Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     17 
     18 #include "RuntimeDyld.h"
     19 #include "llvm-c/ExecutionEngine.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/ValueHandle.h"
     24 #include "llvm/IR/ValueMap.h"
     25 #include "llvm/MC/MCCodeGenInfo.h"
     26 #include "llvm/Object/Binary.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/Mutex.h"
     29 #include "llvm/Target/TargetMachine.h"
     30 #include "llvm/Target/TargetOptions.h"
     31 #include <map>
     32 #include <string>
     33 #include <vector>
     34 #include <functional>
     35 
     36 namespace llvm {
     37 
     38 struct GenericValue;
     39 class Constant;
     40 class DataLayout;
     41 class ExecutionEngine;
     42 class Function;
     43 class GlobalVariable;
     44 class GlobalValue;
     45 class JITEventListener;
     46 class MachineCodeInfo;
     47 class MCJITMemoryManager;
     48 class MutexGuard;
     49 class ObjectCache;
     50 class RTDyldMemoryManager;
     51 class Triple;
     52 class Type;
     53 
     54 namespace object {
     55   class Archive;
     56   class ObjectFile;
     57 }
     58 
     59 /// \brief Helper class for helping synchronize access to the global address map
     60 /// table.  Access to this class should be serialized under a mutex.
     61 class ExecutionEngineState {
     62 public:
     63   typedef StringMap<uint64_t> GlobalAddressMapTy;
     64 
     65 private:
     66 
     67   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
     68   /// their actualized version...
     69   GlobalAddressMapTy GlobalAddressMap;
     70 
     71   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     72   /// used to convert raw addresses into the LLVM global value that is emitted
     73   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     74   /// is called at some point.
     75   std::map<uint64_t, std::string> GlobalAddressReverseMap;
     76 
     77 public:
     78 
     79   GlobalAddressMapTy &getGlobalAddressMap() {
     80     return GlobalAddressMap;
     81   }
     82 
     83   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
     84     return GlobalAddressReverseMap;
     85   }
     86 
     87   /// \brief Erase an entry from the mapping table.
     88   ///
     89   /// \returns The address that \p ToUnmap was happed to.
     90   uint64_t RemoveMapping(StringRef Name);
     91 };
     92 
     93 using FunctionCreator = std::function<void *(const std::string &)>;
     94 
     95 /// \brief Abstract interface for implementation execution of LLVM modules,
     96 /// designed to support both interpreter and just-in-time (JIT) compiler
     97 /// implementations.
     98 class ExecutionEngine {
     99   /// The state object holding the global address mapping, which must be
    100   /// accessed synchronously.
    101   //
    102   // FIXME: There is no particular need the entire map needs to be
    103   // synchronized.  Wouldn't a reader-writer design be better here?
    104   ExecutionEngineState EEState;
    105 
    106   /// The target data for the platform for which execution is being performed.
    107   ///
    108   /// Note: the DataLayout is LLVMContext specific because it has an
    109   /// internal cache based on type pointers. It makes unsafe to reuse the
    110   /// ExecutionEngine across context, we don't enforce this rule but undefined
    111   /// behavior can occurs if the user tries to do it.
    112   const DataLayout DL;
    113 
    114   /// Whether lazy JIT compilation is enabled.
    115   bool CompilingLazily;
    116 
    117   /// Whether JIT compilation of external global variables is allowed.
    118   bool GVCompilationDisabled;
    119 
    120   /// Whether the JIT should perform lookups of external symbols (e.g.,
    121   /// using dlsym).
    122   bool SymbolSearchingDisabled;
    123 
    124   /// Whether the JIT should verify IR modules during compilation.
    125   bool VerifyModules;
    126 
    127   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    128 
    129 protected:
    130   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    131   /// optimize for the case where there is only one module.
    132   SmallVector<std::unique_ptr<Module>, 1> Modules;
    133 
    134   /// getMemoryforGV - Allocate memory for a global variable.
    135   virtual char *getMemoryForGV(const GlobalVariable *GV);
    136 
    137   static ExecutionEngine *(*MCJITCtor)(
    138                                 std::unique_ptr<Module> M,
    139                                 std::string *ErrorStr,
    140                                 std::shared_ptr<MCJITMemoryManager> MM,
    141                                 std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
    142                                 std::unique_ptr<TargetMachine> TM);
    143 
    144   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
    145                                 std::string *ErrorStr,
    146                                 std::shared_ptr<MCJITMemoryManager> MM,
    147                                 std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
    148                                 std::unique_ptr<TargetMachine> TM);
    149 
    150   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
    151                                         std::string *ErrorStr);
    152 
    153   /// LazyFunctionCreator - If an unknown function is needed, this function
    154   /// pointer is invoked to create it.  If this returns null, the JIT will
    155   /// abort.
    156   FunctionCreator LazyFunctionCreator;
    157 
    158   /// getMangledName - Get mangled name.
    159   std::string getMangledName(const GlobalValue *GV);
    160 
    161 public:
    162   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
    163   /// be held while changing the internal state of any of those classes.
    164   sys::Mutex lock;
    165 
    166   //===--------------------------------------------------------------------===//
    167   //  ExecutionEngine Startup
    168   //===--------------------------------------------------------------------===//
    169 
    170   virtual ~ExecutionEngine();
    171 
    172   /// Add a Module to the list of modules that we can JIT from.
    173   virtual void addModule(std::unique_ptr<Module> M) {
    174     Modules.push_back(std::move(M));
    175   }
    176 
    177   /// addObjectFile - Add an ObjectFile to the execution engine.
    178   ///
    179   /// This method is only supported by MCJIT.  MCJIT will immediately load the
    180   /// object into memory and adds its symbols to the list used to resolve
    181   /// external symbols while preparing other objects for execution.
    182   ///
    183   /// Objects added using this function will not be made executable until
    184   /// needed by another object.
    185   ///
    186   /// MCJIT will take ownership of the ObjectFile.
    187   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
    188   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
    189 
    190   /// addArchive - Add an Archive to the execution engine.
    191   ///
    192   /// This method is only supported by MCJIT.  MCJIT will use the archive to
    193   /// resolve external symbols in objects it is loading.  If a symbol is found
    194   /// in the Archive the contained object file will be extracted (in memory)
    195   /// and loaded for possible execution.
    196   virtual void addArchive(object::OwningBinary<object::Archive> A);
    197 
    198   //===--------------------------------------------------------------------===//
    199 
    200   const DataLayout &getDataLayout() const { return DL; }
    201 
    202   /// removeModule - Remove a Module from the list of modules.  Returns true if
    203   /// M is found.
    204   virtual bool removeModule(Module *M);
    205 
    206   /// FindFunctionNamed - Search all of the active modules to find the function that
    207   /// defines FnName.  This is very slow operation and shouldn't be used for
    208   /// general code.
    209   virtual Function *FindFunctionNamed(const char *FnName);
    210 
    211   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
    212   /// that defines Name.  This is very slow operation and shouldn't be used for
    213   /// general code.
    214   virtual GlobalVariable *FindGlobalVariableNamed(const char *Name, bool AllowInternal = false);
    215 
    216   /// runFunction - Execute the specified function with the specified arguments,
    217   /// and return the result.
    218   virtual GenericValue runFunction(Function *F,
    219                                    ArrayRef<GenericValue> ArgValues) = 0;
    220 
    221   /// getPointerToNamedFunction - This method returns the address of the
    222   /// specified function by using the dlsym function call.  As such it is only
    223   /// useful for resolving library symbols, not code generated symbols.
    224   ///
    225   /// If AbortOnFailure is false and no function with the given name is
    226   /// found, this function silently returns a null pointer. Otherwise,
    227   /// it prints a message to stderr and aborts.
    228   ///
    229   /// This function is deprecated for the MCJIT execution engine.
    230   virtual void *getPointerToNamedFunction(StringRef Name,
    231                                           bool AbortOnFailure = true) = 0;
    232 
    233   /// mapSectionAddress - map a section to its target address space value.
    234   /// Map the address of a JIT section as returned from the memory manager
    235   /// to the address in the target process as the running code will see it.
    236   /// This is the address which will be used for relocation resolution.
    237   virtual void mapSectionAddress(const void *LocalAddress,
    238                                  uint64_t TargetAddress) {
    239     llvm_unreachable("Re-mapping of section addresses not supported with this "
    240                      "EE!");
    241   }
    242 
    243   /// generateCodeForModule - Run code generation for the specified module and
    244   /// load it into memory.
    245   ///
    246   /// When this function has completed, all code and data for the specified
    247   /// module, and any module on which this module depends, will be generated
    248   /// and loaded into memory, but relocations will not yet have been applied
    249   /// and all memory will be readable and writable but not executable.
    250   ///
    251   /// This function is primarily useful when generating code for an external
    252   /// target, allowing the client an opportunity to remap section addresses
    253   /// before relocations are applied.  Clients that intend to execute code
    254   /// locally can use the getFunctionAddress call, which will generate code
    255   /// and apply final preparations all in one step.
    256   ///
    257   /// This method has no effect for the interpeter.
    258   virtual void generateCodeForModule(Module *M) {}
    259 
    260   /// finalizeObject - ensure the module is fully processed and is usable.
    261   ///
    262   /// It is the user-level function for completing the process of making the
    263   /// object usable for execution.  It should be called after sections within an
    264   /// object have been relocated using mapSectionAddress.  When this method is
    265   /// called the MCJIT execution engine will reapply relocations for a loaded
    266   /// object.  This method has no effect for the interpeter.
    267   virtual void finalizeObject() {}
    268 
    269   /// runStaticConstructorsDestructors - This method is used to execute all of
    270   /// the static constructors or destructors for a program.
    271   ///
    272   /// \param isDtors - Run the destructors instead of constructors.
    273   virtual void runStaticConstructorsDestructors(bool isDtors);
    274 
    275   /// This method is used to execute all of the static constructors or
    276   /// destructors for a particular module.
    277   ///
    278   /// \param isDtors - Run the destructors instead of constructors.
    279   void runStaticConstructorsDestructors(Module &module, bool isDtors);
    280 
    281 
    282   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    283   /// handle the common task of starting up main with the specified argc, argv,
    284   /// and envp parameters.
    285   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    286                         const char * const * envp);
    287 
    288 
    289   /// addGlobalMapping - Tell the execution engine that the specified global is
    290   /// at the specified location.  This is used internally as functions are JIT'd
    291   /// and as global variables are laid out in memory.  It can and should also be
    292   /// used by clients of the EE that want to have an LLVM global overlay
    293   /// existing data in memory.  Mappings are automatically removed when their
    294   /// GlobalValue is destroyed.
    295   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    296   void addGlobalMapping(StringRef Name, uint64_t Addr);
    297 
    298   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    299   /// for use in dynamic compilation scenarios to move globals.
    300   void clearAllGlobalMappings();
    301 
    302   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    303   /// particular module, because it has been removed from the JIT.
    304   void clearGlobalMappingsFromModule(Module *M);
    305 
    306   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    307   /// address.  This updates both maps as required.  If "Addr" is null, the
    308   /// entry for the global is removed from the mappings.  This returns the old
    309   /// value of the pointer, or null if it was not in the map.
    310   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
    311   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
    312 
    313   /// getAddressToGlobalIfAvailable - This returns the address of the specified
    314   /// global symbol.
    315   uint64_t getAddressToGlobalIfAvailable(StringRef S);
    316 
    317   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    318   /// global value if it is has already been codegen'd, otherwise it returns
    319   /// null.
    320   void *getPointerToGlobalIfAvailable(StringRef S);
    321   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    322 
    323   /// getPointerToGlobal - This returns the address of the specified global
    324   /// value. This may involve code generation if it's a function.
    325   ///
    326   /// This function is deprecated for the MCJIT execution engine.  Use
    327   /// getGlobalValueAddress instead.
    328   void *getPointerToGlobal(const GlobalValue *GV);
    329 
    330   /// getPointerToFunction - The different EE's represent function bodies in
    331   /// different ways.  They should each implement this to say what a function
    332   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    333   /// remove its global mapping and free any machine code.  Be sure no threads
    334   /// are running inside F when that happens.
    335   ///
    336   /// This function is deprecated for the MCJIT execution engine.  Use
    337   /// getFunctionAddress instead.
    338   virtual void *getPointerToFunction(Function *F) = 0;
    339 
    340   /// getPointerToFunctionOrStub - If the specified function has been
    341   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    342   /// a stub to implement lazy compilation if available.  See
    343   /// getPointerToFunction for the requirements on destroying F.
    344   ///
    345   /// This function is deprecated for the MCJIT execution engine.  Use
    346   /// getFunctionAddress instead.
    347   virtual void *getPointerToFunctionOrStub(Function *F) {
    348     // Default implementation, just codegen the function.
    349     return getPointerToFunction(F);
    350   }
    351 
    352   /// getGlobalValueAddress - Return the address of the specified global
    353   /// value. This may involve code generation.
    354   ///
    355   /// This function should not be called with the interpreter engine.
    356   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
    357     // Default implementation for the interpreter.  MCJIT will override this.
    358     // JIT and interpreter clients should use getPointerToGlobal instead.
    359     return 0;
    360   }
    361 
    362   /// getFunctionAddress - Return the address of the specified function.
    363   /// This may involve code generation.
    364   virtual uint64_t getFunctionAddress(const std::string &Name) {
    365     // Default implementation for the interpreter.  MCJIT will override this.
    366     // Interpreter clients should use getPointerToFunction instead.
    367     return 0;
    368   }
    369 
    370   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    371   /// at the specified address.
    372   ///
    373   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    374 
    375   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    376   /// Ptr is the address of the memory at which to store Val, cast to
    377   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    378   /// address at which to store Val.
    379   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    380                           Type *Ty);
    381 
    382   void InitializeMemory(const Constant *Init, void *Addr);
    383 
    384   /// getOrEmitGlobalVariable - Return the address of the specified global
    385   /// variable, possibly emitting it to memory if needed.  This is used by the
    386   /// Emitter.
    387   ///
    388   /// This function is deprecated for the MCJIT execution engine.  Use
    389   /// getGlobalValueAddress instead.
    390   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    391     return getPointerToGlobal((const GlobalValue *)GV);
    392   }
    393 
    394   /// Registers a listener to be called back on various events within
    395   /// the JIT.  See JITEventListener.h for more details.  Does not
    396   /// take ownership of the argument.  The argument may be NULL, in
    397   /// which case these functions do nothing.
    398   virtual void RegisterJITEventListener(JITEventListener *) {}
    399   virtual void UnregisterJITEventListener(JITEventListener *) {}
    400 
    401   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
    402   /// not changed.  Supported by MCJIT but not the interpreter.
    403   virtual void setObjectCache(ObjectCache *) {
    404     llvm_unreachable("No support for an object cache");
    405   }
    406 
    407   /// setProcessAllSections (MCJIT Only): By default, only sections that are
    408   /// "required for execution" are passed to the RTDyldMemoryManager, and other
    409   /// sections are discarded. Passing 'true' to this method will cause
    410   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
    411   /// of whether they are "required to execute" in the usual sense.
    412   ///
    413   /// Rationale: Some MCJIT clients want to be able to inspect metadata
    414   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
    415   /// performance. Passing these sections to the memory manager allows the
    416   /// client to make policy about the relevant sections, rather than having
    417   /// MCJIT do it.
    418   virtual void setProcessAllSections(bool ProcessAllSections) {
    419     llvm_unreachable("No support for ProcessAllSections option");
    420   }
    421 
    422   /// Return the target machine (if available).
    423   virtual TargetMachine *getTargetMachine() { return nullptr; }
    424 
    425   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    426   /// JIT will eagerly compile every function reachable from the argument to
    427   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    428   /// compile the one function and emit stubs to compile the rest when they're
    429   /// first called.  If lazy compilation is turned off again while some lazy
    430   /// stubs are still around, and one of those stubs is called, the program will
    431   /// abort.
    432   ///
    433   /// In order to safely compile lazily in a threaded program, the user must
    434   /// ensure that 1) only one thread at a time can call any particular lazy
    435   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    436   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    437   /// lazy stub.  See http://llvm.org/PR5184 for details.
    438   void DisableLazyCompilation(bool Disabled = true) {
    439     CompilingLazily = !Disabled;
    440   }
    441   bool isCompilingLazily() const {
    442     return CompilingLazily;
    443   }
    444 
    445   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    446   /// allocate space and populate a GlobalVariable that is not internal to
    447   /// the module.
    448   void DisableGVCompilation(bool Disabled = true) {
    449     GVCompilationDisabled = Disabled;
    450   }
    451   bool isGVCompilationDisabled() const {
    452     return GVCompilationDisabled;
    453   }
    454 
    455   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    456   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    457   /// resolve symbols in a custom way.
    458   void DisableSymbolSearching(bool Disabled = true) {
    459     SymbolSearchingDisabled = Disabled;
    460   }
    461   bool isSymbolSearchingDisabled() const {
    462     return SymbolSearchingDisabled;
    463   }
    464 
    465   /// Enable/Disable IR module verification.
    466   ///
    467   /// Note: Module verification is enabled by default in Debug builds, and
    468   /// disabled by default in Release. Use this method to override the default.
    469   void setVerifyModules(bool Verify) {
    470     VerifyModules = Verify;
    471   }
    472   bool getVerifyModules() const {
    473     return VerifyModules;
    474   }
    475 
    476   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    477   /// specified function pointer is invoked to create it.  If it returns null,
    478   /// the JIT will abort.
    479   void InstallLazyFunctionCreator(FunctionCreator C) {
    480     LazyFunctionCreator = C;
    481   }
    482 
    483 protected:
    484   ExecutionEngine(const DataLayout DL) : DL(std::move(DL)){}
    485   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
    486   explicit ExecutionEngine(std::unique_ptr<Module> M);
    487 
    488   void emitGlobals();
    489 
    490   void EmitGlobalVariable(const GlobalVariable *GV);
    491 
    492   GenericValue getConstantValue(const Constant *C);
    493   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    494                            Type *Ty);
    495 
    496 private:
    497   void Init(std::unique_ptr<Module> M);
    498 };
    499 
    500 namespace EngineKind {
    501   // These are actually bitmasks that get or-ed together.
    502   enum Kind {
    503     JIT         = 0x1,
    504     Interpreter = 0x2
    505   };
    506   const static Kind Either = (Kind)(JIT | Interpreter);
    507 }
    508 
    509 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
    510 /// chaining the various set* methods, and terminating it with a .create()
    511 /// call.
    512 class EngineBuilder {
    513 private:
    514   std::unique_ptr<Module> M;
    515   EngineKind::Kind WhichEngine;
    516   std::string *ErrorStr;
    517   CodeGenOpt::Level OptLevel;
    518   std::shared_ptr<MCJITMemoryManager> MemMgr;
    519   std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver;
    520   TargetOptions Options;
    521   Reloc::Model RelocModel;
    522   CodeModel::Model CMModel;
    523   std::string MArch;
    524   std::string MCPU;
    525   SmallVector<std::string, 4> MAttrs;
    526   bool VerifyModules;
    527   bool UseOrcMCJITReplacement;
    528 
    529 public:
    530   /// Default constructor for EngineBuilder.
    531   EngineBuilder();
    532 
    533   /// Constructor for EngineBuilder.
    534   EngineBuilder(std::unique_ptr<Module> M);
    535 
    536   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
    537   ~EngineBuilder();
    538 
    539   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    540   /// or whichever engine works.  This option defaults to EngineKind::Either.
    541   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    542     WhichEngine = w;
    543     return *this;
    544   }
    545 
    546   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
    547   /// clients to customize their memory allocation policies for the MCJIT. This
    548   /// is only appropriate for the MCJIT; setting this and configuring the builder
    549   /// to create anything other than MCJIT will cause a runtime error. If create()
    550   /// is called and is successful, the created engine takes ownership of the
    551   /// memory manager. This option defaults to NULL.
    552   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
    553 
    554   EngineBuilder&
    555   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
    556 
    557   EngineBuilder&
    558   setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
    559 
    560   /// setErrorStr - Set the error string to write to on error.  This option
    561   /// defaults to NULL.
    562   EngineBuilder &setErrorStr(std::string *e) {
    563     ErrorStr = e;
    564     return *this;
    565   }
    566 
    567   /// setOptLevel - Set the optimization level for the JIT.  This option
    568   /// defaults to CodeGenOpt::Default.
    569   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    570     OptLevel = l;
    571     return *this;
    572   }
    573 
    574   /// setTargetOptions - Set the target options that the ExecutionEngine
    575   /// target is using. Defaults to TargetOptions().
    576   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
    577     Options = Opts;
    578     return *this;
    579   }
    580 
    581   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    582   /// target is using. Defaults to target specific default "Reloc::Default".
    583   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    584     RelocModel = RM;
    585     return *this;
    586   }
    587 
    588   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    589   /// data is using. Defaults to target specific default
    590   /// "CodeModel::JITDefault".
    591   EngineBuilder &setCodeModel(CodeModel::Model M) {
    592     CMModel = M;
    593     return *this;
    594   }
    595 
    596   /// setMArch - Override the architecture set by the Module's triple.
    597   EngineBuilder &setMArch(StringRef march) {
    598     MArch.assign(march.begin(), march.end());
    599     return *this;
    600   }
    601 
    602   /// setMCPU - Target a specific cpu type.
    603   EngineBuilder &setMCPU(StringRef mcpu) {
    604     MCPU.assign(mcpu.begin(), mcpu.end());
    605     return *this;
    606   }
    607 
    608   /// setVerifyModules - Set whether the JIT implementation should verify
    609   /// IR modules during compilation.
    610   EngineBuilder &setVerifyModules(bool Verify) {
    611     VerifyModules = Verify;
    612     return *this;
    613   }
    614 
    615   /// setMAttrs - Set cpu-specific attributes.
    616   template<typename StringSequence>
    617   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    618     MAttrs.clear();
    619     MAttrs.append(mattrs.begin(), mattrs.end());
    620     return *this;
    621   }
    622 
    623   // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default.
    624   void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
    625     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
    626   }
    627 
    628   TargetMachine *selectTarget();
    629 
    630   /// selectTarget - Pick a target either via -march or by guessing the native
    631   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    632   TargetMachine *selectTarget(const Triple &TargetTriple,
    633                               StringRef MArch,
    634                               StringRef MCPU,
    635                               const SmallVectorImpl<std::string>& MAttrs);
    636 
    637   ExecutionEngine *create() {
    638     return create(selectTarget());
    639   }
    640 
    641   ExecutionEngine *create(TargetMachine *TM);
    642 };
    643 
    644 // Create wrappers for C Binding types (see CBindingWrapping.h).
    645 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
    646 
    647 } // End llvm namespace
    648 
    649 #endif
    650