Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/MachineValueType.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Printable.h"
     26 #include <cassert>
     27 #include <functional>
     28 
     29 namespace llvm {
     30 
     31 class BitVector;
     32 class MachineFunction;
     33 class RegScavenger;
     34 template<class T> class SmallVectorImpl;
     35 class VirtRegMap;
     36 class raw_ostream;
     37 class LiveRegMatrix;
     38 
     39 /// A bitmask representing the covering of a register with sub-registers.
     40 ///
     41 /// This is typically used to track liveness at sub-register granularity.
     42 /// Lane masks for sub-register indices are similar to register units for
     43 /// physical registers. The individual bits in a lane mask can't be assigned
     44 /// any specific meaning. They can be used to check if two sub-register
     45 /// indices overlap.
     46 ///
     47 /// Iff the target has a register such that:
     48 ///
     49 ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
     50 ///
     51 /// then:
     52 ///
     53 ///   (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0
     54 typedef unsigned LaneBitmask;
     55 
     56 class TargetRegisterClass {
     57 public:
     58   typedef const MCPhysReg* iterator;
     59   typedef const MCPhysReg* const_iterator;
     60   typedef const MVT::SimpleValueType* vt_iterator;
     61   typedef const TargetRegisterClass* const * sc_iterator;
     62 
     63   // Instance variables filled by tablegen, do not use!
     64   const MCRegisterClass *MC;
     65   const vt_iterator VTs;
     66   const uint32_t *SubClassMask;
     67   const uint16_t *SuperRegIndices;
     68   const LaneBitmask LaneMask;
     69   /// Classes with a higher priority value are assigned first by register
     70   /// allocators using a greedy heuristic. The value is in the range [0,63].
     71   const uint8_t AllocationPriority;
     72   /// Whether the class supports two (or more) disjunct subregister indices.
     73   const bool HasDisjunctSubRegs;
     74   const sc_iterator SuperClasses;
     75   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
     76 
     77   /// Return the register class ID number.
     78   unsigned getID() const { return MC->getID(); }
     79 
     80   /// begin/end - Return all of the registers in this class.
     81   ///
     82   iterator       begin() const { return MC->begin(); }
     83   iterator         end() const { return MC->end(); }
     84 
     85   /// Return the number of registers in this class.
     86   unsigned getNumRegs() const { return MC->getNumRegs(); }
     87 
     88   /// Return the specified register in the class.
     89   unsigned getRegister(unsigned i) const {
     90     return MC->getRegister(i);
     91   }
     92 
     93   /// Return true if the specified register is included in this register class.
     94   /// This does not include virtual registers.
     95   bool contains(unsigned Reg) const {
     96     return MC->contains(Reg);
     97   }
     98 
     99   /// Return true if both registers are in this class.
    100   bool contains(unsigned Reg1, unsigned Reg2) const {
    101     return MC->contains(Reg1, Reg2);
    102   }
    103 
    104   /// Return the size of the register in bytes, which is also the size
    105   /// of a stack slot allocated to hold a spilled copy of this register.
    106   unsigned getSize() const { return MC->getSize(); }
    107 
    108   /// Return the minimum required alignment for a register of this class.
    109   unsigned getAlignment() const { return MC->getAlignment(); }
    110 
    111   /// Return the cost of copying a value between two registers in this class.
    112   /// A negative number means the register class is very expensive
    113   /// to copy e.g. status flag register classes.
    114   int getCopyCost() const { return MC->getCopyCost(); }
    115 
    116   /// Return true if this register class may be used to create virtual
    117   /// registers.
    118   bool isAllocatable() const { return MC->isAllocatable(); }
    119 
    120   /// Return true if this TargetRegisterClass has the ValueType vt.
    121   bool hasType(MVT vt) const {
    122     for(int i = 0; VTs[i] != MVT::Other; ++i)
    123       if (MVT(VTs[i]) == vt)
    124         return true;
    125     return false;
    126   }
    127 
    128   /// vt_begin / vt_end - Loop over all of the value types that can be
    129   /// represented by values in this register class.
    130   vt_iterator vt_begin() const {
    131     return VTs;
    132   }
    133 
    134   vt_iterator vt_end() const {
    135     vt_iterator I = VTs;
    136     while (*I != MVT::Other) ++I;
    137     return I;
    138   }
    139 
    140   /// Return true if the specified TargetRegisterClass
    141   /// is a proper sub-class of this TargetRegisterClass.
    142   bool hasSubClass(const TargetRegisterClass *RC) const {
    143     return RC != this && hasSubClassEq(RC);
    144   }
    145 
    146   /// Returns true if RC is a sub-class of or equal to this class.
    147   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    148     unsigned ID = RC->getID();
    149     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    150   }
    151 
    152   /// Return true if the specified TargetRegisterClass is a
    153   /// proper super-class of this TargetRegisterClass.
    154   bool hasSuperClass(const TargetRegisterClass *RC) const {
    155     return RC->hasSubClass(this);
    156   }
    157 
    158   /// Returns true if RC is a super-class of or equal to this class.
    159   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    160     return RC->hasSubClassEq(this);
    161   }
    162 
    163   /// Returns a bit vector of subclasses, including this one.
    164   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
    165   /// use it.
    166   const uint32_t *getSubClassMask() const {
    167     return SubClassMask;
    168   }
    169 
    170   /// Returns a 0-terminated list of sub-register indices that project some
    171   /// super-register class into this register class. The list has an entry for
    172   /// each Idx such that:
    173   ///
    174   ///   There exists SuperRC where:
    175   ///     For all Reg in SuperRC:
    176   ///       this->contains(Reg:Idx)
    177   ///
    178   const uint16_t *getSuperRegIndices() const {
    179     return SuperRegIndices;
    180   }
    181 
    182   /// Returns a NULL-terminated list of super-classes.  The
    183   /// classes are ordered by ID which is also a topological ordering from large
    184   /// to small classes.  The list does NOT include the current class.
    185   sc_iterator getSuperClasses() const {
    186     return SuperClasses;
    187   }
    188 
    189   /// Return true if this TargetRegisterClass is a subset
    190   /// class of at least one other TargetRegisterClass.
    191   bool isASubClass() const {
    192     return SuperClasses[0] != nullptr;
    193   }
    194 
    195   /// Returns the preferred order for allocating registers from this register
    196   /// class in MF. The raw order comes directly from the .td file and may
    197   /// include reserved registers that are not allocatable.
    198   /// Register allocators should also make sure to allocate
    199   /// callee-saved registers only after all the volatiles are used. The
    200   /// RegisterClassInfo class provides filtered allocation orders with
    201   /// callee-saved registers moved to the end.
    202   ///
    203   /// The MachineFunction argument can be used to tune the allocatable
    204   /// registers based on the characteristics of the function, subtarget, or
    205   /// other criteria.
    206   ///
    207   /// By default, this method returns all registers in the class.
    208   ///
    209   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
    210     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    211   }
    212 
    213   /// Returns the combination of all lane masks of register in this class.
    214   /// The lane masks of the registers are the combination of all lane masks
    215   /// of their subregisters.
    216   LaneBitmask getLaneMask() const {
    217     return LaneMask;
    218   }
    219 };
    220 
    221 /// Extra information, not in MCRegisterDesc, about registers.
    222 /// These are used by codegen, not by MC.
    223 struct TargetRegisterInfoDesc {
    224   unsigned CostPerUse;          // Extra cost of instructions using register.
    225   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    226 };
    227 
    228 /// Each TargetRegisterClass has a per register weight, and weight
    229 /// limit which must be less than the limits of its pressure sets.
    230 struct RegClassWeight {
    231   unsigned RegWeight;
    232   unsigned WeightLimit;
    233 };
    234 
    235 /// TargetRegisterInfo base class - We assume that the target defines a static
    236 /// array of TargetRegisterDesc objects that represent all of the machine
    237 /// registers that the target has.  As such, we simply have to track a pointer
    238 /// to this array so that we can turn register number into a register
    239 /// descriptor.
    240 ///
    241 class TargetRegisterInfo : public MCRegisterInfo {
    242 public:
    243   typedef const TargetRegisterClass * const * regclass_iterator;
    244 private:
    245   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    246   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    247   // Pointer to array of lane masks, one per sub-reg index.
    248   const LaneBitmask *SubRegIndexLaneMasks;
    249 
    250   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    251   unsigned CoveringLanes;
    252 
    253 protected:
    254   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    255                      regclass_iterator RegClassBegin,
    256                      regclass_iterator RegClassEnd,
    257                      const char *const *SRINames,
    258                      const LaneBitmask *SRILaneMasks,
    259                      unsigned CoveringLanes);
    260   virtual ~TargetRegisterInfo();
    261 public:
    262 
    263   // Register numbers can represent physical registers, virtual registers, and
    264   // sometimes stack slots. The unsigned values are divided into these ranges:
    265   //
    266   //   0           Not a register, can be used as a sentinel.
    267   //   [1;2^30)    Physical registers assigned by TableGen.
    268   //   [2^30;2^31) Stack slots. (Rarely used.)
    269   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    270   //
    271   // Further sentinels can be allocated from the small negative integers.
    272   // DenseMapInfo<unsigned> uses -1u and -2u.
    273 
    274   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    275   /// frame index in a variable that normally holds a register. isStackSlot()
    276   /// returns true if Reg is in the range used for stack slots.
    277   ///
    278   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    279   /// slots, so if a variable may contains a stack slot, always check
    280   /// isStackSlot() first.
    281   ///
    282   static bool isStackSlot(unsigned Reg) {
    283     return int(Reg) >= (1 << 30);
    284   }
    285 
    286   /// Compute the frame index from a register value representing a stack slot.
    287   static int stackSlot2Index(unsigned Reg) {
    288     assert(isStackSlot(Reg) && "Not a stack slot");
    289     return int(Reg - (1u << 30));
    290   }
    291 
    292   /// Convert a non-negative frame index to a stack slot register value.
    293   static unsigned index2StackSlot(int FI) {
    294     assert(FI >= 0 && "Cannot hold a negative frame index.");
    295     return FI + (1u << 30);
    296   }
    297 
    298   /// Return true if the specified register number is in
    299   /// the physical register namespace.
    300   static bool isPhysicalRegister(unsigned Reg) {
    301     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    302     return int(Reg) > 0;
    303   }
    304 
    305   /// Return true if the specified register number is in
    306   /// the virtual register namespace.
    307   static bool isVirtualRegister(unsigned Reg) {
    308     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    309     return int(Reg) < 0;
    310   }
    311 
    312   /// Convert a virtual register number to a 0-based index.
    313   /// The first virtual register in a function will get the index 0.
    314   static unsigned virtReg2Index(unsigned Reg) {
    315     assert(isVirtualRegister(Reg) && "Not a virtual register");
    316     return Reg & ~(1u << 31);
    317   }
    318 
    319   /// Convert a 0-based index to a virtual register number.
    320   /// This is the inverse operation of VirtReg2IndexFunctor below.
    321   static unsigned index2VirtReg(unsigned Index) {
    322     return Index | (1u << 31);
    323   }
    324 
    325   /// Returns the Register Class of a physical register of the given type,
    326   /// picking the most sub register class of the right type that contains this
    327   /// physreg.
    328   const TargetRegisterClass *
    329     getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
    330 
    331   /// Return the maximal subclass of the given register class that is
    332   /// allocatable or NULL.
    333   const TargetRegisterClass *
    334     getAllocatableClass(const TargetRegisterClass *RC) const;
    335 
    336   /// Returns a bitset indexed by register number indicating if a register is
    337   /// allocatable or not. If a register class is specified, returns the subset
    338   /// for the class.
    339   BitVector getAllocatableSet(const MachineFunction &MF,
    340                               const TargetRegisterClass *RC = nullptr) const;
    341 
    342   /// Return the additional cost of using this register instead
    343   /// of other registers in its class.
    344   unsigned getCostPerUse(unsigned RegNo) const {
    345     return InfoDesc[RegNo].CostPerUse;
    346   }
    347 
    348   /// Return true if the register is in the allocation of any register class.
    349   bool isInAllocatableClass(unsigned RegNo) const {
    350     return InfoDesc[RegNo].inAllocatableClass;
    351   }
    352 
    353   /// Return the human-readable symbolic target-specific
    354   /// name for the specified SubRegIndex.
    355   const char *getSubRegIndexName(unsigned SubIdx) const {
    356     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
    357            "This is not a subregister index");
    358     return SubRegIndexNames[SubIdx-1];
    359   }
    360 
    361   /// Return a bitmask representing the parts of a register that are covered by
    362   /// SubIdx \see LaneBitmask.
    363   ///
    364   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
    365   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
    366     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
    367     return SubRegIndexLaneMasks[SubIdx];
    368   }
    369 
    370   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
    371   /// used to determine if sub-registers overlap - they can't be used to
    372   /// determine if a set of sub-registers completely cover another
    373   /// sub-register.
    374   ///
    375   /// The X86 general purpose registers have two lanes corresponding to the
    376   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
    377   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
    378   /// sub_32bit sub-register.
    379   ///
    380   /// On the other hand, the ARM NEON lanes fully cover their registers: The
    381   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
    382   /// This is related to the CoveredBySubRegs property on register definitions.
    383   ///
    384   /// This function returns a bit mask of lanes that completely cover their
    385   /// sub-registers. More precisely, given:
    386   ///
    387   ///   Covering = getCoveringLanes();
    388   ///   MaskA = getSubRegIndexLaneMask(SubA);
    389   ///   MaskB = getSubRegIndexLaneMask(SubB);
    390   ///
    391   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
    392   /// SubB.
    393   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
    394 
    395   /// Returns true if the two registers are equal or alias each other.
    396   /// The registers may be virtual registers.
    397   bool regsOverlap(unsigned regA, unsigned regB) const {
    398     if (regA == regB) return true;
    399     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    400       return false;
    401 
    402     // Regunits are numerically ordered. Find a common unit.
    403     MCRegUnitIterator RUA(regA, this);
    404     MCRegUnitIterator RUB(regB, this);
    405     do {
    406       if (*RUA == *RUB) return true;
    407       if (*RUA < *RUB) ++RUA;
    408       else             ++RUB;
    409     } while (RUA.isValid() && RUB.isValid());
    410     return false;
    411   }
    412 
    413   /// Returns true if Reg contains RegUnit.
    414   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
    415     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
    416       if (*Units == RegUnit)
    417         return true;
    418     return false;
    419   }
    420 
    421   /// Return a null-terminated list of all of the callee-saved registers on
    422   /// this target. The register should be in the order of desired callee-save
    423   /// stack frame offset. The first register is closest to the incoming stack
    424   /// pointer if stack grows down, and vice versa.
    425   ///
    426   virtual const MCPhysReg*
    427   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
    428 
    429   virtual const MCPhysReg*
    430   getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
    431     return nullptr;
    432   }
    433 
    434   /// Return a mask of call-preserved registers for the given calling convention
    435   /// on the current function. The mask should include all call-preserved
    436   /// aliases. This is used by the register allocator to determine which
    437   /// registers can be live across a call.
    438   ///
    439   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    440   /// A set bit indicates that all bits of the corresponding register are
    441   /// preserved across the function call.  The bit mask is expected to be
    442   /// sub-register complete, i.e. if A is preserved, so are all its
    443   /// sub-registers.
    444   ///
    445   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    446   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    447   ///
    448   /// A NULL pointer means that no register mask will be used, and call
    449   /// instructions should use implicit-def operands to indicate call clobbered
    450   /// registers.
    451   ///
    452   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
    453                                                CallingConv::ID) const {
    454     // The default mask clobbers everything.  All targets should override.
    455     return nullptr;
    456   }
    457 
    458   /// Return a register mask that clobbers everything.
    459   virtual const uint32_t *getNoPreservedMask() const {
    460     llvm_unreachable("target does not provide no presered mask");
    461   }
    462 
    463   /// Return all the call-preserved register masks defined for this target.
    464   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
    465   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
    466 
    467   /// Returns a bitset indexed by physical register number indicating if a
    468   /// register is a special register that has particular uses and should be
    469   /// considered unavailable at all times, e.g. SP, RA. This is
    470   /// used by register scavenger to determine what registers are free.
    471   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    472 
    473   /// Prior to adding the live-out mask to a stackmap or patchpoint
    474   /// instruction, provide the target the opportunity to adjust it (mainly to
    475   /// remove pseudo-registers that should be ignored).
    476   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
    477 
    478   /// Return a super-register of the specified register
    479   /// Reg so its sub-register of index SubIdx is Reg.
    480   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    481                                const TargetRegisterClass *RC) const {
    482     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    483   }
    484 
    485   /// Return a subclass of the specified register
    486   /// class A so that each register in it has a sub-register of the
    487   /// specified sub-register index which is in the specified register class B.
    488   ///
    489   /// TableGen will synthesize missing A sub-classes.
    490   virtual const TargetRegisterClass *
    491   getMatchingSuperRegClass(const TargetRegisterClass *A,
    492                            const TargetRegisterClass *B, unsigned Idx) const;
    493 
    494   // For a copy-like instruction that defines a register of class DefRC with
    495   // subreg index DefSubReg, reading from another source with class SrcRC and
    496   // subregister SrcSubReg return true if this is a preferrable copy
    497   // instruction or an earlier use should be used.
    498   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
    499                                     unsigned DefSubReg,
    500                                     const TargetRegisterClass *SrcRC,
    501                                     unsigned SrcSubReg) const;
    502 
    503   /// Returns the largest legal sub-class of RC that
    504   /// supports the sub-register index Idx.
    505   /// If no such sub-class exists, return NULL.
    506   /// If all registers in RC already have an Idx sub-register, return RC.
    507   ///
    508   /// TableGen generates a version of this function that is good enough in most
    509   /// cases.  Targets can override if they have constraints that TableGen
    510   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    511   /// supported by the full GR32 register class in 64-bit mode, but only by the
    512   /// GR32_ABCD regiister class in 32-bit mode.
    513   ///
    514   /// TableGen will synthesize missing RC sub-classes.
    515   virtual const TargetRegisterClass *
    516   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
    517     assert(Idx == 0 && "Target has no sub-registers");
    518     return RC;
    519   }
    520 
    521   /// Return the subregister index you get from composing
    522   /// two subregister indices.
    523   ///
    524   /// The special null sub-register index composes as the identity.
    525   ///
    526   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    527   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    528   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    529   /// b, composeSubRegIndices doesn't tell you.
    530   ///
    531   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    532   /// ssub_0:S0 - ssub_3:S3 subregs.
    533   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    534   ///
    535   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    536     if (!a) return b;
    537     if (!b) return a;
    538     return composeSubRegIndicesImpl(a, b);
    539   }
    540 
    541   /// Transforms a LaneMask computed for one subregister to the lanemask that
    542   /// would have been computed when composing the subsubregisters with IdxA
    543   /// first. @sa composeSubRegIndices()
    544   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
    545                                          LaneBitmask Mask) const {
    546     if (!IdxA)
    547       return Mask;
    548     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
    549   }
    550 
    551   /// Debugging helper: dump register in human readable form to dbgs() stream.
    552   static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
    553                       const TargetRegisterInfo* TRI = nullptr);
    554 
    555 protected:
    556   /// Overridden by TableGen in targets that have sub-registers.
    557   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
    558     llvm_unreachable("Target has no sub-registers");
    559   }
    560 
    561   /// Overridden by TableGen in targets that have sub-registers.
    562   virtual LaneBitmask
    563   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
    564     llvm_unreachable("Target has no sub-registers");
    565   }
    566 
    567 public:
    568   /// Find a common super-register class if it exists.
    569   ///
    570   /// Find a register class, SuperRC and two sub-register indices, PreA and
    571   /// PreB, such that:
    572   ///
    573   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
    574   ///
    575   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
    576   ///
    577   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
    578   ///
    579   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
    580   /// requirements, and there is no register class with a smaller spill size
    581   /// that satisfies the requirements.
    582   ///
    583   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
    584   ///
    585   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
    586   /// that case, the returned register class will be a sub-class of the
    587   /// corresponding argument register class.
    588   ///
    589   /// The function returns NULL if no register class can be found.
    590   ///
    591   const TargetRegisterClass*
    592   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    593                          const TargetRegisterClass *RCB, unsigned SubB,
    594                          unsigned &PreA, unsigned &PreB) const;
    595 
    596   //===--------------------------------------------------------------------===//
    597   // Register Class Information
    598   //
    599 
    600   /// Register class iterators
    601   ///
    602   regclass_iterator regclass_begin() const { return RegClassBegin; }
    603   regclass_iterator regclass_end() const { return RegClassEnd; }
    604 
    605   unsigned getNumRegClasses() const {
    606     return (unsigned)(regclass_end()-regclass_begin());
    607   }
    608 
    609   /// Returns the register class associated with the enumeration value.
    610   /// See class MCOperandInfo.
    611   const TargetRegisterClass *getRegClass(unsigned i) const {
    612     assert(i < getNumRegClasses() && "Register Class ID out of range");
    613     return RegClassBegin[i];
    614   }
    615 
    616   /// Returns the name of the register class.
    617   const char *getRegClassName(const TargetRegisterClass *Class) const {
    618     return MCRegisterInfo::getRegClassName(Class->MC);
    619   }
    620 
    621   /// Find the largest common subclass of A and B.
    622   /// Return NULL if there is no common subclass.
    623   /// The common subclass should contain
    624   /// simple value type SVT if it is not the Any type.
    625   const TargetRegisterClass *
    626   getCommonSubClass(const TargetRegisterClass *A,
    627                     const TargetRegisterClass *B,
    628                     const MVT::SimpleValueType SVT =
    629                     MVT::SimpleValueType::Any) const;
    630 
    631   /// Returns a TargetRegisterClass used for pointer values.
    632   /// If a target supports multiple different pointer register classes,
    633   /// kind specifies which one is indicated.
    634   virtual const TargetRegisterClass *
    635   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
    636     llvm_unreachable("Target didn't implement getPointerRegClass!");
    637   }
    638 
    639   /// Returns a legal register class to copy a register in the specified class
    640   /// to or from. If it is possible to copy the register directly without using
    641   /// a cross register class copy, return the specified RC. Returns NULL if it
    642   /// is not possible to copy between two registers of the specified class.
    643   virtual const TargetRegisterClass *
    644   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    645     return RC;
    646   }
    647 
    648   /// Returns the largest super class of RC that is legal to use in the current
    649   /// sub-target and has the same spill size.
    650   /// The returned register class can be used to create virtual registers which
    651   /// means that all its registers can be copied and spilled.
    652   virtual const TargetRegisterClass *
    653   getLargestLegalSuperClass(const TargetRegisterClass *RC,
    654                             const MachineFunction &) const {
    655     /// The default implementation is very conservative and doesn't allow the
    656     /// register allocator to inflate register classes.
    657     return RC;
    658   }
    659 
    660   /// Return the register pressure "high water mark" for the specific register
    661   /// class. The scheduler is in high register pressure mode (for the specific
    662   /// register class) if it goes over the limit.
    663   ///
    664   /// Note: this is the old register pressure model that relies on a manually
    665   /// specified representative register class per value type.
    666   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    667                                        MachineFunction &MF) const {
    668     return 0;
    669   }
    670 
    671   /// Return a heuristic for the machine scheduler to compare the profitability
    672   /// of increasing one register pressure set versus another.  The scheduler
    673   /// will prefer increasing the register pressure of the set which returns
    674   /// the largest value for this function.
    675   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
    676                                           unsigned PSetID) const {
    677     return PSetID;
    678   }
    679 
    680   /// Get the weight in units of pressure for this register class.
    681   virtual const RegClassWeight &getRegClassWeight(
    682     const TargetRegisterClass *RC) const = 0;
    683 
    684   /// Get the weight in units of pressure for this register unit.
    685   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
    686 
    687   /// Get the number of dimensions of register pressure.
    688   virtual unsigned getNumRegPressureSets() const = 0;
    689 
    690   /// Get the name of this register unit pressure set.
    691   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
    692 
    693   /// Get the register unit pressure limit for this dimension.
    694   /// This limit must be adjusted dynamically for reserved registers.
    695   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
    696                                           unsigned Idx) const = 0;
    697 
    698   /// Get the dimensions of register pressure impacted by this register class.
    699   /// Returns a -1 terminated array of pressure set IDs.
    700   virtual const int *getRegClassPressureSets(
    701     const TargetRegisterClass *RC) const = 0;
    702 
    703   /// Get the dimensions of register pressure impacted by this register unit.
    704   /// Returns a -1 terminated array of pressure set IDs.
    705   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
    706 
    707   /// Get a list of 'hint' registers that the register allocator should try
    708   /// first when allocating a physical register for the virtual register
    709   /// VirtReg. These registers are effectively moved to the front of the
    710   /// allocation order.
    711   ///
    712   /// The Order argument is the allocation order for VirtReg's register class
    713   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
    714   /// come from Order, and they must not be reserved.
    715   ///
    716   /// The default implementation of this function can resolve
    717   /// target-independent hints provided to MRI::setRegAllocationHint with
    718   /// HintType == 0. Targets that override this function should defer to the
    719   /// default implementation if they have no reason to change the allocation
    720   /// order for VirtReg. There may be target-independent hints.
    721   virtual void getRegAllocationHints(unsigned VirtReg,
    722                                      ArrayRef<MCPhysReg> Order,
    723                                      SmallVectorImpl<MCPhysReg> &Hints,
    724                                      const MachineFunction &MF,
    725                                      const VirtRegMap *VRM = nullptr,
    726                                      const LiveRegMatrix *Matrix = nullptr)
    727     const;
    728 
    729   /// A callback to allow target a chance to update register allocation hints
    730   /// when a register is "changed" (e.g. coalesced) to another register.
    731   /// e.g. On ARM, some virtual registers should target register pairs,
    732   /// if one of pair is coalesced to another register, the allocation hint of
    733   /// the other half of the pair should be changed to point to the new register.
    734   virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
    735                                   MachineFunction &MF) const {
    736     // Do nothing.
    737   }
    738 
    739   /// Allow the target to reverse allocation order of local live ranges. This
    740   /// will generally allocate shorter local live ranges first. For targets with
    741   /// many registers, this could reduce regalloc compile time by a large
    742   /// factor. It is disabled by default for three reasons:
    743   /// (1) Top-down allocation is simpler and easier to debug for targets that
    744   /// don't benefit from reversing the order.
    745   /// (2) Bottom-up allocation could result in poor evicition decisions on some
    746   /// targets affecting the performance of compiled code.
    747   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
    748   virtual bool reverseLocalAssignment() const { return false; }
    749 
    750   /// Allow the target to override the cost of using a callee-saved register for
    751   /// the first time. Default value of 0 means we will use a callee-saved
    752   /// register if it is available.
    753   virtual unsigned getCSRFirstUseCost() const { return 0; }
    754 
    755   /// Returns true if the target requires (and can make use of) the register
    756   /// scavenger.
    757   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    758     return false;
    759   }
    760 
    761   /// Returns true if the target wants to use frame pointer based accesses to
    762   /// spill to the scavenger emergency spill slot.
    763   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    764     return true;
    765   }
    766 
    767   /// Returns true if the target requires post PEI scavenging of registers for
    768   /// materializing frame index constants.
    769   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    770     return false;
    771   }
    772 
    773   /// Returns true if the target wants the LocalStackAllocation pass to be run
    774   /// and virtual base registers used for more efficient stack access.
    775   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    776     return false;
    777   }
    778 
    779   /// Return true if target has reserved a spill slot in the stack frame of
    780   /// the given function for the specified register. e.g. On x86, if the frame
    781   /// register is required, the first fixed stack object is reserved as its
    782   /// spill slot. This tells PEI not to create a new stack frame
    783   /// object for the given register. It should be called only after
    784   /// determineCalleeSaves().
    785   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    786                                     int &FrameIdx) const {
    787     return false;
    788   }
    789 
    790   /// Returns true if the live-ins should be tracked after register allocation.
    791   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
    792     return false;
    793   }
    794 
    795   /// True if the stack can be realigned for the target.
    796   virtual bool canRealignStack(const MachineFunction &MF) const;
    797 
    798   /// True if storage within the function requires the stack pointer to be
    799   /// aligned more than the normal calling convention calls for.
    800   /// This cannot be overriden by the target, but canRealignStack can be
    801   /// overridden.
    802   bool needsStackRealignment(const MachineFunction &MF) const;
    803 
    804   /// Get the offset from the referenced frame index in the instruction,
    805   /// if there is one.
    806   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    807                                            int Idx) const {
    808     return 0;
    809   }
    810 
    811   /// Returns true if the instruction's frame index reference would be better
    812   /// served by a base register other than FP or SP.
    813   /// Used by LocalStackFrameAllocation to determine which frame index
    814   /// references it should create new base registers for.
    815   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    816     return false;
    817   }
    818 
    819   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
    820   /// before insertion point I.
    821   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    822                                             unsigned BaseReg, int FrameIdx,
    823                                             int64_t Offset) const {
    824     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    825                      "target");
    826   }
    827 
    828   /// Resolve a frame index operand of an instruction
    829   /// to reference the indicated base register plus offset instead.
    830   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
    831                                  int64_t Offset) const {
    832     llvm_unreachable("resolveFrameIndex does not exist on this target");
    833   }
    834 
    835   /// Determine whether a given base register plus offset immediate is
    836   /// encodable to resolve a frame index.
    837   virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
    838                                   int64_t Offset) const {
    839     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    840   }
    841 
    842   /// Spill the register so it can be used by the register scavenger.
    843   /// Return true if the register was spilled, false otherwise.
    844   /// If this function does not spill the register, the scavenger
    845   /// will instead spill it to the emergency spill slot.
    846   ///
    847   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    848                                      MachineBasicBlock::iterator I,
    849                                      MachineBasicBlock::iterator &UseMI,
    850                                      const TargetRegisterClass *RC,
    851                                      unsigned Reg) const {
    852     return false;
    853   }
    854 
    855   /// This method must be overriden to eliminate abstract frame indices from
    856   /// instructions which may use them. The instruction referenced by the
    857   /// iterator contains an MO_FrameIndex operand which must be eliminated by
    858   /// this method. This method may modify or replace the specified instruction,
    859   /// as long as it keeps the iterator pointing at the finished product.
    860   /// SPAdj is the SP adjustment due to call frame setup instruction.
    861   /// FIOperandNum is the FI operand number.
    862   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    863                                    int SPAdj, unsigned FIOperandNum,
    864                                    RegScavenger *RS = nullptr) const = 0;
    865 
    866   //===--------------------------------------------------------------------===//
    867   /// Subtarget Hooks
    868 
    869   /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
    870   virtual bool shouldCoalesce(MachineInstr *MI,
    871                               const TargetRegisterClass *SrcRC,
    872                               unsigned SubReg,
    873                               const TargetRegisterClass *DstRC,
    874                               unsigned DstSubReg,
    875                               const TargetRegisterClass *NewRC) const
    876   { return true; }
    877 
    878   //===--------------------------------------------------------------------===//
    879   /// Debug information queries.
    880 
    881   /// getFrameRegister - This method should return the register used as a base
    882   /// for values allocated in the current stack frame.
    883   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    884 };
    885 
    886 
    887 //===----------------------------------------------------------------------===//
    888 //                           SuperRegClassIterator
    889 //===----------------------------------------------------------------------===//
    890 //
    891 // Iterate over the possible super-registers for a given register class. The
    892 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
    893 // possible classes of super-registers.
    894 //
    895 // Each bit mask will have at least one set bit, and each set bit in Mask
    896 // corresponds to a SuperRC such that:
    897 //
    898 //   For all Reg in SuperRC: Reg:Idx is in RC.
    899 //
    900 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
    901 // also satisfies the above requirement, assuming Reg:0 == Reg.
    902 //
    903 class SuperRegClassIterator {
    904   const unsigned RCMaskWords;
    905   unsigned SubReg;
    906   const uint16_t *Idx;
    907   const uint32_t *Mask;
    908 
    909 public:
    910   /// Create a SuperRegClassIterator that visits all the super-register classes
    911   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
    912   SuperRegClassIterator(const TargetRegisterClass *RC,
    913                         const TargetRegisterInfo *TRI,
    914                         bool IncludeSelf = false)
    915     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
    916       SubReg(0),
    917       Idx(RC->getSuperRegIndices()),
    918       Mask(RC->getSubClassMask()) {
    919     if (!IncludeSelf)
    920       ++*this;
    921   }
    922 
    923   /// Returns true if this iterator is still pointing at a valid entry.
    924   bool isValid() const { return Idx; }
    925 
    926   /// Returns the current sub-register index.
    927   unsigned getSubReg() const { return SubReg; }
    928 
    929   /// Returns the bit mask if register classes that getSubReg() projects into
    930   /// RC.
    931   const uint32_t *getMask() const { return Mask; }
    932 
    933   /// Advance iterator to the next entry.
    934   void operator++() {
    935     assert(isValid() && "Cannot move iterator past end.");
    936     Mask += RCMaskWords;
    937     SubReg = *Idx++;
    938     if (!SubReg)
    939       Idx = nullptr;
    940   }
    941 };
    942 
    943 // This is useful when building IndexedMaps keyed on virtual registers
    944 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
    945   unsigned operator()(unsigned Reg) const {
    946     return TargetRegisterInfo::virtReg2Index(Reg);
    947   }
    948 };
    949 
    950 /// Prints virtual and physical registers with or without a TRI instance.
    951 ///
    952 /// The format is:
    953 ///   %noreg          - NoRegister
    954 ///   %vreg5          - a virtual register.
    955 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
    956 ///   %EAX            - a physical register
    957 ///   %physreg17      - a physical register when no TRI instance given.
    958 ///
    959 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
    960 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
    961                    unsigned SubRegIdx = 0);
    962 
    963 /// Create Printable object to print register units on a \ref raw_ostream.
    964 ///
    965 /// Register units are named after their root registers:
    966 ///
    967 ///   AL      - Single root.
    968 ///   FP0~ST7 - Dual roots.
    969 ///
    970 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
    971 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
    972 
    973 /// \brief Create Printable object to print virtual registers and physical
    974 /// registers on a \ref raw_ostream.
    975 Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
    976 
    977 /// Create Printable object to print LaneBitmasks on a \ref raw_ostream.
    978 Printable PrintLaneMask(LaneBitmask LaneMask);
    979 
    980 } // End llvm namespace
    981 
    982 #endif
    983