Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with code generation of C++ expressions
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "clang/CodeGen/CGFunctionInfo.h"
     20 #include "clang/Frontend/CodeGenOptions.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/Intrinsics.h"
     23 
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 static RequiredArgs commonEmitCXXMemberOrOperatorCall(
     28     CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
     29     ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
     30     QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
     31   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
     32          isa<CXXOperatorCallExpr>(CE));
     33   assert(MD->isInstance() &&
     34          "Trying to emit a member or operator call expr on a static method!");
     35 
     36   // C++11 [class.mfct.non-static]p2:
     37   //   If a non-static member function of a class X is called for an object that
     38   //   is not of type X, or of a type derived from X, the behavior is undefined.
     39   SourceLocation CallLoc;
     40   if (CE)
     41     CallLoc = CE->getExprLoc();
     42   CGF.EmitTypeCheck(
     43       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
     44                                   : CodeGenFunction::TCK_MemberCall,
     45       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
     46 
     47   // Push the this ptr.
     48   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
     49 
     50   // If there is an implicit parameter (e.g. VTT), emit it.
     51   if (ImplicitParam) {
     52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
     53   }
     54 
     55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
     57 
     58   // And the rest of the call args.
     59   if (CE) {
     60     // Special case: skip first argument of CXXOperatorCall (it is "this").
     61     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
     62     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
     63                      CE->getDirectCallee());
     64   } else {
     65     assert(
     66         FPT->getNumParams() == 0 &&
     67         "No CallExpr specified for function with non-zero number of arguments");
     68   }
     69   return required;
     70 }
     71 
     72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
     73     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
     74     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
     75     const CallExpr *CE) {
     76   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     77   CallArgList Args;
     78   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
     79       *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
     80       Args);
     81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
     82                   Callee, ReturnValue, Args, MD);
     83 }
     84 
     85 RValue CodeGenFunction::EmitCXXStructorCall(
     86     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
     87     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
     88     const CallExpr *CE, StructorType Type) {
     89   CallArgList Args;
     90   commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
     91                                     ImplicitParam, ImplicitParamTy, CE, Args);
     92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
     93                   Callee, ReturnValue, Args, MD);
     94 }
     95 
     96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
     97   QualType T = E->getType();
     98   if (const PointerType *PTy = T->getAs<PointerType>())
     99     T = PTy->getPointeeType();
    100   const RecordType *Ty = T->castAs<RecordType>();
    101   return cast<CXXRecordDecl>(Ty->getDecl());
    102 }
    103 
    104 // Note: This function also emit constructor calls to support a MSVC
    105 // extensions allowing explicit constructor function call.
    106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
    107                                               ReturnValueSlot ReturnValue) {
    108   const Expr *callee = CE->getCallee()->IgnoreParens();
    109 
    110   if (isa<BinaryOperator>(callee))
    111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
    112 
    113   const MemberExpr *ME = cast<MemberExpr>(callee);
    114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
    115 
    116   if (MD->isStatic()) {
    117     // The method is static, emit it as we would a regular call.
    118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
    120                     ReturnValue);
    121   }
    122 
    123   bool HasQualifier = ME->hasQualifier();
    124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
    125   bool IsArrow = ME->isArrow();
    126   const Expr *Base = ME->getBase();
    127 
    128   return EmitCXXMemberOrOperatorMemberCallExpr(
    129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
    130 }
    131 
    132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
    133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
    134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
    135     const Expr *Base) {
    136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
    137 
    138   // Compute the object pointer.
    139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
    140 
    141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
    142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
    143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
    144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
    145     assert(DevirtualizedMethod);
    146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
    147     const Expr *Inner = Base->ignoreParenBaseCasts();
    148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
    149         MD->getReturnType().getCanonicalType())
    150       // If the return types are not the same, this might be a case where more
    151       // code needs to run to compensate for it. For example, the derived
    152       // method might return a type that inherits form from the return
    153       // type of MD and has a prefix.
    154       // For now we just avoid devirtualizing these covariant cases.
    155       DevirtualizedMethod = nullptr;
    156     else if (getCXXRecord(Inner) == DevirtualizedClass)
    157       // If the class of the Inner expression is where the dynamic method
    158       // is defined, build the this pointer from it.
    159       Base = Inner;
    160     else if (getCXXRecord(Base) != DevirtualizedClass) {
    161       // If the method is defined in a class that is not the best dynamic
    162       // one or the one of the full expression, we would have to build
    163       // a derived-to-base cast to compute the correct this pointer, but
    164       // we don't have support for that yet, so do a virtual call.
    165       DevirtualizedMethod = nullptr;
    166     }
    167   }
    168 
    169   Address This = Address::invalid();
    170   if (IsArrow)
    171     This = EmitPointerWithAlignment(Base);
    172   else
    173     This = EmitLValue(Base).getAddress();
    174 
    175 
    176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
    177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
    178     if (isa<CXXConstructorDecl>(MD) &&
    179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
    180       return RValue::get(nullptr);
    181 
    182     if (!MD->getParent()->mayInsertExtraPadding()) {
    183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
    184         // We don't like to generate the trivial copy/move assignment operator
    185         // when it isn't necessary; just produce the proper effect here.
    186         // Special case: skip first argument of CXXOperatorCall (it is "this").
    187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
    188         Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
    189         EmitAggregateAssign(This, RHS, CE->getType());
    190         return RValue::get(This.getPointer());
    191       }
    192 
    193       if (isa<CXXConstructorDecl>(MD) &&
    194           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
    195         // Trivial move and copy ctor are the same.
    196         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
    197         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
    198         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
    199         return RValue::get(This.getPointer());
    200       }
    201       llvm_unreachable("unknown trivial member function");
    202     }
    203   }
    204 
    205   // Compute the function type we're calling.
    206   const CXXMethodDecl *CalleeDecl =
    207       DevirtualizedMethod ? DevirtualizedMethod : MD;
    208   const CGFunctionInfo *FInfo = nullptr;
    209   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
    210     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
    211         Dtor, StructorType::Complete);
    212   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
    213     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
    214         Ctor, StructorType::Complete);
    215   else
    216     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
    217 
    218   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
    219 
    220   // C++ [class.virtual]p12:
    221   //   Explicit qualification with the scope operator (5.1) suppresses the
    222   //   virtual call mechanism.
    223   //
    224   // We also don't emit a virtual call if the base expression has a record type
    225   // because then we know what the type is.
    226   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
    227   llvm::Value *Callee;
    228 
    229   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    230     assert(CE->arg_begin() == CE->arg_end() &&
    231            "Destructor shouldn't have explicit parameters");
    232     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
    233     if (UseVirtualCall) {
    234       CGM.getCXXABI().EmitVirtualDestructorCall(
    235           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
    236     } else {
    237       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
    238         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
    239       else if (!DevirtualizedMethod)
    240         Callee =
    241             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
    242       else {
    243         const CXXDestructorDecl *DDtor =
    244           cast<CXXDestructorDecl>(DevirtualizedMethod);
    245         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
    246       }
    247       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
    248                                   /*ImplicitParam=*/nullptr, QualType(), CE);
    249     }
    250     return RValue::get(nullptr);
    251   }
    252 
    253   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
    254     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
    255   } else if (UseVirtualCall) {
    256     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
    257                                                        CE->getLocStart());
    258   } else {
    259     if (SanOpts.has(SanitizerKind::CFINVCall) &&
    260         MD->getParent()->isDynamicClass()) {
    261       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
    262       EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart());
    263     }
    264 
    265     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
    266       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
    267     else if (!DevirtualizedMethod)
    268       Callee = CGM.GetAddrOfFunction(MD, Ty);
    269     else {
    270       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
    271     }
    272   }
    273 
    274   if (MD->isVirtual()) {
    275     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
    276         *this, MD, This, UseVirtualCall);
    277   }
    278 
    279   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
    280                                      /*ImplicitParam=*/nullptr, QualType(), CE);
    281 }
    282 
    283 RValue
    284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
    285                                               ReturnValueSlot ReturnValue) {
    286   const BinaryOperator *BO =
    287       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
    288   const Expr *BaseExpr = BO->getLHS();
    289   const Expr *MemFnExpr = BO->getRHS();
    290 
    291   const MemberPointerType *MPT =
    292     MemFnExpr->getType()->castAs<MemberPointerType>();
    293 
    294   const FunctionProtoType *FPT =
    295     MPT->getPointeeType()->castAs<FunctionProtoType>();
    296   const CXXRecordDecl *RD =
    297     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    298 
    299   // Get the member function pointer.
    300   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
    301 
    302   // Emit the 'this' pointer.
    303   Address This = Address::invalid();
    304   if (BO->getOpcode() == BO_PtrMemI)
    305     This = EmitPointerWithAlignment(BaseExpr);
    306   else
    307     This = EmitLValue(BaseExpr).getAddress();
    308 
    309   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
    310                 QualType(MPT->getClass(), 0));
    311 
    312   // Ask the ABI to load the callee.  Note that This is modified.
    313   llvm::Value *ThisPtrForCall = nullptr;
    314   llvm::Value *Callee =
    315     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
    316                                              ThisPtrForCall, MemFnPtr, MPT);
    317 
    318   CallArgList Args;
    319 
    320   QualType ThisType =
    321     getContext().getPointerType(getContext().getTagDeclType(RD));
    322 
    323   // Push the this ptr.
    324   Args.add(RValue::get(ThisPtrForCall), ThisType);
    325 
    326   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
    327 
    328   // And the rest of the call args
    329   EmitCallArgs(Args, FPT, E->arguments(), E->getDirectCallee());
    330   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
    331                   Callee, ReturnValue, Args);
    332 }
    333 
    334 RValue
    335 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
    336                                                const CXXMethodDecl *MD,
    337                                                ReturnValueSlot ReturnValue) {
    338   assert(MD->isInstance() &&
    339          "Trying to emit a member call expr on a static method!");
    340   return EmitCXXMemberOrOperatorMemberCallExpr(
    341       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
    342       /*IsArrow=*/false, E->getArg(0));
    343 }
    344 
    345 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
    346                                                ReturnValueSlot ReturnValue) {
    347   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
    348 }
    349 
    350 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
    351                                             Address DestPtr,
    352                                             const CXXRecordDecl *Base) {
    353   if (Base->isEmpty())
    354     return;
    355 
    356   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
    357 
    358   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
    359   CharUnits NVSize = Layout.getNonVirtualSize();
    360 
    361   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
    362   // present, they are initialized by the most derived class before calling the
    363   // constructor.
    364   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
    365   Stores.emplace_back(CharUnits::Zero(), NVSize);
    366 
    367   // Each store is split by the existence of a vbptr.
    368   CharUnits VBPtrWidth = CGF.getPointerSize();
    369   std::vector<CharUnits> VBPtrOffsets =
    370       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
    371   for (CharUnits VBPtrOffset : VBPtrOffsets) {
    372     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
    373     CharUnits LastStoreOffset = LastStore.first;
    374     CharUnits LastStoreSize = LastStore.second;
    375 
    376     CharUnits SplitBeforeOffset = LastStoreOffset;
    377     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
    378     assert(!SplitBeforeSize.isNegative() && "negative store size!");
    379     if (!SplitBeforeSize.isZero())
    380       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
    381 
    382     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
    383     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
    384     assert(!SplitAfterSize.isNegative() && "negative store size!");
    385     if (!SplitAfterSize.isZero())
    386       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
    387   }
    388 
    389   // If the type contains a pointer to data member we can't memset it to zero.
    390   // Instead, create a null constant and copy it to the destination.
    391   // TODO: there are other patterns besides zero that we can usefully memset,
    392   // like -1, which happens to be the pattern used by member-pointers.
    393   // TODO: isZeroInitializable can be over-conservative in the case where a
    394   // virtual base contains a member pointer.
    395   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
    396   if (!NullConstantForBase->isNullValue()) {
    397     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
    398         CGF.CGM.getModule(), NullConstantForBase->getType(),
    399         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
    400         NullConstantForBase, Twine());
    401 
    402     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
    403                                DestPtr.getAlignment());
    404     NullVariable->setAlignment(Align.getQuantity());
    405 
    406     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
    407 
    408     // Get and call the appropriate llvm.memcpy overload.
    409     for (std::pair<CharUnits, CharUnits> Store : Stores) {
    410       CharUnits StoreOffset = Store.first;
    411       CharUnits StoreSize = Store.second;
    412       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
    413       CGF.Builder.CreateMemCpy(
    414           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
    415           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
    416           StoreSizeVal);
    417     }
    418 
    419   // Otherwise, just memset the whole thing to zero.  This is legal
    420   // because in LLVM, all default initializers (other than the ones we just
    421   // handled above) are guaranteed to have a bit pattern of all zeros.
    422   } else {
    423     for (std::pair<CharUnits, CharUnits> Store : Stores) {
    424       CharUnits StoreOffset = Store.first;
    425       CharUnits StoreSize = Store.second;
    426       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
    427       CGF.Builder.CreateMemSet(
    428           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
    429           CGF.Builder.getInt8(0), StoreSizeVal);
    430     }
    431   }
    432 }
    433 
    434 void
    435 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
    436                                       AggValueSlot Dest) {
    437   assert(!Dest.isIgnored() && "Must have a destination!");
    438   const CXXConstructorDecl *CD = E->getConstructor();
    439 
    440   // If we require zero initialization before (or instead of) calling the
    441   // constructor, as can be the case with a non-user-provided default
    442   // constructor, emit the zero initialization now, unless destination is
    443   // already zeroed.
    444   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    445     switch (E->getConstructionKind()) {
    446     case CXXConstructExpr::CK_Delegating:
    447     case CXXConstructExpr::CK_Complete:
    448       EmitNullInitialization(Dest.getAddress(), E->getType());
    449       break;
    450     case CXXConstructExpr::CK_VirtualBase:
    451     case CXXConstructExpr::CK_NonVirtualBase:
    452       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
    453                                       CD->getParent());
    454       break;
    455     }
    456   }
    457 
    458   // If this is a call to a trivial default constructor, do nothing.
    459   if (CD->isTrivial() && CD->isDefaultConstructor())
    460     return;
    461 
    462   // Elide the constructor if we're constructing from a temporary.
    463   // The temporary check is required because Sema sets this on NRVO
    464   // returns.
    465   if (getLangOpts().ElideConstructors && E->isElidable()) {
    466     assert(getContext().hasSameUnqualifiedType(E->getType(),
    467                                                E->getArg(0)->getType()));
    468     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
    469       EmitAggExpr(E->getArg(0), Dest);
    470       return;
    471     }
    472   }
    473 
    474   if (const ConstantArrayType *arrayType
    475         = getContext().getAsConstantArrayType(E->getType())) {
    476     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
    477   } else {
    478     CXXCtorType Type = Ctor_Complete;
    479     bool ForVirtualBase = false;
    480     bool Delegating = false;
    481 
    482     switch (E->getConstructionKind()) {
    483      case CXXConstructExpr::CK_Delegating:
    484       // We should be emitting a constructor; GlobalDecl will assert this
    485       Type = CurGD.getCtorType();
    486       Delegating = true;
    487       break;
    488 
    489      case CXXConstructExpr::CK_Complete:
    490       Type = Ctor_Complete;
    491       break;
    492 
    493      case CXXConstructExpr::CK_VirtualBase:
    494       ForVirtualBase = true;
    495       // fall-through
    496 
    497      case CXXConstructExpr::CK_NonVirtualBase:
    498       Type = Ctor_Base;
    499     }
    500 
    501     // Call the constructor.
    502     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
    503                            Dest.getAddress(), E);
    504   }
    505 }
    506 
    507 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
    508                                                  const Expr *Exp) {
    509   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    510     Exp = E->getSubExpr();
    511   assert(isa<CXXConstructExpr>(Exp) &&
    512          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
    513   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
    514   const CXXConstructorDecl *CD = E->getConstructor();
    515   RunCleanupsScope Scope(*this);
    516 
    517   // If we require zero initialization before (or instead of) calling the
    518   // constructor, as can be the case with a non-user-provided default
    519   // constructor, emit the zero initialization now.
    520   // FIXME. Do I still need this for a copy ctor synthesis?
    521   if (E->requiresZeroInitialization())
    522     EmitNullInitialization(Dest, E->getType());
    523 
    524   assert(!getContext().getAsConstantArrayType(E->getType())
    525          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
    526   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
    527 }
    528 
    529 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
    530                                         const CXXNewExpr *E) {
    531   if (!E->isArray())
    532     return CharUnits::Zero();
    533 
    534   // No cookie is required if the operator new[] being used is the
    535   // reserved placement operator new[].
    536   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    537     return CharUnits::Zero();
    538 
    539   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
    540 }
    541 
    542 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
    543                                         const CXXNewExpr *e,
    544                                         unsigned minElements,
    545                                         llvm::Value *&numElements,
    546                                         llvm::Value *&sizeWithoutCookie) {
    547   QualType type = e->getAllocatedType();
    548 
    549   if (!e->isArray()) {
    550     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    551     sizeWithoutCookie
    552       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    553     return sizeWithoutCookie;
    554   }
    555 
    556   // The width of size_t.
    557   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
    558 
    559   // Figure out the cookie size.
    560   llvm::APInt cookieSize(sizeWidth,
    561                          CalculateCookiePadding(CGF, e).getQuantity());
    562 
    563   // Emit the array size expression.
    564   // We multiply the size of all dimensions for NumElements.
    565   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
    566   numElements = CGF.EmitScalarExpr(e->getArraySize());
    567   assert(isa<llvm::IntegerType>(numElements->getType()));
    568 
    569   // The number of elements can be have an arbitrary integer type;
    570   // essentially, we need to multiply it by a constant factor, add a
    571   // cookie size, and verify that the result is representable as a
    572   // size_t.  That's just a gloss, though, and it's wrong in one
    573   // important way: if the count is negative, it's an error even if
    574   // the cookie size would bring the total size >= 0.
    575   bool isSigned
    576     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
    577   llvm::IntegerType *numElementsType
    578     = cast<llvm::IntegerType>(numElements->getType());
    579   unsigned numElementsWidth = numElementsType->getBitWidth();
    580 
    581   // Compute the constant factor.
    582   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
    583   while (const ConstantArrayType *CAT
    584              = CGF.getContext().getAsConstantArrayType(type)) {
    585     type = CAT->getElementType();
    586     arraySizeMultiplier *= CAT->getSize();
    587   }
    588 
    589   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    590   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
    591   typeSizeMultiplier *= arraySizeMultiplier;
    592 
    593   // This will be a size_t.
    594   llvm::Value *size;
    595 
    596   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
    597   // Don't bloat the -O0 code.
    598   if (llvm::ConstantInt *numElementsC =
    599         dyn_cast<llvm::ConstantInt>(numElements)) {
    600     const llvm::APInt &count = numElementsC->getValue();
    601 
    602     bool hasAnyOverflow = false;
    603 
    604     // If 'count' was a negative number, it's an overflow.
    605     if (isSigned && count.isNegative())
    606       hasAnyOverflow = true;
    607 
    608     // We want to do all this arithmetic in size_t.  If numElements is
    609     // wider than that, check whether it's already too big, and if so,
    610     // overflow.
    611     else if (numElementsWidth > sizeWidth &&
    612              numElementsWidth - sizeWidth > count.countLeadingZeros())
    613       hasAnyOverflow = true;
    614 
    615     // Okay, compute a count at the right width.
    616     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
    617 
    618     // If there is a brace-initializer, we cannot allocate fewer elements than
    619     // there are initializers. If we do, that's treated like an overflow.
    620     if (adjustedCount.ult(minElements))
    621       hasAnyOverflow = true;
    622 
    623     // Scale numElements by that.  This might overflow, but we don't
    624     // care because it only overflows if allocationSize does, too, and
    625     // if that overflows then we shouldn't use this.
    626     numElements = llvm::ConstantInt::get(CGF.SizeTy,
    627                                          adjustedCount * arraySizeMultiplier);
    628 
    629     // Compute the size before cookie, and track whether it overflowed.
    630     bool overflow;
    631     llvm::APInt allocationSize
    632       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    633     hasAnyOverflow |= overflow;
    634 
    635     // Add in the cookie, and check whether it's overflowed.
    636     if (cookieSize != 0) {
    637       // Save the current size without a cookie.  This shouldn't be
    638       // used if there was overflow.
    639       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    640 
    641       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
    642       hasAnyOverflow |= overflow;
    643     }
    644 
    645     // On overflow, produce a -1 so operator new will fail.
    646     if (hasAnyOverflow) {
    647       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    648     } else {
    649       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    650     }
    651 
    652   // Otherwise, we might need to use the overflow intrinsics.
    653   } else {
    654     // There are up to five conditions we need to test for:
    655     // 1) if isSigned, we need to check whether numElements is negative;
    656     // 2) if numElementsWidth > sizeWidth, we need to check whether
    657     //   numElements is larger than something representable in size_t;
    658     // 3) if minElements > 0, we need to check whether numElements is smaller
    659     //    than that.
    660     // 4) we need to compute
    661     //      sizeWithoutCookie := numElements * typeSizeMultiplier
    662     //    and check whether it overflows; and
    663     // 5) if we need a cookie, we need to compute
    664     //      size := sizeWithoutCookie + cookieSize
    665     //    and check whether it overflows.
    666 
    667     llvm::Value *hasOverflow = nullptr;
    668 
    669     // If numElementsWidth > sizeWidth, then one way or another, we're
    670     // going to have to do a comparison for (2), and this happens to
    671     // take care of (1), too.
    672     if (numElementsWidth > sizeWidth) {
    673       llvm::APInt threshold(numElementsWidth, 1);
    674       threshold <<= sizeWidth;
    675 
    676       llvm::Value *thresholdV
    677         = llvm::ConstantInt::get(numElementsType, threshold);
    678 
    679       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
    680       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
    681 
    682     // Otherwise, if we're signed, we want to sext up to size_t.
    683     } else if (isSigned) {
    684       if (numElementsWidth < sizeWidth)
    685         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
    686 
    687       // If there's a non-1 type size multiplier, then we can do the
    688       // signedness check at the same time as we do the multiply
    689       // because a negative number times anything will cause an
    690       // unsigned overflow.  Otherwise, we have to do it here. But at least
    691       // in this case, we can subsume the >= minElements check.
    692       if (typeSizeMultiplier == 1)
    693         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
    694                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    695 
    696     // Otherwise, zext up to size_t if necessary.
    697     } else if (numElementsWidth < sizeWidth) {
    698       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    699     }
    700 
    701     assert(numElements->getType() == CGF.SizeTy);
    702 
    703     if (minElements) {
    704       // Don't allow allocation of fewer elements than we have initializers.
    705       if (!hasOverflow) {
    706         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
    707                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    708       } else if (numElementsWidth > sizeWidth) {
    709         // The other existing overflow subsumes this check.
    710         // We do an unsigned comparison, since any signed value < -1 is
    711         // taken care of either above or below.
    712         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
    713                           CGF.Builder.CreateICmpULT(numElements,
    714                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
    715       }
    716     }
    717 
    718     size = numElements;
    719 
    720     // Multiply by the type size if necessary.  This multiplier
    721     // includes all the factors for nested arrays.
    722     //
    723     // This step also causes numElements to be scaled up by the
    724     // nested-array factor if necessary.  Overflow on this computation
    725     // can be ignored because the result shouldn't be used if
    726     // allocation fails.
    727     if (typeSizeMultiplier != 1) {
    728       llvm::Value *umul_with_overflow
    729         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
    730 
    731       llvm::Value *tsmV =
    732         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
    733       llvm::Value *result =
    734           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
    735 
    736       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    737       if (hasOverflow)
    738         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    739       else
    740         hasOverflow = overflowed;
    741 
    742       size = CGF.Builder.CreateExtractValue(result, 0);
    743 
    744       // Also scale up numElements by the array size multiplier.
    745       if (arraySizeMultiplier != 1) {
    746         // If the base element type size is 1, then we can re-use the
    747         // multiply we just did.
    748         if (typeSize.isOne()) {
    749           assert(arraySizeMultiplier == typeSizeMultiplier);
    750           numElements = size;
    751 
    752         // Otherwise we need a separate multiply.
    753         } else {
    754           llvm::Value *asmV =
    755             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
    756           numElements = CGF.Builder.CreateMul(numElements, asmV);
    757         }
    758       }
    759     } else {
    760       // numElements doesn't need to be scaled.
    761       assert(arraySizeMultiplier == 1);
    762     }
    763 
    764     // Add in the cookie size if necessary.
    765     if (cookieSize != 0) {
    766       sizeWithoutCookie = size;
    767 
    768       llvm::Value *uadd_with_overflow
    769         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
    770 
    771       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
    772       llvm::Value *result =
    773           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
    774 
    775       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    776       if (hasOverflow)
    777         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    778       else
    779         hasOverflow = overflowed;
    780 
    781       size = CGF.Builder.CreateExtractValue(result, 0);
    782     }
    783 
    784     // If we had any possibility of dynamic overflow, make a select to
    785     // overwrite 'size' with an all-ones value, which should cause
    786     // operator new to throw.
    787     if (hasOverflow)
    788       size = CGF.Builder.CreateSelect(hasOverflow,
    789                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
    790                                       size);
    791   }
    792 
    793   if (cookieSize == 0)
    794     sizeWithoutCookie = size;
    795   else
    796     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
    797 
    798   return size;
    799 }
    800 
    801 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
    802                                     QualType AllocType, Address NewPtr) {
    803   // FIXME: Refactor with EmitExprAsInit.
    804   switch (CGF.getEvaluationKind(AllocType)) {
    805   case TEK_Scalar:
    806     CGF.EmitScalarInit(Init, nullptr,
    807                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
    808     return;
    809   case TEK_Complex:
    810     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
    811                                   /*isInit*/ true);
    812     return;
    813   case TEK_Aggregate: {
    814     AggValueSlot Slot
    815       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
    816                               AggValueSlot::IsDestructed,
    817                               AggValueSlot::DoesNotNeedGCBarriers,
    818                               AggValueSlot::IsNotAliased);
    819     CGF.EmitAggExpr(Init, Slot);
    820     return;
    821   }
    822   }
    823   llvm_unreachable("bad evaluation kind");
    824 }
    825 
    826 void CodeGenFunction::EmitNewArrayInitializer(
    827     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
    828     Address BeginPtr, llvm::Value *NumElements,
    829     llvm::Value *AllocSizeWithoutCookie) {
    830   // If we have a type with trivial initialization and no initializer,
    831   // there's nothing to do.
    832   if (!E->hasInitializer())
    833     return;
    834 
    835   Address CurPtr = BeginPtr;
    836 
    837   unsigned InitListElements = 0;
    838 
    839   const Expr *Init = E->getInitializer();
    840   Address EndOfInit = Address::invalid();
    841   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
    842   EHScopeStack::stable_iterator Cleanup;
    843   llvm::Instruction *CleanupDominator = nullptr;
    844 
    845   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
    846   CharUnits ElementAlign =
    847     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
    848 
    849   // If the initializer is an initializer list, first do the explicit elements.
    850   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    851     InitListElements = ILE->getNumInits();
    852 
    853     // If this is a multi-dimensional array new, we will initialize multiple
    854     // elements with each init list element.
    855     QualType AllocType = E->getAllocatedType();
    856     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
    857             AllocType->getAsArrayTypeUnsafe())) {
    858       ElementTy = ConvertTypeForMem(AllocType);
    859       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
    860       InitListElements *= getContext().getConstantArrayElementCount(CAT);
    861     }
    862 
    863     // Enter a partial-destruction Cleanup if necessary.
    864     if (needsEHCleanup(DtorKind)) {
    865       // In principle we could tell the Cleanup where we are more
    866       // directly, but the control flow can get so varied here that it
    867       // would actually be quite complex.  Therefore we go through an
    868       // alloca.
    869       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
    870                                    "array.init.end");
    871       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
    872       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
    873                                        ElementType, ElementAlign,
    874                                        getDestroyer(DtorKind));
    875       Cleanup = EHStack.stable_begin();
    876     }
    877 
    878     CharUnits StartAlign = CurPtr.getAlignment();
    879     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
    880       // Tell the cleanup that it needs to destroy up to this
    881       // element.  TODO: some of these stores can be trivially
    882       // observed to be unnecessary.
    883       if (EndOfInit.isValid()) {
    884         auto FinishedPtr =
    885           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
    886         Builder.CreateStore(FinishedPtr, EndOfInit);
    887       }
    888       // FIXME: If the last initializer is an incomplete initializer list for
    889       // an array, and we have an array filler, we can fold together the two
    890       // initialization loops.
    891       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
    892                               ILE->getInit(i)->getType(), CurPtr);
    893       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
    894                                                  Builder.getSize(1),
    895                                                  "array.exp.next"),
    896                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
    897     }
    898 
    899     // The remaining elements are filled with the array filler expression.
    900     Init = ILE->getArrayFiller();
    901 
    902     // Extract the initializer for the individual array elements by pulling
    903     // out the array filler from all the nested initializer lists. This avoids
    904     // generating a nested loop for the initialization.
    905     while (Init && Init->getType()->isConstantArrayType()) {
    906       auto *SubILE = dyn_cast<InitListExpr>(Init);
    907       if (!SubILE)
    908         break;
    909       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
    910       Init = SubILE->getArrayFiller();
    911     }
    912 
    913     // Switch back to initializing one base element at a time.
    914     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
    915   }
    916 
    917   // Attempt to perform zero-initialization using memset.
    918   auto TryMemsetInitialization = [&]() -> bool {
    919     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
    920     // we can initialize with a memset to -1.
    921     if (!CGM.getTypes().isZeroInitializable(ElementType))
    922       return false;
    923 
    924     // Optimization: since zero initialization will just set the memory
    925     // to all zeroes, generate a single memset to do it in one shot.
    926 
    927     // Subtract out the size of any elements we've already initialized.
    928     auto *RemainingSize = AllocSizeWithoutCookie;
    929     if (InitListElements) {
    930       // We know this can't overflow; we check this when doing the allocation.
    931       auto *InitializedSize = llvm::ConstantInt::get(
    932           RemainingSize->getType(),
    933           getContext().getTypeSizeInChars(ElementType).getQuantity() *
    934               InitListElements);
    935       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
    936     }
    937 
    938     // Create the memset.
    939     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
    940     return true;
    941   };
    942 
    943   // If all elements have already been initialized, skip any further
    944   // initialization.
    945   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
    946   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
    947     // If there was a Cleanup, deactivate it.
    948     if (CleanupDominator)
    949       DeactivateCleanupBlock(Cleanup, CleanupDominator);
    950     return;
    951   }
    952 
    953   assert(Init && "have trailing elements to initialize but no initializer");
    954 
    955   // If this is a constructor call, try to optimize it out, and failing that
    956   // emit a single loop to initialize all remaining elements.
    957   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
    958     CXXConstructorDecl *Ctor = CCE->getConstructor();
    959     if (Ctor->isTrivial()) {
    960       // If new expression did not specify value-initialization, then there
    961       // is no initialization.
    962       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
    963         return;
    964 
    965       if (TryMemsetInitialization())
    966         return;
    967     }
    968 
    969     // Store the new Cleanup position for irregular Cleanups.
    970     //
    971     // FIXME: Share this cleanup with the constructor call emission rather than
    972     // having it create a cleanup of its own.
    973     if (EndOfInit.isValid())
    974       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
    975 
    976     // Emit a constructor call loop to initialize the remaining elements.
    977     if (InitListElements)
    978       NumElements = Builder.CreateSub(
    979           NumElements,
    980           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
    981     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
    982                                CCE->requiresZeroInitialization());
    983     return;
    984   }
    985 
    986   // If this is value-initialization, we can usually use memset.
    987   ImplicitValueInitExpr IVIE(ElementType);
    988   if (isa<ImplicitValueInitExpr>(Init)) {
    989     if (TryMemsetInitialization())
    990       return;
    991 
    992     // Switch to an ImplicitValueInitExpr for the element type. This handles
    993     // only one case: multidimensional array new of pointers to members. In
    994     // all other cases, we already have an initializer for the array element.
    995     Init = &IVIE;
    996   }
    997 
    998   // At this point we should have found an initializer for the individual
    999   // elements of the array.
   1000   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
   1001          "got wrong type of element to initialize");
   1002 
   1003   // If we have an empty initializer list, we can usually use memset.
   1004   if (auto *ILE = dyn_cast<InitListExpr>(Init))
   1005     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
   1006       return;
   1007 
   1008   // If we have a struct whose every field is value-initialized, we can
   1009   // usually use memset.
   1010   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
   1011     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
   1012       if (RType->getDecl()->isStruct()) {
   1013         unsigned NumFields = 0;
   1014         for (auto *Field : RType->getDecl()->fields())
   1015           if (!Field->isUnnamedBitfield())
   1016             ++NumFields;
   1017         if (ILE->getNumInits() == NumFields)
   1018           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1019             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
   1020               --NumFields;
   1021         if (ILE->getNumInits() == NumFields && TryMemsetInitialization())
   1022           return;
   1023       }
   1024     }
   1025   }
   1026 
   1027   // Create the loop blocks.
   1028   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
   1029   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
   1030   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
   1031 
   1032   // Find the end of the array, hoisted out of the loop.
   1033   llvm::Value *EndPtr =
   1034     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
   1035 
   1036   // If the number of elements isn't constant, we have to now check if there is
   1037   // anything left to initialize.
   1038   if (!ConstNum) {
   1039     llvm::Value *IsEmpty =
   1040       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
   1041     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
   1042   }
   1043 
   1044   // Enter the loop.
   1045   EmitBlock(LoopBB);
   1046 
   1047   // Set up the current-element phi.
   1048   llvm::PHINode *CurPtrPhi =
   1049     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
   1050   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
   1051 
   1052   CurPtr = Address(CurPtrPhi, ElementAlign);
   1053 
   1054   // Store the new Cleanup position for irregular Cleanups.
   1055   if (EndOfInit.isValid())
   1056     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
   1057 
   1058   // Enter a partial-destruction Cleanup if necessary.
   1059   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
   1060     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
   1061                                    ElementType, ElementAlign,
   1062                                    getDestroyer(DtorKind));
   1063     Cleanup = EHStack.stable_begin();
   1064     CleanupDominator = Builder.CreateUnreachable();
   1065   }
   1066 
   1067   // Emit the initializer into this element.
   1068   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
   1069 
   1070   // Leave the Cleanup if we entered one.
   1071   if (CleanupDominator) {
   1072     DeactivateCleanupBlock(Cleanup, CleanupDominator);
   1073     CleanupDominator->eraseFromParent();
   1074   }
   1075 
   1076   // Advance to the next element by adjusting the pointer type as necessary.
   1077   llvm::Value *NextPtr =
   1078     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
   1079                                        "array.next");
   1080 
   1081   // Check whether we've gotten to the end of the array and, if so,
   1082   // exit the loop.
   1083   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
   1084   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
   1085   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
   1086 
   1087   EmitBlock(ContBB);
   1088 }
   1089 
   1090 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
   1091                                QualType ElementType, llvm::Type *ElementTy,
   1092                                Address NewPtr, llvm::Value *NumElements,
   1093                                llvm::Value *AllocSizeWithoutCookie) {
   1094   ApplyDebugLocation DL(CGF, E);
   1095   if (E->isArray())
   1096     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
   1097                                 AllocSizeWithoutCookie);
   1098   else if (const Expr *Init = E->getInitializer())
   1099     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
   1100 }
   1101 
   1102 /// Emit a call to an operator new or operator delete function, as implicitly
   1103 /// created by new-expressions and delete-expressions.
   1104 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
   1105                                 const FunctionDecl *Callee,
   1106                                 const FunctionProtoType *CalleeType,
   1107                                 const CallArgList &Args) {
   1108   llvm::Instruction *CallOrInvoke;
   1109   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
   1110   RValue RV =
   1111       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
   1112                        Args, CalleeType, /*chainCall=*/false),
   1113                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
   1114 
   1115   /// C++1y [expr.new]p10:
   1116   ///   [In a new-expression,] an implementation is allowed to omit a call
   1117   ///   to a replaceable global allocation function.
   1118   ///
   1119   /// We model such elidable calls with the 'builtin' attribute.
   1120   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
   1121   if (Callee->isReplaceableGlobalAllocationFunction() &&
   1122       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
   1123     // FIXME: Add addAttribute to CallSite.
   1124     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
   1125       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
   1126                        llvm::Attribute::Builtin);
   1127     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
   1128       II->addAttribute(llvm::AttributeSet::FunctionIndex,
   1129                        llvm::Attribute::Builtin);
   1130     else
   1131       llvm_unreachable("unexpected kind of call instruction");
   1132   }
   1133 
   1134   return RV;
   1135 }
   1136 
   1137 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
   1138                                                  const Expr *Arg,
   1139                                                  bool IsDelete) {
   1140   CallArgList Args;
   1141   const Stmt *ArgS = Arg;
   1142   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
   1143   // Find the allocation or deallocation function that we're calling.
   1144   ASTContext &Ctx = getContext();
   1145   DeclarationName Name = Ctx.DeclarationNames
   1146       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
   1147   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
   1148     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
   1149       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
   1150         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
   1151   llvm_unreachable("predeclared global operator new/delete is missing");
   1152 }
   1153 
   1154 namespace {
   1155   /// A cleanup to call the given 'operator delete' function upon
   1156   /// abnormal exit from a new expression.
   1157   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
   1158     size_t NumPlacementArgs;
   1159     const FunctionDecl *OperatorDelete;
   1160     llvm::Value *Ptr;
   1161     llvm::Value *AllocSize;
   1162 
   1163     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
   1164 
   1165   public:
   1166     static size_t getExtraSize(size_t NumPlacementArgs) {
   1167       return NumPlacementArgs * sizeof(RValue);
   1168     }
   1169 
   1170     CallDeleteDuringNew(size_t NumPlacementArgs,
   1171                         const FunctionDecl *OperatorDelete,
   1172                         llvm::Value *Ptr,
   1173                         llvm::Value *AllocSize)
   1174       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1175         Ptr(Ptr), AllocSize(AllocSize) {}
   1176 
   1177     void setPlacementArg(unsigned I, RValue Arg) {
   1178       assert(I < NumPlacementArgs && "index out of range");
   1179       getPlacementArgs()[I] = Arg;
   1180     }
   1181 
   1182     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1183       const FunctionProtoType *FPT
   1184         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1185       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
   1186              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
   1187 
   1188       CallArgList DeleteArgs;
   1189 
   1190       // The first argument is always a void*.
   1191       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
   1192       DeleteArgs.add(RValue::get(Ptr), *AI++);
   1193 
   1194       // A member 'operator delete' can take an extra 'size_t' argument.
   1195       if (FPT->getNumParams() == NumPlacementArgs + 2)
   1196         DeleteArgs.add(RValue::get(AllocSize), *AI++);
   1197 
   1198       // Pass the rest of the arguments, which must match exactly.
   1199       for (unsigned I = 0; I != NumPlacementArgs; ++I)
   1200         DeleteArgs.add(getPlacementArgs()[I], *AI++);
   1201 
   1202       // Call 'operator delete'.
   1203       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1204     }
   1205   };
   1206 
   1207   /// A cleanup to call the given 'operator delete' function upon
   1208   /// abnormal exit from a new expression when the new expression is
   1209   /// conditional.
   1210   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
   1211     size_t NumPlacementArgs;
   1212     const FunctionDecl *OperatorDelete;
   1213     DominatingValue<RValue>::saved_type Ptr;
   1214     DominatingValue<RValue>::saved_type AllocSize;
   1215 
   1216     DominatingValue<RValue>::saved_type *getPlacementArgs() {
   1217       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
   1218     }
   1219 
   1220   public:
   1221     static size_t getExtraSize(size_t NumPlacementArgs) {
   1222       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
   1223     }
   1224 
   1225     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
   1226                                    const FunctionDecl *OperatorDelete,
   1227                                    DominatingValue<RValue>::saved_type Ptr,
   1228                               DominatingValue<RValue>::saved_type AllocSize)
   1229       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1230         Ptr(Ptr), AllocSize(AllocSize) {}
   1231 
   1232     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
   1233       assert(I < NumPlacementArgs && "index out of range");
   1234       getPlacementArgs()[I] = Arg;
   1235     }
   1236 
   1237     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1238       const FunctionProtoType *FPT
   1239         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1240       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
   1241              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
   1242 
   1243       CallArgList DeleteArgs;
   1244 
   1245       // The first argument is always a void*.
   1246       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
   1247       DeleteArgs.add(Ptr.restore(CGF), *AI++);
   1248 
   1249       // A member 'operator delete' can take an extra 'size_t' argument.
   1250       if (FPT->getNumParams() == NumPlacementArgs + 2) {
   1251         RValue RV = AllocSize.restore(CGF);
   1252         DeleteArgs.add(RV, *AI++);
   1253       }
   1254 
   1255       // Pass the rest of the arguments, which must match exactly.
   1256       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
   1257         RValue RV = getPlacementArgs()[I].restore(CGF);
   1258         DeleteArgs.add(RV, *AI++);
   1259       }
   1260 
   1261       // Call 'operator delete'.
   1262       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1263     }
   1264   };
   1265 }
   1266 
   1267 /// Enter a cleanup to call 'operator delete' if the initializer in a
   1268 /// new-expression throws.
   1269 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
   1270                                   const CXXNewExpr *E,
   1271                                   Address NewPtr,
   1272                                   llvm::Value *AllocSize,
   1273                                   const CallArgList &NewArgs) {
   1274   // If we're not inside a conditional branch, then the cleanup will
   1275   // dominate and we can do the easier (and more efficient) thing.
   1276   if (!CGF.isInConditionalBranch()) {
   1277     CallDeleteDuringNew *Cleanup = CGF.EHStack
   1278       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
   1279                                                  E->getNumPlacementArgs(),
   1280                                                  E->getOperatorDelete(),
   1281                                                  NewPtr.getPointer(),
   1282                                                  AllocSize);
   1283     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1284       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
   1285 
   1286     return;
   1287   }
   1288 
   1289   // Otherwise, we need to save all this stuff.
   1290   DominatingValue<RValue>::saved_type SavedNewPtr =
   1291     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
   1292   DominatingValue<RValue>::saved_type SavedAllocSize =
   1293     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
   1294 
   1295   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
   1296     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
   1297                                                  E->getNumPlacementArgs(),
   1298                                                  E->getOperatorDelete(),
   1299                                                  SavedNewPtr,
   1300                                                  SavedAllocSize);
   1301   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1302     Cleanup->setPlacementArg(I,
   1303                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
   1304 
   1305   CGF.initFullExprCleanup();
   1306 }
   1307 
   1308 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
   1309   // The element type being allocated.
   1310   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
   1311 
   1312   // 1. Build a call to the allocation function.
   1313   FunctionDecl *allocator = E->getOperatorNew();
   1314 
   1315   // If there is a brace-initializer, cannot allocate fewer elements than inits.
   1316   unsigned minElements = 0;
   1317   if (E->isArray() && E->hasInitializer()) {
   1318     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
   1319       minElements = ILE->getNumInits();
   1320   }
   1321 
   1322   llvm::Value *numElements = nullptr;
   1323   llvm::Value *allocSizeWithoutCookie = nullptr;
   1324   llvm::Value *allocSize =
   1325     EmitCXXNewAllocSize(*this, E, minElements, numElements,
   1326                         allocSizeWithoutCookie);
   1327 
   1328   // Emit the allocation call.  If the allocator is a global placement
   1329   // operator, just "inline" it directly.
   1330   Address allocation = Address::invalid();
   1331   CallArgList allocatorArgs;
   1332   if (allocator->isReservedGlobalPlacementOperator()) {
   1333     assert(E->getNumPlacementArgs() == 1);
   1334     const Expr *arg = *E->placement_arguments().begin();
   1335 
   1336     AlignmentSource alignSource;
   1337     allocation = EmitPointerWithAlignment(arg, &alignSource);
   1338 
   1339     // The pointer expression will, in many cases, be an opaque void*.
   1340     // In these cases, discard the computed alignment and use the
   1341     // formal alignment of the allocated type.
   1342     if (alignSource != AlignmentSource::Decl) {
   1343       allocation = Address(allocation.getPointer(),
   1344                            getContext().getTypeAlignInChars(allocType));
   1345     }
   1346 
   1347     // Set up allocatorArgs for the call to operator delete if it's not
   1348     // the reserved global operator.
   1349     if (E->getOperatorDelete() &&
   1350         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1351       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
   1352       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
   1353     }
   1354 
   1355   } else {
   1356     const FunctionProtoType *allocatorType =
   1357       allocator->getType()->castAs<FunctionProtoType>();
   1358 
   1359     // The allocation size is the first argument.
   1360     QualType sizeType = getContext().getSizeType();
   1361     allocatorArgs.add(RValue::get(allocSize), sizeType);
   1362 
   1363     // We start at 1 here because the first argument (the allocation size)
   1364     // has already been emitted.
   1365     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
   1366                  /* CalleeDecl */ nullptr,
   1367                  /*ParamsToSkip*/ 1);
   1368 
   1369     RValue RV =
   1370       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
   1371 
   1372     // For now, only assume that the allocation function returns
   1373     // something satisfactorily aligned for the element type, plus
   1374     // the cookie if we have one.
   1375     CharUnits allocationAlign =
   1376       getContext().getTypeAlignInChars(allocType);
   1377     if (allocSize != allocSizeWithoutCookie) {
   1378       CharUnits cookieAlign = getSizeAlign(); // FIXME?
   1379       allocationAlign = std::max(allocationAlign, cookieAlign);
   1380     }
   1381 
   1382     allocation = Address(RV.getScalarVal(), allocationAlign);
   1383   }
   1384 
   1385   // Emit a null check on the allocation result if the allocation
   1386   // function is allowed to return null (because it has a non-throwing
   1387   // exception spec or is the reserved placement new) and we have an
   1388   // interesting initializer.
   1389   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
   1390     (!allocType.isPODType(getContext()) || E->hasInitializer());
   1391 
   1392   llvm::BasicBlock *nullCheckBB = nullptr;
   1393   llvm::BasicBlock *contBB = nullptr;
   1394 
   1395   // The null-check means that the initializer is conditionally
   1396   // evaluated.
   1397   ConditionalEvaluation conditional(*this);
   1398 
   1399   if (nullCheck) {
   1400     conditional.begin(*this);
   1401 
   1402     nullCheckBB = Builder.GetInsertBlock();
   1403     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
   1404     contBB = createBasicBlock("new.cont");
   1405 
   1406     llvm::Value *isNull =
   1407       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
   1408     Builder.CreateCondBr(isNull, contBB, notNullBB);
   1409     EmitBlock(notNullBB);
   1410   }
   1411 
   1412   // If there's an operator delete, enter a cleanup to call it if an
   1413   // exception is thrown.
   1414   EHScopeStack::stable_iterator operatorDeleteCleanup;
   1415   llvm::Instruction *cleanupDominator = nullptr;
   1416   if (E->getOperatorDelete() &&
   1417       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1418     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
   1419     operatorDeleteCleanup = EHStack.stable_begin();
   1420     cleanupDominator = Builder.CreateUnreachable();
   1421   }
   1422 
   1423   assert((allocSize == allocSizeWithoutCookie) ==
   1424          CalculateCookiePadding(*this, E).isZero());
   1425   if (allocSize != allocSizeWithoutCookie) {
   1426     assert(E->isArray());
   1427     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
   1428                                                        numElements,
   1429                                                        E, allocType);
   1430   }
   1431 
   1432   llvm::Type *elementTy = ConvertTypeForMem(allocType);
   1433   Address result = Builder.CreateElementBitCast(allocation, elementTy);
   1434 
   1435   // Passing pointer through invariant.group.barrier to avoid propagation of
   1436   // vptrs information which may be included in previous type.
   1437   if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1438       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1439       allocator->isReservedGlobalPlacementOperator())
   1440     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
   1441                      result.getAlignment());
   1442 
   1443   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
   1444                      allocSizeWithoutCookie);
   1445   if (E->isArray()) {
   1446     // NewPtr is a pointer to the base element type.  If we're
   1447     // allocating an array of arrays, we'll need to cast back to the
   1448     // array pointer type.
   1449     llvm::Type *resultType = ConvertTypeForMem(E->getType());
   1450     if (result.getType() != resultType)
   1451       result = Builder.CreateBitCast(result, resultType);
   1452   }
   1453 
   1454   // Deactivate the 'operator delete' cleanup if we finished
   1455   // initialization.
   1456   if (operatorDeleteCleanup.isValid()) {
   1457     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
   1458     cleanupDominator->eraseFromParent();
   1459   }
   1460 
   1461   llvm::Value *resultPtr = result.getPointer();
   1462   if (nullCheck) {
   1463     conditional.end(*this);
   1464 
   1465     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
   1466     EmitBlock(contBB);
   1467 
   1468     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
   1469     PHI->addIncoming(resultPtr, notNullBB);
   1470     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
   1471                      nullCheckBB);
   1472 
   1473     resultPtr = PHI;
   1474   }
   1475 
   1476   return resultPtr;
   1477 }
   1478 
   1479 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
   1480                                      llvm::Value *Ptr,
   1481                                      QualType DeleteTy) {
   1482   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
   1483 
   1484   const FunctionProtoType *DeleteFTy =
   1485     DeleteFD->getType()->getAs<FunctionProtoType>();
   1486 
   1487   CallArgList DeleteArgs;
   1488 
   1489   // Check if we need to pass the size to the delete operator.
   1490   llvm::Value *Size = nullptr;
   1491   QualType SizeTy;
   1492   if (DeleteFTy->getNumParams() == 2) {
   1493     SizeTy = DeleteFTy->getParamType(1);
   1494     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
   1495     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
   1496                                   DeleteTypeSize.getQuantity());
   1497   }
   1498 
   1499   QualType ArgTy = DeleteFTy->getParamType(0);
   1500   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
   1501   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
   1502 
   1503   if (Size)
   1504     DeleteArgs.add(RValue::get(Size), SizeTy);
   1505 
   1506   // Emit the call to delete.
   1507   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
   1508 }
   1509 
   1510 namespace {
   1511   /// Calls the given 'operator delete' on a single object.
   1512   struct CallObjectDelete final : EHScopeStack::Cleanup {
   1513     llvm::Value *Ptr;
   1514     const FunctionDecl *OperatorDelete;
   1515     QualType ElementType;
   1516 
   1517     CallObjectDelete(llvm::Value *Ptr,
   1518                      const FunctionDecl *OperatorDelete,
   1519                      QualType ElementType)
   1520       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
   1521 
   1522     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1523       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
   1524     }
   1525   };
   1526 }
   1527 
   1528 void
   1529 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
   1530                                              llvm::Value *CompletePtr,
   1531                                              QualType ElementType) {
   1532   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
   1533                                         OperatorDelete, ElementType);
   1534 }
   1535 
   1536 /// Emit the code for deleting a single object.
   1537 static void EmitObjectDelete(CodeGenFunction &CGF,
   1538                              const CXXDeleteExpr *DE,
   1539                              Address Ptr,
   1540                              QualType ElementType) {
   1541   // Find the destructor for the type, if applicable.  If the
   1542   // destructor is virtual, we'll just emit the vcall and return.
   1543   const CXXDestructorDecl *Dtor = nullptr;
   1544   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
   1545     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1546     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
   1547       Dtor = RD->getDestructor();
   1548 
   1549       if (Dtor->isVirtual()) {
   1550         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
   1551                                                     Dtor);
   1552         return;
   1553       }
   1554     }
   1555   }
   1556 
   1557   // Make sure that we call delete even if the dtor throws.
   1558   // This doesn't have to a conditional cleanup because we're going
   1559   // to pop it off in a second.
   1560   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
   1561   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1562                                             Ptr.getPointer(),
   1563                                             OperatorDelete, ElementType);
   1564 
   1565   if (Dtor)
   1566     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1567                               /*ForVirtualBase=*/false,
   1568                               /*Delegating=*/false,
   1569                               Ptr);
   1570   else if (auto Lifetime = ElementType.getObjCLifetime()) {
   1571     switch (Lifetime) {
   1572     case Qualifiers::OCL_None:
   1573     case Qualifiers::OCL_ExplicitNone:
   1574     case Qualifiers::OCL_Autoreleasing:
   1575       break;
   1576 
   1577     case Qualifiers::OCL_Strong:
   1578       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
   1579       break;
   1580 
   1581     case Qualifiers::OCL_Weak:
   1582       CGF.EmitARCDestroyWeak(Ptr);
   1583       break;
   1584     }
   1585   }
   1586 
   1587   CGF.PopCleanupBlock();
   1588 }
   1589 
   1590 namespace {
   1591   /// Calls the given 'operator delete' on an array of objects.
   1592   struct CallArrayDelete final : EHScopeStack::Cleanup {
   1593     llvm::Value *Ptr;
   1594     const FunctionDecl *OperatorDelete;
   1595     llvm::Value *NumElements;
   1596     QualType ElementType;
   1597     CharUnits CookieSize;
   1598 
   1599     CallArrayDelete(llvm::Value *Ptr,
   1600                     const FunctionDecl *OperatorDelete,
   1601                     llvm::Value *NumElements,
   1602                     QualType ElementType,
   1603                     CharUnits CookieSize)
   1604       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
   1605         ElementType(ElementType), CookieSize(CookieSize) {}
   1606 
   1607     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1608       const FunctionProtoType *DeleteFTy =
   1609         OperatorDelete->getType()->getAs<FunctionProtoType>();
   1610       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
   1611 
   1612       CallArgList Args;
   1613 
   1614       // Pass the pointer as the first argument.
   1615       QualType VoidPtrTy = DeleteFTy->getParamType(0);
   1616       llvm::Value *DeletePtr
   1617         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
   1618       Args.add(RValue::get(DeletePtr), VoidPtrTy);
   1619 
   1620       // Pass the original requested size as the second argument.
   1621       if (DeleteFTy->getNumParams() == 2) {
   1622         QualType size_t = DeleteFTy->getParamType(1);
   1623         llvm::IntegerType *SizeTy
   1624           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
   1625 
   1626         CharUnits ElementTypeSize =
   1627           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
   1628 
   1629         // The size of an element, multiplied by the number of elements.
   1630         llvm::Value *Size
   1631           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
   1632         if (NumElements)
   1633           Size = CGF.Builder.CreateMul(Size, NumElements);
   1634 
   1635         // Plus the size of the cookie if applicable.
   1636         if (!CookieSize.isZero()) {
   1637           llvm::Value *CookieSizeV
   1638             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
   1639           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
   1640         }
   1641 
   1642         Args.add(RValue::get(Size), size_t);
   1643       }
   1644 
   1645       // Emit the call to delete.
   1646       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
   1647     }
   1648   };
   1649 }
   1650 
   1651 /// Emit the code for deleting an array of objects.
   1652 static void EmitArrayDelete(CodeGenFunction &CGF,
   1653                             const CXXDeleteExpr *E,
   1654                             Address deletedPtr,
   1655                             QualType elementType) {
   1656   llvm::Value *numElements = nullptr;
   1657   llvm::Value *allocatedPtr = nullptr;
   1658   CharUnits cookieSize;
   1659   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
   1660                                       numElements, allocatedPtr, cookieSize);
   1661 
   1662   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
   1663 
   1664   // Make sure that we call delete even if one of the dtors throws.
   1665   const FunctionDecl *operatorDelete = E->getOperatorDelete();
   1666   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
   1667                                            allocatedPtr, operatorDelete,
   1668                                            numElements, elementType,
   1669                                            cookieSize);
   1670 
   1671   // Destroy the elements.
   1672   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
   1673     assert(numElements && "no element count for a type with a destructor!");
   1674 
   1675     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   1676     CharUnits elementAlign =
   1677       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
   1678 
   1679     llvm::Value *arrayBegin = deletedPtr.getPointer();
   1680     llvm::Value *arrayEnd =
   1681       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
   1682 
   1683     // Note that it is legal to allocate a zero-length array, and we
   1684     // can never fold the check away because the length should always
   1685     // come from a cookie.
   1686     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
   1687                          CGF.getDestroyer(dtorKind),
   1688                          /*checkZeroLength*/ true,
   1689                          CGF.needsEHCleanup(dtorKind));
   1690   }
   1691 
   1692   // Pop the cleanup block.
   1693   CGF.PopCleanupBlock();
   1694 }
   1695 
   1696 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
   1697   const Expr *Arg = E->getArgument();
   1698   Address Ptr = EmitPointerWithAlignment(Arg);
   1699 
   1700   // Null check the pointer.
   1701   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
   1702   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
   1703 
   1704   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
   1705 
   1706   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
   1707   EmitBlock(DeleteNotNull);
   1708 
   1709   // We might be deleting a pointer to array.  If so, GEP down to the
   1710   // first non-array element.
   1711   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
   1712   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
   1713   if (DeleteTy->isConstantArrayType()) {
   1714     llvm::Value *Zero = Builder.getInt32(0);
   1715     SmallVector<llvm::Value*,8> GEP;
   1716 
   1717     GEP.push_back(Zero); // point at the outermost array
   1718 
   1719     // For each layer of array type we're pointing at:
   1720     while (const ConstantArrayType *Arr
   1721              = getContext().getAsConstantArrayType(DeleteTy)) {
   1722       // 1. Unpeel the array type.
   1723       DeleteTy = Arr->getElementType();
   1724 
   1725       // 2. GEP to the first element of the array.
   1726       GEP.push_back(Zero);
   1727     }
   1728 
   1729     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
   1730                   Ptr.getAlignment());
   1731   }
   1732 
   1733   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
   1734 
   1735   if (E->isArrayForm()) {
   1736     EmitArrayDelete(*this, E, Ptr, DeleteTy);
   1737   } else {
   1738     EmitObjectDelete(*this, E, Ptr, DeleteTy);
   1739   }
   1740 
   1741   EmitBlock(DeleteEnd);
   1742 }
   1743 
   1744 static bool isGLValueFromPointerDeref(const Expr *E) {
   1745   E = E->IgnoreParens();
   1746 
   1747   if (const auto *CE = dyn_cast<CastExpr>(E)) {
   1748     if (!CE->getSubExpr()->isGLValue())
   1749       return false;
   1750     return isGLValueFromPointerDeref(CE->getSubExpr());
   1751   }
   1752 
   1753   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
   1754     return isGLValueFromPointerDeref(OVE->getSourceExpr());
   1755 
   1756   if (const auto *BO = dyn_cast<BinaryOperator>(E))
   1757     if (BO->getOpcode() == BO_Comma)
   1758       return isGLValueFromPointerDeref(BO->getRHS());
   1759 
   1760   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
   1761     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
   1762            isGLValueFromPointerDeref(ACO->getFalseExpr());
   1763 
   1764   // C++11 [expr.sub]p1:
   1765   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
   1766   if (isa<ArraySubscriptExpr>(E))
   1767     return true;
   1768 
   1769   if (const auto *UO = dyn_cast<UnaryOperator>(E))
   1770     if (UO->getOpcode() == UO_Deref)
   1771       return true;
   1772 
   1773   return false;
   1774 }
   1775 
   1776 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
   1777                                          llvm::Type *StdTypeInfoPtrTy) {
   1778   // Get the vtable pointer.
   1779   Address ThisPtr = CGF.EmitLValue(E).getAddress();
   1780 
   1781   // C++ [expr.typeid]p2:
   1782   //   If the glvalue expression is obtained by applying the unary * operator to
   1783   //   a pointer and the pointer is a null pointer value, the typeid expression
   1784   //   throws the std::bad_typeid exception.
   1785   //
   1786   // However, this paragraph's intent is not clear.  We choose a very generous
   1787   // interpretation which implores us to consider comma operators, conditional
   1788   // operators, parentheses and other such constructs.
   1789   QualType SrcRecordTy = E->getType();
   1790   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
   1791           isGLValueFromPointerDeref(E), SrcRecordTy)) {
   1792     llvm::BasicBlock *BadTypeidBlock =
   1793         CGF.createBasicBlock("typeid.bad_typeid");
   1794     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
   1795 
   1796     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
   1797     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
   1798 
   1799     CGF.EmitBlock(BadTypeidBlock);
   1800     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
   1801     CGF.EmitBlock(EndBlock);
   1802   }
   1803 
   1804   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
   1805                                         StdTypeInfoPtrTy);
   1806 }
   1807 
   1808 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
   1809   llvm::Type *StdTypeInfoPtrTy =
   1810     ConvertType(E->getType())->getPointerTo();
   1811 
   1812   if (E->isTypeOperand()) {
   1813     llvm::Constant *TypeInfo =
   1814         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
   1815     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
   1816   }
   1817 
   1818   // C++ [expr.typeid]p2:
   1819   //   When typeid is applied to a glvalue expression whose type is a
   1820   //   polymorphic class type, the result refers to a std::type_info object
   1821   //   representing the type of the most derived object (that is, the dynamic
   1822   //   type) to which the glvalue refers.
   1823   if (E->isPotentiallyEvaluated())
   1824     return EmitTypeidFromVTable(*this, E->getExprOperand(),
   1825                                 StdTypeInfoPtrTy);
   1826 
   1827   QualType OperandTy = E->getExprOperand()->getType();
   1828   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
   1829                                StdTypeInfoPtrTy);
   1830 }
   1831 
   1832 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
   1833                                           QualType DestTy) {
   1834   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1835   if (DestTy->isPointerType())
   1836     return llvm::Constant::getNullValue(DestLTy);
   1837 
   1838   /// C++ [expr.dynamic.cast]p9:
   1839   ///   A failed cast to reference type throws std::bad_cast
   1840   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
   1841     return nullptr;
   1842 
   1843   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
   1844   return llvm::UndefValue::get(DestLTy);
   1845 }
   1846 
   1847 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
   1848                                               const CXXDynamicCastExpr *DCE) {
   1849   CGM.EmitExplicitCastExprType(DCE, this);
   1850   QualType DestTy = DCE->getTypeAsWritten();
   1851 
   1852   if (DCE->isAlwaysNull())
   1853     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
   1854       return T;
   1855 
   1856   QualType SrcTy = DCE->getSubExpr()->getType();
   1857 
   1858   // C++ [expr.dynamic.cast]p7:
   1859   //   If T is "pointer to cv void," then the result is a pointer to the most
   1860   //   derived object pointed to by v.
   1861   const PointerType *DestPTy = DestTy->getAs<PointerType>();
   1862 
   1863   bool isDynamicCastToVoid;
   1864   QualType SrcRecordTy;
   1865   QualType DestRecordTy;
   1866   if (DestPTy) {
   1867     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
   1868     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
   1869     DestRecordTy = DestPTy->getPointeeType();
   1870   } else {
   1871     isDynamicCastToVoid = false;
   1872     SrcRecordTy = SrcTy;
   1873     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
   1874   }
   1875 
   1876   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
   1877 
   1878   // C++ [expr.dynamic.cast]p4:
   1879   //   If the value of v is a null pointer value in the pointer case, the result
   1880   //   is the null pointer value of type T.
   1881   bool ShouldNullCheckSrcValue =
   1882       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
   1883                                                          SrcRecordTy);
   1884 
   1885   llvm::BasicBlock *CastNull = nullptr;
   1886   llvm::BasicBlock *CastNotNull = nullptr;
   1887   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
   1888 
   1889   if (ShouldNullCheckSrcValue) {
   1890     CastNull = createBasicBlock("dynamic_cast.null");
   1891     CastNotNull = createBasicBlock("dynamic_cast.notnull");
   1892 
   1893     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
   1894     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
   1895     EmitBlock(CastNotNull);
   1896   }
   1897 
   1898   llvm::Value *Value;
   1899   if (isDynamicCastToVoid) {
   1900     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
   1901                                                   DestTy);
   1902   } else {
   1903     assert(DestRecordTy->isRecordType() &&
   1904            "destination type must be a record type!");
   1905     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
   1906                                                 DestTy, DestRecordTy, CastEnd);
   1907     CastNotNull = Builder.GetInsertBlock();
   1908   }
   1909 
   1910   if (ShouldNullCheckSrcValue) {
   1911     EmitBranch(CastEnd);
   1912 
   1913     EmitBlock(CastNull);
   1914     EmitBranch(CastEnd);
   1915   }
   1916 
   1917   EmitBlock(CastEnd);
   1918 
   1919   if (ShouldNullCheckSrcValue) {
   1920     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
   1921     PHI->addIncoming(Value, CastNotNull);
   1922     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
   1923 
   1924     Value = PHI;
   1925   }
   1926 
   1927   return Value;
   1928 }
   1929 
   1930 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
   1931   RunCleanupsScope Scope(*this);
   1932   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
   1933 
   1934   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
   1935   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
   1936                                                e = E->capture_init_end();
   1937        i != e; ++i, ++CurField) {
   1938     // Emit initialization
   1939     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   1940     if (CurField->hasCapturedVLAType()) {
   1941       auto VAT = CurField->getCapturedVLAType();
   1942       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
   1943     } else {
   1944       ArrayRef<VarDecl *> ArrayIndexes;
   1945       if (CurField->getType()->isArrayType())
   1946         ArrayIndexes = E->getCaptureInitIndexVars(i);
   1947       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
   1948     }
   1949   }
   1950 }
   1951