Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/Geometry>
     13 #include <Eigen/LU>
     14 #include <Eigen/QR>
     15 
     16 template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
     17 {
     18   /* this test covers the following files:
     19      Hyperplane.h
     20   */
     21 
     22   const int dim = _plane.dim();
     23   typedef typename HyperplaneType::Scalar Scalar;
     24   typedef typename NumTraits<Scalar>::Real RealScalar;
     25   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
     26   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
     27                          HyperplaneType::AmbientDimAtCompileTime> MatrixType;
     28 
     29   VectorType p0 = VectorType::Random(dim);
     30   VectorType p1 = VectorType::Random(dim);
     31 
     32   VectorType n0 = VectorType::Random(dim).normalized();
     33   VectorType n1 = VectorType::Random(dim).normalized();
     34 
     35   HyperplaneType pl0(n0, p0);
     36   HyperplaneType pl1(n1, p1);
     37   HyperplaneType pl2 = pl1;
     38 
     39   Scalar s0 = ei_random<Scalar>();
     40   Scalar s1 = ei_random<Scalar>();
     41 
     42   VERIFY_IS_APPROX( n1.eigen2_dot(n1), Scalar(1) );
     43 
     44   VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
     45   VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 );
     46   VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
     47   VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );
     48 
     49   // transform
     50   if (!NumTraits<Scalar>::IsComplex)
     51   {
     52     MatrixType rot = MatrixType::Random(dim,dim).qr().matrixQ();
     53     Scaling<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
     54     Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
     55 
     56     pl2 = pl1;
     57     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
     58     pl2 = pl1;
     59     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
     60     pl2 = pl1;
     61     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
     62     pl2 = pl1;
     63     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
     64                                  .absDistance((rot*scaling*translation) * p1), Scalar(1) );
     65     pl2 = pl1;
     66     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
     67                                  .absDistance((rot*translation) * p1), Scalar(1) );
     68   }
     69 
     70   // casting
     71   const int Dim = HyperplaneType::AmbientDimAtCompileTime;
     72   typedef typename GetDifferentType<Scalar>::type OtherScalar;
     73   Hyperplane<OtherScalar,Dim> hp1f = pl1.template cast<OtherScalar>();
     74   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
     75   Hyperplane<Scalar,Dim> hp1d = pl1.template cast<Scalar>();
     76   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
     77 }
     78 
     79 template<typename Scalar> void lines()
     80 {
     81   typedef Hyperplane<Scalar, 2> HLine;
     82   typedef ParametrizedLine<Scalar, 2> PLine;
     83   typedef Matrix<Scalar,2,1> Vector;
     84   typedef Matrix<Scalar,3,1> CoeffsType;
     85 
     86   for(int i = 0; i < 10; i++)
     87   {
     88     Vector center = Vector::Random();
     89     Vector u = Vector::Random();
     90     Vector v = Vector::Random();
     91     Scalar a = ei_random<Scalar>();
     92     while (ei_abs(a-1) < 1e-4) a = ei_random<Scalar>();
     93     while (u.norm() < 1e-4) u = Vector::Random();
     94     while (v.norm() < 1e-4) v = Vector::Random();
     95 
     96     HLine line_u = HLine::Through(center + u, center + a*u);
     97     HLine line_v = HLine::Through(center + v, center + a*v);
     98 
     99     // the line equations should be normalized so that a^2+b^2=1
    100     VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
    101     VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
    102 
    103     Vector result = line_u.intersection(line_v);
    104 
    105     // the lines should intersect at the point we called "center"
    106     VERIFY_IS_APPROX(result, center);
    107 
    108     // check conversions between two types of lines
    109     PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
    110     CoeffsType converted_coeffs(HLine(pl).coeffs());
    111     converted_coeffs *= line_u.coeffs()(0)/converted_coeffs(0);
    112     VERIFY(line_u.coeffs().isApprox(converted_coeffs));
    113   }
    114 }
    115 
    116 void test_eigen2_hyperplane()
    117 {
    118   for(int i = 0; i < g_repeat; i++) {
    119     CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
    120     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
    121     CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
    122     CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
    123     CALL_SUBTEST_5( lines<float>() );
    124     CALL_SUBTEST_6( lines<double>() );
    125   }
    126 }
    127