Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkEdge.h"
     11 #include "SkFDot6.h"
     12 #include "SkMath.h"
     13 
     14 /*
     15     In setLine, setQuadratic, setCubic, the first thing we do is to convert
     16     the points into FDot6. This is modulated by the shift parameter, which
     17     will either be 0, or something like 2 for antialiasing.
     18 
     19     In the float case, we want to turn the float into .6 by saying pt * 64,
     20     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
     21 
     22     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
     23     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
     24 */
     25 
     26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
     27     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
     28     // away data in value, so just perform a modify up-shift
     29     return SkLeftShift(value, 16 - 6 - 1);
     30 }
     31 
     32 /////////////////////////////////////////////////////////////////////////
     33 
     34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
     35                     int shift) {
     36     SkFDot6 x0, y0, x1, y1;
     37 
     38     {
     39 #ifdef SK_RASTERIZE_EVEN_ROUNDING
     40         x0 = SkScalarRoundToFDot6(p0.fX, shift);
     41         y0 = SkScalarRoundToFDot6(p0.fY, shift);
     42         x1 = SkScalarRoundToFDot6(p1.fX, shift);
     43         y1 = SkScalarRoundToFDot6(p1.fY, shift);
     44 #else
     45         float scale = float(1 << (shift + 6));
     46         x0 = int(p0.fX * scale);
     47         y0 = int(p0.fY * scale);
     48         x1 = int(p1.fX * scale);
     49         y1 = int(p1.fY * scale);
     50 #endif
     51     }
     52 
     53     int winding = 1;
     54 
     55     if (y0 > y1) {
     56         SkTSwap(x0, x1);
     57         SkTSwap(y0, y1);
     58         winding = -1;
     59     }
     60 
     61     int top = SkFDot6Round(y0);
     62     int bot = SkFDot6Round(y1);
     63 
     64     // are we a zero-height line?
     65     if (top == bot) {
     66         return 0;
     67     }
     68     // are we completely above or below the clip?
     69     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
     70         return 0;
     71     }
     72 
     73     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
     74     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
     75 
     76     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
     77     fDX         = slope;
     78     fFirstY     = top;
     79     fLastY      = bot - 1;
     80     fCurveCount = 0;
     81     fWinding    = SkToS8(winding);
     82     fCurveShift = 0;
     83 
     84     if (clip) {
     85         this->chopLineWithClip(*clip);
     86     }
     87     return 1;
     88 }
     89 
     90 // called from a curve subclass
     91 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
     92 {
     93     SkASSERT(fWinding == 1 || fWinding == -1);
     94     SkASSERT(fCurveCount != 0);
     95 //    SkASSERT(fCurveShift != 0);
     96 
     97     y0 >>= 10;
     98     y1 >>= 10;
     99 
    100     SkASSERT(y0 <= y1);
    101 
    102     int top = SkFDot6Round(y0);
    103     int bot = SkFDot6Round(y1);
    104 
    105 //  SkASSERT(top >= fFirstY);
    106 
    107     // are we a zero-height line?
    108     if (top == bot)
    109         return 0;
    110 
    111     x0 >>= 10;
    112     x1 >>= 10;
    113 
    114     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    115     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
    116 
    117     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    118     fDX         = slope;
    119     fFirstY     = top;
    120     fLastY      = bot - 1;
    121 
    122     return 1;
    123 }
    124 
    125 void SkEdge::chopLineWithClip(const SkIRect& clip)
    126 {
    127     int top = fFirstY;
    128 
    129     SkASSERT(top < clip.fBottom);
    130 
    131     // clip the line to the top
    132     if (top < clip.fTop)
    133     {
    134         SkASSERT(fLastY >= clip.fTop);
    135         fX += fDX * (clip.fTop - top);
    136         fFirstY = clip.fTop;
    137     }
    138 }
    139 
    140 ///////////////////////////////////////////////////////////////////////////////
    141 
    142 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    143     Note that this limits the number of lines we use to approximate a curve.
    144     If we need to increase this, we need to store fCurveCount in something
    145     larger than int8_t.
    146 */
    147 #define MAX_COEFF_SHIFT     6
    148 
    149 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
    150 {
    151     dx = SkAbs32(dx);
    152     dy = SkAbs32(dy);
    153     // return max + min/2
    154     if (dx > dy)
    155         dx += dy >> 1;
    156     else
    157         dx = dy + (dx >> 1);
    158     return dx;
    159 }
    160 
    161 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
    162 {
    163     // cheap calc of distance from center of p0-p2 to the center of the curve
    164     SkFDot6 dist = cheap_distance(dx, dy);
    165 
    166     // shift down dist (it is currently in dot6)
    167     // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
    168     // this is chosen by heuristic: make it as big as possible (to minimize segments)
    169     // ... but small enough so that our curves still look smooth
    170     dist = (dist + (1 << 4)) >> 5;
    171 
    172     // each subdivision (shift value) cuts this dist (error) by 1/4
    173     return (32 - SkCLZ(dist)) >> 1;
    174 }
    175 
    176 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
    177 {
    178     SkFDot6 x0, y0, x1, y1, x2, y2;
    179 
    180     {
    181 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    182         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    183         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    184         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    185         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    186         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    187         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    188 #else
    189         float scale = float(1 << (shift + 6));
    190         x0 = int(pts[0].fX * scale);
    191         y0 = int(pts[0].fY * scale);
    192         x1 = int(pts[1].fX * scale);
    193         y1 = int(pts[1].fY * scale);
    194         x2 = int(pts[2].fX * scale);
    195         y2 = int(pts[2].fY * scale);
    196 #endif
    197     }
    198 
    199     int winding = 1;
    200     if (y0 > y2)
    201     {
    202         SkTSwap(x0, x2);
    203         SkTSwap(y0, y2);
    204         winding = -1;
    205     }
    206     SkASSERT(y0 <= y1 && y1 <= y2);
    207 
    208     int top = SkFDot6Round(y0);
    209     int bot = SkFDot6Round(y2);
    210 
    211     // are we a zero-height quad (line)?
    212     if (top == bot)
    213         return 0;
    214 
    215     // compute number of steps needed (1 << shift)
    216     {
    217         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
    218         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
    219         shift = diff_to_shift(dx, dy);
    220         SkASSERT(shift >= 0);
    221     }
    222     // need at least 1 subdivision for our bias trick
    223     if (shift == 0) {
    224         shift = 1;
    225     } else if (shift > MAX_COEFF_SHIFT) {
    226         shift = MAX_COEFF_SHIFT;
    227     }
    228 
    229     fWinding    = SkToS8(winding);
    230     //fCubicDShift only set for cubics
    231     fCurveCount = SkToS8(1 << shift);
    232 
    233     /*
    234      *  We want to reformulate into polynomial form, to make it clear how we
    235      *  should forward-difference.
    236      *
    237      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
    238      *
    239      *  A = p0 - 2p1 + p2
    240      *  B = 2(p1 - p0)
    241      *  C = p0
    242      *
    243      *  Our caller must have constrained our inputs (p0..p2) to all fit into
    244      *  16.16. However, as seen above, we sometimes compute values that can be
    245      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
    246      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
    247      *  application in updateQuadratic(). Hence we store (shift - 1) in
    248      *  fCurveShift.
    249      */
    250 
    251     fCurveShift = SkToU8(shift - 1);
    252 
    253     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
    254     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
    255 
    256     fQx     = SkFDot6ToFixed(x0);
    257     fQDx    = B + (A >> shift);     // biased by shift
    258     fQDDx   = A >> (shift - 1);     // biased by shift
    259 
    260     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
    261     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
    262 
    263     fQy     = SkFDot6ToFixed(y0);
    264     fQDy    = B + (A >> shift);     // biased by shift
    265     fQDDy   = A >> (shift - 1);     // biased by shift
    266 
    267     fQLastX = SkFDot6ToFixed(x2);
    268     fQLastY = SkFDot6ToFixed(y2);
    269 
    270     return this->updateQuadratic();
    271 }
    272 
    273 int SkQuadraticEdge::updateQuadratic()
    274 {
    275     int     success;
    276     int     count = fCurveCount;
    277     SkFixed oldx = fQx;
    278     SkFixed oldy = fQy;
    279     SkFixed dx = fQDx;
    280     SkFixed dy = fQDy;
    281     SkFixed newx, newy;
    282     int     shift = fCurveShift;
    283 
    284     SkASSERT(count > 0);
    285 
    286     do {
    287         if (--count > 0)
    288         {
    289             newx    = oldx + (dx >> shift);
    290             dx    += fQDDx;
    291             newy    = oldy + (dy >> shift);
    292             dy    += fQDDy;
    293         }
    294         else    // last segment
    295         {
    296             newx    = fQLastX;
    297             newy    = fQLastY;
    298         }
    299         success = this->updateLine(oldx, oldy, newx, newy);
    300         oldx = newx;
    301         oldy = newy;
    302     } while (count > 0 && !success);
    303 
    304     fQx         = newx;
    305     fQy         = newy;
    306     fQDx        = dx;
    307     fQDy        = dy;
    308     fCurveCount = SkToS8(count);
    309     return success;
    310 }
    311 
    312 /////////////////////////////////////////////////////////////////////////
    313 
    314 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
    315     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
    316     return SkLeftShift(x, upShift);
    317 }
    318 
    319 /*  f(1/3) = (8a + 12b + 6c + d) / 27
    320     f(2/3) = (a + 6b + 12c + 8d) / 27
    321 
    322     f(1/3)-b = (8a - 15b + 6c + d) / 27
    323     f(2/3)-c = (a + 6b - 15c + 8d) / 27
    324 
    325     use 16/512 to approximate 1/27
    326 */
    327 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
    328 {
    329     SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
    330     SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
    331 
    332     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
    333 }
    334 
    335 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
    336     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
    337 
    338     {
    339 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    340         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    341         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    342         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    343         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    344         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    345         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    346         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
    347         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
    348 #else
    349         float scale = float(1 << (shift + 6));
    350         x0 = int(pts[0].fX * scale);
    351         y0 = int(pts[0].fY * scale);
    352         x1 = int(pts[1].fX * scale);
    353         y1 = int(pts[1].fY * scale);
    354         x2 = int(pts[2].fX * scale);
    355         y2 = int(pts[2].fY * scale);
    356         x3 = int(pts[3].fX * scale);
    357         y3 = int(pts[3].fY * scale);
    358 #endif
    359     }
    360 
    361     int winding = 1;
    362     if (y0 > y3)
    363     {
    364         SkTSwap(x0, x3);
    365         SkTSwap(x1, x2);
    366         SkTSwap(y0, y3);
    367         SkTSwap(y1, y2);
    368         winding = -1;
    369     }
    370 
    371     int top = SkFDot6Round(y0);
    372     int bot = SkFDot6Round(y3);
    373 
    374     // are we a zero-height cubic (line)?
    375     if (top == bot)
    376         return 0;
    377 
    378     // compute number of steps needed (1 << shift)
    379     {
    380         // Can't use (center of curve - center of baseline), since center-of-curve
    381         // need not be the max delta from the baseline (it could even be coincident)
    382         // so we try just looking at the two off-curve points
    383         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
    384         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
    385         // add 1 (by observation)
    386         shift = diff_to_shift(dx, dy) + 1;
    387     }
    388     // need at least 1 subdivision for our bias trick
    389     SkASSERT(shift > 0);
    390     if (shift > MAX_COEFF_SHIFT) {
    391         shift = MAX_COEFF_SHIFT;
    392     }
    393 
    394     /*  Since our in coming data is initially shifted down by 10 (or 8 in
    395         antialias). That means the most we can shift up is 8. However, we
    396         compute coefficients with a 3*, so the safest upshift is really 6
    397     */
    398     int upShift = 6;    // largest safe value
    399     int downShift = shift + upShift - 10;
    400     if (downShift < 0) {
    401         downShift = 0;
    402         upShift = 10 - shift;
    403     }
    404 
    405     fWinding    = SkToS8(winding);
    406     fCurveCount = SkToS8(SkLeftShift(-1, shift));
    407     fCurveShift = SkToU8(shift);
    408     fCubicDShift = SkToU8(downShift);
    409 
    410     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
    411     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
    412     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
    413 
    414     fCx     = SkFDot6ToFixed(x0);
    415     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    416     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    417     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
    418 
    419     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
    420     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
    421     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
    422 
    423     fCy     = SkFDot6ToFixed(y0);
    424     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    425     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    426     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
    427 
    428     fCLastX = SkFDot6ToFixed(x3);
    429     fCLastY = SkFDot6ToFixed(y3);
    430 
    431     return this->updateCubic();
    432 }
    433 
    434 int SkCubicEdge::updateCubic()
    435 {
    436     int     success;
    437     int     count = fCurveCount;
    438     SkFixed oldx = fCx;
    439     SkFixed oldy = fCy;
    440     SkFixed newx, newy;
    441     const int ddshift = fCurveShift;
    442     const int dshift = fCubicDShift;
    443 
    444     SkASSERT(count < 0);
    445 
    446     do {
    447         if (++count < 0)
    448         {
    449             newx    = oldx + (fCDx >> dshift);
    450             fCDx    += fCDDx >> ddshift;
    451             fCDDx   += fCDDDx;
    452 
    453             newy    = oldy + (fCDy >> dshift);
    454             fCDy    += fCDDy >> ddshift;
    455             fCDDy   += fCDDDy;
    456         }
    457         else    // last segment
    458         {
    459         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
    460             newx    = fCLastX;
    461             newy    = fCLastY;
    462         }
    463 
    464         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
    465         // doesn't always achieve that, so we have to explicitly pin it here.
    466         if (newy < oldy) {
    467             newy = oldy;
    468         }
    469 
    470         success = this->updateLine(oldx, oldy, newx, newy);
    471         oldx = newx;
    472         oldy = newy;
    473     } while (count < 0 && !success);
    474 
    475     fCx         = newx;
    476     fCy         = newy;
    477     fCurveCount = SkToS8(count);
    478     return success;
    479 }
    480