Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
     12 #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
     13 
     14 namespace Eigen {
     15 
     16 /** \ingroup QR_Module
     17   *
     18   * \class ColPivHouseholderQR
     19   *
     20   * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
     21   *
     22   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
     23   *
     24   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
     25   * such that
     26   * \f[
     27   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
     28   * \f]
     29   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
     30   * upper triangular matrix.
     31   *
     32   * This decomposition performs column pivoting in order to be rank-revealing and improve
     33   * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
     34   *
     35   * \sa MatrixBase::colPivHouseholderQr()
     36   */
     37 template<typename _MatrixType> class ColPivHouseholderQR
     38 {
     39   public:
     40 
     41     typedef _MatrixType MatrixType;
     42     enum {
     43       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     44       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     45       Options = MatrixType::Options,
     46       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     47       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     48     };
     49     typedef typename MatrixType::Scalar Scalar;
     50     typedef typename MatrixType::RealScalar RealScalar;
     51     typedef typename MatrixType::Index Index;
     52     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
     53     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     54     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
     55     typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
     56     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     57     typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
     58     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
     59 
     60   private:
     61 
     62     typedef typename PermutationType::Index PermIndexType;
     63 
     64   public:
     65 
     66     /**
     67     * \brief Default Constructor.
     68     *
     69     * The default constructor is useful in cases in which the user intends to
     70     * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
     71     */
     72     ColPivHouseholderQR()
     73       : m_qr(),
     74         m_hCoeffs(),
     75         m_colsPermutation(),
     76         m_colsTranspositions(),
     77         m_temp(),
     78         m_colSqNorms(),
     79         m_isInitialized(false),
     80         m_usePrescribedThreshold(false) {}
     81 
     82     /** \brief Default Constructor with memory preallocation
     83       *
     84       * Like the default constructor but with preallocation of the internal data
     85       * according to the specified problem \a size.
     86       * \sa ColPivHouseholderQR()
     87       */
     88     ColPivHouseholderQR(Index rows, Index cols)
     89       : m_qr(rows, cols),
     90         m_hCoeffs((std::min)(rows,cols)),
     91         m_colsPermutation(PermIndexType(cols)),
     92         m_colsTranspositions(cols),
     93         m_temp(cols),
     94         m_colSqNorms(cols),
     95         m_isInitialized(false),
     96         m_usePrescribedThreshold(false) {}
     97 
     98     /** \brief Constructs a QR factorization from a given matrix
     99       *
    100       * This constructor computes the QR factorization of the matrix \a matrix by calling
    101       * the method compute(). It is a short cut for:
    102       *
    103       * \code
    104       * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
    105       * qr.compute(matrix);
    106       * \endcode
    107       *
    108       * \sa compute()
    109       */
    110     ColPivHouseholderQR(const MatrixType& matrix)
    111       : m_qr(matrix.rows(), matrix.cols()),
    112         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
    113         m_colsPermutation(PermIndexType(matrix.cols())),
    114         m_colsTranspositions(matrix.cols()),
    115         m_temp(matrix.cols()),
    116         m_colSqNorms(matrix.cols()),
    117         m_isInitialized(false),
    118         m_usePrescribedThreshold(false)
    119     {
    120       compute(matrix);
    121     }
    122 
    123     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    124       * *this is the QR decomposition, if any exists.
    125       *
    126       * \param b the right-hand-side of the equation to solve.
    127       *
    128       * \returns a solution.
    129       *
    130       * \note The case where b is a matrix is not yet implemented. Also, this
    131       *       code is space inefficient.
    132       *
    133       * \note_about_checking_solutions
    134       *
    135       * \note_about_arbitrary_choice_of_solution
    136       *
    137       * Example: \include ColPivHouseholderQR_solve.cpp
    138       * Output: \verbinclude ColPivHouseholderQR_solve.out
    139       */
    140     template<typename Rhs>
    141     inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
    142     solve(const MatrixBase<Rhs>& b) const
    143     {
    144       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    145       return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
    146     }
    147 
    148     HouseholderSequenceType householderQ(void) const;
    149     HouseholderSequenceType matrixQ(void) const
    150     {
    151       return householderQ();
    152     }
    153 
    154     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    155       */
    156     const MatrixType& matrixQR() const
    157     {
    158       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    159       return m_qr;
    160     }
    161 
    162     /** \returns a reference to the matrix where the result Householder QR is stored
    163      * \warning The strict lower part of this matrix contains internal values.
    164      * Only the upper triangular part should be referenced. To get it, use
    165      * \code matrixR().template triangularView<Upper>() \endcode
    166      * For rank-deficient matrices, use
    167      * \code
    168      * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
    169      * \endcode
    170      */
    171     const MatrixType& matrixR() const
    172     {
    173       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    174       return m_qr;
    175     }
    176 
    177     ColPivHouseholderQR& compute(const MatrixType& matrix);
    178 
    179     /** \returns a const reference to the column permutation matrix */
    180     const PermutationType& colsPermutation() const
    181     {
    182       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    183       return m_colsPermutation;
    184     }
    185 
    186     /** \returns the absolute value of the determinant of the matrix of which
    187       * *this is the QR decomposition. It has only linear complexity
    188       * (that is, O(n) where n is the dimension of the square matrix)
    189       * as the QR decomposition has already been computed.
    190       *
    191       * \note This is only for square matrices.
    192       *
    193       * \warning a determinant can be very big or small, so for matrices
    194       * of large enough dimension, there is a risk of overflow/underflow.
    195       * One way to work around that is to use logAbsDeterminant() instead.
    196       *
    197       * \sa logAbsDeterminant(), MatrixBase::determinant()
    198       */
    199     typename MatrixType::RealScalar absDeterminant() const;
    200 
    201     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    202       * *this is the QR decomposition. It has only linear complexity
    203       * (that is, O(n) where n is the dimension of the square matrix)
    204       * as the QR decomposition has already been computed.
    205       *
    206       * \note This is only for square matrices.
    207       *
    208       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    209       * to determinant computation.
    210       *
    211       * \sa absDeterminant(), MatrixBase::determinant()
    212       */
    213     typename MatrixType::RealScalar logAbsDeterminant() const;
    214 
    215     /** \returns the rank of the matrix of which *this is the QR decomposition.
    216       *
    217       * \note This method has to determine which pivots should be considered nonzero.
    218       *       For that, it uses the threshold value that you can control by calling
    219       *       setThreshold(const RealScalar&).
    220       */
    221     inline Index rank() const
    222     {
    223       using std::abs;
    224       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    225       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
    226       Index result = 0;
    227       for(Index i = 0; i < m_nonzero_pivots; ++i)
    228         result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
    229       return result;
    230     }
    231 
    232     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
    233       *
    234       * \note This method has to determine which pivots should be considered nonzero.
    235       *       For that, it uses the threshold value that you can control by calling
    236       *       setThreshold(const RealScalar&).
    237       */
    238     inline Index dimensionOfKernel() const
    239     {
    240       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    241       return cols() - rank();
    242     }
    243 
    244     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
    245       *          linear map, i.e. has trivial kernel; false otherwise.
    246       *
    247       * \note This method has to determine which pivots should be considered nonzero.
    248       *       For that, it uses the threshold value that you can control by calling
    249       *       setThreshold(const RealScalar&).
    250       */
    251     inline bool isInjective() const
    252     {
    253       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    254       return rank() == cols();
    255     }
    256 
    257     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
    258       *          linear map; false otherwise.
    259       *
    260       * \note This method has to determine which pivots should be considered nonzero.
    261       *       For that, it uses the threshold value that you can control by calling
    262       *       setThreshold(const RealScalar&).
    263       */
    264     inline bool isSurjective() const
    265     {
    266       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    267       return rank() == rows();
    268     }
    269 
    270     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
    271       *
    272       * \note This method has to determine which pivots should be considered nonzero.
    273       *       For that, it uses the threshold value that you can control by calling
    274       *       setThreshold(const RealScalar&).
    275       */
    276     inline bool isInvertible() const
    277     {
    278       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    279       return isInjective() && isSurjective();
    280     }
    281 
    282     /** \returns the inverse of the matrix of which *this is the QR decomposition.
    283       *
    284       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
    285       *       Use isInvertible() to first determine whether this matrix is invertible.
    286       */
    287     inline const
    288     internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
    289     inverse() const
    290     {
    291       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    292       return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
    293                (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
    294     }
    295 
    296     inline Index rows() const { return m_qr.rows(); }
    297     inline Index cols() const { return m_qr.cols(); }
    298 
    299     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
    300       *
    301       * For advanced uses only.
    302       */
    303     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    304 
    305     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
    306       * who need to determine when pivots are to be considered nonzero. This is not used for the
    307       * QR decomposition itself.
    308       *
    309       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
    310       * uses a formula to automatically determine a reasonable threshold.
    311       * Once you have called the present method setThreshold(const RealScalar&),
    312       * your value is used instead.
    313       *
    314       * \param threshold The new value to use as the threshold.
    315       *
    316       * A pivot will be considered nonzero if its absolute value is strictly greater than
    317       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
    318       * where maxpivot is the biggest pivot.
    319       *
    320       * If you want to come back to the default behavior, call setThreshold(Default_t)
    321       */
    322     ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
    323     {
    324       m_usePrescribedThreshold = true;
    325       m_prescribedThreshold = threshold;
    326       return *this;
    327     }
    328 
    329     /** Allows to come back to the default behavior, letting Eigen use its default formula for
    330       * determining the threshold.
    331       *
    332       * You should pass the special object Eigen::Default as parameter here.
    333       * \code qr.setThreshold(Eigen::Default); \endcode
    334       *
    335       * See the documentation of setThreshold(const RealScalar&).
    336       */
    337     ColPivHouseholderQR& setThreshold(Default_t)
    338     {
    339       m_usePrescribedThreshold = false;
    340       return *this;
    341     }
    342 
    343     /** Returns the threshold that will be used by certain methods such as rank().
    344       *
    345       * See the documentation of setThreshold(const RealScalar&).
    346       */
    347     RealScalar threshold() const
    348     {
    349       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    350       return m_usePrescribedThreshold ? m_prescribedThreshold
    351       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
    352       // and turns out to be identical to Higham's formula used already in LDLt.
    353                                       : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
    354     }
    355 
    356     /** \returns the number of nonzero pivots in the QR decomposition.
    357       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
    358       * So that notion isn't really intrinsically interesting, but it is
    359       * still useful when implementing algorithms.
    360       *
    361       * \sa rank()
    362       */
    363     inline Index nonzeroPivots() const
    364     {
    365       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    366       return m_nonzero_pivots;
    367     }
    368 
    369     /** \returns the absolute value of the biggest pivot, i.e. the biggest
    370       *          diagonal coefficient of R.
    371       */
    372     RealScalar maxPivot() const { return m_maxpivot; }
    373 
    374     /** \brief Reports whether the QR factorization was succesful.
    375       *
    376       * \note This function always returns \c Success. It is provided for compatibility
    377       * with other factorization routines.
    378       * \returns \c Success
    379       */
    380     ComputationInfo info() const
    381     {
    382       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    383       return Success;
    384     }
    385 
    386   protected:
    387 
    388     static void check_template_parameters()
    389     {
    390       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    391     }
    392 
    393     MatrixType m_qr;
    394     HCoeffsType m_hCoeffs;
    395     PermutationType m_colsPermutation;
    396     IntRowVectorType m_colsTranspositions;
    397     RowVectorType m_temp;
    398     RealRowVectorType m_colSqNorms;
    399     bool m_isInitialized, m_usePrescribedThreshold;
    400     RealScalar m_prescribedThreshold, m_maxpivot;
    401     Index m_nonzero_pivots;
    402     Index m_det_pq;
    403 };
    404 
    405 template<typename MatrixType>
    406 typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
    407 {
    408   using std::abs;
    409   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    410   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    411   return abs(m_qr.diagonal().prod());
    412 }
    413 
    414 template<typename MatrixType>
    415 typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
    416 {
    417   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    418   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    419   return m_qr.diagonal().cwiseAbs().array().log().sum();
    420 }
    421 
    422 /** Performs the QR factorization of the given matrix \a matrix. The result of
    423   * the factorization is stored into \c *this, and a reference to \c *this
    424   * is returned.
    425   *
    426   * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
    427   */
    428 template<typename MatrixType>
    429 ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
    430 {
    431   check_template_parameters();
    432 
    433   using std::abs;
    434   Index rows = matrix.rows();
    435   Index cols = matrix.cols();
    436   Index size = matrix.diagonalSize();
    437 
    438   // the column permutation is stored as int indices, so just to be sure:
    439   eigen_assert(cols<=NumTraits<int>::highest());
    440 
    441   m_qr = matrix;
    442   m_hCoeffs.resize(size);
    443 
    444   m_temp.resize(cols);
    445 
    446   m_colsTranspositions.resize(matrix.cols());
    447   Index number_of_transpositions = 0;
    448 
    449   m_colSqNorms.resize(cols);
    450   for(Index k = 0; k < cols; ++k)
    451     m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
    452 
    453   RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
    454 
    455   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
    456   m_maxpivot = RealScalar(0);
    457 
    458   for(Index k = 0; k < size; ++k)
    459   {
    460     // first, we look up in our table m_colSqNorms which column has the biggest squared norm
    461     Index biggest_col_index;
    462     RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
    463     biggest_col_index += k;
    464 
    465     // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
    466     // the actual squared norm of the selected column.
    467     // Note that not doing so does result in solve() sometimes returning inf/nan values
    468     // when running the unit test with 1000 repetitions.
    469     biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
    470 
    471     // we store that back into our table: it can't hurt to correct our table.
    472     m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
    473 
    474     // Track the number of meaningful pivots but do not stop the decomposition to make
    475     // sure that the initial matrix is properly reproduced. See bug 941.
    476     if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
    477       m_nonzero_pivots = k;
    478 
    479     // apply the transposition to the columns
    480     m_colsTranspositions.coeffRef(k) = biggest_col_index;
    481     if(k != biggest_col_index) {
    482       m_qr.col(k).swap(m_qr.col(biggest_col_index));
    483       std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
    484       ++number_of_transpositions;
    485     }
    486 
    487     // generate the householder vector, store it below the diagonal
    488     RealScalar beta;
    489     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    490 
    491     // apply the householder transformation to the diagonal coefficient
    492     m_qr.coeffRef(k,k) = beta;
    493 
    494     // remember the maximum absolute value of diagonal coefficients
    495     if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
    496 
    497     // apply the householder transformation
    498     m_qr.bottomRightCorner(rows-k, cols-k-1)
    499         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
    500 
    501     // update our table of squared norms of the columns
    502     m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
    503   }
    504 
    505   m_colsPermutation.setIdentity(PermIndexType(cols));
    506   for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
    507     m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
    508 
    509   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
    510   m_isInitialized = true;
    511 
    512   return *this;
    513 }
    514 
    515 namespace internal {
    516 
    517 template<typename _MatrixType, typename Rhs>
    518 struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
    519   : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
    520 {
    521   EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
    522 
    523   template<typename Dest> void evalTo(Dest& dst) const
    524   {
    525     eigen_assert(rhs().rows() == dec().rows());
    526 
    527     const Index cols = dec().cols(),
    528 				nonzero_pivots = dec().nonzeroPivots();
    529 
    530     if(nonzero_pivots == 0)
    531     {
    532       dst.setZero();
    533       return;
    534     }
    535 
    536     typename Rhs::PlainObject c(rhs());
    537 
    538     // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
    539     c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
    540                      .setLength(dec().nonzeroPivots())
    541 		     .transpose()
    542       );
    543 
    544     dec().matrixR()
    545        .topLeftCorner(nonzero_pivots, nonzero_pivots)
    546        .template triangularView<Upper>()
    547        .solveInPlace(c.topRows(nonzero_pivots));
    548 
    549     for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
    550     for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
    551   }
    552 };
    553 
    554 } // end namespace internal
    555 
    556 /** \returns the matrix Q as a sequence of householder transformations.
    557   * You can extract the meaningful part only by using:
    558   * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
    559 template<typename MatrixType>
    560 typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
    561   ::householderQ() const
    562 {
    563   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    564   return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    565 }
    566 
    567 /** \return the column-pivoting Householder QR decomposition of \c *this.
    568   *
    569   * \sa class ColPivHouseholderQR
    570   */
    571 template<typename Derived>
    572 const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
    573 MatrixBase<Derived>::colPivHouseholderQr() const
    574 {
    575   return ColPivHouseholderQR<PlainObject>(eval());
    576 }
    577 
    578 } // end namespace Eigen
    579 
    580 #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
    581