *= 0.25f;
   1134     }
   1135     // float version -- using ceil gives the same results as the above.
   1136     if (false) {
   1137         SkScalar err = SkScalarSqrt(x * x + y * y);
   1138         if (err <= tol) {
   1139             return 0;
   1140         }
   1141         SkScalar tol2 = tol * tol;
   1142         if (tol2 == 0) {
   1143             return kMaxConicToQuadPOW2;
   1144         }
   1145         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
   1146         int altPow2 = SkScalarCeilToInt(fpow2);
   1147         if (altPow2 != pow2) {
   1148             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
   1149         }
   1150         pow2 = altPow2;
   1151     }
   1152     return pow2;
   1153 }
   1154 
   1155 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1156     SkASSERT(level >= 0);
   1157 
   1158     if (0 == level) {
   1159         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1160         return pts + 2;
   1161     } else {
   1162         SkConic dst[2];
   1163         src.chop(dst);
   1164         --level;
   1165         pts = subdivide(dst[0], pts, level);
   1166         return subdivide(dst[1], pts, level);
   1167     }
   1168 }
   1169 
   1170 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1171     SkASSERT(pow2 >= 0);
   1172     *pts = fPts[0];
   1173     SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
   1174     SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
   1175     return 1 << pow2;
   1176 }
   1177 
   1178 bool SkConic::findXExtrema(SkScalar* t) const {
   1179     return conic_find_extrema(&fPts[0].fX, fW, t);
   1180 }
   1181 
   1182 bool SkConic::findYExtrema(SkScalar* t) const {
   1183     return conic_find_extrema(&fPts[0].fY, fW, t);
   1184 }
   1185 
   1186 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1187     SkScalar t;
   1188     if (this->findXExtrema(&t)) {
   1189         this->chopAt(t, dst);
   1190         // now clean-up the middle, since we know t was meant to be at
   1191         // an X-extrema
   1192         SkScalar value = dst[0].fPts[2].fX;
   1193         dst[0].fPts[1].fX = value;
   1194         dst[1].fPts[0].fX = value;
   1195         dst[1].fPts[1].fX = value;
   1196         return true;
   1197     }
   1198     return false;
   1199 }
   1200 
   1201 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1202     SkScalar t;
   1203     if (this->findYExtrema(&t)) {
   1204         this->chopAt(t, dst);
   1205         // now clean-up the middle, since we know t was meant to be at
   1206         // an Y-extrema
   1207         SkScalar value = dst[0].fPts[2].fY;
   1208         dst[0].fPts[1].fY = value;
   1209         dst[1].fPts[0].fY = value;
   1210         dst[1].fPts[1].fY = value;
   1211         return true;
   1212     }
   1213     return false;
   1214 }
   1215 
   1216 void SkConic::computeTightBounds(SkRect* bounds) const {
   1217     SkPoint pts[4];
   1218     pts[0] = fPts[0];
   1219     pts[1] = fPts[2];
   1220     int count = 2;
   1221 
   1222     SkScalar t;
   1223     if (this->findXExtrema(&t)) {
   1224         this->evalAt(t, &pts[count++]);
   1225     }
   1226     if (this->findYExtrema(&t)) {
   1227         this->evalAt(t, &pts[count++]);
   1228     }
   1229     bounds->set(pts, count);
   1230 }
   1231 
   1232 void SkConic::computeFastBounds(SkRect* bounds) const {
   1233     bounds->set(fPts, 3);
   1234 }
   1235 
   1236 #if 0  // unimplemented
   1237 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1238     // TODO: Implement me
   1239     return false;
   1240 }
   1241 #endif
   1242 
   1243 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
   1244                              const SkMatrix& matrix) {
   1245     if (!matrix.hasPerspective()) {
   1246         return w;
   1247     }
   1248 
   1249     SkP3D src[3], dst[3];
   1250 
   1251     ratquad_mapTo3D(pts, w, src);
   1252 
   1253     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
   1254 
   1255     // w' = sqrt(w1*w1/w0*w2)
   1256     SkScalar w0 = dst[0].fZ;
   1257     SkScalar w1 = dst[1].fZ;
   1258     SkScalar w2 = dst[2].fZ;
   1259     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
   1260     return w;
   1261 }
   1262 
   1263 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
   1264                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
   1265     // rotate by x,y so that uStart is (1.0)
   1266     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1267     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1268 
   1269     SkScalar absY = SkScalarAbs(y);
   1270 
   1271     // check for (effectively) coincident vectors
   1272     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1273     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1274     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1275                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1276         return 0;
   1277     }
   1278 
   1279     if (dir == kCCW_SkRotationDirection) {
   1280         y = -y;
   1281     }
   1282 
   1283     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
   1284     //      0 == [0  .. 90)
   1285     //      1 == [90 ..180)
   1286     //      2 == [180..270)
   1287     //      3 == [270..360)
   1288     //
   1289     int quadrant = 0;
   1290     if (0 == y) {
   1291         quadrant = 2;        // 180
   1292         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1293     } else if (0 == x) {
   1294         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1295         quadrant = y > 0 ? 1 : 3; // 90 : 270
   1296     } else {
   1297         if (y < 0) {
   1298             quadrant += 2;
   1299         }
   1300         if ((x < 0) != (y < 0)) {
   1301             quadrant += 1;
   1302         }
   1303     }
   1304 
   1305     const SkPoint quadrantPts[] = {
   1306         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
   1307     };
   1308     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
   1309 
   1310     int conicCount = quadrant;
   1311     for (int i = 0; i < conicCount; ++i) {
   1312         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
   1313     }
   1314 
   1315     // Now compute any remaing (sub-90-degree) arc for the last conic
   1316     const SkPoint finalP = { x, y };
   1317     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
   1318     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
   1319     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
   1320 
   1321     if (dot < 1) {
   1322         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
   1323         // compute the bisector vector, and then rescale to be the off-curve point.
   1324         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
   1325         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
   1326         // This is nice, since our computed weight is cos(theta/2) as well!
   1327         //
   1328         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
   1329         offCurve.setLength(SkScalarInvert(cosThetaOver2));
   1330         dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
   1331         conicCount += 1;
   1332     }
   1333 
   1334     // now handle counter-clockwise and the initial unitStart rotation
   1335     SkMatrix    matrix;
   1336     matrix.setSinCos(uStart.fY, uStart.fX);
   1337     if (dir == kCCW_SkRotationDirection) {
   1338         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1339     }
   1340     if (userMatrix) {
   1341         matrix.postConcat(*userMatrix);
   1342     }
   1343     for (int i = 0; i < conicCount; ++i) {
   1344         matrix.mapPoints(dst[i].fPts, 3);
   1345     }
   1346     return conicCount;
   1347 }
   1348