1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineValueType.h" 22 #include "llvm/IR/CallingConv.h" 23 #include "llvm/MC/MCRegisterInfo.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Printable.h" 26 #include <cassert> 27 #include <functional> 28 29 namespace llvm { 30 31 class BitVector; 32 class MachineFunction; 33 class RegScavenger; 34 template<class T> class SmallVectorImpl; 35 class VirtRegMap; 36 class raw_ostream; 37 class LiveRegMatrix; 38 39 /// A bitmask representing the covering of a register with sub-registers. 40 /// 41 /// This is typically used to track liveness at sub-register granularity. 42 /// Lane masks for sub-register indices are similar to register units for 43 /// physical registers. The individual bits in a lane mask can't be assigned 44 /// any specific meaning. They can be used to check if two sub-register 45 /// indices overlap. 46 /// 47 /// Iff the target has a register such that: 48 /// 49 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) 50 /// 51 /// then: 52 /// 53 /// (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0 54 typedef unsigned LaneBitmask; 55 56 class TargetRegisterClass { 57 public: 58 typedef const MCPhysReg* iterator; 59 typedef const MCPhysReg* const_iterator; 60 typedef const MVT::SimpleValueType* vt_iterator; 61 typedef const TargetRegisterClass* const * sc_iterator; 62 63 // Instance variables filled by tablegen, do not use! 64 const MCRegisterClass *MC; 65 const vt_iterator VTs; 66 const uint32_t *SubClassMask; 67 const uint16_t *SuperRegIndices; 68 const LaneBitmask LaneMask; 69 /// Classes with a higher priority value are assigned first by register 70 /// allocators using a greedy heuristic. The value is in the range [0,63]. 71 const uint8_t AllocationPriority; 72 /// Whether the class supports two (or more) disjunct subregister indices. 73 const bool HasDisjunctSubRegs; 74 const sc_iterator SuperClasses; 75 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 76 77 /// Return the register class ID number. 78 unsigned getID() const { return MC->getID(); } 79 80 /// begin/end - Return all of the registers in this class. 81 /// 82 iterator begin() const { return MC->begin(); } 83 iterator end() const { return MC->end(); } 84 85 /// Return the number of registers in this class. 86 unsigned getNumRegs() const { return MC->getNumRegs(); } 87 88 /// Return the specified register in the class. 89 unsigned getRegister(unsigned i) const { 90 return MC->getRegister(i); 91 } 92 93 /// Return true if the specified register is included in this register class. 94 /// This does not include virtual registers. 95 bool contains(unsigned Reg) const { 96 return MC->contains(Reg); 97 } 98 99 /// Return true if both registers are in this class. 100 bool contains(unsigned Reg1, unsigned Reg2) const { 101 return MC->contains(Reg1, Reg2); 102 } 103 104 /// Return the size of the register in bytes, which is also the size 105 /// of a stack slot allocated to hold a spilled copy of this register. 106 unsigned getSize() const { return MC->getSize(); } 107 108 /// Return the minimum required alignment for a register of this class. 109 unsigned getAlignment() const { return MC->getAlignment(); } 110 111 /// Return the cost of copying a value between two registers in this class. 112 /// A negative number means the register class is very expensive 113 /// to copy e.g. status flag register classes. 114 int getCopyCost() const { return MC->getCopyCost(); } 115 116 /// Return true if this register class may be used to create virtual 117 /// registers. 118 bool isAllocatable() const { return MC->isAllocatable(); } 119 120 /// Return true if this TargetRegisterClass has the ValueType vt. 121 bool hasType(MVT vt) const { 122 for(int i = 0; VTs[i] != MVT::Other; ++i) 123 if (MVT(VTs[i]) == vt) 124 return true; 125 return false; 126 } 127 128 /// vt_begin / vt_end - Loop over all of the value types that can be 129 /// represented by values in this register class. 130 vt_iterator vt_begin() const { 131 return VTs; 132 } 133 134 vt_iterator vt_end() const { 135 vt_iterator I = VTs; 136 while (*I != MVT::Other) ++I; 137 return I; 138 } 139 140 /// Return true if the specified TargetRegisterClass 141 /// is a proper sub-class of this TargetRegisterClass. 142 bool hasSubClass(const TargetRegisterClass *RC) const { 143 return RC != this && hasSubClassEq(RC); 144 } 145 146 /// Returns true if RC is a sub-class of or equal to this class. 147 bool hasSubClassEq(const TargetRegisterClass *RC) const { 148 unsigned ID = RC->getID(); 149 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 150 } 151 152 /// Return true if the specified TargetRegisterClass is a 153 /// proper super-class of this TargetRegisterClass. 154 bool hasSuperClass(const TargetRegisterClass *RC) const { 155 return RC->hasSubClass(this); 156 } 157 158 /// Returns true if RC is a super-class of or equal to this class. 159 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 160 return RC->hasSubClassEq(this); 161 } 162 163 /// Returns a bit vector of subclasses, including this one. 164 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to 165 /// use it. 166 const uint32_t *getSubClassMask() const { 167 return SubClassMask; 168 } 169 170 /// Returns a 0-terminated list of sub-register indices that project some 171 /// super-register class into this register class. The list has an entry for 172 /// each Idx such that: 173 /// 174 /// There exists SuperRC where: 175 /// For all Reg in SuperRC: 176 /// this->contains(Reg:Idx) 177 /// 178 const uint16_t *getSuperRegIndices() const { 179 return SuperRegIndices; 180 } 181 182 /// Returns a NULL-terminated list of super-classes. The 183 /// classes are ordered by ID which is also a topological ordering from large 184 /// to small classes. The list does NOT include the current class. 185 sc_iterator getSuperClasses() const { 186 return SuperClasses; 187 } 188 189 /// Return true if this TargetRegisterClass is a subset 190 /// class of at least one other TargetRegisterClass. 191 bool isASubClass() const { 192 return SuperClasses[0] != nullptr; 193 } 194 195 /// Returns the preferred order for allocating registers from this register 196 /// class in MF. The raw order comes directly from the .td file and may 197 /// include reserved registers that are not allocatable. 198 /// Register allocators should also make sure to allocate 199 /// callee-saved registers only after all the volatiles are used. The 200 /// RegisterClassInfo class provides filtered allocation orders with 201 /// callee-saved registers moved to the end. 202 /// 203 /// The MachineFunction argument can be used to tune the allocatable 204 /// registers based on the characteristics of the function, subtarget, or 205 /// other criteria. 206 /// 207 /// By default, this method returns all registers in the class. 208 /// 209 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 210 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 211 } 212 213 /// Returns the combination of all lane masks of register in this class. 214 /// The lane masks of the registers are the combination of all lane masks 215 /// of their subregisters. 216 LaneBitmask getLaneMask() const { 217 return LaneMask; 218 } 219 }; 220 221 /// Extra information, not in MCRegisterDesc, about registers. 222 /// These are used by codegen, not by MC. 223 struct TargetRegisterInfoDesc { 224 unsigned CostPerUse; // Extra cost of instructions using register. 225 bool inAllocatableClass; // Register belongs to an allocatable regclass. 226 }; 227 228 /// Each TargetRegisterClass has a per register weight, and weight 229 /// limit which must be less than the limits of its pressure sets. 230 struct RegClassWeight { 231 unsigned RegWeight; 232 unsigned WeightLimit; 233 }; 234 235 /// TargetRegisterInfo base class - We assume that the target defines a static 236 /// array of TargetRegisterDesc objects that represent all of the machine 237 /// registers that the target has. As such, we simply have to track a pointer 238 /// to this array so that we can turn register number into a register 239 /// descriptor. 240 /// 241 class TargetRegisterInfo : public MCRegisterInfo { 242 public: 243 typedef const TargetRegisterClass * const * regclass_iterator; 244 private: 245 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 246 const char *const *SubRegIndexNames; // Names of subreg indexes. 247 // Pointer to array of lane masks, one per sub-reg index. 248 const LaneBitmask *SubRegIndexLaneMasks; 249 250 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 251 unsigned CoveringLanes; 252 253 protected: 254 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 255 regclass_iterator RegClassBegin, 256 regclass_iterator RegClassEnd, 257 const char *const *SRINames, 258 const LaneBitmask *SRILaneMasks, 259 unsigned CoveringLanes); 260 virtual ~TargetRegisterInfo(); 261 public: 262 263 // Register numbers can represent physical registers, virtual registers, and 264 // sometimes stack slots. The unsigned values are divided into these ranges: 265 // 266 // 0 Not a register, can be used as a sentinel. 267 // [1;2^30) Physical registers assigned by TableGen. 268 // [2^30;2^31) Stack slots. (Rarely used.) 269 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 270 // 271 // Further sentinels can be allocated from the small negative integers. 272 // DenseMapInfo<unsigned> uses -1u and -2u. 273 274 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 275 /// frame index in a variable that normally holds a register. isStackSlot() 276 /// returns true if Reg is in the range used for stack slots. 277 /// 278 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 279 /// slots, so if a variable may contains a stack slot, always check 280 /// isStackSlot() first. 281 /// 282 static bool isStackSlot(unsigned Reg) { 283 return int(Reg) >= (1 << 30); 284 } 285 286 /// Compute the frame index from a register value representing a stack slot. 287 static int stackSlot2Index(unsigned Reg) { 288 assert(isStackSlot(Reg) && "Not a stack slot"); 289 return int(Reg - (1u << 30)); 290 } 291 292 /// Convert a non-negative frame index to a stack slot register value. 293 static unsigned index2StackSlot(int FI) { 294 assert(FI >= 0 && "Cannot hold a negative frame index."); 295 return FI + (1u << 30); 296 } 297 298 /// Return true if the specified register number is in 299 /// the physical register namespace. 300 static bool isPhysicalRegister(unsigned Reg) { 301 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 302 return int(Reg) > 0; 303 } 304 305 /// Return true if the specified register number is in 306 /// the virtual register namespace. 307 static bool isVirtualRegister(unsigned Reg) { 308 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 309 return int(Reg) < 0; 310 } 311 312 /// Convert a virtual register number to a 0-based index. 313 /// The first virtual register in a function will get the index 0. 314 static unsigned virtReg2Index(unsigned Reg) { 315 assert(isVirtualRegister(Reg) && "Not a virtual register"); 316 return Reg & ~(1u << 31); 317 } 318 319 /// Convert a 0-based index to a virtual register number. 320 /// This is the inverse operation of VirtReg2IndexFunctor below. 321 static unsigned index2VirtReg(unsigned Index) { 322 return Index | (1u << 31); 323 } 324 325 /// Returns the Register Class of a physical register of the given type, 326 /// picking the most sub register class of the right type that contains this 327 /// physreg. 328 const TargetRegisterClass * 329 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; 330 331 /// Return the maximal subclass of the given register class that is 332 /// allocatable or NULL. 333 const TargetRegisterClass * 334 getAllocatableClass(const TargetRegisterClass *RC) const; 335 336 /// Returns a bitset indexed by register number indicating if a register is 337 /// allocatable or not. If a register class is specified, returns the subset 338 /// for the class. 339 BitVector getAllocatableSet(const MachineFunction &MF, 340 const TargetRegisterClass *RC = nullptr) const; 341 342 /// Return the additional cost of using this register instead 343 /// of other registers in its class. 344 unsigned getCostPerUse(unsigned RegNo) const { 345 return InfoDesc[RegNo].CostPerUse; 346 } 347 348 /// Return true if the register is in the allocation of any register class. 349 bool isInAllocatableClass(unsigned RegNo) const { 350 return InfoDesc[RegNo].inAllocatableClass; 351 } 352 353 /// Return the human-readable symbolic target-specific 354 /// name for the specified SubRegIndex. 355 const char *getSubRegIndexName(unsigned SubIdx) const { 356 assert(SubIdx && SubIdx < getNumSubRegIndices() && 357 "This is not a subregister index"); 358 return SubRegIndexNames[SubIdx-1]; 359 } 360 361 /// Return a bitmask representing the parts of a register that are covered by 362 /// SubIdx \see LaneBitmask. 363 /// 364 /// SubIdx == 0 is allowed, it has the lane mask ~0u. 365 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 366 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 367 return SubRegIndexLaneMasks[SubIdx]; 368 } 369 370 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 371 /// used to determine if sub-registers overlap - they can't be used to 372 /// determine if a set of sub-registers completely cover another 373 /// sub-register. 374 /// 375 /// The X86 general purpose registers have two lanes corresponding to the 376 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 377 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 378 /// sub_32bit sub-register. 379 /// 380 /// On the other hand, the ARM NEON lanes fully cover their registers: The 381 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 382 /// This is related to the CoveredBySubRegs property on register definitions. 383 /// 384 /// This function returns a bit mask of lanes that completely cover their 385 /// sub-registers. More precisely, given: 386 /// 387 /// Covering = getCoveringLanes(); 388 /// MaskA = getSubRegIndexLaneMask(SubA); 389 /// MaskB = getSubRegIndexLaneMask(SubB); 390 /// 391 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 392 /// SubB. 393 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 394 395 /// Returns true if the two registers are equal or alias each other. 396 /// The registers may be virtual registers. 397 bool regsOverlap(unsigned regA, unsigned regB) const { 398 if (regA == regB) return true; 399 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 400 return false; 401 402 // Regunits are numerically ordered. Find a common unit. 403 MCRegUnitIterator RUA(regA, this); 404 MCRegUnitIterator RUB(regB, this); 405 do { 406 if (*RUA == *RUB) return true; 407 if (*RUA < *RUB) ++RUA; 408 else ++RUB; 409 } while (RUA.isValid() && RUB.isValid()); 410 return false; 411 } 412 413 /// Returns true if Reg contains RegUnit. 414 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 415 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 416 if (*Units == RegUnit) 417 return true; 418 return false; 419 } 420 421 /// Return a null-terminated list of all of the callee-saved registers on 422 /// this target. The register should be in the order of desired callee-save 423 /// stack frame offset. The first register is closest to the incoming stack 424 /// pointer if stack grows down, and vice versa. 425 /// 426 virtual const MCPhysReg* 427 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 428 429 virtual const MCPhysReg* 430 getCalleeSavedRegsViaCopy(const MachineFunction *MF) const { 431 return nullptr; 432 } 433 434 /// Return a mask of call-preserved registers for the given calling convention 435 /// on the current function. The mask should include all call-preserved 436 /// aliases. This is used by the register allocator to determine which 437 /// registers can be live across a call. 438 /// 439 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 440 /// A set bit indicates that all bits of the corresponding register are 441 /// preserved across the function call. The bit mask is expected to be 442 /// sub-register complete, i.e. if A is preserved, so are all its 443 /// sub-registers. 444 /// 445 /// Bits are numbered from the LSB, so the bit for physical register Reg can 446 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 447 /// 448 /// A NULL pointer means that no register mask will be used, and call 449 /// instructions should use implicit-def operands to indicate call clobbered 450 /// registers. 451 /// 452 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 453 CallingConv::ID) const { 454 // The default mask clobbers everything. All targets should override. 455 return nullptr; 456 } 457 458 /// Return a register mask that clobbers everything. 459 virtual const uint32_t *getNoPreservedMask() const { 460 llvm_unreachable("target does not provide no presered mask"); 461 } 462 463 /// Return all the call-preserved register masks defined for this target. 464 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 465 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 466 467 /// Returns a bitset indexed by physical register number indicating if a 468 /// register is a special register that has particular uses and should be 469 /// considered unavailable at all times, e.g. SP, RA. This is 470 /// used by register scavenger to determine what registers are free. 471 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 472 473 /// Prior to adding the live-out mask to a stackmap or patchpoint 474 /// instruction, provide the target the opportunity to adjust it (mainly to 475 /// remove pseudo-registers that should be ignored). 476 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { } 477 478 /// Return a super-register of the specified register 479 /// Reg so its sub-register of index SubIdx is Reg. 480 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 481 const TargetRegisterClass *RC) const { 482 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 483 } 484 485 /// Return a subclass of the specified register 486 /// class A so that each register in it has a sub-register of the 487 /// specified sub-register index which is in the specified register class B. 488 /// 489 /// TableGen will synthesize missing A sub-classes. 490 virtual const TargetRegisterClass * 491 getMatchingSuperRegClass(const TargetRegisterClass *A, 492 const TargetRegisterClass *B, unsigned Idx) const; 493 494 // For a copy-like instruction that defines a register of class DefRC with 495 // subreg index DefSubReg, reading from another source with class SrcRC and 496 // subregister SrcSubReg return true if this is a preferrable copy 497 // instruction or an earlier use should be used. 498 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 499 unsigned DefSubReg, 500 const TargetRegisterClass *SrcRC, 501 unsigned SrcSubReg) const; 502 503 /// Returns the largest legal sub-class of RC that 504 /// supports the sub-register index Idx. 505 /// If no such sub-class exists, return NULL. 506 /// If all registers in RC already have an Idx sub-register, return RC. 507 /// 508 /// TableGen generates a version of this function that is good enough in most 509 /// cases. Targets can override if they have constraints that TableGen 510 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 511 /// supported by the full GR32 register class in 64-bit mode, but only by the 512 /// GR32_ABCD regiister class in 32-bit mode. 513 /// 514 /// TableGen will synthesize missing RC sub-classes. 515 virtual const TargetRegisterClass * 516 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 517 assert(Idx == 0 && "Target has no sub-registers"); 518 return RC; 519 } 520 521 /// Return the subregister index you get from composing 522 /// two subregister indices. 523 /// 524 /// The special null sub-register index composes as the identity. 525 /// 526 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 527 /// returns c. Note that composeSubRegIndices does not tell you about illegal 528 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 529 /// b, composeSubRegIndices doesn't tell you. 530 /// 531 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 532 /// ssub_0:S0 - ssub_3:S3 subregs. 533 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 534 /// 535 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 536 if (!a) return b; 537 if (!b) return a; 538 return composeSubRegIndicesImpl(a, b); 539 } 540 541 /// Transforms a LaneMask computed for one subregister to the lanemask that 542 /// would have been computed when composing the subsubregisters with IdxA 543 /// first. @sa composeSubRegIndices() 544 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 545 LaneBitmask Mask) const { 546 if (!IdxA) 547 return Mask; 548 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 549 } 550 551 /// Debugging helper: dump register in human readable form to dbgs() stream. 552 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, 553 const TargetRegisterInfo* TRI = nullptr); 554 555 protected: 556 /// Overridden by TableGen in targets that have sub-registers. 557 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 558 llvm_unreachable("Target has no sub-registers"); 559 } 560 561 /// Overridden by TableGen in targets that have sub-registers. 562 virtual LaneBitmask 563 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 564 llvm_unreachable("Target has no sub-registers"); 565 } 566 567 public: 568 /// Find a common super-register class if it exists. 569 /// 570 /// Find a register class, SuperRC and two sub-register indices, PreA and 571 /// PreB, such that: 572 /// 573 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 574 /// 575 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 576 /// 577 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 578 /// 579 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 580 /// requirements, and there is no register class with a smaller spill size 581 /// that satisfies the requirements. 582 /// 583 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 584 /// 585 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 586 /// that case, the returned register class will be a sub-class of the 587 /// corresponding argument register class. 588 /// 589 /// The function returns NULL if no register class can be found. 590 /// 591 const TargetRegisterClass* 592 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 593 const TargetRegisterClass *RCB, unsigned SubB, 594 unsigned &PreA, unsigned &PreB) const; 595 596 //===--------------------------------------------------------------------===// 597 // Register Class Information 598 // 599 600 /// Register class iterators 601 /// 602 regclass_iterator regclass_begin() const { return RegClassBegin; } 603 regclass_iterator regclass_end() const { return RegClassEnd; } 604 605 unsigned getNumRegClasses() const { 606 return (unsigned)(regclass_end()-regclass_begin()); 607 } 608 609 /// Returns the register class associated with the enumeration value. 610 /// See class MCOperandInfo. 611 const TargetRegisterClass *getRegClass(unsigned i) const { 612 assert(i < getNumRegClasses() && "Register Class ID out of range"); 613 return RegClassBegin[i]; 614 } 615 616 /// Returns the name of the register class. 617 const char *getRegClassName(const TargetRegisterClass *Class) const { 618 return MCRegisterInfo::getRegClassName(Class->MC); 619 } 620 621 /// Find the largest common subclass of A and B. 622 /// Return NULL if there is no common subclass. 623 /// The common subclass should contain 624 /// simple value type SVT if it is not the Any type. 625 const TargetRegisterClass * 626 getCommonSubClass(const TargetRegisterClass *A, 627 const TargetRegisterClass *B, 628 const MVT::SimpleValueType SVT = 629 MVT::SimpleValueType::Any) const; 630 631 /// Returns a TargetRegisterClass used for pointer values. 632 /// If a target supports multiple different pointer register classes, 633 /// kind specifies which one is indicated. 634 virtual const TargetRegisterClass * 635 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 636 llvm_unreachable("Target didn't implement getPointerRegClass!"); 637 } 638 639 /// Returns a legal register class to copy a register in the specified class 640 /// to or from. If it is possible to copy the register directly without using 641 /// a cross register class copy, return the specified RC. Returns NULL if it 642 /// is not possible to copy between two registers of the specified class. 643 virtual const TargetRegisterClass * 644 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 645 return RC; 646 } 647 648 /// Returns the largest super class of RC that is legal to use in the current 649 /// sub-target and has the same spill size. 650 /// The returned register class can be used to create virtual registers which 651 /// means that all its registers can be copied and spilled. 652 virtual const TargetRegisterClass * 653 getLargestLegalSuperClass(const TargetRegisterClass *RC, 654 const MachineFunction &) const { 655 /// The default implementation is very conservative and doesn't allow the 656 /// register allocator to inflate register classes. 657 return RC; 658 } 659 660 /// Return the register pressure "high water mark" for the specific register 661 /// class. The scheduler is in high register pressure mode (for the specific 662 /// register class) if it goes over the limit. 663 /// 664 /// Note: this is the old register pressure model that relies on a manually 665 /// specified representative register class per value type. 666 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 667 MachineFunction &MF) const { 668 return 0; 669 } 670 671 /// Return a heuristic for the machine scheduler to compare the profitability 672 /// of increasing one register pressure set versus another. The scheduler 673 /// will prefer increasing the register pressure of the set which returns 674 /// the largest value for this function. 675 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 676 unsigned PSetID) const { 677 return PSetID; 678 } 679 680 /// Get the weight in units of pressure for this register class. 681 virtual const RegClassWeight &getRegClassWeight( 682 const TargetRegisterClass *RC) const = 0; 683 684 /// Get the weight in units of pressure for this register unit. 685 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 686 687 /// Get the number of dimensions of register pressure. 688 virtual unsigned getNumRegPressureSets() const = 0; 689 690 /// Get the name of this register unit pressure set. 691 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 692 693 /// Get the register unit pressure limit for this dimension. 694 /// This limit must be adjusted dynamically for reserved registers. 695 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 696 unsigned Idx) const = 0; 697 698 /// Get the dimensions of register pressure impacted by this register class. 699 /// Returns a -1 terminated array of pressure set IDs. 700 virtual const int *getRegClassPressureSets( 701 const TargetRegisterClass *RC) const = 0; 702 703 /// Get the dimensions of register pressure impacted by this register unit. 704 /// Returns a -1 terminated array of pressure set IDs. 705 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 706 707 /// Get a list of 'hint' registers that the register allocator should try 708 /// first when allocating a physical register for the virtual register 709 /// VirtReg. These registers are effectively moved to the front of the 710 /// allocation order. 711 /// 712 /// The Order argument is the allocation order for VirtReg's register class 713 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 714 /// come from Order, and they must not be reserved. 715 /// 716 /// The default implementation of this function can resolve 717 /// target-independent hints provided to MRI::setRegAllocationHint with 718 /// HintType == 0. Targets that override this function should defer to the 719 /// default implementation if they have no reason to change the allocation 720 /// order for VirtReg. There may be target-independent hints. 721 virtual void getRegAllocationHints(unsigned VirtReg, 722 ArrayRef<MCPhysReg> Order, 723 SmallVectorImpl<MCPhysReg> &Hints, 724 const MachineFunction &MF, 725 const VirtRegMap *VRM = nullptr, 726 const LiveRegMatrix *Matrix = nullptr) 727 const; 728 729 /// A callback to allow target a chance to update register allocation hints 730 /// when a register is "changed" (e.g. coalesced) to another register. 731 /// e.g. On ARM, some virtual registers should target register pairs, 732 /// if one of pair is coalesced to another register, the allocation hint of 733 /// the other half of the pair should be changed to point to the new register. 734 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg, 735 MachineFunction &MF) const { 736 // Do nothing. 737 } 738 739 /// Allow the target to reverse allocation order of local live ranges. This 740 /// will generally allocate shorter local live ranges first. For targets with 741 /// many registers, this could reduce regalloc compile time by a large 742 /// factor. It is disabled by default for three reasons: 743 /// (1) Top-down allocation is simpler and easier to debug for targets that 744 /// don't benefit from reversing the order. 745 /// (2) Bottom-up allocation could result in poor evicition decisions on some 746 /// targets affecting the performance of compiled code. 747 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. 748 virtual bool reverseLocalAssignment() const { return false; } 749 750 /// Allow the target to override the cost of using a callee-saved register for 751 /// the first time. Default value of 0 means we will use a callee-saved 752 /// register if it is available. 753 virtual unsigned getCSRFirstUseCost() const { return 0; } 754 755 /// Returns true if the target requires (and can make use of) the register 756 /// scavenger. 757 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 758 return false; 759 } 760 761 /// Returns true if the target wants to use frame pointer based accesses to 762 /// spill to the scavenger emergency spill slot. 763 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 764 return true; 765 } 766 767 /// Returns true if the target requires post PEI scavenging of registers for 768 /// materializing frame index constants. 769 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 770 return false; 771 } 772 773 /// Returns true if the target wants the LocalStackAllocation pass to be run 774 /// and virtual base registers used for more efficient stack access. 775 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 776 return false; 777 } 778 779 /// Return true if target has reserved a spill slot in the stack frame of 780 /// the given function for the specified register. e.g. On x86, if the frame 781 /// register is required, the first fixed stack object is reserved as its 782 /// spill slot. This tells PEI not to create a new stack frame 783 /// object for the given register. It should be called only after 784 /// determineCalleeSaves(). 785 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 786 int &FrameIdx) const { 787 return false; 788 } 789 790 /// Returns true if the live-ins should be tracked after register allocation. 791 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 792 return false; 793 } 794 795 /// True if the stack can be realigned for the target. 796 virtual bool canRealignStack(const MachineFunction &MF) const; 797 798 /// True if storage within the function requires the stack pointer to be 799 /// aligned more than the normal calling convention calls for. 800 /// This cannot be overriden by the target, but canRealignStack can be 801 /// overridden. 802 bool needsStackRealignment(const MachineFunction &MF) const; 803 804 /// Get the offset from the referenced frame index in the instruction, 805 /// if there is one. 806 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 807 int Idx) const { 808 return 0; 809 } 810 811 /// Returns true if the instruction's frame index reference would be better 812 /// served by a base register other than FP or SP. 813 /// Used by LocalStackFrameAllocation to determine which frame index 814 /// references it should create new base registers for. 815 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 816 return false; 817 } 818 819 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 820 /// before insertion point I. 821 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 822 unsigned BaseReg, int FrameIdx, 823 int64_t Offset) const { 824 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 825 "target"); 826 } 827 828 /// Resolve a frame index operand of an instruction 829 /// to reference the indicated base register plus offset instead. 830 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, 831 int64_t Offset) const { 832 llvm_unreachable("resolveFrameIndex does not exist on this target"); 833 } 834 835 /// Determine whether a given base register plus offset immediate is 836 /// encodable to resolve a frame index. 837 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, 838 int64_t Offset) const { 839 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 840 } 841 842 /// Spill the register so it can be used by the register scavenger. 843 /// Return true if the register was spilled, false otherwise. 844 /// If this function does not spill the register, the scavenger 845 /// will instead spill it to the emergency spill slot. 846 /// 847 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 848 MachineBasicBlock::iterator I, 849 MachineBasicBlock::iterator &UseMI, 850 const TargetRegisterClass *RC, 851 unsigned Reg) const { 852 return false; 853 } 854 855 /// This method must be overriden to eliminate abstract frame indices from 856 /// instructions which may use them. The instruction referenced by the 857 /// iterator contains an MO_FrameIndex operand which must be eliminated by 858 /// this method. This method may modify or replace the specified instruction, 859 /// as long as it keeps the iterator pointing at the finished product. 860 /// SPAdj is the SP adjustment due to call frame setup instruction. 861 /// FIOperandNum is the FI operand number. 862 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 863 int SPAdj, unsigned FIOperandNum, 864 RegScavenger *RS = nullptr) const = 0; 865 866 //===--------------------------------------------------------------------===// 867 /// Subtarget Hooks 868 869 /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true. 870 virtual bool shouldCoalesce(MachineInstr *MI, 871 const TargetRegisterClass *SrcRC, 872 unsigned SubReg, 873 const TargetRegisterClass *DstRC, 874 unsigned DstSubReg, 875 const TargetRegisterClass *NewRC) const 876 { return true; } 877 878 //===--------------------------------------------------------------------===// 879 /// Debug information queries. 880 881 /// getFrameRegister - This method should return the register used as a base 882 /// for values allocated in the current stack frame. 883 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 884 }; 885 886 887 //===----------------------------------------------------------------------===// 888 // SuperRegClassIterator 889 //===----------------------------------------------------------------------===// 890 // 891 // Iterate over the possible super-registers for a given register class. The 892 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 893 // possible classes of super-registers. 894 // 895 // Each bit mask will have at least one set bit, and each set bit in Mask 896 // corresponds to a SuperRC such that: 897 // 898 // For all Reg in SuperRC: Reg:Idx is in RC. 899 // 900 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 901 // also satisfies the above requirement, assuming Reg:0 == Reg. 902 // 903 class SuperRegClassIterator { 904 const unsigned RCMaskWords; 905 unsigned SubReg; 906 const uint16_t *Idx; 907 const uint32_t *Mask; 908 909 public: 910 /// Create a SuperRegClassIterator that visits all the super-register classes 911 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 912 SuperRegClassIterator(const TargetRegisterClass *RC, 913 const TargetRegisterInfo *TRI, 914 bool IncludeSelf = false) 915 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 916 SubReg(0), 917 Idx(RC->getSuperRegIndices()), 918 Mask(RC->getSubClassMask()) { 919 if (!IncludeSelf) 920 ++*this; 921 } 922 923 /// Returns true if this iterator is still pointing at a valid entry. 924 bool isValid() const { return Idx; } 925 926 /// Returns the current sub-register index. 927 unsigned getSubReg() const { return SubReg; } 928 929 /// Returns the bit mask if register classes that getSubReg() projects into 930 /// RC. 931 const uint32_t *getMask() const { return Mask; } 932 933 /// Advance iterator to the next entry. 934 void operator++() { 935 assert(isValid() && "Cannot move iterator past end."); 936 Mask += RCMaskWords; 937 SubReg = *Idx++; 938 if (!SubReg) 939 Idx = nullptr; 940 } 941 }; 942 943 // This is useful when building IndexedMaps keyed on virtual registers 944 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { 945 unsigned operator()(unsigned Reg) const { 946 return TargetRegisterInfo::virtReg2Index(Reg); 947 } 948 }; 949 950 /// Prints virtual and physical registers with or without a TRI instance. 951 /// 952 /// The format is: 953 /// %noreg - NoRegister 954 /// %vreg5 - a virtual register. 955 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 956 /// %EAX - a physical register 957 /// %physreg17 - a physical register when no TRI instance given. 958 /// 959 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 960 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr, 961 unsigned SubRegIdx = 0); 962 963 /// Create Printable object to print register units on a \ref raw_ostream. 964 /// 965 /// Register units are named after their root registers: 966 /// 967 /// AL - Single root. 968 /// FP0~ST7 - Dual roots. 969 /// 970 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 971 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 972 973 /// \brief Create Printable object to print virtual registers and physical 974 /// registers on a \ref raw_ostream. 975 Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 976 977 /// Create Printable object to print LaneBitmasks on a \ref raw_ostream. 978 Printable PrintLaneMask(LaneBitmask LaneMask); 979 980 } // End llvm namespace 981 982 #endif 983