1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 Address This = Address::invalid(); 170 if (IsArrow) 171 This = EmitPointerWithAlignment(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 189 EmitAggregateAssign(This, RHS, CE->getType()); 190 return RValue::get(This.getPointer()); 191 } 192 193 if (isa<CXXConstructorDecl>(MD) && 194 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 195 // Trivial move and copy ctor are the same. 196 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 197 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 198 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 199 return RValue::get(This.getPointer()); 200 } 201 llvm_unreachable("unknown trivial member function"); 202 } 203 } 204 205 // Compute the function type we're calling. 206 const CXXMethodDecl *CalleeDecl = 207 DevirtualizedMethod ? DevirtualizedMethod : MD; 208 const CGFunctionInfo *FInfo = nullptr; 209 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 210 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 211 Dtor, StructorType::Complete); 212 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 214 Ctor, StructorType::Complete); 215 else 216 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 217 218 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 219 220 // C++ [class.virtual]p12: 221 // Explicit qualification with the scope operator (5.1) suppresses the 222 // virtual call mechanism. 223 // 224 // We also don't emit a virtual call if the base expression has a record type 225 // because then we know what the type is. 226 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 227 llvm::Value *Callee; 228 229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 230 assert(CE->arg_begin() == CE->arg_end() && 231 "Destructor shouldn't have explicit parameters"); 232 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 233 if (UseVirtualCall) { 234 CGM.getCXXABI().EmitVirtualDestructorCall( 235 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 236 } else { 237 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 238 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 239 else if (!DevirtualizedMethod) 240 Callee = 241 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 242 else { 243 const CXXDestructorDecl *DDtor = 244 cast<CXXDestructorDecl>(DevirtualizedMethod); 245 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 246 } 247 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 248 /*ImplicitParam=*/nullptr, QualType(), CE); 249 } 250 return RValue::get(nullptr); 251 } 252 253 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 254 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 255 } else if (UseVirtualCall) { 256 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 257 CE->getLocStart()); 258 } else { 259 if (SanOpts.has(SanitizerKind::CFINVCall) && 260 MD->getParent()->isDynamicClass()) { 261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 262 EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart()); 263 } 264 265 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 266 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 267 else if (!DevirtualizedMethod) 268 Callee = CGM.GetAddrOfFunction(MD, Ty); 269 else { 270 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 271 } 272 } 273 274 if (MD->isVirtual()) { 275 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 276 *this, MD, This, UseVirtualCall); 277 } 278 279 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 280 /*ImplicitParam=*/nullptr, QualType(), CE); 281 } 282 283 RValue 284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 285 ReturnValueSlot ReturnValue) { 286 const BinaryOperator *BO = 287 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 288 const Expr *BaseExpr = BO->getLHS(); 289 const Expr *MemFnExpr = BO->getRHS(); 290 291 const MemberPointerType *MPT = 292 MemFnExpr->getType()->castAs<MemberPointerType>(); 293 294 const FunctionProtoType *FPT = 295 MPT->getPointeeType()->castAs<FunctionProtoType>(); 296 const CXXRecordDecl *RD = 297 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 298 299 // Get the member function pointer. 300 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 301 302 // Emit the 'this' pointer. 303 Address This = Address::invalid(); 304 if (BO->getOpcode() == BO_PtrMemI) 305 This = EmitPointerWithAlignment(BaseExpr); 306 else 307 This = EmitLValue(BaseExpr).getAddress(); 308 309 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 310 QualType(MPT->getClass(), 0)); 311 312 // Ask the ABI to load the callee. Note that This is modified. 313 llvm::Value *ThisPtrForCall = nullptr; 314 llvm::Value *Callee = 315 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 316 ThisPtrForCall, MemFnPtr, MPT); 317 318 CallArgList Args; 319 320 QualType ThisType = 321 getContext().getPointerType(getContext().getTagDeclType(RD)); 322 323 // Push the this ptr. 324 Args.add(RValue::get(ThisPtrForCall), ThisType); 325 326 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 327 328 // And the rest of the call args 329 EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee()); 330 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 331 Callee, ReturnValue, Args); 332 } 333 334 RValue 335 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 336 const CXXMethodDecl *MD, 337 ReturnValueSlot ReturnValue) { 338 assert(MD->isInstance() && 339 "Trying to emit a member call expr on a static method!"); 340 return EmitCXXMemberOrOperatorMemberCallExpr( 341 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 342 /*IsArrow=*/false, E->getArg(0)); 343 } 344 345 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 346 ReturnValueSlot ReturnValue) { 347 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 348 } 349 350 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 351 Address DestPtr, 352 const CXXRecordDecl *Base) { 353 if (Base->isEmpty()) 354 return; 355 356 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 357 358 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 359 CharUnits NVSize = Layout.getNonVirtualSize(); 360 361 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 362 // present, they are initialized by the most derived class before calling the 363 // constructor. 364 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 365 Stores.emplace_back(CharUnits::Zero(), NVSize); 366 367 // Each store is split by the existence of a vbptr. 368 CharUnits VBPtrWidth = CGF.getPointerSize(); 369 std::vector<CharUnits> VBPtrOffsets = 370 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 371 for (CharUnits VBPtrOffset : VBPtrOffsets) { 372 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 373 CharUnits LastStoreOffset = LastStore.first; 374 CharUnits LastStoreSize = LastStore.second; 375 376 CharUnits SplitBeforeOffset = LastStoreOffset; 377 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 378 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 379 if (!SplitBeforeSize.isZero()) 380 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 381 382 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 383 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 384 assert(!SplitAfterSize.isNegative() && "negative store size!"); 385 if (!SplitAfterSize.isZero()) 386 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 387 } 388 389 // If the type contains a pointer to data member we can't memset it to zero. 390 // Instead, create a null constant and copy it to the destination. 391 // TODO: there are other patterns besides zero that we can usefully memset, 392 // like -1, which happens to be the pattern used by member-pointers. 393 // TODO: isZeroInitializable can be over-conservative in the case where a 394 // virtual base contains a member pointer. 395 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 396 if (!NullConstantForBase->isNullValue()) { 397 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 398 CGF.CGM.getModule(), NullConstantForBase->getType(), 399 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 400 NullConstantForBase, Twine()); 401 402 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 403 DestPtr.getAlignment()); 404 NullVariable->setAlignment(Align.getQuantity()); 405 406 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 407 408 // Get and call the appropriate llvm.memcpy overload. 409 for (std::pair<CharUnits, CharUnits> Store : Stores) { 410 CharUnits StoreOffset = Store.first; 411 CharUnits StoreSize = Store.second; 412 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 413 CGF.Builder.CreateMemCpy( 414 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 415 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 416 StoreSizeVal); 417 } 418 419 // Otherwise, just memset the whole thing to zero. This is legal 420 // because in LLVM, all default initializers (other than the ones we just 421 // handled above) are guaranteed to have a bit pattern of all zeros. 422 } else { 423 for (std::pair<CharUnits, CharUnits> Store : Stores) { 424 CharUnits StoreOffset = Store.first; 425 CharUnits StoreSize = Store.second; 426 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 427 CGF.Builder.CreateMemSet( 428 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 429 CGF.Builder.getInt8(0), StoreSizeVal); 430 } 431 } 432 } 433 434 void 435 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 436 AggValueSlot Dest) { 437 assert(!Dest.isIgnored() && "Must have a destination!"); 438 const CXXConstructorDecl *CD = E->getConstructor(); 439 440 // If we require zero initialization before (or instead of) calling the 441 // constructor, as can be the case with a non-user-provided default 442 // constructor, emit the zero initialization now, unless destination is 443 // already zeroed. 444 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 445 switch (E->getConstructionKind()) { 446 case CXXConstructExpr::CK_Delegating: 447 case CXXConstructExpr::CK_Complete: 448 EmitNullInitialization(Dest.getAddress(), E->getType()); 449 break; 450 case CXXConstructExpr::CK_VirtualBase: 451 case CXXConstructExpr::CK_NonVirtualBase: 452 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 453 CD->getParent()); 454 break; 455 } 456 } 457 458 // If this is a call to a trivial default constructor, do nothing. 459 if (CD->isTrivial() && CD->isDefaultConstructor()) 460 return; 461 462 // Elide the constructor if we're constructing from a temporary. 463 // The temporary check is required because Sema sets this on NRVO 464 // returns. 465 if (getLangOpts().ElideConstructors && E->isElidable()) { 466 assert(getContext().hasSameUnqualifiedType(E->getType(), 467 E->getArg(0)->getType())); 468 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 469 EmitAggExpr(E->getArg(0), Dest); 470 return; 471 } 472 } 473 474 if (const ConstantArrayType *arrayType 475 = getContext().getAsConstantArrayType(E->getType())) { 476 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 477 } else { 478 CXXCtorType Type = Ctor_Complete; 479 bool ForVirtualBase = false; 480 bool Delegating = false; 481 482 switch (E->getConstructionKind()) { 483 case CXXConstructExpr::CK_Delegating: 484 // We should be emitting a constructor; GlobalDecl will assert this 485 Type = CurGD.getCtorType(); 486 Delegating = true; 487 break; 488 489 case CXXConstructExpr::CK_Complete: 490 Type = Ctor_Complete; 491 break; 492 493 case CXXConstructExpr::CK_VirtualBase: 494 ForVirtualBase = true; 495 // fall-through 496 497 case CXXConstructExpr::CK_NonVirtualBase: 498 Type = Ctor_Base; 499 } 500 501 // Call the constructor. 502 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 503 Dest.getAddress(), E); 504 } 505 } 506 507 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 508 const Expr *Exp) { 509 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 510 Exp = E->getSubExpr(); 511 assert(isa<CXXConstructExpr>(Exp) && 512 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 513 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 514 const CXXConstructorDecl *CD = E->getConstructor(); 515 RunCleanupsScope Scope(*this); 516 517 // If we require zero initialization before (or instead of) calling the 518 // constructor, as can be the case with a non-user-provided default 519 // constructor, emit the zero initialization now. 520 // FIXME. Do I still need this for a copy ctor synthesis? 521 if (E->requiresZeroInitialization()) 522 EmitNullInitialization(Dest, E->getType()); 523 524 assert(!getContext().getAsConstantArrayType(E->getType()) 525 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 526 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 527 } 528 529 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 530 const CXXNewExpr *E) { 531 if (!E->isArray()) 532 return CharUnits::Zero(); 533 534 // No cookie is required if the operator new[] being used is the 535 // reserved placement operator new[]. 536 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 537 return CharUnits::Zero(); 538 539 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 540 } 541 542 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 543 const CXXNewExpr *e, 544 unsigned minElements, 545 llvm::Value *&numElements, 546 llvm::Value *&sizeWithoutCookie) { 547 QualType type = e->getAllocatedType(); 548 549 if (!e->isArray()) { 550 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 551 sizeWithoutCookie 552 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 553 return sizeWithoutCookie; 554 } 555 556 // The width of size_t. 557 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 558 559 // Figure out the cookie size. 560 llvm::APInt cookieSize(sizeWidth, 561 CalculateCookiePadding(CGF, e).getQuantity()); 562 563 // Emit the array size expression. 564 // We multiply the size of all dimensions for NumElements. 565 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 566 numElements = CGF.EmitScalarExpr(e->getArraySize()); 567 assert(isa<llvm::IntegerType>(numElements->getType())); 568 569 // The number of elements can be have an arbitrary integer type; 570 // essentially, we need to multiply it by a constant factor, add a 571 // cookie size, and verify that the result is representable as a 572 // size_t. That's just a gloss, though, and it's wrong in one 573 // important way: if the count is negative, it's an error even if 574 // the cookie size would bring the total size >= 0. 575 bool isSigned 576 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 577 llvm::IntegerType *numElementsType 578 = cast<llvm::IntegerType>(numElements->getType()); 579 unsigned numElementsWidth = numElementsType->getBitWidth(); 580 581 // Compute the constant factor. 582 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 583 while (const ConstantArrayType *CAT 584 = CGF.getContext().getAsConstantArrayType(type)) { 585 type = CAT->getElementType(); 586 arraySizeMultiplier *= CAT->getSize(); 587 } 588 589 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 590 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 591 typeSizeMultiplier *= arraySizeMultiplier; 592 593 // This will be a size_t. 594 llvm::Value *size; 595 596 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 597 // Don't bloat the -O0 code. 598 if (llvm::ConstantInt *numElementsC = 599 dyn_cast<llvm::ConstantInt>(numElements)) { 600 const llvm::APInt &count = numElementsC->getValue(); 601 602 bool hasAnyOverflow = false; 603 604 // If 'count' was a negative number, it's an overflow. 605 if (isSigned && count.isNegative()) 606 hasAnyOverflow = true; 607 608 // We want to do all this arithmetic in size_t. If numElements is 609 // wider than that, check whether it's already too big, and if so, 610 // overflow. 611 else if (numElementsWidth > sizeWidth && 612 numElementsWidth - sizeWidth > count.countLeadingZeros()) 613 hasAnyOverflow = true; 614 615 // Okay, compute a count at the right width. 616 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 617 618 // If there is a brace-initializer, we cannot allocate fewer elements than 619 // there are initializers. If we do, that's treated like an overflow. 620 if (adjustedCount.ult(minElements)) 621 hasAnyOverflow = true; 622 623 // Scale numElements by that. This might overflow, but we don't 624 // care because it only overflows if allocationSize does, too, and 625 // if that overflows then we shouldn't use this. 626 numElements = llvm::ConstantInt::get(CGF.SizeTy, 627 adjustedCount * arraySizeMultiplier); 628 629 // Compute the size before cookie, and track whether it overflowed. 630 bool overflow; 631 llvm::APInt allocationSize 632 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 633 hasAnyOverflow |= overflow; 634 635 // Add in the cookie, and check whether it's overflowed. 636 if (cookieSize != 0) { 637 // Save the current size without a cookie. This shouldn't be 638 // used if there was overflow. 639 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 640 641 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 642 hasAnyOverflow |= overflow; 643 } 644 645 // On overflow, produce a -1 so operator new will fail. 646 if (hasAnyOverflow) { 647 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 648 } else { 649 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 650 } 651 652 // Otherwise, we might need to use the overflow intrinsics. 653 } else { 654 // There are up to five conditions we need to test for: 655 // 1) if isSigned, we need to check whether numElements is negative; 656 // 2) if numElementsWidth > sizeWidth, we need to check whether 657 // numElements is larger than something representable in size_t; 658 // 3) if minElements > 0, we need to check whether numElements is smaller 659 // than that. 660 // 4) we need to compute 661 // sizeWithoutCookie := numElements * typeSizeMultiplier 662 // and check whether it overflows; and 663 // 5) if we need a cookie, we need to compute 664 // size := sizeWithoutCookie + cookieSize 665 // and check whether it overflows. 666 667 llvm::Value *hasOverflow = nullptr; 668 669 // If numElementsWidth > sizeWidth, then one way or another, we're 670 // going to have to do a comparison for (2), and this happens to 671 // take care of (1), too. 672 if (numElementsWidth > sizeWidth) { 673 llvm::APInt threshold(numElementsWidth, 1); 674 threshold <<= sizeWidth; 675 676 llvm::Value *thresholdV 677 = llvm::ConstantInt::get(numElementsType, threshold); 678 679 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 680 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 681 682 // Otherwise, if we're signed, we want to sext up to size_t. 683 } else if (isSigned) { 684 if (numElementsWidth < sizeWidth) 685 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 686 687 // If there's a non-1 type size multiplier, then we can do the 688 // signedness check at the same time as we do the multiply 689 // because a negative number times anything will cause an 690 // unsigned overflow. Otherwise, we have to do it here. But at least 691 // in this case, we can subsume the >= minElements check. 692 if (typeSizeMultiplier == 1) 693 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 694 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 695 696 // Otherwise, zext up to size_t if necessary. 697 } else if (numElementsWidth < sizeWidth) { 698 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 699 } 700 701 assert(numElements->getType() == CGF.SizeTy); 702 703 if (minElements) { 704 // Don't allow allocation of fewer elements than we have initializers. 705 if (!hasOverflow) { 706 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 707 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 708 } else if (numElementsWidth > sizeWidth) { 709 // The other existing overflow subsumes this check. 710 // We do an unsigned comparison, since any signed value < -1 is 711 // taken care of either above or below. 712 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 713 CGF.Builder.CreateICmpULT(numElements, 714 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 715 } 716 } 717 718 size = numElements; 719 720 // Multiply by the type size if necessary. This multiplier 721 // includes all the factors for nested arrays. 722 // 723 // This step also causes numElements to be scaled up by the 724 // nested-array factor if necessary. Overflow on this computation 725 // can be ignored because the result shouldn't be used if 726 // allocation fails. 727 if (typeSizeMultiplier != 1) { 728 llvm::Value *umul_with_overflow 729 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 730 731 llvm::Value *tsmV = 732 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 733 llvm::Value *result = 734 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 735 736 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 737 if (hasOverflow) 738 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 739 else 740 hasOverflow = overflowed; 741 742 size = CGF.Builder.CreateExtractValue(result, 0); 743 744 // Also scale up numElements by the array size multiplier. 745 if (arraySizeMultiplier != 1) { 746 // If the base element type size is 1, then we can re-use the 747 // multiply we just did. 748 if (typeSize.isOne()) { 749 assert(arraySizeMultiplier == typeSizeMultiplier); 750 numElements = size; 751 752 // Otherwise we need a separate multiply. 753 } else { 754 llvm::Value *asmV = 755 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 756 numElements = CGF.Builder.CreateMul(numElements, asmV); 757 } 758 } 759 } else { 760 // numElements doesn't need to be scaled. 761 assert(arraySizeMultiplier == 1); 762 } 763 764 // Add in the cookie size if necessary. 765 if (cookieSize != 0) { 766 sizeWithoutCookie = size; 767 768 llvm::Value *uadd_with_overflow 769 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 770 771 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 772 llvm::Value *result = 773 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 774 775 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 776 if (hasOverflow) 777 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 778 else 779 hasOverflow = overflowed; 780 781 size = CGF.Builder.CreateExtractValue(result, 0); 782 } 783 784 // If we had any possibility of dynamic overflow, make a select to 785 // overwrite 'size' with an all-ones value, which should cause 786 // operator new to throw. 787 if (hasOverflow) 788 size = CGF.Builder.CreateSelect(hasOverflow, 789 llvm::Constant::getAllOnesValue(CGF.SizeTy), 790 size); 791 } 792 793 if (cookieSize == 0) 794 sizeWithoutCookie = size; 795 else 796 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 797 798 return size; 799 } 800 801 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 802 QualType AllocType, Address NewPtr) { 803 // FIXME: Refactor with EmitExprAsInit. 804 switch (CGF.getEvaluationKind(AllocType)) { 805 case TEK_Scalar: 806 CGF.EmitScalarInit(Init, nullptr, 807 CGF.MakeAddrLValue(NewPtr, AllocType), false); 808 return; 809 case TEK_Complex: 810 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 811 /*isInit*/ true); 812 return; 813 case TEK_Aggregate: { 814 AggValueSlot Slot 815 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 816 AggValueSlot::IsDestructed, 817 AggValueSlot::DoesNotNeedGCBarriers, 818 AggValueSlot::IsNotAliased); 819 CGF.EmitAggExpr(Init, Slot); 820 return; 821 } 822 } 823 llvm_unreachable("bad evaluation kind"); 824 } 825 826 void CodeGenFunction::EmitNewArrayInitializer( 827 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 828 Address BeginPtr, llvm::Value *NumElements, 829 llvm::Value *AllocSizeWithoutCookie) { 830 // If we have a type with trivial initialization and no initializer, 831 // there's nothing to do. 832 if (!E->hasInitializer()) 833 return; 834 835 Address CurPtr = BeginPtr; 836 837 unsigned InitListElements = 0; 838 839 const Expr *Init = E->getInitializer(); 840 Address EndOfInit = Address::invalid(); 841 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 842 EHScopeStack::stable_iterator Cleanup; 843 llvm::Instruction *CleanupDominator = nullptr; 844 845 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 846 CharUnits ElementAlign = 847 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 848 849 // If the initializer is an initializer list, first do the explicit elements. 850 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 851 InitListElements = ILE->getNumInits(); 852 853 // If this is a multi-dimensional array new, we will initialize multiple 854 // elements with each init list element. 855 QualType AllocType = E->getAllocatedType(); 856 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 857 AllocType->getAsArrayTypeUnsafe())) { 858 ElementTy = ConvertTypeForMem(AllocType); 859 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 860 InitListElements *= getContext().getConstantArrayElementCount(CAT); 861 } 862 863 // Enter a partial-destruction Cleanup if necessary. 864 if (needsEHCleanup(DtorKind)) { 865 // In principle we could tell the Cleanup where we are more 866 // directly, but the control flow can get so varied here that it 867 // would actually be quite complex. Therefore we go through an 868 // alloca. 869 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 870 "array.init.end"); 871 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 872 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 873 ElementType, ElementAlign, 874 getDestroyer(DtorKind)); 875 Cleanup = EHStack.stable_begin(); 876 } 877 878 CharUnits StartAlign = CurPtr.getAlignment(); 879 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 880 // Tell the cleanup that it needs to destroy up to this 881 // element. TODO: some of these stores can be trivially 882 // observed to be unnecessary. 883 if (EndOfInit.isValid()) { 884 auto FinishedPtr = 885 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 886 Builder.CreateStore(FinishedPtr, EndOfInit); 887 } 888 // FIXME: If the last initializer is an incomplete initializer list for 889 // an array, and we have an array filler, we can fold together the two 890 // initialization loops. 891 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 892 ILE->getInit(i)->getType(), CurPtr); 893 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 894 Builder.getSize(1), 895 "array.exp.next"), 896 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 897 } 898 899 // The remaining elements are filled with the array filler expression. 900 Init = ILE->getArrayFiller(); 901 902 // Extract the initializer for the individual array elements by pulling 903 // out the array filler from all the nested initializer lists. This avoids 904 // generating a nested loop for the initialization. 905 while (Init && Init->getType()->isConstantArrayType()) { 906 auto *SubILE = dyn_cast<InitListExpr>(Init); 907 if (!SubILE) 908 break; 909 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 910 Init = SubILE->getArrayFiller(); 911 } 912 913 // Switch back to initializing one base element at a time. 914 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 915 } 916 917 // Attempt to perform zero-initialization using memset. 918 auto TryMemsetInitialization = [&]() -> bool { 919 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 920 // we can initialize with a memset to -1. 921 if (!CGM.getTypes().isZeroInitializable(ElementType)) 922 return false; 923 924 // Optimization: since zero initialization will just set the memory 925 // to all zeroes, generate a single memset to do it in one shot. 926 927 // Subtract out the size of any elements we've already initialized. 928 auto *RemainingSize = AllocSizeWithoutCookie; 929 if (InitListElements) { 930 // We know this can't overflow; we check this when doing the allocation. 931 auto *InitializedSize = llvm::ConstantInt::get( 932 RemainingSize->getType(), 933 getContext().getTypeSizeInChars(ElementType).getQuantity() * 934 InitListElements); 935 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 936 } 937 938 // Create the memset. 939 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 940 return true; 941 }; 942 943 // If all elements have already been initialized, skip any further 944 // initialization. 945 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 946 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 947 // If there was a Cleanup, deactivate it. 948 if (CleanupDominator) 949 DeactivateCleanupBlock(Cleanup, CleanupDominator); 950 return; 951 } 952 953 assert(Init && "have trailing elements to initialize but no initializer"); 954 955 // If this is a constructor call, try to optimize it out, and failing that 956 // emit a single loop to initialize all remaining elements. 957 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 958 CXXConstructorDecl *Ctor = CCE->getConstructor(); 959 if (Ctor->isTrivial()) { 960 // If new expression did not specify value-initialization, then there 961 // is no initialization. 962 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 963 return; 964 965 if (TryMemsetInitialization()) 966 return; 967 } 968 969 // Store the new Cleanup position for irregular Cleanups. 970 // 971 // FIXME: Share this cleanup with the constructor call emission rather than 972 // having it create a cleanup of its own. 973 if (EndOfInit.isValid()) 974 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 975 976 // Emit a constructor call loop to initialize the remaining elements. 977 if (InitListElements) 978 NumElements = Builder.CreateSub( 979 NumElements, 980 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 981 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 982 CCE->requiresZeroInitialization()); 983 return; 984 } 985 986 // If this is value-initialization, we can usually use memset. 987 ImplicitValueInitExpr IVIE(ElementType); 988 if (isa<ImplicitValueInitExpr>(Init)) { 989 if (TryMemsetInitialization()) 990 return; 991 992 // Switch to an ImplicitValueInitExpr for the element type. This handles 993 // only one case: multidimensional array new of pointers to members. In 994 // all other cases, we already have an initializer for the array element. 995 Init = &IVIE; 996 } 997 998 // At this point we should have found an initializer for the individual 999 // elements of the array. 1000 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1001 "got wrong type of element to initialize"); 1002 1003 // If we have an empty initializer list, we can usually use memset. 1004 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1005 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1006 return; 1007 1008 // If we have a struct whose every field is value-initialized, we can 1009 // usually use memset. 1010 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1011 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1012 if (RType->getDecl()->isStruct()) { 1013 unsigned NumFields = 0; 1014 for (auto *Field : RType->getDecl()->fields()) 1015 if (!Field->isUnnamedBitfield()) 1016 ++NumFields; 1017 if (ILE->getNumInits() == NumFields) 1018 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1019 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1020 --NumFields; 1021 if (ILE->getNumInits() == NumFields && TryMemsetInitialization()) 1022 return; 1023 } 1024 } 1025 } 1026 1027 // Create the loop blocks. 1028 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1029 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1030 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1031 1032 // Find the end of the array, hoisted out of the loop. 1033 llvm::Value *EndPtr = 1034 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1035 1036 // If the number of elements isn't constant, we have to now check if there is 1037 // anything left to initialize. 1038 if (!ConstNum) { 1039 llvm::Value *IsEmpty = 1040 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1041 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1042 } 1043 1044 // Enter the loop. 1045 EmitBlock(LoopBB); 1046 1047 // Set up the current-element phi. 1048 llvm::PHINode *CurPtrPhi = 1049 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1050 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1051 1052 CurPtr = Address(CurPtrPhi, ElementAlign); 1053 1054 // Store the new Cleanup position for irregular Cleanups. 1055 if (EndOfInit.isValid()) 1056 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1057 1058 // Enter a partial-destruction Cleanup if necessary. 1059 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1060 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1061 ElementType, ElementAlign, 1062 getDestroyer(DtorKind)); 1063 Cleanup = EHStack.stable_begin(); 1064 CleanupDominator = Builder.CreateUnreachable(); 1065 } 1066 1067 // Emit the initializer into this element. 1068 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1069 1070 // Leave the Cleanup if we entered one. 1071 if (CleanupDominator) { 1072 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1073 CleanupDominator->eraseFromParent(); 1074 } 1075 1076 // Advance to the next element by adjusting the pointer type as necessary. 1077 llvm::Value *NextPtr = 1078 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1079 "array.next"); 1080 1081 // Check whether we've gotten to the end of the array and, if so, 1082 // exit the loop. 1083 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1084 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1085 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1086 1087 EmitBlock(ContBB); 1088 } 1089 1090 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1091 QualType ElementType, llvm::Type *ElementTy, 1092 Address NewPtr, llvm::Value *NumElements, 1093 llvm::Value *AllocSizeWithoutCookie) { 1094 ApplyDebugLocation DL(CGF, E); 1095 if (E->isArray()) 1096 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1097 AllocSizeWithoutCookie); 1098 else if (const Expr *Init = E->getInitializer()) 1099 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1100 } 1101 1102 /// Emit a call to an operator new or operator delete function, as implicitly 1103 /// created by new-expressions and delete-expressions. 1104 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1105 const FunctionDecl *Callee, 1106 const FunctionProtoType *CalleeType, 1107 const CallArgList &Args) { 1108 llvm::Instruction *CallOrInvoke; 1109 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1110 RValue RV = 1111 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1112 Args, CalleeType, /*chainCall=*/false), 1113 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1114 1115 /// C++1y [expr.new]p10: 1116 /// [In a new-expression,] an implementation is allowed to omit a call 1117 /// to a replaceable global allocation function. 1118 /// 1119 /// We model such elidable calls with the 'builtin' attribute. 1120 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1121 if (Callee->isReplaceableGlobalAllocationFunction() && 1122 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1123 // FIXME: Add addAttribute to CallSite. 1124 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1125 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1126 llvm::Attribute::Builtin); 1127 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1128 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1129 llvm::Attribute::Builtin); 1130 else 1131 llvm_unreachable("unexpected kind of call instruction"); 1132 } 1133 1134 return RV; 1135 } 1136 1137 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1138 const Expr *Arg, 1139 bool IsDelete) { 1140 CallArgList Args; 1141 const Stmt *ArgS = Arg; 1142 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1143 // Find the allocation or deallocation function that we're calling. 1144 ASTContext &Ctx = getContext(); 1145 DeclarationName Name = Ctx.DeclarationNames 1146 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1147 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1148 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1149 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1150 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1151 llvm_unreachable("predeclared global operator new/delete is missing"); 1152 } 1153 1154 namespace { 1155 /// A cleanup to call the given 'operator delete' function upon 1156 /// abnormal exit from a new expression. 1157 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1158 size_t NumPlacementArgs; 1159 const FunctionDecl *OperatorDelete; 1160 llvm::Value *Ptr; 1161 llvm::Value *AllocSize; 1162 1163 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1164 1165 public: 1166 static size_t getExtraSize(size_t NumPlacementArgs) { 1167 return NumPlacementArgs * sizeof(RValue); 1168 } 1169 1170 CallDeleteDuringNew(size_t NumPlacementArgs, 1171 const FunctionDecl *OperatorDelete, 1172 llvm::Value *Ptr, 1173 llvm::Value *AllocSize) 1174 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1175 Ptr(Ptr), AllocSize(AllocSize) {} 1176 1177 void setPlacementArg(unsigned I, RValue Arg) { 1178 assert(I < NumPlacementArgs && "index out of range"); 1179 getPlacementArgs()[I] = Arg; 1180 } 1181 1182 void Emit(CodeGenFunction &CGF, Flags flags) override { 1183 const FunctionProtoType *FPT 1184 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1185 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1186 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1187 1188 CallArgList DeleteArgs; 1189 1190 // The first argument is always a void*. 1191 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1192 DeleteArgs.add(RValue::get(Ptr), *AI++); 1193 1194 // A member 'operator delete' can take an extra 'size_t' argument. 1195 if (FPT->getNumParams() == NumPlacementArgs + 2) 1196 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1197 1198 // Pass the rest of the arguments, which must match exactly. 1199 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1200 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1201 1202 // Call 'operator delete'. 1203 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1204 } 1205 }; 1206 1207 /// A cleanup to call the given 'operator delete' function upon 1208 /// abnormal exit from a new expression when the new expression is 1209 /// conditional. 1210 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup { 1211 size_t NumPlacementArgs; 1212 const FunctionDecl *OperatorDelete; 1213 DominatingValue<RValue>::saved_type Ptr; 1214 DominatingValue<RValue>::saved_type AllocSize; 1215 1216 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1217 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1218 } 1219 1220 public: 1221 static size_t getExtraSize(size_t NumPlacementArgs) { 1222 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1223 } 1224 1225 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1226 const FunctionDecl *OperatorDelete, 1227 DominatingValue<RValue>::saved_type Ptr, 1228 DominatingValue<RValue>::saved_type AllocSize) 1229 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1230 Ptr(Ptr), AllocSize(AllocSize) {} 1231 1232 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1233 assert(I < NumPlacementArgs && "index out of range"); 1234 getPlacementArgs()[I] = Arg; 1235 } 1236 1237 void Emit(CodeGenFunction &CGF, Flags flags) override { 1238 const FunctionProtoType *FPT 1239 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1240 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1241 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1242 1243 CallArgList DeleteArgs; 1244 1245 // The first argument is always a void*. 1246 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1247 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1248 1249 // A member 'operator delete' can take an extra 'size_t' argument. 1250 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1251 RValue RV = AllocSize.restore(CGF); 1252 DeleteArgs.add(RV, *AI++); 1253 } 1254 1255 // Pass the rest of the arguments, which must match exactly. 1256 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1257 RValue RV = getPlacementArgs()[I].restore(CGF); 1258 DeleteArgs.add(RV, *AI++); 1259 } 1260 1261 // Call 'operator delete'. 1262 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1263 } 1264 }; 1265 } 1266 1267 /// Enter a cleanup to call 'operator delete' if the initializer in a 1268 /// new-expression throws. 1269 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1270 const CXXNewExpr *E, 1271 Address NewPtr, 1272 llvm::Value *AllocSize, 1273 const CallArgList &NewArgs) { 1274 // If we're not inside a conditional branch, then the cleanup will 1275 // dominate and we can do the easier (and more efficient) thing. 1276 if (!CGF.isInConditionalBranch()) { 1277 CallDeleteDuringNew *Cleanup = CGF.EHStack 1278 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1279 E->getNumPlacementArgs(), 1280 E->getOperatorDelete(), 1281 NewPtr.getPointer(), 1282 AllocSize); 1283 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1284 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1285 1286 return; 1287 } 1288 1289 // Otherwise, we need to save all this stuff. 1290 DominatingValue<RValue>::saved_type SavedNewPtr = 1291 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1292 DominatingValue<RValue>::saved_type SavedAllocSize = 1293 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1294 1295 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1296 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1297 E->getNumPlacementArgs(), 1298 E->getOperatorDelete(), 1299 SavedNewPtr, 1300 SavedAllocSize); 1301 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1302 Cleanup->setPlacementArg(I, 1303 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1304 1305 CGF.initFullExprCleanup(); 1306 } 1307 1308 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1309 // The element type being allocated. 1310 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1311 1312 // 1. Build a call to the allocation function. 1313 FunctionDecl *allocator = E->getOperatorNew(); 1314 1315 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1316 unsigned minElements = 0; 1317 if (E->isArray() && E->hasInitializer()) { 1318 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1319 minElements = ILE->getNumInits(); 1320 } 1321 1322 llvm::Value *numElements = nullptr; 1323 llvm::Value *allocSizeWithoutCookie = nullptr; 1324 llvm::Value *allocSize = 1325 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1326 allocSizeWithoutCookie); 1327 1328 // Emit the allocation call. If the allocator is a global placement 1329 // operator, just "inline" it directly. 1330 Address allocation = Address::invalid(); 1331 CallArgList allocatorArgs; 1332 if (allocator->isReservedGlobalPlacementOperator()) { 1333 assert(E->getNumPlacementArgs() == 1); 1334 const Expr *arg = *E->placement_arguments().begin(); 1335 1336 AlignmentSource alignSource; 1337 allocation = EmitPointerWithAlignment(arg, &alignSource); 1338 1339 // The pointer expression will, in many cases, be an opaque void*. 1340 // In these cases, discard the computed alignment and use the 1341 // formal alignment of the allocated type. 1342 if (alignSource != AlignmentSource::Decl) { 1343 allocation = Address(allocation.getPointer(), 1344 getContext().getTypeAlignInChars(allocType)); 1345 } 1346 1347 // Set up allocatorArgs for the call to operator delete if it's not 1348 // the reserved global operator. 1349 if (E->getOperatorDelete() && 1350 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1351 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1352 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1353 } 1354 1355 } else { 1356 const FunctionProtoType *allocatorType = 1357 allocator->getType()->castAs<FunctionProtoType>(); 1358 1359 // The allocation size is the first argument. 1360 QualType sizeType = getContext().getSizeType(); 1361 allocatorArgs.add(RValue::get(allocSize), sizeType); 1362 1363 // We start at 1 here because the first argument (the allocation size) 1364 // has already been emitted. 1365 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1366 /* CalleeDecl */ nullptr, 1367 /*ParamsToSkip*/ 1); 1368 1369 RValue RV = 1370 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1371 1372 // For now, only assume that the allocation function returns 1373 // something satisfactorily aligned for the element type, plus 1374 // the cookie if we have one. 1375 CharUnits allocationAlign = 1376 getContext().getTypeAlignInChars(allocType); 1377 if (allocSize != allocSizeWithoutCookie) { 1378 CharUnits cookieAlign = getSizeAlign(); // FIXME? 1379 allocationAlign = std::max(allocationAlign, cookieAlign); 1380 } 1381 1382 allocation = Address(RV.getScalarVal(), allocationAlign); 1383 } 1384 1385 // Emit a null check on the allocation result if the allocation 1386 // function is allowed to return null (because it has a non-throwing 1387 // exception spec or is the reserved placement new) and we have an 1388 // interesting initializer. 1389 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1390 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1391 1392 llvm::BasicBlock *nullCheckBB = nullptr; 1393 llvm::BasicBlock *contBB = nullptr; 1394 1395 // The null-check means that the initializer is conditionally 1396 // evaluated. 1397 ConditionalEvaluation conditional(*this); 1398 1399 if (nullCheck) { 1400 conditional.begin(*this); 1401 1402 nullCheckBB = Builder.GetInsertBlock(); 1403 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1404 contBB = createBasicBlock("new.cont"); 1405 1406 llvm::Value *isNull = 1407 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1408 Builder.CreateCondBr(isNull, contBB, notNullBB); 1409 EmitBlock(notNullBB); 1410 } 1411 1412 // If there's an operator delete, enter a cleanup to call it if an 1413 // exception is thrown. 1414 EHScopeStack::stable_iterator operatorDeleteCleanup; 1415 llvm::Instruction *cleanupDominator = nullptr; 1416 if (E->getOperatorDelete() && 1417 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1418 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1419 operatorDeleteCleanup = EHStack.stable_begin(); 1420 cleanupDominator = Builder.CreateUnreachable(); 1421 } 1422 1423 assert((allocSize == allocSizeWithoutCookie) == 1424 CalculateCookiePadding(*this, E).isZero()); 1425 if (allocSize != allocSizeWithoutCookie) { 1426 assert(E->isArray()); 1427 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1428 numElements, 1429 E, allocType); 1430 } 1431 1432 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1433 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1434 1435 // Passing pointer through invariant.group.barrier to avoid propagation of 1436 // vptrs information which may be included in previous type. 1437 if (CGM.getCodeGenOpts().StrictVTablePointers && 1438 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1439 allocator->isReservedGlobalPlacementOperator()) 1440 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1441 result.getAlignment()); 1442 1443 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1444 allocSizeWithoutCookie); 1445 if (E->isArray()) { 1446 // NewPtr is a pointer to the base element type. If we're 1447 // allocating an array of arrays, we'll need to cast back to the 1448 // array pointer type. 1449 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1450 if (result.getType() != resultType) 1451 result = Builder.CreateBitCast(result, resultType); 1452 } 1453 1454 // Deactivate the 'operator delete' cleanup if we finished 1455 // initialization. 1456 if (operatorDeleteCleanup.isValid()) { 1457 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1458 cleanupDominator->eraseFromParent(); 1459 } 1460 1461 llvm::Value *resultPtr = result.getPointer(); 1462 if (nullCheck) { 1463 conditional.end(*this); 1464 1465 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1466 EmitBlock(contBB); 1467 1468 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1469 PHI->addIncoming(resultPtr, notNullBB); 1470 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1471 nullCheckBB); 1472 1473 resultPtr = PHI; 1474 } 1475 1476 return resultPtr; 1477 } 1478 1479 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1480 llvm::Value *Ptr, 1481 QualType DeleteTy) { 1482 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1483 1484 const FunctionProtoType *DeleteFTy = 1485 DeleteFD->getType()->getAs<FunctionProtoType>(); 1486 1487 CallArgList DeleteArgs; 1488 1489 // Check if we need to pass the size to the delete operator. 1490 llvm::Value *Size = nullptr; 1491 QualType SizeTy; 1492 if (DeleteFTy->getNumParams() == 2) { 1493 SizeTy = DeleteFTy->getParamType(1); 1494 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1495 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1496 DeleteTypeSize.getQuantity()); 1497 } 1498 1499 QualType ArgTy = DeleteFTy->getParamType(0); 1500 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1501 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1502 1503 if (Size) 1504 DeleteArgs.add(RValue::get(Size), SizeTy); 1505 1506 // Emit the call to delete. 1507 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1508 } 1509 1510 namespace { 1511 /// Calls the given 'operator delete' on a single object. 1512 struct CallObjectDelete final : EHScopeStack::Cleanup { 1513 llvm::Value *Ptr; 1514 const FunctionDecl *OperatorDelete; 1515 QualType ElementType; 1516 1517 CallObjectDelete(llvm::Value *Ptr, 1518 const FunctionDecl *OperatorDelete, 1519 QualType ElementType) 1520 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1521 1522 void Emit(CodeGenFunction &CGF, Flags flags) override { 1523 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1524 } 1525 }; 1526 } 1527 1528 void 1529 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1530 llvm::Value *CompletePtr, 1531 QualType ElementType) { 1532 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1533 OperatorDelete, ElementType); 1534 } 1535 1536 /// Emit the code for deleting a single object. 1537 static void EmitObjectDelete(CodeGenFunction &CGF, 1538 const CXXDeleteExpr *DE, 1539 Address Ptr, 1540 QualType ElementType) { 1541 // Find the destructor for the type, if applicable. If the 1542 // destructor is virtual, we'll just emit the vcall and return. 1543 const CXXDestructorDecl *Dtor = nullptr; 1544 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1545 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1546 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1547 Dtor = RD->getDestructor(); 1548 1549 if (Dtor->isVirtual()) { 1550 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1551 Dtor); 1552 return; 1553 } 1554 } 1555 } 1556 1557 // Make sure that we call delete even if the dtor throws. 1558 // This doesn't have to a conditional cleanup because we're going 1559 // to pop it off in a second. 1560 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1561 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1562 Ptr.getPointer(), 1563 OperatorDelete, ElementType); 1564 1565 if (Dtor) 1566 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1567 /*ForVirtualBase=*/false, 1568 /*Delegating=*/false, 1569 Ptr); 1570 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1571 switch (Lifetime) { 1572 case Qualifiers::OCL_None: 1573 case Qualifiers::OCL_ExplicitNone: 1574 case Qualifiers::OCL_Autoreleasing: 1575 break; 1576 1577 case Qualifiers::OCL_Strong: 1578 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1579 break; 1580 1581 case Qualifiers::OCL_Weak: 1582 CGF.EmitARCDestroyWeak(Ptr); 1583 break; 1584 } 1585 } 1586 1587 CGF.PopCleanupBlock(); 1588 } 1589 1590 namespace { 1591 /// Calls the given 'operator delete' on an array of objects. 1592 struct CallArrayDelete final : EHScopeStack::Cleanup { 1593 llvm::Value *Ptr; 1594 const FunctionDecl *OperatorDelete; 1595 llvm::Value *NumElements; 1596 QualType ElementType; 1597 CharUnits CookieSize; 1598 1599 CallArrayDelete(llvm::Value *Ptr, 1600 const FunctionDecl *OperatorDelete, 1601 llvm::Value *NumElements, 1602 QualType ElementType, 1603 CharUnits CookieSize) 1604 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1605 ElementType(ElementType), CookieSize(CookieSize) {} 1606 1607 void Emit(CodeGenFunction &CGF, Flags flags) override { 1608 const FunctionProtoType *DeleteFTy = 1609 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1610 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1611 1612 CallArgList Args; 1613 1614 // Pass the pointer as the first argument. 1615 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1616 llvm::Value *DeletePtr 1617 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1618 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1619 1620 // Pass the original requested size as the second argument. 1621 if (DeleteFTy->getNumParams() == 2) { 1622 QualType size_t = DeleteFTy->getParamType(1); 1623 llvm::IntegerType *SizeTy 1624 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1625 1626 CharUnits ElementTypeSize = 1627 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1628 1629 // The size of an element, multiplied by the number of elements. 1630 llvm::Value *Size 1631 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1632 if (NumElements) 1633 Size = CGF.Builder.CreateMul(Size, NumElements); 1634 1635 // Plus the size of the cookie if applicable. 1636 if (!CookieSize.isZero()) { 1637 llvm::Value *CookieSizeV 1638 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1639 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1640 } 1641 1642 Args.add(RValue::get(Size), size_t); 1643 } 1644 1645 // Emit the call to delete. 1646 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1647 } 1648 }; 1649 } 1650 1651 /// Emit the code for deleting an array of objects. 1652 static void EmitArrayDelete(CodeGenFunction &CGF, 1653 const CXXDeleteExpr *E, 1654 Address deletedPtr, 1655 QualType elementType) { 1656 llvm::Value *numElements = nullptr; 1657 llvm::Value *allocatedPtr = nullptr; 1658 CharUnits cookieSize; 1659 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1660 numElements, allocatedPtr, cookieSize); 1661 1662 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1663 1664 // Make sure that we call delete even if one of the dtors throws. 1665 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1666 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1667 allocatedPtr, operatorDelete, 1668 numElements, elementType, 1669 cookieSize); 1670 1671 // Destroy the elements. 1672 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1673 assert(numElements && "no element count for a type with a destructor!"); 1674 1675 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1676 CharUnits elementAlign = 1677 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1678 1679 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1680 llvm::Value *arrayEnd = 1681 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1682 1683 // Note that it is legal to allocate a zero-length array, and we 1684 // can never fold the check away because the length should always 1685 // come from a cookie. 1686 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1687 CGF.getDestroyer(dtorKind), 1688 /*checkZeroLength*/ true, 1689 CGF.needsEHCleanup(dtorKind)); 1690 } 1691 1692 // Pop the cleanup block. 1693 CGF.PopCleanupBlock(); 1694 } 1695 1696 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1697 const Expr *Arg = E->getArgument(); 1698 Address Ptr = EmitPointerWithAlignment(Arg); 1699 1700 // Null check the pointer. 1701 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1702 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1703 1704 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1705 1706 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1707 EmitBlock(DeleteNotNull); 1708 1709 // We might be deleting a pointer to array. If so, GEP down to the 1710 // first non-array element. 1711 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1712 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1713 if (DeleteTy->isConstantArrayType()) { 1714 llvm::Value *Zero = Builder.getInt32(0); 1715 SmallVector<llvm::Value*,8> GEP; 1716 1717 GEP.push_back(Zero); // point at the outermost array 1718 1719 // For each layer of array type we're pointing at: 1720 while (const ConstantArrayType *Arr 1721 = getContext().getAsConstantArrayType(DeleteTy)) { 1722 // 1. Unpeel the array type. 1723 DeleteTy = Arr->getElementType(); 1724 1725 // 2. GEP to the first element of the array. 1726 GEP.push_back(Zero); 1727 } 1728 1729 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1730 Ptr.getAlignment()); 1731 } 1732 1733 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1734 1735 if (E->isArrayForm()) { 1736 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1737 } else { 1738 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1739 } 1740 1741 EmitBlock(DeleteEnd); 1742 } 1743 1744 static bool isGLValueFromPointerDeref(const Expr *E) { 1745 E = E->IgnoreParens(); 1746 1747 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1748 if (!CE->getSubExpr()->isGLValue()) 1749 return false; 1750 return isGLValueFromPointerDeref(CE->getSubExpr()); 1751 } 1752 1753 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1754 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1755 1756 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1757 if (BO->getOpcode() == BO_Comma) 1758 return isGLValueFromPointerDeref(BO->getRHS()); 1759 1760 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1761 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1762 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1763 1764 // C++11 [expr.sub]p1: 1765 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1766 if (isa<ArraySubscriptExpr>(E)) 1767 return true; 1768 1769 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1770 if (UO->getOpcode() == UO_Deref) 1771 return true; 1772 1773 return false; 1774 } 1775 1776 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1777 llvm::Type *StdTypeInfoPtrTy) { 1778 // Get the vtable pointer. 1779 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1780 1781 // C++ [expr.typeid]p2: 1782 // If the glvalue expression is obtained by applying the unary * operator to 1783 // a pointer and the pointer is a null pointer value, the typeid expression 1784 // throws the std::bad_typeid exception. 1785 // 1786 // However, this paragraph's intent is not clear. We choose a very generous 1787 // interpretation which implores us to consider comma operators, conditional 1788 // operators, parentheses and other such constructs. 1789 QualType SrcRecordTy = E->getType(); 1790 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1791 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1792 llvm::BasicBlock *BadTypeidBlock = 1793 CGF.createBasicBlock("typeid.bad_typeid"); 1794 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1795 1796 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1797 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1798 1799 CGF.EmitBlock(BadTypeidBlock); 1800 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1801 CGF.EmitBlock(EndBlock); 1802 } 1803 1804 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1805 StdTypeInfoPtrTy); 1806 } 1807 1808 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1809 llvm::Type *StdTypeInfoPtrTy = 1810 ConvertType(E->getType())->getPointerTo(); 1811 1812 if (E->isTypeOperand()) { 1813 llvm::Constant *TypeInfo = 1814 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1815 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1816 } 1817 1818 // C++ [expr.typeid]p2: 1819 // When typeid is applied to a glvalue expression whose type is a 1820 // polymorphic class type, the result refers to a std::type_info object 1821 // representing the type of the most derived object (that is, the dynamic 1822 // type) to which the glvalue refers. 1823 if (E->isPotentiallyEvaluated()) 1824 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1825 StdTypeInfoPtrTy); 1826 1827 QualType OperandTy = E->getExprOperand()->getType(); 1828 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1829 StdTypeInfoPtrTy); 1830 } 1831 1832 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1833 QualType DestTy) { 1834 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1835 if (DestTy->isPointerType()) 1836 return llvm::Constant::getNullValue(DestLTy); 1837 1838 /// C++ [expr.dynamic.cast]p9: 1839 /// A failed cast to reference type throws std::bad_cast 1840 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1841 return nullptr; 1842 1843 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1844 return llvm::UndefValue::get(DestLTy); 1845 } 1846 1847 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1848 const CXXDynamicCastExpr *DCE) { 1849 CGM.EmitExplicitCastExprType(DCE, this); 1850 QualType DestTy = DCE->getTypeAsWritten(); 1851 1852 if (DCE->isAlwaysNull()) 1853 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1854 return T; 1855 1856 QualType SrcTy = DCE->getSubExpr()->getType(); 1857 1858 // C++ [expr.dynamic.cast]p7: 1859 // If T is "pointer to cv void," then the result is a pointer to the most 1860 // derived object pointed to by v. 1861 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1862 1863 bool isDynamicCastToVoid; 1864 QualType SrcRecordTy; 1865 QualType DestRecordTy; 1866 if (DestPTy) { 1867 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1868 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1869 DestRecordTy = DestPTy->getPointeeType(); 1870 } else { 1871 isDynamicCastToVoid = false; 1872 SrcRecordTy = SrcTy; 1873 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1874 } 1875 1876 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1877 1878 // C++ [expr.dynamic.cast]p4: 1879 // If the value of v is a null pointer value in the pointer case, the result 1880 // is the null pointer value of type T. 1881 bool ShouldNullCheckSrcValue = 1882 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1883 SrcRecordTy); 1884 1885 llvm::BasicBlock *CastNull = nullptr; 1886 llvm::BasicBlock *CastNotNull = nullptr; 1887 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1888 1889 if (ShouldNullCheckSrcValue) { 1890 CastNull = createBasicBlock("dynamic_cast.null"); 1891 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1892 1893 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 1894 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1895 EmitBlock(CastNotNull); 1896 } 1897 1898 llvm::Value *Value; 1899 if (isDynamicCastToVoid) { 1900 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 1901 DestTy); 1902 } else { 1903 assert(DestRecordTy->isRecordType() && 1904 "destination type must be a record type!"); 1905 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 1906 DestTy, DestRecordTy, CastEnd); 1907 CastNotNull = Builder.GetInsertBlock(); 1908 } 1909 1910 if (ShouldNullCheckSrcValue) { 1911 EmitBranch(CastEnd); 1912 1913 EmitBlock(CastNull); 1914 EmitBranch(CastEnd); 1915 } 1916 1917 EmitBlock(CastEnd); 1918 1919 if (ShouldNullCheckSrcValue) { 1920 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1921 PHI->addIncoming(Value, CastNotNull); 1922 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1923 1924 Value = PHI; 1925 } 1926 1927 return Value; 1928 } 1929 1930 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1931 RunCleanupsScope Scope(*this); 1932 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 1933 1934 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1935 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1936 e = E->capture_init_end(); 1937 i != e; ++i, ++CurField) { 1938 // Emit initialization 1939 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1940 if (CurField->hasCapturedVLAType()) { 1941 auto VAT = CurField->getCapturedVLAType(); 1942 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1943 } else { 1944 ArrayRef<VarDecl *> ArrayIndexes; 1945 if (CurField->getType()->isArrayType()) 1946 ArrayIndexes = E->getCaptureInitIndexVars(i); 1947 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1948 } 1949 } 1950 } 1951