/external/eigen/doc/snippets/ |
RealQZ_compute.cpp | 9 cout << "Q:\n" << qz.matrixQ() << "\n" << "Z:\n" << qz.matrixZ() << "\n"; 13 << "\n|A-QSZ|: " << (A-qz.matrixQ()*qz.matrixS()*qz.matrixZ()).norm() 14 << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm() 15 << "\n|QQ* - I|: " << (qz.matrixQ()*qz.matrixQ().adjoint() - MatrixXf::Identity(4,4)).norm()
|
HessenbergDecomposition_matrixH.cpp | 6 MatrixXf Q = hessOfA.matrixQ();
|
Tridiagonalization_Tridiagonalization_MatrixType.cpp | 5 MatrixXd Q = triOfA.matrixQ();
|
/external/eigen/test/eigen2/ |
eigen2_qr.cpp | 27 VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR()); 28 VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR()); 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); 39 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); 43 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
eigen2_hyperplane.cpp | 52 MatrixType rot = MatrixType::Random(dim,dim).qr().matrixQ();
|
/external/eigen/test/ |
hessenberg.cpp | 22 MatrixType Q = hess.matrixQ(); 38 MatrixType cs1Q = cs1.matrixQ(); 39 MatrixType cs2Q = cs2.matrixQ(); 45 VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() );
|
real_qz.cpp | 59 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); 60 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); 61 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
|
qr_fullpivoting.cpp | 34 MatrixQType q = qr.matrixQ(); 40 MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse(); 83 m3 = qr.matrixQ(); // get a unitary 97 VERIFY_RAISES_ASSERT(qr.matrixQ())
|
sparseqr.cpp | 86 Q = solver.matrixQ();
|
eigensolver_selfadjoint.cpp | 114 // FIXME tridiag.matrixQ().adjoint() does not work 115 VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
|
/external/eigen/Eigen/src/Eigen2Support/ |
QR.h | 36 MatrixType matrixQ(void) const {
|
/external/eigen/Eigen/src/Eigenvalues/ |
ComplexSchur.h | 193 * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T 209 ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); 338 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) 342 m_matU = matrixQ; 357 if(computeU) _this.m_matU = _this.m_hess.matrixQ(); 374 MatrixType Q = _this.m_hess.matrixQ();
|
HessenbergDecomposition.h | 49 * computed, you can use the matrixH() and matrixQ() functions to construct 84 /** \brief Return type of matrixQ() */ 232 HouseholderSequenceType matrixQ() const 258 * \sa matrixQ(), packedMatrix()
|
RealSchur.h | 172 * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T 188 RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); 257 computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU); 263 RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) 267 m_matU = matrixQ;
|
SelfAdjointEigenSolver.h | 385 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); 736 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) 785 if (matrixQ) 788 Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
|
Tridiagonalization.h | 53 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the 98 /** \brief Return type of matrixQ() */ 238 HouseholderSequenceType matrixQ() const 261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
|
/external/opencv/cv/src/ |
cvgeometry.cpp | 355 cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, 369 CV_ASSERT( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) && 371 CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ)); 513 cvConvert( &Q, matrixQ );
|
/external/eigen/Eigen/src/SPQRSupport/ |
SuiteSparseQRSupport.h | 46 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. 161 y = matrixQ().transpose() * b; 193 SPQRMatrixQReturnType<SPQR> matrixQ() const
|
/external/eigen/Eigen/src/SparseQR/ |
SparseQR.h | 51 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. 133 * B2 = matrixQ() * B1; 139 * Q = SparseQR<SparseMatrix<double> >(A).matrixQ(); 146 SparseQRMatrixQReturnType<SparseQR> matrixQ() const 174 y = this->matrixQ().transpose() * B; 686 dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
DGMRES.h | 439 DenseMatrix matrixQ(it,it); 440 matrixQ.setIdentity(); 441 schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
|
/external/eigen/Eigen/src/QR/ |
FullPivHouseholderQR.h | 157 MatrixQReturnType matrixQ(void) const; 541 * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() 603 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
|
ColPivHouseholderQR.h | 149 HouseholderSequenceType matrixQ(void) const
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LMonestep.h | 70 m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
|
/external/opencv3/modules/calib3d/include/opencv2/calib3d/ |
calib3d_c.h | 153 CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
|
/external/eigen/Eigen/src/SVD/ |
JacobiSVD.h | 93 if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); 140 if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); [all...] |