1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the abstract interface that implements execution support 11 // for LLVM. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H 16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H 17 18 #include "RuntimeDyld.h" 19 #include "llvm-c/ExecutionEngine.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/IR/ValueMap.h" 25 #include "llvm/MC/MCCodeGenInfo.h" 26 #include "llvm/Object/Binary.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/Mutex.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetOptions.h" 31 #include <map> 32 #include <string> 33 #include <vector> 34 #include <functional> 35 36 namespace llvm { 37 38 struct GenericValue; 39 class Constant; 40 class DataLayout; 41 class ExecutionEngine; 42 class Function; 43 class GlobalVariable; 44 class GlobalValue; 45 class JITEventListener; 46 class MachineCodeInfo; 47 class MCJITMemoryManager; 48 class MutexGuard; 49 class ObjectCache; 50 class RTDyldMemoryManager; 51 class Triple; 52 class Type; 53 54 namespace object { 55 class Archive; 56 class ObjectFile; 57 } 58 59 /// \brief Helper class for helping synchronize access to the global address map 60 /// table. Access to this class should be serialized under a mutex. 61 class ExecutionEngineState { 62 public: 63 typedef StringMap<uint64_t> GlobalAddressMapTy; 64 65 private: 66 67 /// GlobalAddressMap - A mapping between LLVM global symbol names values and 68 /// their actualized version... 69 GlobalAddressMapTy GlobalAddressMap; 70 71 /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, 72 /// used to convert raw addresses into the LLVM global value that is emitted 73 /// at the address. This map is not computed unless getGlobalValueAtAddress 74 /// is called at some point. 75 std::map<uint64_t, std::string> GlobalAddressReverseMap; 76 77 public: 78 79 GlobalAddressMapTy &getGlobalAddressMap() { 80 return GlobalAddressMap; 81 } 82 83 std::map<uint64_t, std::string> &getGlobalAddressReverseMap() { 84 return GlobalAddressReverseMap; 85 } 86 87 /// \brief Erase an entry from the mapping table. 88 /// 89 /// \returns The address that \p ToUnmap was happed to. 90 uint64_t RemoveMapping(StringRef Name); 91 }; 92 93 using FunctionCreator = std::function<void *(const std::string &)>; 94 95 /// \brief Abstract interface for implementation execution of LLVM modules, 96 /// designed to support both interpreter and just-in-time (JIT) compiler 97 /// implementations. 98 class ExecutionEngine { 99 /// The state object holding the global address mapping, which must be 100 /// accessed synchronously. 101 // 102 // FIXME: There is no particular need the entire map needs to be 103 // synchronized. Wouldn't a reader-writer design be better here? 104 ExecutionEngineState EEState; 105 106 /// The target data for the platform for which execution is being performed. 107 /// 108 /// Note: the DataLayout is LLVMContext specific because it has an 109 /// internal cache based on type pointers. It makes unsafe to reuse the 110 /// ExecutionEngine across context, we don't enforce this rule but undefined 111 /// behavior can occurs if the user tries to do it. 112 const DataLayout DL; 113 114 /// Whether lazy JIT compilation is enabled. 115 bool CompilingLazily; 116 117 /// Whether JIT compilation of external global variables is allowed. 118 bool GVCompilationDisabled; 119 120 /// Whether the JIT should perform lookups of external symbols (e.g., 121 /// using dlsym). 122 bool SymbolSearchingDisabled; 123 124 /// Whether the JIT should verify IR modules during compilation. 125 bool VerifyModules; 126 127 friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. 128 129 protected: 130 /// The list of Modules that we are JIT'ing from. We use a SmallVector to 131 /// optimize for the case where there is only one module. 132 SmallVector<std::unique_ptr<Module>, 1> Modules; 133 134 /// getMemoryforGV - Allocate memory for a global variable. 135 virtual char *getMemoryForGV(const GlobalVariable *GV); 136 137 static ExecutionEngine *(*MCJITCtor)( 138 std::unique_ptr<Module> M, 139 std::string *ErrorStr, 140 std::shared_ptr<MCJITMemoryManager> MM, 141 std::shared_ptr<RuntimeDyld::SymbolResolver> SR, 142 std::unique_ptr<TargetMachine> TM); 143 144 static ExecutionEngine *(*OrcMCJITReplacementCtor)( 145 std::string *ErrorStr, 146 std::shared_ptr<MCJITMemoryManager> MM, 147 std::shared_ptr<RuntimeDyld::SymbolResolver> SR, 148 std::unique_ptr<TargetMachine> TM); 149 150 static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M, 151 std::string *ErrorStr); 152 153 /// LazyFunctionCreator - If an unknown function is needed, this function 154 /// pointer is invoked to create it. If this returns null, the JIT will 155 /// abort. 156 FunctionCreator LazyFunctionCreator; 157 158 /// getMangledName - Get mangled name. 159 std::string getMangledName(const GlobalValue *GV); 160 161 public: 162 /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must 163 /// be held while changing the internal state of any of those classes. 164 sys::Mutex lock; 165 166 //===--------------------------------------------------------------------===// 167 // ExecutionEngine Startup 168 //===--------------------------------------------------------------------===// 169 170 virtual ~ExecutionEngine(); 171 172 /// Add a Module to the list of modules that we can JIT from. 173 virtual void addModule(std::unique_ptr<Module> M) { 174 Modules.push_back(std::move(M)); 175 } 176 177 /// addObjectFile - Add an ObjectFile to the execution engine. 178 /// 179 /// This method is only supported by MCJIT. MCJIT will immediately load the 180 /// object into memory and adds its symbols to the list used to resolve 181 /// external symbols while preparing other objects for execution. 182 /// 183 /// Objects added using this function will not be made executable until 184 /// needed by another object. 185 /// 186 /// MCJIT will take ownership of the ObjectFile. 187 virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O); 188 virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O); 189 190 /// addArchive - Add an Archive to the execution engine. 191 /// 192 /// This method is only supported by MCJIT. MCJIT will use the archive to 193 /// resolve external symbols in objects it is loading. If a symbol is found 194 /// in the Archive the contained object file will be extracted (in memory) 195 /// and loaded for possible execution. 196 virtual void addArchive(object::OwningBinary<object::Archive> A); 197 198 //===--------------------------------------------------------------------===// 199 200 const DataLayout &getDataLayout() const { return DL; } 201 202 /// removeModule - Remove a Module from the list of modules. Returns true if 203 /// M is found. 204 virtual bool removeModule(Module *M); 205 206 /// FindFunctionNamed - Search all of the active modules to find the function that 207 /// defines FnName. This is very slow operation and shouldn't be used for 208 /// general code. 209 virtual Function *FindFunctionNamed(const char *FnName); 210 211 /// FindGlobalVariableNamed - Search all of the active modules to find the global variable 212 /// that defines Name. This is very slow operation and shouldn't be used for 213 /// general code. 214 virtual GlobalVariable *FindGlobalVariableNamed(const char *Name, bool AllowInternal = false); 215 216 /// runFunction - Execute the specified function with the specified arguments, 217 /// and return the result. 218 virtual GenericValue runFunction(Function *F, 219 ArrayRef<GenericValue> ArgValues) = 0; 220 221 /// getPointerToNamedFunction - This method returns the address of the 222 /// specified function by using the dlsym function call. As such it is only 223 /// useful for resolving library symbols, not code generated symbols. 224 /// 225 /// If AbortOnFailure is false and no function with the given name is 226 /// found, this function silently returns a null pointer. Otherwise, 227 /// it prints a message to stderr and aborts. 228 /// 229 /// This function is deprecated for the MCJIT execution engine. 230 virtual void *getPointerToNamedFunction(StringRef Name, 231 bool AbortOnFailure = true) = 0; 232 233 /// mapSectionAddress - map a section to its target address space value. 234 /// Map the address of a JIT section as returned from the memory manager 235 /// to the address in the target process as the running code will see it. 236 /// This is the address which will be used for relocation resolution. 237 virtual void mapSectionAddress(const void *LocalAddress, 238 uint64_t TargetAddress) { 239 llvm_unreachable("Re-mapping of section addresses not supported with this " 240 "EE!"); 241 } 242 243 /// generateCodeForModule - Run code generation for the specified module and 244 /// load it into memory. 245 /// 246 /// When this function has completed, all code and data for the specified 247 /// module, and any module on which this module depends, will be generated 248 /// and loaded into memory, but relocations will not yet have been applied 249 /// and all memory will be readable and writable but not executable. 250 /// 251 /// This function is primarily useful when generating code for an external 252 /// target, allowing the client an opportunity to remap section addresses 253 /// before relocations are applied. Clients that intend to execute code 254 /// locally can use the getFunctionAddress call, which will generate code 255 /// and apply final preparations all in one step. 256 /// 257 /// This method has no effect for the interpeter. 258 virtual void generateCodeForModule(Module *M) {} 259 260 /// finalizeObject - ensure the module is fully processed and is usable. 261 /// 262 /// It is the user-level function for completing the process of making the 263 /// object usable for execution. It should be called after sections within an 264 /// object have been relocated using mapSectionAddress. When this method is 265 /// called the MCJIT execution engine will reapply relocations for a loaded 266 /// object. This method has no effect for the interpeter. 267 virtual void finalizeObject() {} 268 269 /// runStaticConstructorsDestructors - This method is used to execute all of 270 /// the static constructors or destructors for a program. 271 /// 272 /// \param isDtors - Run the destructors instead of constructors. 273 virtual void runStaticConstructorsDestructors(bool isDtors); 274 275 /// This method is used to execute all of the static constructors or 276 /// destructors for a particular module. 277 /// 278 /// \param isDtors - Run the destructors instead of constructors. 279 void runStaticConstructorsDestructors(Module &module, bool isDtors); 280 281 282 /// runFunctionAsMain - This is a helper function which wraps runFunction to 283 /// handle the common task of starting up main with the specified argc, argv, 284 /// and envp parameters. 285 int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv, 286 const char * const * envp); 287 288 289 /// addGlobalMapping - Tell the execution engine that the specified global is 290 /// at the specified location. This is used internally as functions are JIT'd 291 /// and as global variables are laid out in memory. It can and should also be 292 /// used by clients of the EE that want to have an LLVM global overlay 293 /// existing data in memory. Mappings are automatically removed when their 294 /// GlobalValue is destroyed. 295 void addGlobalMapping(const GlobalValue *GV, void *Addr); 296 void addGlobalMapping(StringRef Name, uint64_t Addr); 297 298 /// clearAllGlobalMappings - Clear all global mappings and start over again, 299 /// for use in dynamic compilation scenarios to move globals. 300 void clearAllGlobalMappings(); 301 302 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 303 /// particular module, because it has been removed from the JIT. 304 void clearGlobalMappingsFromModule(Module *M); 305 306 /// updateGlobalMapping - Replace an existing mapping for GV with a new 307 /// address. This updates both maps as required. If "Addr" is null, the 308 /// entry for the global is removed from the mappings. This returns the old 309 /// value of the pointer, or null if it was not in the map. 310 uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr); 311 uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr); 312 313 /// getAddressToGlobalIfAvailable - This returns the address of the specified 314 /// global symbol. 315 uint64_t getAddressToGlobalIfAvailable(StringRef S); 316 317 /// getPointerToGlobalIfAvailable - This returns the address of the specified 318 /// global value if it is has already been codegen'd, otherwise it returns 319 /// null. 320 void *getPointerToGlobalIfAvailable(StringRef S); 321 void *getPointerToGlobalIfAvailable(const GlobalValue *GV); 322 323 /// getPointerToGlobal - This returns the address of the specified global 324 /// value. This may involve code generation if it's a function. 325 /// 326 /// This function is deprecated for the MCJIT execution engine. Use 327 /// getGlobalValueAddress instead. 328 void *getPointerToGlobal(const GlobalValue *GV); 329 330 /// getPointerToFunction - The different EE's represent function bodies in 331 /// different ways. They should each implement this to say what a function 332 /// pointer should look like. When F is destroyed, the ExecutionEngine will 333 /// remove its global mapping and free any machine code. Be sure no threads 334 /// are running inside F when that happens. 335 /// 336 /// This function is deprecated for the MCJIT execution engine. Use 337 /// getFunctionAddress instead. 338 virtual void *getPointerToFunction(Function *F) = 0; 339 340 /// getPointerToFunctionOrStub - If the specified function has been 341 /// code-gen'd, return a pointer to the function. If not, compile it, or use 342 /// a stub to implement lazy compilation if available. See 343 /// getPointerToFunction for the requirements on destroying F. 344 /// 345 /// This function is deprecated for the MCJIT execution engine. Use 346 /// getFunctionAddress instead. 347 virtual void *getPointerToFunctionOrStub(Function *F) { 348 // Default implementation, just codegen the function. 349 return getPointerToFunction(F); 350 } 351 352 /// getGlobalValueAddress - Return the address of the specified global 353 /// value. This may involve code generation. 354 /// 355 /// This function should not be called with the interpreter engine. 356 virtual uint64_t getGlobalValueAddress(const std::string &Name) { 357 // Default implementation for the interpreter. MCJIT will override this. 358 // JIT and interpreter clients should use getPointerToGlobal instead. 359 return 0; 360 } 361 362 /// getFunctionAddress - Return the address of the specified function. 363 /// This may involve code generation. 364 virtual uint64_t getFunctionAddress(const std::string &Name) { 365 // Default implementation for the interpreter. MCJIT will override this. 366 // Interpreter clients should use getPointerToFunction instead. 367 return 0; 368 } 369 370 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 371 /// at the specified address. 372 /// 373 const GlobalValue *getGlobalValueAtAddress(void *Addr); 374 375 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. 376 /// Ptr is the address of the memory at which to store Val, cast to 377 /// GenericValue *. It is not a pointer to a GenericValue containing the 378 /// address at which to store Val. 379 void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 380 Type *Ty); 381 382 void InitializeMemory(const Constant *Init, void *Addr); 383 384 /// getOrEmitGlobalVariable - Return the address of the specified global 385 /// variable, possibly emitting it to memory if needed. This is used by the 386 /// Emitter. 387 /// 388 /// This function is deprecated for the MCJIT execution engine. Use 389 /// getGlobalValueAddress instead. 390 virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { 391 return getPointerToGlobal((const GlobalValue *)GV); 392 } 393 394 /// Registers a listener to be called back on various events within 395 /// the JIT. See JITEventListener.h for more details. Does not 396 /// take ownership of the argument. The argument may be NULL, in 397 /// which case these functions do nothing. 398 virtual void RegisterJITEventListener(JITEventListener *) {} 399 virtual void UnregisterJITEventListener(JITEventListener *) {} 400 401 /// Sets the pre-compiled object cache. The ownership of the ObjectCache is 402 /// not changed. Supported by MCJIT but not the interpreter. 403 virtual void setObjectCache(ObjectCache *) { 404 llvm_unreachable("No support for an object cache"); 405 } 406 407 /// setProcessAllSections (MCJIT Only): By default, only sections that are 408 /// "required for execution" are passed to the RTDyldMemoryManager, and other 409 /// sections are discarded. Passing 'true' to this method will cause 410 /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless 411 /// of whether they are "required to execute" in the usual sense. 412 /// 413 /// Rationale: Some MCJIT clients want to be able to inspect metadata 414 /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze 415 /// performance. Passing these sections to the memory manager allows the 416 /// client to make policy about the relevant sections, rather than having 417 /// MCJIT do it. 418 virtual void setProcessAllSections(bool ProcessAllSections) { 419 llvm_unreachable("No support for ProcessAllSections option"); 420 } 421 422 /// Return the target machine (if available). 423 virtual TargetMachine *getTargetMachine() { return nullptr; } 424 425 /// DisableLazyCompilation - When lazy compilation is off (the default), the 426 /// JIT will eagerly compile every function reachable from the argument to 427 /// getPointerToFunction. If lazy compilation is turned on, the JIT will only 428 /// compile the one function and emit stubs to compile the rest when they're 429 /// first called. If lazy compilation is turned off again while some lazy 430 /// stubs are still around, and one of those stubs is called, the program will 431 /// abort. 432 /// 433 /// In order to safely compile lazily in a threaded program, the user must 434 /// ensure that 1) only one thread at a time can call any particular lazy 435 /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock 436 /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a 437 /// lazy stub. See http://llvm.org/PR5184 for details. 438 void DisableLazyCompilation(bool Disabled = true) { 439 CompilingLazily = !Disabled; 440 } 441 bool isCompilingLazily() const { 442 return CompilingLazily; 443 } 444 445 /// DisableGVCompilation - If called, the JIT will abort if it's asked to 446 /// allocate space and populate a GlobalVariable that is not internal to 447 /// the module. 448 void DisableGVCompilation(bool Disabled = true) { 449 GVCompilationDisabled = Disabled; 450 } 451 bool isGVCompilationDisabled() const { 452 return GVCompilationDisabled; 453 } 454 455 /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown 456 /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to 457 /// resolve symbols in a custom way. 458 void DisableSymbolSearching(bool Disabled = true) { 459 SymbolSearchingDisabled = Disabled; 460 } 461 bool isSymbolSearchingDisabled() const { 462 return SymbolSearchingDisabled; 463 } 464 465 /// Enable/Disable IR module verification. 466 /// 467 /// Note: Module verification is enabled by default in Debug builds, and 468 /// disabled by default in Release. Use this method to override the default. 469 void setVerifyModules(bool Verify) { 470 VerifyModules = Verify; 471 } 472 bool getVerifyModules() const { 473 return VerifyModules; 474 } 475 476 /// InstallLazyFunctionCreator - If an unknown function is needed, the 477 /// specified function pointer is invoked to create it. If it returns null, 478 /// the JIT will abort. 479 void InstallLazyFunctionCreator(FunctionCreator C) { 480 LazyFunctionCreator = C; 481 } 482 483 protected: 484 ExecutionEngine(const DataLayout DL) : DL(std::move(DL)){} 485 explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M); 486 explicit ExecutionEngine(std::unique_ptr<Module> M); 487 488 void emitGlobals(); 489 490 void EmitGlobalVariable(const GlobalVariable *GV); 491 492 GenericValue getConstantValue(const Constant *C); 493 void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, 494 Type *Ty); 495 496 private: 497 void Init(std::unique_ptr<Module> M); 498 }; 499 500 namespace EngineKind { 501 // These are actually bitmasks that get or-ed together. 502 enum Kind { 503 JIT = 0x1, 504 Interpreter = 0x2 505 }; 506 const static Kind Either = (Kind)(JIT | Interpreter); 507 } 508 509 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder, 510 /// chaining the various set* methods, and terminating it with a .create() 511 /// call. 512 class EngineBuilder { 513 private: 514 std::unique_ptr<Module> M; 515 EngineKind::Kind WhichEngine; 516 std::string *ErrorStr; 517 CodeGenOpt::Level OptLevel; 518 std::shared_ptr<MCJITMemoryManager> MemMgr; 519 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver; 520 TargetOptions Options; 521 Reloc::Model RelocModel; 522 CodeModel::Model CMModel; 523 std::string MArch; 524 std::string MCPU; 525 SmallVector<std::string, 4> MAttrs; 526 bool VerifyModules; 527 bool UseOrcMCJITReplacement; 528 529 public: 530 /// Default constructor for EngineBuilder. 531 EngineBuilder(); 532 533 /// Constructor for EngineBuilder. 534 EngineBuilder(std::unique_ptr<Module> M); 535 536 // Out-of-line since we don't have the def'n of RTDyldMemoryManager here. 537 ~EngineBuilder(); 538 539 /// setEngineKind - Controls whether the user wants the interpreter, the JIT, 540 /// or whichever engine works. This option defaults to EngineKind::Either. 541 EngineBuilder &setEngineKind(EngineKind::Kind w) { 542 WhichEngine = w; 543 return *this; 544 } 545 546 /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows 547 /// clients to customize their memory allocation policies for the MCJIT. This 548 /// is only appropriate for the MCJIT; setting this and configuring the builder 549 /// to create anything other than MCJIT will cause a runtime error. If create() 550 /// is called and is successful, the created engine takes ownership of the 551 /// memory manager. This option defaults to NULL. 552 EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); 553 554 EngineBuilder& 555 setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); 556 557 EngineBuilder& 558 setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); 559 560 /// setErrorStr - Set the error string to write to on error. This option 561 /// defaults to NULL. 562 EngineBuilder &setErrorStr(std::string *e) { 563 ErrorStr = e; 564 return *this; 565 } 566 567 /// setOptLevel - Set the optimization level for the JIT. This option 568 /// defaults to CodeGenOpt::Default. 569 EngineBuilder &setOptLevel(CodeGenOpt::Level l) { 570 OptLevel = l; 571 return *this; 572 } 573 574 /// setTargetOptions - Set the target options that the ExecutionEngine 575 /// target is using. Defaults to TargetOptions(). 576 EngineBuilder &setTargetOptions(const TargetOptions &Opts) { 577 Options = Opts; 578 return *this; 579 } 580 581 /// setRelocationModel - Set the relocation model that the ExecutionEngine 582 /// target is using. Defaults to target specific default "Reloc::Default". 583 EngineBuilder &setRelocationModel(Reloc::Model RM) { 584 RelocModel = RM; 585 return *this; 586 } 587 588 /// setCodeModel - Set the CodeModel that the ExecutionEngine target 589 /// data is using. Defaults to target specific default 590 /// "CodeModel::JITDefault". 591 EngineBuilder &setCodeModel(CodeModel::Model M) { 592 CMModel = M; 593 return *this; 594 } 595 596 /// setMArch - Override the architecture set by the Module's triple. 597 EngineBuilder &setMArch(StringRef march) { 598 MArch.assign(march.begin(), march.end()); 599 return *this; 600 } 601 602 /// setMCPU - Target a specific cpu type. 603 EngineBuilder &setMCPU(StringRef mcpu) { 604 MCPU.assign(mcpu.begin(), mcpu.end()); 605 return *this; 606 } 607 608 /// setVerifyModules - Set whether the JIT implementation should verify 609 /// IR modules during compilation. 610 EngineBuilder &setVerifyModules(bool Verify) { 611 VerifyModules = Verify; 612 return *this; 613 } 614 615 /// setMAttrs - Set cpu-specific attributes. 616 template<typename StringSequence> 617 EngineBuilder &setMAttrs(const StringSequence &mattrs) { 618 MAttrs.clear(); 619 MAttrs.append(mattrs.begin(), mattrs.end()); 620 return *this; 621 } 622 623 // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default. 624 void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) { 625 this->UseOrcMCJITReplacement = UseOrcMCJITReplacement; 626 } 627 628 TargetMachine *selectTarget(); 629 630 /// selectTarget - Pick a target either via -march or by guessing the native 631 /// arch. Add any CPU features specified via -mcpu or -mattr. 632 TargetMachine *selectTarget(const Triple &TargetTriple, 633 StringRef MArch, 634 StringRef MCPU, 635 const SmallVectorImpl<std::string>& MAttrs); 636 637 ExecutionEngine *create() { 638 return create(selectTarget()); 639 } 640 641 ExecutionEngine *create(TargetMachine *TM); 642 }; 643 644 // Create wrappers for C Binding types (see CBindingWrapping.h). 645 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef) 646 647 } // End llvm namespace 648 649 #endif 650