Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 #include "SkAAClip.h"
     10 #include "SkAtomics.h"
     11 #include "SkBlitter.h"
     12 #include "SkColorPriv.h"
     13 #include "SkPath.h"
     14 #include "SkScan.h"
     15 #include "SkUtils.h"
     16 
     17 class AutoAAClipValidate {
     18 public:
     19     AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) {
     20         fClip.validate();
     21     }
     22     ~AutoAAClipValidate() {
     23         fClip.validate();
     24     }
     25 private:
     26     const SkAAClip& fClip;
     27 };
     28 
     29 #ifdef SK_DEBUG
     30     #define AUTO_AACLIP_VALIDATE(clip)  AutoAAClipValidate acv(clip)
     31 #else
     32     #define AUTO_AACLIP_VALIDATE(clip)
     33 #endif
     34 
     35 ///////////////////////////////////////////////////////////////////////////////
     36 
     37 #define kMaxInt32   0x7FFFFFFF
     38 
     39 #ifdef SK_DEBUG
     40 static inline bool x_in_rect(int x, const SkIRect& rect) {
     41     return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
     42 }
     43 #endif
     44 
     45 static inline bool y_in_rect(int y, const SkIRect& rect) {
     46     return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
     47 }
     48 
     49 /*
     50  *  Data runs are packed [count, alpha]
     51  */
     52 
     53 struct SkAAClip::YOffset {
     54     int32_t  fY;
     55     uint32_t fOffset;
     56 };
     57 
     58 struct SkAAClip::RunHead {
     59     int32_t fRefCnt;
     60     int32_t fRowCount;
     61     size_t  fDataSize;
     62 
     63     YOffset* yoffsets() {
     64         return (YOffset*)((char*)this + sizeof(RunHead));
     65     }
     66     const YOffset* yoffsets() const {
     67         return (const YOffset*)((const char*)this + sizeof(RunHead));
     68     }
     69     uint8_t* data() {
     70         return (uint8_t*)(this->yoffsets() + fRowCount);
     71     }
     72     const uint8_t* data() const {
     73         return (const uint8_t*)(this->yoffsets() + fRowCount);
     74     }
     75 
     76     static RunHead* Alloc(int rowCount, size_t dataSize) {
     77         size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize;
     78         RunHead* head = (RunHead*)sk_malloc_throw(size);
     79         head->fRefCnt = 1;
     80         head->fRowCount = rowCount;
     81         head->fDataSize = dataSize;
     82         return head;
     83     }
     84 
     85     static int ComputeRowSizeForWidth(int width) {
     86         // 2 bytes per segment, where each segment can store up to 255 for count
     87         int segments = 0;
     88         while (width > 0) {
     89             segments += 1;
     90             int n = SkMin32(width, 255);
     91             width -= n;
     92         }
     93         return segments * 2;    // each segment is row[0] + row[1] (n + alpha)
     94     }
     95 
     96     static RunHead* AllocRect(const SkIRect& bounds) {
     97         SkASSERT(!bounds.isEmpty());
     98         int width = bounds.width();
     99         size_t rowSize = ComputeRowSizeForWidth(width);
    100         RunHead* head = RunHead::Alloc(1, rowSize);
    101         YOffset* yoff = head->yoffsets();
    102         yoff->fY = bounds.height() - 1;
    103         yoff->fOffset = 0;
    104         uint8_t* row = head->data();
    105         while (width > 0) {
    106             int n = SkMin32(width, 255);
    107             row[0] = n;
    108             row[1] = 0xFF;
    109             width -= n;
    110             row += 2;
    111         }
    112         return head;
    113     }
    114 };
    115 
    116 class SkAAClip::Iter {
    117 public:
    118     Iter(const SkAAClip&);
    119 
    120     bool done() const { return fDone; }
    121     int top() const { return fTop; }
    122     int bottom() const { return fBottom; }
    123     const uint8_t* data() const { return fData; }
    124     void next();
    125 
    126 private:
    127     const YOffset* fCurrYOff;
    128     const YOffset* fStopYOff;
    129     const uint8_t* fData;
    130 
    131     int fTop, fBottom;
    132     bool fDone;
    133 };
    134 
    135 SkAAClip::Iter::Iter(const SkAAClip& clip) {
    136     if (clip.isEmpty()) {
    137         fDone = true;
    138         fTop = fBottom = clip.fBounds.fBottom;
    139         fData = nullptr;
    140         fCurrYOff = nullptr;
    141         fStopYOff = nullptr;
    142         return;
    143     }
    144 
    145     const RunHead* head = clip.fRunHead;
    146     fCurrYOff = head->yoffsets();
    147     fStopYOff = fCurrYOff + head->fRowCount;
    148     fData     = head->data() + fCurrYOff->fOffset;
    149 
    150     // setup first value
    151     fTop = clip.fBounds.fTop;
    152     fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1;
    153     fDone = false;
    154 }
    155 
    156 void SkAAClip::Iter::next() {
    157     if (!fDone) {
    158         const YOffset* prev = fCurrYOff;
    159         const YOffset* curr = prev + 1;
    160         SkASSERT(curr <= fStopYOff);
    161 
    162         fTop = fBottom;
    163         if (curr >= fStopYOff) {
    164             fDone = true;
    165             fBottom = kMaxInt32;
    166             fData = nullptr;
    167         } else {
    168             fBottom += curr->fY - prev->fY;
    169             fData += curr->fOffset - prev->fOffset;
    170             fCurrYOff = curr;
    171         }
    172     }
    173 }
    174 
    175 #ifdef SK_DEBUG
    176 // assert we're exactly width-wide, and then return the number of bytes used
    177 static size_t compute_row_length(const uint8_t row[], int width) {
    178     const uint8_t* origRow = row;
    179     while (width > 0) {
    180         int n = row[0];
    181         SkASSERT(n > 0);
    182         SkASSERT(n <= width);
    183         row += 2;
    184         width -= n;
    185     }
    186     SkASSERT(0 == width);
    187     return row - origRow;
    188 }
    189 
    190 void SkAAClip::validate() const {
    191     if (nullptr == fRunHead) {
    192         SkASSERT(fBounds.isEmpty());
    193         return;
    194     }
    195 
    196     const RunHead* head = fRunHead;
    197     SkASSERT(head->fRefCnt > 0);
    198     SkASSERT(head->fRowCount > 0);
    199 
    200     const YOffset* yoff = head->yoffsets();
    201     const YOffset* ystop = yoff + head->fRowCount;
    202     const int lastY = fBounds.height() - 1;
    203 
    204     // Y and offset must be monotonic
    205     int prevY = -1;
    206     int32_t prevOffset = -1;
    207     while (yoff < ystop) {
    208         SkASSERT(prevY < yoff->fY);
    209         SkASSERT(yoff->fY <= lastY);
    210         prevY = yoff->fY;
    211         SkASSERT(prevOffset < (int32_t)yoff->fOffset);
    212         prevOffset = yoff->fOffset;
    213         const uint8_t* row = head->data() + yoff->fOffset;
    214         size_t rowLength = compute_row_length(row, fBounds.width());
    215         SkASSERT(yoff->fOffset + rowLength <= head->fDataSize);
    216         yoff += 1;
    217     }
    218     // check the last entry;
    219     --yoff;
    220     SkASSERT(yoff->fY == lastY);
    221 }
    222 
    223 static void dump_one_row(const uint8_t* SK_RESTRICT row,
    224                          int width, int leading_num) {
    225     if (leading_num) {
    226         SkDebugf( "%03d ", leading_num );
    227     }
    228     while (width > 0) {
    229         int n = row[0];
    230         int val = row[1];
    231         char out = '.';
    232         if (val == 0xff) {
    233             out = '*';
    234         } else if (val > 0) {
    235             out = '+';
    236         }
    237         for (int i = 0 ; i < n ; i++) {
    238             SkDebugf( "%c", out );
    239         }
    240         row += 2;
    241         width -= n;
    242     }
    243     SkDebugf( "\n" );
    244 }
    245 
    246 void SkAAClip::debug(bool compress_y) const {
    247     Iter iter(*this);
    248     const int width = fBounds.width();
    249 
    250     int y = fBounds.fTop;
    251     while (!iter.done()) {
    252         if (compress_y) {
    253             dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1);
    254         } else {
    255             do {
    256                 dump_one_row(iter.data(), width, 0);
    257             } while (++y < iter.bottom());
    258         }
    259         iter.next();
    260     }
    261 }
    262 #endif
    263 
    264 ///////////////////////////////////////////////////////////////////////////////
    265 
    266 // Count the number of zeros on the left and right edges of the passed in
    267 // RLE row. If 'row' is all zeros return 'width' in both variables.
    268 static void count_left_right_zeros(const uint8_t* row, int width,
    269                                    int* leftZ, int* riteZ) {
    270     int zeros = 0;
    271     do {
    272         if (row[1]) {
    273             break;
    274         }
    275         int n = row[0];
    276         SkASSERT(n > 0);
    277         SkASSERT(n <= width);
    278         zeros += n;
    279         row += 2;
    280         width -= n;
    281     } while (width > 0);
    282     *leftZ = zeros;
    283 
    284     if (0 == width) {
    285         // this line is completely empty return 'width' in both variables
    286         *riteZ = *leftZ;
    287         return;
    288     }
    289 
    290     zeros = 0;
    291     while (width > 0) {
    292         int n = row[0];
    293         SkASSERT(n > 0);
    294         if (0 == row[1]) {
    295             zeros += n;
    296         } else {
    297             zeros = 0;
    298         }
    299         row += 2;
    300         width -= n;
    301     }
    302     *riteZ = zeros;
    303 }
    304 
    305 #ifdef SK_DEBUG
    306 static void test_count_left_right_zeros() {
    307     static bool gOnce;
    308     if (gOnce) {
    309         return;
    310     }
    311     gOnce = true;
    312 
    313     const uint8_t data0[] = {  0, 0,     10, 0xFF };
    314     const uint8_t data1[] = {  0, 0,     5, 0xFF, 2, 0, 3, 0xFF };
    315     const uint8_t data2[] = {  7, 0,     5, 0, 2, 0, 3, 0xFF };
    316     const uint8_t data3[] = {  0, 5,     5, 0xFF, 2, 0, 3, 0 };
    317     const uint8_t data4[] = {  2, 3,     2, 0, 5, 0xFF, 3, 0 };
    318     const uint8_t data5[] = { 10, 10,    10, 0 };
    319     const uint8_t data6[] = {  2, 2,     2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    320 
    321     const uint8_t* array[] = {
    322         data0, data1, data2, data3, data4, data5, data6
    323     };
    324 
    325     for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
    326         const uint8_t* data = array[i];
    327         const int expectedL = *data++;
    328         const int expectedR = *data++;
    329         int L = 12345, R = 12345;
    330         count_left_right_zeros(data, 10, &L, &R);
    331         SkASSERT(expectedL == L);
    332         SkASSERT(expectedR == R);
    333     }
    334 }
    335 #endif
    336 
    337 // modify row in place, trimming off (zeros) from the left and right sides.
    338 // return the number of bytes that were completely eliminated from the left
    339 static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) {
    340     int trim = 0;
    341     while (leftZ > 0) {
    342         SkASSERT(0 == row[1]);
    343         int n = row[0];
    344         SkASSERT(n > 0);
    345         SkASSERT(n <= width);
    346         width -= n;
    347         row += 2;
    348         if (n > leftZ) {
    349             row[-2] = n - leftZ;
    350             break;
    351         }
    352         trim += 2;
    353         leftZ -= n;
    354         SkASSERT(leftZ >= 0);
    355     }
    356 
    357     if (riteZ) {
    358         // walk row to the end, and then we'll back up to trim riteZ
    359         while (width > 0) {
    360             int n = row[0];
    361             SkASSERT(n <= width);
    362             width -= n;
    363             row += 2;
    364         }
    365         // now skip whole runs of zeros
    366         do {
    367             row -= 2;
    368             SkASSERT(0 == row[1]);
    369             int n = row[0];
    370             SkASSERT(n > 0);
    371             if (n > riteZ) {
    372                 row[0] = n - riteZ;
    373                 break;
    374             }
    375             riteZ -= n;
    376             SkASSERT(riteZ >= 0);
    377         } while (riteZ > 0);
    378     }
    379 
    380     return trim;
    381 }
    382 
    383 #ifdef SK_DEBUG
    384 // assert that this row is exactly this width
    385 static void assert_row_width(const uint8_t* row, int width) {
    386     while (width > 0) {
    387         int n = row[0];
    388         SkASSERT(n > 0);
    389         SkASSERT(n <= width);
    390         width -= n;
    391         row += 2;
    392     }
    393     SkASSERT(0 == width);
    394 }
    395 
    396 static void test_trim_row_left_right() {
    397     static bool gOnce;
    398     if (gOnce) {
    399         return;
    400     }
    401     gOnce = true;
    402 
    403     uint8_t data0[] = {  0, 0, 0,   10,    10, 0xFF };
    404     uint8_t data1[] = {  2, 0, 0,   10,    5, 0, 2, 0, 3, 0xFF };
    405     uint8_t data2[] = {  5, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
    406     uint8_t data3[] = {  6, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
    407     uint8_t data4[] = {  0, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    408     uint8_t data5[] = {  1, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    409     uint8_t data6[] = {  0, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    410     uint8_t data7[] = {  1, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    411     uint8_t data8[] = {  2, 2, 2,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
    412     uint8_t data9[] = {  5, 2, 4,   10,    2, 0, 2, 0, 2, 0, 2, 0xFF, 2, 0 };
    413     uint8_t data10[] ={  74, 0, 4, 150,    9, 0, 65, 0, 76, 0xFF };
    414 
    415     uint8_t* array[] = {
    416         data0, data1, data2, data3, data4,
    417         data5, data6, data7, data8, data9,
    418         data10
    419     };
    420 
    421     for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
    422         uint8_t* data = array[i];
    423         const int trimL = *data++;
    424         const int trimR = *data++;
    425         const int expectedSkip = *data++;
    426         const int origWidth = *data++;
    427         assert_row_width(data, origWidth);
    428         int skip = trim_row_left_right(data, origWidth, trimL, trimR);
    429         SkASSERT(expectedSkip == skip);
    430         int expectedWidth = origWidth - trimL - trimR;
    431         assert_row_width(data + skip, expectedWidth);
    432     }
    433 }
    434 #endif
    435 
    436 bool SkAAClip::trimLeftRight() {
    437     SkDEBUGCODE(test_trim_row_left_right();)
    438 
    439     if (this->isEmpty()) {
    440         return false;
    441     }
    442 
    443     AUTO_AACLIP_VALIDATE(*this);
    444 
    445     const int width = fBounds.width();
    446     RunHead* head = fRunHead;
    447     YOffset* yoff = head->yoffsets();
    448     YOffset* stop = yoff + head->fRowCount;
    449     uint8_t* base = head->data();
    450 
    451     // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum
    452     // number of zeros on the left and right of the clip. This information
    453     // can be used to shrink the bounding box.
    454     int leftZeros = width;
    455     int riteZeros = width;
    456     while (yoff < stop) {
    457         int L, R;
    458         count_left_right_zeros(base + yoff->fOffset, width, &L, &R);
    459         SkASSERT(L + R < width || (L == width && R == width));
    460         if (L < leftZeros) {
    461             leftZeros = L;
    462         }
    463         if (R < riteZeros) {
    464             riteZeros = R;
    465         }
    466         if (0 == (leftZeros | riteZeros)) {
    467             // no trimming to do
    468             return true;
    469         }
    470         yoff += 1;
    471     }
    472 
    473     SkASSERT(leftZeros || riteZeros);
    474     if (width == leftZeros) {
    475         SkASSERT(width == riteZeros);
    476         return this->setEmpty();
    477     }
    478 
    479     this->validate();
    480 
    481     fBounds.fLeft += leftZeros;
    482     fBounds.fRight -= riteZeros;
    483     SkASSERT(!fBounds.isEmpty());
    484 
    485     // For now we don't realloc the storage (for time), we just shrink in place
    486     // This means we don't have to do any memmoves either, since we can just
    487     // play tricks with the yoff->fOffset for each row
    488     yoff = head->yoffsets();
    489     while (yoff < stop) {
    490         uint8_t* row = base + yoff->fOffset;
    491         SkDEBUGCODE((void)compute_row_length(row, width);)
    492         yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros);
    493         SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);)
    494         yoff += 1;
    495     }
    496     return true;
    497 }
    498 
    499 static bool row_is_all_zeros(const uint8_t* row, int width) {
    500     SkASSERT(width > 0);
    501     do {
    502         if (row[1]) {
    503             return false;
    504         }
    505         int n = row[0];
    506         SkASSERT(n <= width);
    507         width -= n;
    508         row += 2;
    509     } while (width > 0);
    510     SkASSERT(0 == width);
    511     return true;
    512 }
    513 
    514 bool SkAAClip::trimTopBottom() {
    515     if (this->isEmpty()) {
    516         return false;
    517     }
    518 
    519     this->validate();
    520 
    521     const int width = fBounds.width();
    522     RunHead* head = fRunHead;
    523     YOffset* yoff = head->yoffsets();
    524     YOffset* stop = yoff + head->fRowCount;
    525     const uint8_t* base = head->data();
    526 
    527     //  Look to trim away empty rows from the top.
    528     //
    529     int skip = 0;
    530     while (yoff < stop) {
    531         const uint8_t* data = base + yoff->fOffset;
    532         if (!row_is_all_zeros(data, width)) {
    533             break;
    534         }
    535         skip += 1;
    536         yoff += 1;
    537     }
    538     SkASSERT(skip <= head->fRowCount);
    539     if (skip == head->fRowCount) {
    540         return this->setEmpty();
    541     }
    542     if (skip > 0) {
    543         // adjust fRowCount and fBounds.fTop, and slide all the data up
    544         // as we remove [skip] number of YOffset entries
    545         yoff = head->yoffsets();
    546         int dy = yoff[skip - 1].fY + 1;
    547         for (int i = skip; i < head->fRowCount; ++i) {
    548             SkASSERT(yoff[i].fY >= dy);
    549             yoff[i].fY -= dy;
    550         }
    551         YOffset* dst = head->yoffsets();
    552         size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize;
    553         memmove(dst, dst + skip, size - skip * sizeof(YOffset));
    554 
    555         fBounds.fTop += dy;
    556         SkASSERT(!fBounds.isEmpty());
    557         head->fRowCount -= skip;
    558         SkASSERT(head->fRowCount > 0);
    559 
    560         this->validate();
    561         // need to reset this after the memmove
    562         base = head->data();
    563     }
    564 
    565     //  Look to trim away empty rows from the bottom.
    566     //  We know that we have at least one non-zero row, so we can just walk
    567     //  backwards without checking for running past the start.
    568     //
    569     stop = yoff = head->yoffsets() + head->fRowCount;
    570     do {
    571         yoff -= 1;
    572     } while (row_is_all_zeros(base + yoff->fOffset, width));
    573     skip = SkToInt(stop - yoff - 1);
    574     SkASSERT(skip >= 0 && skip < head->fRowCount);
    575     if (skip > 0) {
    576         // removing from the bottom is easier than from the top, as we don't
    577         // have to adjust any of the Y values, we just have to trim the array
    578         memmove(stop - skip, stop, head->fDataSize);
    579 
    580         fBounds.fBottom = fBounds.fTop + yoff->fY + 1;
    581         SkASSERT(!fBounds.isEmpty());
    582         head->fRowCount -= skip;
    583         SkASSERT(head->fRowCount > 0);
    584     }
    585     this->validate();
    586 
    587     return true;
    588 }
    589 
    590 // can't validate before we're done, since trimming is part of the process of
    591 // making us valid after the Builder. Since we build from top to bottom, its
    592 // possible our fBounds.fBottom is bigger than our last scanline of data, so
    593 // we trim fBounds.fBottom back up.
    594 //
    595 // TODO: check for duplicates in X and Y to further compress our data
    596 //
    597 bool SkAAClip::trimBounds() {
    598     if (this->isEmpty()) {
    599         return false;
    600     }
    601 
    602     const RunHead* head = fRunHead;
    603     const YOffset* yoff = head->yoffsets();
    604 
    605     SkASSERT(head->fRowCount > 0);
    606     const YOffset& lastY = yoff[head->fRowCount - 1];
    607     SkASSERT(lastY.fY + 1 <= fBounds.height());
    608     fBounds.fBottom = fBounds.fTop + lastY.fY + 1;
    609     SkASSERT(lastY.fY + 1 == fBounds.height());
    610     SkASSERT(!fBounds.isEmpty());
    611 
    612     return this->trimTopBottom() && this->trimLeftRight();
    613 }
    614 
    615 ///////////////////////////////////////////////////////////////////////////////
    616 
    617 void SkAAClip::freeRuns() {
    618     if (fRunHead) {
    619         SkASSERT(fRunHead->fRefCnt >= 1);
    620         if (1 == sk_atomic_dec(&fRunHead->fRefCnt)) {
    621             sk_free(fRunHead);
    622         }
    623     }
    624 }
    625 
    626 SkAAClip::SkAAClip() {
    627     fBounds.setEmpty();
    628     fRunHead = nullptr;
    629 }
    630 
    631 SkAAClip::SkAAClip(const SkAAClip& src) {
    632     SkDEBUGCODE(fBounds.setEmpty();)    // need this for validate
    633     fRunHead = nullptr;
    634     *this = src;
    635 }
    636 
    637 SkAAClip::~SkAAClip() {
    638     this->freeRuns();
    639 }
    640 
    641 SkAAClip& SkAAClip::operator=(const SkAAClip& src) {
    642     AUTO_AACLIP_VALIDATE(*this);
    643     src.validate();
    644 
    645     if (this != &src) {
    646         this->freeRuns();
    647         fBounds = src.fBounds;
    648         fRunHead = src.fRunHead;
    649         if (fRunHead) {
    650             sk_atomic_inc(&fRunHead->fRefCnt);
    651         }
    652     }
    653     return *this;
    654 }
    655 
    656 bool operator==(const SkAAClip& a, const SkAAClip& b) {
    657     a.validate();
    658     b.validate();
    659 
    660     if (&a == &b) {
    661         return true;
    662     }
    663     if (a.fBounds != b.fBounds) {
    664         return false;
    665     }
    666 
    667     const SkAAClip::RunHead* ah = a.fRunHead;
    668     const SkAAClip::RunHead* bh = b.fRunHead;
    669 
    670     // this catches empties and rects being equal
    671     if (ah == bh) {
    672         return true;
    673     }
    674 
    675     // now we insist that both are complex (but different ptrs)
    676     if (!a.fRunHead || !b.fRunHead) {
    677         return false;
    678     }
    679 
    680     return  ah->fRowCount == bh->fRowCount &&
    681             ah->fDataSize == bh->fDataSize &&
    682             !memcmp(ah->data(), bh->data(), ah->fDataSize);
    683 }
    684 
    685 void SkAAClip::swap(SkAAClip& other) {
    686     AUTO_AACLIP_VALIDATE(*this);
    687     other.validate();
    688 
    689     SkTSwap(fBounds, other.fBounds);
    690     SkTSwap(fRunHead, other.fRunHead);
    691 }
    692 
    693 bool SkAAClip::set(const SkAAClip& src) {
    694     *this = src;
    695     return !this->isEmpty();
    696 }
    697 
    698 bool SkAAClip::setEmpty() {
    699     this->freeRuns();
    700     fBounds.setEmpty();
    701     fRunHead = nullptr;
    702     return false;
    703 }
    704 
    705 bool SkAAClip::setRect(const SkIRect& bounds) {
    706     if (bounds.isEmpty()) {
    707         return this->setEmpty();
    708     }
    709 
    710     AUTO_AACLIP_VALIDATE(*this);
    711 
    712 #if 0
    713     SkRect r;
    714     r.set(bounds);
    715     SkPath path;
    716     path.addRect(r);
    717     return this->setPath(path);
    718 #else
    719     this->freeRuns();
    720     fBounds = bounds;
    721     fRunHead = RunHead::AllocRect(bounds);
    722     SkASSERT(!this->isEmpty());
    723     return true;
    724 #endif
    725 }
    726 
    727 bool SkAAClip::isRect() const {
    728     if (this->isEmpty()) {
    729         return false;
    730     }
    731 
    732     const RunHead* head = fRunHead;
    733     if (head->fRowCount != 1) {
    734         return false;
    735     }
    736     const YOffset* yoff = head->yoffsets();
    737     if (yoff->fY != fBounds.fBottom - 1) {
    738         return false;
    739     }
    740 
    741     const uint8_t* row = head->data() + yoff->fOffset;
    742     int width = fBounds.width();
    743     do {
    744         if (row[1] != 0xFF) {
    745             return false;
    746         }
    747         int n = row[0];
    748         SkASSERT(n <= width);
    749         width -= n;
    750         row += 2;
    751     } while (width > 0);
    752     return true;
    753 }
    754 
    755 bool SkAAClip::setRect(const SkRect& r, bool doAA) {
    756     if (r.isEmpty()) {
    757         return this->setEmpty();
    758     }
    759 
    760     AUTO_AACLIP_VALIDATE(*this);
    761 
    762     // TODO: special case this
    763 
    764     SkPath path;
    765     path.addRect(r);
    766     return this->setPath(path, nullptr, doAA);
    767 }
    768 
    769 static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) {
    770     SkASSERT(count >= 0);
    771     while (count > 0) {
    772         int n = count;
    773         if (n > 255) {
    774             n = 255;
    775         }
    776         uint8_t* data = array.append(2);
    777         data[0] = n;
    778         data[1] = value;
    779         count -= n;
    780     }
    781 }
    782 
    783 bool SkAAClip::setRegion(const SkRegion& rgn) {
    784     if (rgn.isEmpty()) {
    785         return this->setEmpty();
    786     }
    787     if (rgn.isRect()) {
    788         return this->setRect(rgn.getBounds());
    789     }
    790 
    791 #if 0
    792     SkAAClip clip;
    793     SkRegion::Iterator iter(rgn);
    794     for (; !iter.done(); iter.next()) {
    795         clip.op(iter.rect(), SkRegion::kUnion_Op);
    796     }
    797     this->swap(clip);
    798     return !this->isEmpty();
    799 #else
    800     const SkIRect& bounds = rgn.getBounds();
    801     const int offsetX = bounds.fLeft;
    802     const int offsetY = bounds.fTop;
    803 
    804     SkTDArray<YOffset> yArray;
    805     SkTDArray<uint8_t> xArray;
    806 
    807     yArray.setReserve(SkMin32(bounds.height(), 1024));
    808     xArray.setReserve(SkMin32(bounds.width() * 128, 64 * 1024));
    809 
    810     SkRegion::Iterator iter(rgn);
    811     int prevRight = 0;
    812     int prevBot = 0;
    813     YOffset* currY = nullptr;
    814 
    815     for (; !iter.done(); iter.next()) {
    816         const SkIRect& r = iter.rect();
    817         SkASSERT(bounds.contains(r));
    818 
    819         int bot = r.fBottom - offsetY;
    820         SkASSERT(bot >= prevBot);
    821         if (bot > prevBot) {
    822             if (currY) {
    823                 // flush current row
    824                 append_run(xArray, 0, bounds.width() - prevRight);
    825             }
    826             // did we introduce an empty-gap from the prev row?
    827             int top = r.fTop - offsetY;
    828             if (top > prevBot) {
    829                 currY = yArray.append();
    830                 currY->fY = top - 1;
    831                 currY->fOffset = xArray.count();
    832                 append_run(xArray, 0, bounds.width());
    833             }
    834             // create a new record for this Y value
    835             currY = yArray.append();
    836             currY->fY = bot - 1;
    837             currY->fOffset = xArray.count();
    838             prevRight = 0;
    839             prevBot = bot;
    840         }
    841 
    842         int x = r.fLeft - offsetX;
    843         append_run(xArray, 0, x - prevRight);
    844 
    845         int w = r.fRight - r.fLeft;
    846         append_run(xArray, 0xFF, w);
    847         prevRight = x + w;
    848         SkASSERT(prevRight <= bounds.width());
    849     }
    850     // flush last row
    851     append_run(xArray, 0, bounds.width() - prevRight);
    852 
    853     // now pack everything into a RunHead
    854     RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes());
    855     memcpy(head->yoffsets(), yArray.begin(), yArray.bytes());
    856     memcpy(head->data(), xArray.begin(), xArray.bytes());
    857 
    858     this->setEmpty();
    859     fBounds = bounds;
    860     fRunHead = head;
    861     this->validate();
    862     return true;
    863 #endif
    864 }
    865 
    866 ///////////////////////////////////////////////////////////////////////////////
    867 
    868 const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const {
    869     SkASSERT(fRunHead);
    870 
    871     if (!y_in_rect(y, fBounds)) {
    872         return nullptr;
    873     }
    874     y -= fBounds.y();  // our yoffs values are relative to the top
    875 
    876     const YOffset* yoff = fRunHead->yoffsets();
    877     while (yoff->fY < y) {
    878         yoff += 1;
    879         SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount);
    880     }
    881 
    882     if (lastYForRow) {
    883         *lastYForRow = fBounds.y() + yoff->fY;
    884     }
    885     return fRunHead->data() + yoff->fOffset;
    886 }
    887 
    888 const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const {
    889     SkASSERT(x_in_rect(x, fBounds));
    890     x -= fBounds.x();
    891 
    892     // first skip up to X
    893     for (;;) {
    894         int n = data[0];
    895         if (x < n) {
    896             if (initialCount) {
    897                 *initialCount = n - x;
    898             }
    899             break;
    900         }
    901         data += 2;
    902         x -= n;
    903     }
    904     return data;
    905 }
    906 
    907 bool SkAAClip::quickContains(int left, int top, int right, int bottom) const {
    908     if (this->isEmpty()) {
    909         return false;
    910     }
    911     if (!fBounds.contains(left, top, right, bottom)) {
    912         return false;
    913     }
    914 #if 0
    915     if (this->isRect()) {
    916         return true;
    917     }
    918 #endif
    919 
    920     int lastY SK_INIT_TO_AVOID_WARNING;
    921     const uint8_t* row = this->findRow(top, &lastY);
    922     if (lastY < bottom) {
    923         return false;
    924     }
    925     // now just need to check in X
    926     int count;
    927     row = this->findX(row, left, &count);
    928 #if 0
    929     return count >= (right - left) && 0xFF == row[1];
    930 #else
    931     int rectWidth = right - left;
    932     while (0xFF == row[1]) {
    933         if (count >= rectWidth) {
    934             return true;
    935         }
    936         rectWidth -= count;
    937         row += 2;
    938         count = row[0];
    939     }
    940     return false;
    941 #endif
    942 }
    943 
    944 ///////////////////////////////////////////////////////////////////////////////
    945 
    946 class SkAAClip::Builder {
    947     SkIRect fBounds;
    948     struct Row {
    949         int fY;
    950         int fWidth;
    951         SkTDArray<uint8_t>* fData;
    952     };
    953     SkTDArray<Row>  fRows;
    954     Row* fCurrRow;
    955     int fPrevY;
    956     int fWidth;
    957     int fMinY;
    958 
    959 public:
    960     Builder(const SkIRect& bounds) : fBounds(bounds) {
    961         fPrevY = -1;
    962         fWidth = bounds.width();
    963         fCurrRow = nullptr;
    964         fMinY = bounds.fTop;
    965     }
    966 
    967     ~Builder() {
    968         Row* row = fRows.begin();
    969         Row* stop = fRows.end();
    970         while (row < stop) {
    971             delete row->fData;
    972             row += 1;
    973         }
    974     }
    975 
    976     const SkIRect& getBounds() const { return fBounds; }
    977 
    978     void addRun(int x, int y, U8CPU alpha, int count) {
    979         SkASSERT(count > 0);
    980         SkASSERT(fBounds.contains(x, y));
    981         SkASSERT(fBounds.contains(x + count - 1, y));
    982 
    983         x -= fBounds.left();
    984         y -= fBounds.top();
    985 
    986         Row* row = fCurrRow;
    987         if (y != fPrevY) {
    988             SkASSERT(y > fPrevY);
    989             fPrevY = y;
    990             row = this->flushRow(true);
    991             row->fY = y;
    992             row->fWidth = 0;
    993             SkASSERT(row->fData);
    994             SkASSERT(0 == row->fData->count());
    995             fCurrRow = row;
    996         }
    997 
    998         SkASSERT(row->fWidth <= x);
    999         SkASSERT(row->fWidth < fBounds.width());
   1000 
   1001         SkTDArray<uint8_t>& data = *row->fData;
   1002 
   1003         int gap = x - row->fWidth;
   1004         if (gap) {
   1005             AppendRun(data, 0, gap);
   1006             row->fWidth += gap;
   1007             SkASSERT(row->fWidth < fBounds.width());
   1008         }
   1009 
   1010         AppendRun(data, alpha, count);
   1011         row->fWidth += count;
   1012         SkASSERT(row->fWidth <= fBounds.width());
   1013     }
   1014 
   1015     void addColumn(int x, int y, U8CPU alpha, int height) {
   1016         SkASSERT(fBounds.contains(x, y + height - 1));
   1017 
   1018         this->addRun(x, y, alpha, 1);
   1019         this->flushRowH(fCurrRow);
   1020         y -= fBounds.fTop;
   1021         SkASSERT(y == fCurrRow->fY);
   1022         fCurrRow->fY = y + height - 1;
   1023     }
   1024 
   1025     void addRectRun(int x, int y, int width, int height) {
   1026         SkASSERT(fBounds.contains(x + width - 1, y + height - 1));
   1027         this->addRun(x, y, 0xFF, width);
   1028 
   1029         // we assum the rect must be all we'll see for these scanlines
   1030         // so we ensure our row goes all the way to our right
   1031         this->flushRowH(fCurrRow);
   1032 
   1033         y -= fBounds.fTop;
   1034         SkASSERT(y == fCurrRow->fY);
   1035         fCurrRow->fY = y + height - 1;
   1036     }
   1037 
   1038     void addAntiRectRun(int x, int y, int width, int height,
   1039                         SkAlpha leftAlpha, SkAlpha rightAlpha) {
   1040         SkASSERT(fBounds.contains(x + width - 1 +
   1041                  (leftAlpha > 0 ? 1 : 0) + (rightAlpha > 0 ? 1 : 0),
   1042                  y + height - 1));
   1043         SkASSERT(width >= 0);
   1044 
   1045         // Conceptually we're always adding 3 runs, but we should
   1046         // merge or omit them if possible.
   1047         if (leftAlpha == 0xFF) {
   1048             width++;
   1049         } else if (leftAlpha > 0) {
   1050           this->addRun(x++, y, leftAlpha, 1);
   1051         }
   1052         if (rightAlpha == 0xFF) {
   1053             width++;
   1054         }
   1055         if (width > 0) {
   1056             this->addRun(x, y, 0xFF, width);
   1057         }
   1058         if (rightAlpha > 0 && rightAlpha < 255) {
   1059             this->addRun(x + width, y, rightAlpha, 1);
   1060         }
   1061 
   1062         // we assume the rect must be all we'll see for these scanlines
   1063         // so we ensure our row goes all the way to our right
   1064         this->flushRowH(fCurrRow);
   1065 
   1066         y -= fBounds.fTop;
   1067         SkASSERT(y == fCurrRow->fY);
   1068         fCurrRow->fY = y + height - 1;
   1069     }
   1070 
   1071     bool finish(SkAAClip* target) {
   1072         this->flushRow(false);
   1073 
   1074         const Row* row = fRows.begin();
   1075         const Row* stop = fRows.end();
   1076 
   1077         size_t dataSize = 0;
   1078         while (row < stop) {
   1079             dataSize += row->fData->count();
   1080             row += 1;
   1081         }
   1082 
   1083         if (0 == dataSize) {
   1084             return target->setEmpty();
   1085         }
   1086 
   1087         SkASSERT(fMinY >= fBounds.fTop);
   1088         SkASSERT(fMinY < fBounds.fBottom);
   1089         int adjustY = fMinY - fBounds.fTop;
   1090         fBounds.fTop = fMinY;
   1091 
   1092         RunHead* head = RunHead::Alloc(fRows.count(), dataSize);
   1093         YOffset* yoffset = head->yoffsets();
   1094         uint8_t* data = head->data();
   1095         uint8_t* baseData = data;
   1096 
   1097         row = fRows.begin();
   1098         SkDEBUGCODE(int prevY = row->fY - 1;)
   1099         while (row < stop) {
   1100             SkASSERT(prevY < row->fY);  // must be monotonic
   1101             SkDEBUGCODE(prevY = row->fY);
   1102 
   1103             yoffset->fY = row->fY - adjustY;
   1104             yoffset->fOffset = SkToU32(data - baseData);
   1105             yoffset += 1;
   1106 
   1107             size_t n = row->fData->count();
   1108             memcpy(data, row->fData->begin(), n);
   1109 #ifdef SK_DEBUG
   1110             size_t bytesNeeded = compute_row_length(data, fBounds.width());
   1111             SkASSERT(bytesNeeded == n);
   1112 #endif
   1113             data += n;
   1114 
   1115             row += 1;
   1116         }
   1117 
   1118         target->freeRuns();
   1119         target->fBounds = fBounds;
   1120         target->fRunHead = head;
   1121         return target->trimBounds();
   1122     }
   1123 
   1124     void dump() {
   1125         this->validate();
   1126         int y;
   1127         for (y = 0; y < fRows.count(); ++y) {
   1128             const Row& row = fRows[y];
   1129             SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth);
   1130             const SkTDArray<uint8_t>& data = *row.fData;
   1131             int count = data.count();
   1132             SkASSERT(!(count & 1));
   1133             const uint8_t* ptr = data.begin();
   1134             for (int x = 0; x < count; x += 2) {
   1135                 SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]);
   1136                 ptr += 2;
   1137             }
   1138             SkDebugf("\n");
   1139         }
   1140     }
   1141 
   1142     void validate() {
   1143 #ifdef SK_DEBUG
   1144         if (false) { // avoid bit rot, suppress warning
   1145             test_count_left_right_zeros();
   1146         }
   1147         int prevY = -1;
   1148         for (int i = 0; i < fRows.count(); ++i) {
   1149             const Row& row = fRows[i];
   1150             SkASSERT(prevY < row.fY);
   1151             SkASSERT(fWidth == row.fWidth);
   1152             int count = row.fData->count();
   1153             const uint8_t* ptr = row.fData->begin();
   1154             SkASSERT(!(count & 1));
   1155             int w = 0;
   1156             for (int x = 0; x < count; x += 2) {
   1157                 int n = ptr[0];
   1158                 SkASSERT(n > 0);
   1159                 w += n;
   1160                 SkASSERT(w <= fWidth);
   1161                 ptr += 2;
   1162             }
   1163             SkASSERT(w == fWidth);
   1164             prevY = row.fY;
   1165         }
   1166 #endif
   1167     }
   1168 
   1169     // only called by BuilderBlitter
   1170     void setMinY(int y) {
   1171         fMinY = y;
   1172     }
   1173 
   1174 private:
   1175     void flushRowH(Row* row) {
   1176         // flush current row if needed
   1177         if (row->fWidth < fWidth) {
   1178             AppendRun(*row->fData, 0, fWidth - row->fWidth);
   1179             row->fWidth = fWidth;
   1180         }
   1181     }
   1182 
   1183     Row* flushRow(bool readyForAnother) {
   1184         Row* next = nullptr;
   1185         int count = fRows.count();
   1186         if (count > 0) {
   1187             this->flushRowH(&fRows[count - 1]);
   1188         }
   1189         if (count > 1) {
   1190             // are our last two runs the same?
   1191             Row* prev = &fRows[count - 2];
   1192             Row* curr = &fRows[count - 1];
   1193             SkASSERT(prev->fWidth == fWidth);
   1194             SkASSERT(curr->fWidth == fWidth);
   1195             if (*prev->fData == *curr->fData) {
   1196                 prev->fY = curr->fY;
   1197                 if (readyForAnother) {
   1198                     curr->fData->rewind();
   1199                     next = curr;
   1200                 } else {
   1201                     delete curr->fData;
   1202                     fRows.removeShuffle(count - 1);
   1203                 }
   1204             } else {
   1205                 if (readyForAnother) {
   1206                     next = fRows.append();
   1207                     next->fData = new SkTDArray<uint8_t>;
   1208                 }
   1209             }
   1210         } else {
   1211             if (readyForAnother) {
   1212                 next = fRows.append();
   1213                 next->fData = new SkTDArray<uint8_t>;
   1214             }
   1215         }
   1216         return next;
   1217     }
   1218 
   1219     static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) {
   1220         do {
   1221             int n = count;
   1222             if (n > 255) {
   1223                 n = 255;
   1224             }
   1225             uint8_t* ptr = data.append(2);
   1226             ptr[0] = n;
   1227             ptr[1] = alpha;
   1228             count -= n;
   1229         } while (count > 0);
   1230     }
   1231 };
   1232 
   1233 class SkAAClip::BuilderBlitter : public SkBlitter {
   1234     int fLastY;
   1235 
   1236     /*
   1237         If we see a gap of 1 or more empty scanlines while building in Y-order,
   1238         we inject an explicit empty scanline (alpha==0)
   1239 
   1240         See AAClipTest.cpp : test_path_with_hole()
   1241      */
   1242     void checkForYGap(int y) {
   1243         SkASSERT(y >= fLastY);
   1244         if (fLastY > -SK_MaxS32) {
   1245             int gap = y - fLastY;
   1246             if (gap > 1) {
   1247                 fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft);
   1248             }
   1249         }
   1250         fLastY = y;
   1251     }
   1252 
   1253 public:
   1254 
   1255     BuilderBlitter(Builder* builder) {
   1256         fBuilder = builder;
   1257         fLeft = builder->getBounds().fLeft;
   1258         fRight = builder->getBounds().fRight;
   1259         fMinY = SK_MaxS32;
   1260         fLastY = -SK_MaxS32;    // sentinel
   1261     }
   1262 
   1263     void finish() {
   1264         if (fMinY < SK_MaxS32) {
   1265             fBuilder->setMinY(fMinY);
   1266         }
   1267     }
   1268 
   1269     /**
   1270        Must evaluate clips in scan-line order, so don't want to allow blitV(),
   1271        but an AAClip can be clipped down to a single pixel wide, so we
   1272        must support it (given AntiRect semantics: minimum width is 2).
   1273        Instead we'll rely on the runtime asserts to guarantee Y monotonicity;
   1274        any failure cases that misses may have minor artifacts.
   1275     */
   1276     void blitV(int x, int y, int height, SkAlpha alpha) override {
   1277         this->recordMinY(y);
   1278         fBuilder->addColumn(x, y, alpha, height);
   1279         fLastY = y + height - 1;
   1280     }
   1281 
   1282     void blitRect(int x, int y, int width, int height) override {
   1283         this->recordMinY(y);
   1284         this->checkForYGap(y);
   1285         fBuilder->addRectRun(x, y, width, height);
   1286         fLastY = y + height - 1;
   1287     }
   1288 
   1289     virtual void blitAntiRect(int x, int y, int width, int height,
   1290                      SkAlpha leftAlpha, SkAlpha rightAlpha) override {
   1291         this->recordMinY(y);
   1292         this->checkForYGap(y);
   1293         fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha);
   1294         fLastY = y + height - 1;
   1295     }
   1296 
   1297     void blitMask(const SkMask&, const SkIRect& clip) override
   1298         { unexpected(); }
   1299 
   1300     const SkPixmap* justAnOpaqueColor(uint32_t*) override {
   1301         return nullptr;
   1302     }
   1303 
   1304     void blitH(int x, int y, int width) override {
   1305         this->recordMinY(y);
   1306         this->checkForYGap(y);
   1307         fBuilder->addRun(x, y, 0xFF, width);
   1308     }
   1309 
   1310     virtual void blitAntiH(int x, int y, const SkAlpha alpha[],
   1311                            const int16_t runs[]) override {
   1312         this->recordMinY(y);
   1313         this->checkForYGap(y);
   1314         for (;;) {
   1315             int count = *runs;
   1316             if (count <= 0) {
   1317                 return;
   1318             }
   1319 
   1320             // The supersampler's buffer can be the width of the device, so
   1321             // we may have to trim the run to our bounds. If so, we assert that
   1322             // the extra spans are always alpha==0
   1323             int localX = x;
   1324             int localCount = count;
   1325             if (x < fLeft) {
   1326                 SkASSERT(0 == *alpha);
   1327                 int gap = fLeft - x;
   1328                 SkASSERT(gap <= count);
   1329                 localX += gap;
   1330                 localCount -= gap;
   1331             }
   1332             int right = x + count;
   1333             if (right > fRight) {
   1334                 SkASSERT(0 == *alpha);
   1335                 localCount -= right - fRight;
   1336                 SkASSERT(localCount >= 0);
   1337             }
   1338 
   1339             if (localCount) {
   1340                 fBuilder->addRun(localX, y, *alpha, localCount);
   1341             }
   1342             // Next run
   1343             runs += count;
   1344             alpha += count;
   1345             x += count;
   1346         }
   1347     }
   1348 
   1349 private:
   1350     Builder* fBuilder;
   1351     int      fLeft; // cache of builder's bounds' left edge
   1352     int      fRight;
   1353     int      fMinY;
   1354 
   1355     /*
   1356      *  We track this, in case the scan converter skipped some number of
   1357      *  scanlines at the (relative to the bounds it was given). This allows
   1358      *  the builder, during its finish, to trip its bounds down to the "real"
   1359      *  top.
   1360      */
   1361     void recordMinY(int y) {
   1362         if (y < fMinY) {
   1363             fMinY = y;
   1364         }
   1365     }
   1366 
   1367     void unexpected() {
   1368         SkDebugf("---- did not expect to get called here");
   1369         sk_throw();
   1370     }
   1371 };
   1372 
   1373 bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) {
   1374     AUTO_AACLIP_VALIDATE(*this);
   1375 
   1376     if (clip && clip->isEmpty()) {
   1377         return this->setEmpty();
   1378     }
   1379 
   1380     SkIRect ibounds;
   1381     path.getBounds().roundOut(&ibounds);
   1382 
   1383     SkRegion tmpClip;
   1384     if (nullptr == clip) {
   1385         tmpClip.setRect(ibounds);
   1386         clip = &tmpClip;
   1387     }
   1388 
   1389     if (path.isInverseFillType()) {
   1390         ibounds = clip->getBounds();
   1391     } else {
   1392         if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) {
   1393             return this->setEmpty();
   1394         }
   1395     }
   1396 
   1397     Builder        builder(ibounds);
   1398     BuilderBlitter blitter(&builder);
   1399 
   1400     if (doAA) {
   1401         SkScan::AntiFillPath(path, *clip, &blitter, true);
   1402     } else {
   1403         SkScan::FillPath(path, *clip, &blitter);
   1404     }
   1405 
   1406     blitter.finish();
   1407     return builder.finish(this);
   1408 }
   1409 
   1410 ///////////////////////////////////////////////////////////////////////////////
   1411 
   1412 typedef void (*RowProc)(SkAAClip::Builder&, int bottom,
   1413                         const uint8_t* rowA, const SkIRect& rectA,
   1414                         const uint8_t* rowB, const SkIRect& rectB);
   1415 
   1416 typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB);
   1417 
   1418 static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) {
   1419     // Multiply
   1420     return SkMulDiv255Round(alphaA, alphaB);
   1421 }
   1422 
   1423 static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) {
   1424     // SrcOver
   1425     return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB);
   1426 }
   1427 
   1428 static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) {
   1429     // SrcOut
   1430     return SkMulDiv255Round(alphaA, 0xFF - alphaB);
   1431 }
   1432 
   1433 static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) {
   1434     // XOR
   1435     return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB);
   1436 }
   1437 
   1438 static AlphaProc find_alpha_proc(SkRegion::Op op) {
   1439     switch (op) {
   1440         case SkRegion::kIntersect_Op:
   1441             return sectAlphaProc;
   1442         case SkRegion::kDifference_Op:
   1443             return diffAlphaProc;
   1444         case SkRegion::kUnion_Op:
   1445             return unionAlphaProc;
   1446         case SkRegion::kXOR_Op:
   1447             return xorAlphaProc;
   1448         default:
   1449             SkDEBUGFAIL("unexpected region op");
   1450             return sectAlphaProc;
   1451     }
   1452 }
   1453 
   1454 class RowIter {
   1455 public:
   1456     RowIter(const uint8_t* row, const SkIRect& bounds) {
   1457         fRow = row;
   1458         fLeft = bounds.fLeft;
   1459         fBoundsRight = bounds.fRight;
   1460         if (row) {
   1461             fRight = bounds.fLeft + row[0];
   1462             SkASSERT(fRight <= fBoundsRight);
   1463             fAlpha = row[1];
   1464             fDone = false;
   1465         } else {
   1466             fDone = true;
   1467             fRight = kMaxInt32;
   1468             fAlpha = 0;
   1469         }
   1470     }
   1471 
   1472     bool done() const { return fDone; }
   1473     int left() const { return fLeft; }
   1474     int right() const { return fRight; }
   1475     U8CPU alpha() const { return fAlpha; }
   1476     void next() {
   1477         if (!fDone) {
   1478             fLeft = fRight;
   1479             if (fRight == fBoundsRight) {
   1480                 fDone = true;
   1481                 fRight = kMaxInt32;
   1482                 fAlpha = 0;
   1483             } else {
   1484                 fRow += 2;
   1485                 fRight += fRow[0];
   1486                 fAlpha = fRow[1];
   1487                 SkASSERT(fRight <= fBoundsRight);
   1488             }
   1489         }
   1490     }
   1491 
   1492 private:
   1493     const uint8_t*  fRow;
   1494     int             fLeft;
   1495     int             fRight;
   1496     int             fBoundsRight;
   1497     bool            fDone;
   1498     uint8_t         fAlpha;
   1499 };
   1500 
   1501 static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) {
   1502     if (rite == riteA) {
   1503         iter.next();
   1504         leftA = iter.left();
   1505         riteA = iter.right();
   1506     }
   1507 }
   1508 
   1509 #if 0 // UNUSED
   1510 static bool intersect(int& min, int& max, int boundsMin, int boundsMax) {
   1511     SkASSERT(min < max);
   1512     SkASSERT(boundsMin < boundsMax);
   1513     if (min >= boundsMax || max <= boundsMin) {
   1514         return false;
   1515     }
   1516     if (min < boundsMin) {
   1517         min = boundsMin;
   1518     }
   1519     if (max > boundsMax) {
   1520         max = boundsMax;
   1521     }
   1522     return true;
   1523 }
   1524 #endif
   1525 
   1526 static void operatorX(SkAAClip::Builder& builder, int lastY,
   1527                       RowIter& iterA, RowIter& iterB,
   1528                       AlphaProc proc, const SkIRect& bounds) {
   1529     int leftA = iterA.left();
   1530     int riteA = iterA.right();
   1531     int leftB = iterB.left();
   1532     int riteB = iterB.right();
   1533 
   1534     int prevRite = bounds.fLeft;
   1535 
   1536     do {
   1537         U8CPU alphaA = 0;
   1538         U8CPU alphaB = 0;
   1539         int left, rite;
   1540 
   1541         if (leftA < leftB) {
   1542             left = leftA;
   1543             alphaA = iterA.alpha();
   1544             if (riteA <= leftB) {
   1545                 rite = riteA;
   1546             } else {
   1547                 rite = leftA = leftB;
   1548             }
   1549         } else if (leftB < leftA) {
   1550             left = leftB;
   1551             alphaB = iterB.alpha();
   1552             if (riteB <= leftA) {
   1553                 rite = riteB;
   1554             } else {
   1555                 rite = leftB = leftA;
   1556             }
   1557         } else {
   1558             left = leftA;   // or leftB, since leftA == leftB
   1559             rite = leftA = leftB = SkMin32(riteA, riteB);
   1560             alphaA = iterA.alpha();
   1561             alphaB = iterB.alpha();
   1562         }
   1563 
   1564         if (left >= bounds.fRight) {
   1565             break;
   1566         }
   1567         if (rite > bounds.fRight) {
   1568             rite = bounds.fRight;
   1569         }
   1570 
   1571         if (left >= bounds.fLeft) {
   1572             SkASSERT(rite > left);
   1573             builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left);
   1574             prevRite = rite;
   1575         }
   1576 
   1577         adjust_row(iterA, leftA, riteA, rite);
   1578         adjust_row(iterB, leftB, riteB, rite);
   1579     } while (!iterA.done() || !iterB.done());
   1580 
   1581     if (prevRite < bounds.fRight) {
   1582         builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite);
   1583     }
   1584 }
   1585 
   1586 static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) {
   1587     if (bot == botA) {
   1588         iter.next();
   1589         topA = botA;
   1590         SkASSERT(botA == iter.top());
   1591         botA = iter.bottom();
   1592     }
   1593 }
   1594 
   1595 static void operateY(SkAAClip::Builder& builder, const SkAAClip& A,
   1596                      const SkAAClip& B, SkRegion::Op op) {
   1597     AlphaProc proc = find_alpha_proc(op);
   1598     const SkIRect& bounds = builder.getBounds();
   1599 
   1600     SkAAClip::Iter iterA(A);
   1601     SkAAClip::Iter iterB(B);
   1602 
   1603     SkASSERT(!iterA.done());
   1604     int topA = iterA.top();
   1605     int botA = iterA.bottom();
   1606     SkASSERT(!iterB.done());
   1607     int topB = iterB.top();
   1608     int botB = iterB.bottom();
   1609 
   1610     do {
   1611         const uint8_t* rowA = nullptr;
   1612         const uint8_t* rowB = nullptr;
   1613         int top, bot;
   1614 
   1615         if (topA < topB) {
   1616             top = topA;
   1617             rowA = iterA.data();
   1618             if (botA <= topB) {
   1619                 bot = botA;
   1620             } else {
   1621                 bot = topA = topB;
   1622             }
   1623 
   1624         } else if (topB < topA) {
   1625             top = topB;
   1626             rowB = iterB.data();
   1627             if (botB <= topA) {
   1628                 bot = botB;
   1629             } else {
   1630                 bot = topB = topA;
   1631             }
   1632         } else {
   1633             top = topA;   // or topB, since topA == topB
   1634             bot = topA = topB = SkMin32(botA, botB);
   1635             rowA = iterA.data();
   1636             rowB = iterB.data();
   1637         }
   1638 
   1639         if (top >= bounds.fBottom) {
   1640             break;
   1641         }
   1642 
   1643         if (bot > bounds.fBottom) {
   1644             bot = bounds.fBottom;
   1645         }
   1646         SkASSERT(top < bot);
   1647 
   1648         if (!rowA && !rowB) {
   1649             builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width());
   1650         } else if (top >= bounds.fTop) {
   1651             SkASSERT(bot <= bounds.fBottom);
   1652             RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds);
   1653             RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds);
   1654             operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds);
   1655         }
   1656 
   1657         adjust_iter(iterA, topA, botA, bot);
   1658         adjust_iter(iterB, topB, botB, bot);
   1659     } while (!iterA.done() || !iterB.done());
   1660 }
   1661 
   1662 bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig,
   1663                   SkRegion::Op op) {
   1664     AUTO_AACLIP_VALIDATE(*this);
   1665 
   1666     if (SkRegion::kReplace_Op == op) {
   1667         return this->set(clipBOrig);
   1668     }
   1669 
   1670     const SkAAClip* clipA = &clipAOrig;
   1671     const SkAAClip* clipB = &clipBOrig;
   1672 
   1673     if (SkRegion::kReverseDifference_Op == op) {
   1674         SkTSwap(clipA, clipB);
   1675         op = SkRegion::kDifference_Op;
   1676     }
   1677 
   1678     bool a_empty = clipA->isEmpty();
   1679     bool b_empty = clipB->isEmpty();
   1680 
   1681     SkIRect bounds;
   1682     switch (op) {
   1683         case SkRegion::kDifference_Op:
   1684             if (a_empty) {
   1685                 return this->setEmpty();
   1686             }
   1687             if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) {
   1688                 return this->set(*clipA);
   1689             }
   1690             bounds = clipA->fBounds;
   1691             break;
   1692 
   1693         case SkRegion::kIntersect_Op:
   1694             if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds,
   1695                                                          clipB->fBounds)) {
   1696                 return this->setEmpty();
   1697             }
   1698             break;
   1699 
   1700         case SkRegion::kUnion_Op:
   1701         case SkRegion::kXOR_Op:
   1702             if (a_empty) {
   1703                 return this->set(*clipB);
   1704             }
   1705             if (b_empty) {
   1706                 return this->set(*clipA);
   1707             }
   1708             bounds = clipA->fBounds;
   1709             bounds.join(clipB->fBounds);
   1710             break;
   1711 
   1712         default:
   1713             SkDEBUGFAIL("unknown region op");
   1714             return !this->isEmpty();
   1715     }
   1716 
   1717     SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
   1718     SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
   1719 
   1720     Builder builder(bounds);
   1721     operateY(builder, *clipA, *clipB, op);
   1722 
   1723     return builder.finish(this);
   1724 }
   1725 
   1726 /*
   1727  *  It can be expensive to build a local aaclip before applying the op, so
   1728  *  we first see if we can restrict the bounds of new rect to our current
   1729  *  bounds, or note that the new rect subsumes our current clip.
   1730  */
   1731 
   1732 bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) {
   1733     SkIRect        rStorage;
   1734     const SkIRect* r = &rOrig;
   1735 
   1736     switch (op) {
   1737         case SkRegion::kIntersect_Op:
   1738             if (!rStorage.intersect(rOrig, fBounds)) {
   1739                 // no overlap, so we're empty
   1740                 return this->setEmpty();
   1741             }
   1742             if (rStorage == fBounds) {
   1743                 // we were wholly inside the rect, no change
   1744                 return !this->isEmpty();
   1745             }
   1746             if (this->quickContains(rStorage)) {
   1747                 // the intersection is wholly inside us, we're a rect
   1748                 return this->setRect(rStorage);
   1749             }
   1750             r = &rStorage;   // use the intersected bounds
   1751             break;
   1752         case SkRegion::kDifference_Op:
   1753             break;
   1754         case SkRegion::kUnion_Op:
   1755             if (rOrig.contains(fBounds)) {
   1756                 return this->setRect(rOrig);
   1757             }
   1758             break;
   1759         default:
   1760             break;
   1761     }
   1762 
   1763     SkAAClip clip;
   1764     clip.setRect(*r);
   1765     return this->op(*this, clip, op);
   1766 }
   1767 
   1768 bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) {
   1769     SkRect        rStorage, boundsStorage;
   1770     const SkRect* r = &rOrig;
   1771 
   1772     boundsStorage.set(fBounds);
   1773     switch (op) {
   1774         case SkRegion::kIntersect_Op:
   1775         case SkRegion::kDifference_Op:
   1776             if (!rStorage.intersect(rOrig, boundsStorage)) {
   1777                 if (SkRegion::kIntersect_Op == op) {
   1778                     return this->setEmpty();
   1779                 } else {    // kDifference
   1780                     return !this->isEmpty();
   1781                 }
   1782             }
   1783             r = &rStorage;   // use the intersected bounds
   1784             break;
   1785         case SkRegion::kUnion_Op:
   1786             if (rOrig.contains(boundsStorage)) {
   1787                 return this->setRect(rOrig);
   1788             }
   1789             break;
   1790         default:
   1791             break;
   1792     }
   1793 
   1794     SkAAClip clip;
   1795     clip.setRect(*r, doAA);
   1796     return this->op(*this, clip, op);
   1797 }
   1798 
   1799 bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) {
   1800     return this->op(*this, clip, op);
   1801 }
   1802 
   1803 ///////////////////////////////////////////////////////////////////////////////
   1804 
   1805 bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const {
   1806     if (nullptr == dst) {
   1807         return !this->isEmpty();
   1808     }
   1809 
   1810     if (this->isEmpty()) {
   1811         return dst->setEmpty();
   1812     }
   1813 
   1814     if (this != dst) {
   1815         sk_atomic_inc(&fRunHead->fRefCnt);
   1816         dst->freeRuns();
   1817         dst->fRunHead = fRunHead;
   1818         dst->fBounds = fBounds;
   1819     }
   1820     dst->fBounds.offset(dx, dy);
   1821     return true;
   1822 }
   1823 
   1824 static void expand_row_to_mask(uint8_t* SK_RESTRICT mask,
   1825                                const uint8_t* SK_RESTRICT row,
   1826                                int width) {
   1827     while (width > 0) {
   1828         int n = row[0];
   1829         SkASSERT(width >= n);
   1830         memset(mask, row[1], n);
   1831         mask += n;
   1832         row += 2;
   1833         width -= n;
   1834     }
   1835     SkASSERT(0 == width);
   1836 }
   1837 
   1838 void SkAAClip::copyToMask(SkMask* mask) const {
   1839     mask->fFormat = SkMask::kA8_Format;
   1840     if (this->isEmpty()) {
   1841         mask->fBounds.setEmpty();
   1842         mask->fImage = nullptr;
   1843         mask->fRowBytes = 0;
   1844         return;
   1845     }
   1846 
   1847     mask->fBounds = fBounds;
   1848     mask->fRowBytes = fBounds.width();
   1849     size_t size = mask->computeImageSize();
   1850     mask->fImage = SkMask::AllocImage(size);
   1851 
   1852     Iter iter(*this);
   1853     uint8_t* dst = mask->fImage;
   1854     const int width = fBounds.width();
   1855 
   1856     int y = fBounds.fTop;
   1857     while (!iter.done()) {
   1858         do {
   1859             expand_row_to_mask(dst, iter.data(), width);
   1860             dst += mask->fRowBytes;
   1861         } while (++y < iter.bottom());
   1862         iter.next();
   1863     }
   1864 }
   1865 
   1866 ///////////////////////////////////////////////////////////////////////////////
   1867 ///////////////////////////////////////////////////////////////////////////////
   1868 
   1869 static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width,
   1870                          int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) {
   1871     // we don't read our initial n from data, since the caller may have had to
   1872     // clip it, hence the initialCount parameter.
   1873     int n = initialCount;
   1874     for (;;) {
   1875         if (n > width) {
   1876             n = width;
   1877         }
   1878         SkASSERT(n > 0);
   1879         runs[0] = n;
   1880         runs += n;
   1881 
   1882         aa[0] = data[1];
   1883         aa += n;
   1884 
   1885         data += 2;
   1886         width -= n;
   1887         if (0 == width) {
   1888             break;
   1889         }
   1890         // load the next count
   1891         n = data[0];
   1892     }
   1893     runs[0] = 0;    // sentinel
   1894 }
   1895 
   1896 SkAAClipBlitter::~SkAAClipBlitter() {
   1897     sk_free(fScanlineScratch);
   1898 }
   1899 
   1900 void SkAAClipBlitter::ensureRunsAndAA() {
   1901     if (nullptr == fScanlineScratch) {
   1902         // add 1 so we can store the terminating run count of 0
   1903         int count = fAAClipBounds.width() + 1;
   1904         // we use this either for fRuns + fAA, or a scaline of a mask
   1905         // which may be as deep as 32bits
   1906         fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor));
   1907         fRuns = (int16_t*)fScanlineScratch;
   1908         fAA = (SkAlpha*)(fRuns + count);
   1909     }
   1910 }
   1911 
   1912 void SkAAClipBlitter::blitH(int x, int y, int width) {
   1913     SkASSERT(width > 0);
   1914     SkASSERT(fAAClipBounds.contains(x, y));
   1915     SkASSERT(fAAClipBounds.contains(x + width  - 1, y));
   1916 
   1917     const uint8_t* row = fAAClip->findRow(y);
   1918     int initialCount;
   1919     row = fAAClip->findX(row, x, &initialCount);
   1920 
   1921     if (initialCount >= width) {
   1922         SkAlpha alpha = row[1];
   1923         if (0 == alpha) {
   1924             return;
   1925         }
   1926         if (0xFF == alpha) {
   1927             fBlitter->blitH(x, y, width);
   1928             return;
   1929         }
   1930     }
   1931 
   1932     this->ensureRunsAndAA();
   1933     expandToRuns(row, initialCount, width, fRuns, fAA);
   1934 
   1935     fBlitter->blitAntiH(x, y, fAA, fRuns);
   1936 }
   1937 
   1938 static void merge(const uint8_t* SK_RESTRICT row, int rowN,
   1939                   const SkAlpha* SK_RESTRICT srcAA,
   1940                   const int16_t* SK_RESTRICT srcRuns,
   1941                   SkAlpha* SK_RESTRICT dstAA,
   1942                   int16_t* SK_RESTRICT dstRuns,
   1943                   int width) {
   1944     SkDEBUGCODE(int accumulated = 0;)
   1945     int srcN = srcRuns[0];
   1946     // do we need this check?
   1947     if (0 == srcN) {
   1948         return;
   1949     }
   1950 
   1951     for (;;) {
   1952         SkASSERT(rowN > 0);
   1953         SkASSERT(srcN > 0);
   1954 
   1955         unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]);
   1956         int minN = SkMin32(srcN, rowN);
   1957         dstRuns[0] = minN;
   1958         dstRuns += minN;
   1959         dstAA[0] = newAlpha;
   1960         dstAA += minN;
   1961 
   1962         if (0 == (srcN -= minN)) {
   1963             srcN = srcRuns[0];  // refresh
   1964             srcRuns += srcN;
   1965             srcAA += srcN;
   1966             srcN = srcRuns[0];  // reload
   1967             if (0 == srcN) {
   1968                 break;
   1969             }
   1970         }
   1971         if (0 == (rowN -= minN)) {
   1972             row += 2;
   1973             rowN = row[0];  // reload
   1974         }
   1975 
   1976         SkDEBUGCODE(accumulated += minN;)
   1977         SkASSERT(accumulated <= width);
   1978     }
   1979     dstRuns[0] = 0;
   1980 }
   1981 
   1982 void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
   1983                                 const int16_t runs[]) {
   1984 
   1985     const uint8_t* row = fAAClip->findRow(y);
   1986     int initialCount;
   1987     row = fAAClip->findX(row, x, &initialCount);
   1988 
   1989     this->ensureRunsAndAA();
   1990 
   1991     merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width());
   1992     fBlitter->blitAntiH(x, y, fAA, fRuns);
   1993 }
   1994 
   1995 void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
   1996     if (fAAClip->quickContains(x, y, x + 1, y + height)) {
   1997         fBlitter->blitV(x, y, height, alpha);
   1998         return;
   1999     }
   2000 
   2001     for (;;) {
   2002         int lastY SK_INIT_TO_AVOID_WARNING;
   2003         const uint8_t* row = fAAClip->findRow(y, &lastY);
   2004         int dy = lastY - y + 1;
   2005         if (dy > height) {
   2006             dy = height;
   2007         }
   2008         height -= dy;
   2009 
   2010         row = fAAClip->findX(row, x);
   2011         SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]);
   2012         if (newAlpha) {
   2013             fBlitter->blitV(x, y, dy, newAlpha);
   2014         }
   2015         SkASSERT(height >= 0);
   2016         if (height <= 0) {
   2017             break;
   2018         }
   2019         y = lastY + 1;
   2020     }
   2021 }
   2022 
   2023 void SkAAClipBlitter::blitRect(int x, int y, int width, int height) {
   2024     if (fAAClip->quickContains(x, y, x + width, y + height)) {
   2025         fBlitter->blitRect(x, y, width, height);
   2026         return;
   2027     }
   2028 
   2029     while (--height >= 0) {
   2030         this->blitH(x, y, width);
   2031         y += 1;
   2032     }
   2033 }
   2034 
   2035 typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row,
   2036                             int initialRowCount, void* dst);
   2037 
   2038 static void small_memcpy(void* dst, const void* src, size_t n) {
   2039     memcpy(dst, src, n);
   2040 }
   2041 
   2042 static void small_bzero(void* dst, size_t n) {
   2043     sk_bzero(dst, n);
   2044 }
   2045 
   2046 static inline uint8_t mergeOne(uint8_t value, unsigned alpha) {
   2047     return SkMulDiv255Round(value, alpha);
   2048 }
   2049 
   2050 static inline uint16_t mergeOne(uint16_t value, unsigned alpha) {
   2051     unsigned r = SkGetPackedR16(value);
   2052     unsigned g = SkGetPackedG16(value);
   2053     unsigned b = SkGetPackedB16(value);
   2054     return SkPackRGB16(SkMulDiv255Round(r, alpha),
   2055                        SkMulDiv255Round(g, alpha),
   2056                        SkMulDiv255Round(b, alpha));
   2057 }
   2058 
   2059 template <typename T>
   2060 void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) {
   2061     const T* SK_RESTRICT src = static_cast<const T*>(inSrc);
   2062     T* SK_RESTRICT       dst = static_cast<T*>(inDst);
   2063     for (;;) {
   2064         SkASSERT(rowN > 0);
   2065         SkASSERT(srcN > 0);
   2066 
   2067         int n = SkMin32(rowN, srcN);
   2068         unsigned rowA = row[1];
   2069         if (0xFF == rowA) {
   2070             small_memcpy(dst, src, n * sizeof(T));
   2071         } else if (0 == rowA) {
   2072             small_bzero(dst, n * sizeof(T));
   2073         } else {
   2074             for (int i = 0; i < n; ++i) {
   2075                 dst[i] = mergeOne(src[i], rowA);
   2076             }
   2077         }
   2078 
   2079         if (0 == (srcN -= n)) {
   2080             break;
   2081         }
   2082 
   2083         src += n;
   2084         dst += n;
   2085 
   2086         SkASSERT(rowN == n);
   2087         row += 2;
   2088         rowN = row[0];
   2089     }
   2090 }
   2091 
   2092 static MergeAAProc find_merge_aa_proc(SkMask::Format format) {
   2093     switch (format) {
   2094         case SkMask::kBW_Format:
   2095             SkDEBUGFAIL("unsupported");
   2096             return nullptr;
   2097         case SkMask::kA8_Format:
   2098         case SkMask::k3D_Format:
   2099             return mergeT<uint8_t> ;
   2100         case SkMask::kLCD16_Format:
   2101             return mergeT<uint16_t>;
   2102         default:
   2103             SkDEBUGFAIL("unsupported");
   2104             return nullptr;
   2105     }
   2106 }
   2107 
   2108 static U8CPU bit2byte(int bitInAByte) {
   2109     SkASSERT(bitInAByte <= 0xFF);
   2110     // negation turns any non-zero into 0xFFFFFF??, so we just shift down
   2111     // some value >= 8 to get a full FF value
   2112     return -bitInAByte >> 8;
   2113 }
   2114 
   2115 static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) {
   2116     SkASSERT(SkMask::kBW_Format == srcMask.fFormat);
   2117     SkASSERT(SkMask::kA8_Format == dstMask->fFormat);
   2118 
   2119     const int width = srcMask.fBounds.width();
   2120     const int height = srcMask.fBounds.height();
   2121 
   2122     const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage;
   2123     const size_t srcRB = srcMask.fRowBytes;
   2124     uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage;
   2125     const size_t dstRB = dstMask->fRowBytes;
   2126 
   2127     const int wholeBytes = width >> 3;
   2128     const int leftOverBits = width & 7;
   2129 
   2130     for (int y = 0; y < height; ++y) {
   2131         uint8_t* SK_RESTRICT d = dst;
   2132         for (int i = 0; i < wholeBytes; ++i) {
   2133             int srcByte = src[i];
   2134             d[0] = bit2byte(srcByte & (1 << 7));
   2135             d[1] = bit2byte(srcByte & (1 << 6));
   2136             d[2] = bit2byte(srcByte & (1 << 5));
   2137             d[3] = bit2byte(srcByte & (1 << 4));
   2138             d[4] = bit2byte(srcByte & (1 << 3));
   2139             d[5] = bit2byte(srcByte & (1 << 2));
   2140             d[6] = bit2byte(srcByte & (1 << 1));
   2141             d[7] = bit2byte(srcByte & (1 << 0));
   2142             d += 8;
   2143         }
   2144         if (leftOverBits) {
   2145             int srcByte = src[wholeBytes];
   2146             for (int x = 0; x < leftOverBits; ++x) {
   2147                 *d++ = bit2byte(srcByte & 0x80);
   2148                 srcByte <<= 1;
   2149             }
   2150         }
   2151         src += srcRB;
   2152         dst += dstRB;
   2153     }
   2154 }
   2155 
   2156 void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) {
   2157     SkASSERT(fAAClip->getBounds().contains(clip));
   2158 
   2159     if (fAAClip->quickContains(clip)) {
   2160         fBlitter->blitMask(origMask, clip);
   2161         return;
   2162     }
   2163 
   2164     const SkMask* mask = &origMask;
   2165 
   2166     // if we're BW, we need to upscale to A8 (ugh)
   2167     SkMask  grayMask;
   2168     if (SkMask::kBW_Format == origMask.fFormat) {
   2169         grayMask.fFormat = SkMask::kA8_Format;
   2170         grayMask.fBounds = origMask.fBounds;
   2171         grayMask.fRowBytes = origMask.fBounds.width();
   2172         size_t size = grayMask.computeImageSize();
   2173         grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size,
   2174                                                SkAutoMalloc::kReuse_OnShrink);
   2175 
   2176         upscaleBW2A8(&grayMask, origMask);
   2177         mask = &grayMask;
   2178     }
   2179 
   2180     this->ensureRunsAndAA();
   2181 
   2182     // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D
   2183     // data into a temp block to support it better (ugh)
   2184 
   2185     const void* src = mask->getAddr(clip.fLeft, clip.fTop);
   2186     const size_t srcRB = mask->fRowBytes;
   2187     const int width = clip.width();
   2188     MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat);
   2189 
   2190     SkMask rowMask;
   2191     rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat;
   2192     rowMask.fBounds.fLeft = clip.fLeft;
   2193     rowMask.fBounds.fRight = clip.fRight;
   2194     rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1
   2195     rowMask.fImage = (uint8_t*)fScanlineScratch;
   2196 
   2197     int y = clip.fTop;
   2198     const int stopY = y + clip.height();
   2199 
   2200     do {
   2201         int localStopY SK_INIT_TO_AVOID_WARNING;
   2202         const uint8_t* row = fAAClip->findRow(y, &localStopY);
   2203         // findRow returns last Y, not stop, so we add 1
   2204         localStopY = SkMin32(localStopY + 1, stopY);
   2205 
   2206         int initialCount;
   2207         row = fAAClip->findX(row, clip.fLeft, &initialCount);
   2208         do {
   2209             mergeProc(src, width, row, initialCount, rowMask.fImage);
   2210             rowMask.fBounds.fTop = y;
   2211             rowMask.fBounds.fBottom = y + 1;
   2212             fBlitter->blitMask(rowMask, rowMask.fBounds);
   2213             src = (const void*)((const char*)src + srcRB);
   2214         } while (++y < localStopY);
   2215     } while (y < stopY);
   2216 }
   2217 
   2218 const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) {
   2219     return nullptr;
   2220 }
   2221