Home | History | Annotate | Download | only in cmac
      1 /* ====================================================================
      2  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    licensing (at) OpenSSL.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ==================================================================== */
     48 
     49 #include <openssl/cmac.h>
     50 
     51 #include <assert.h>
     52 #include <string.h>
     53 
     54 #include <openssl/aes.h>
     55 #include <openssl/cipher.h>
     56 #include <openssl/mem.h>
     57 
     58 
     59 struct cmac_ctx_st {
     60   EVP_CIPHER_CTX cipher_ctx;
     61   /* k1 and k2 are the CMAC subkeys. See
     62    * https://tools.ietf.org/html/rfc4493#section-2.3 */
     63   uint8_t k1[AES_BLOCK_SIZE];
     64   uint8_t k2[AES_BLOCK_SIZE];
     65   /* Last (possibly partial) scratch */
     66   uint8_t block[AES_BLOCK_SIZE];
     67   /* block_used contains the number of valid bytes in |block|. */
     68   unsigned block_used;
     69 };
     70 
     71 static void CMAC_CTX_init(CMAC_CTX *ctx) {
     72   EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
     73 }
     74 
     75 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
     76   EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
     77   OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
     78   OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
     79   OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
     80 }
     81 
     82 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
     83              const uint8_t *in, size_t in_len) {
     84   const EVP_CIPHER *cipher;
     85   switch (key_len) {
     86     case 16:
     87       cipher = EVP_aes_128_cbc();
     88       break;
     89     case 32:
     90       cipher = EVP_aes_256_cbc();
     91       break;
     92     default:
     93       return 0;
     94   }
     95 
     96   size_t scratch_out_len;
     97   CMAC_CTX ctx;
     98   CMAC_CTX_init(&ctx);
     99 
    100   const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
    101                  CMAC_Update(&ctx, in, in_len) &&
    102                  CMAC_Final(&ctx, out, &scratch_out_len);
    103 
    104   CMAC_CTX_cleanup(&ctx);
    105   return ok;
    106 }
    107 
    108 CMAC_CTX *CMAC_CTX_new(void) {
    109   CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
    110   if (ctx != NULL) {
    111     CMAC_CTX_init(ctx);
    112   }
    113   return ctx;
    114 }
    115 
    116 void CMAC_CTX_free(CMAC_CTX *ctx) {
    117   if (ctx == NULL) {
    118     return;
    119   }
    120 
    121   CMAC_CTX_cleanup(ctx);
    122   OPENSSL_free(ctx);
    123 }
    124 
    125 /* binary_field_mul_x treats the 128 bits at |in| as an element of GF(2)
    126  * with a hard-coded reduction polynomial and sets |out| as x times the
    127  * input.
    128  *
    129  * See https://tools.ietf.org/html/rfc4493#section-2.3 */
    130 static void binary_field_mul_x(uint8_t out[16], const uint8_t in[16]) {
    131   unsigned i;
    132 
    133   /* Shift |in| to left, including carry. */
    134   for (i = 0; i < 15; i++) {
    135     out[i] = (in[i] << 1) | (in[i+1] >> 7);
    136   }
    137 
    138   /* If MSB set fixup with R. */
    139   const uint8_t carry = in[0] >> 7;
    140   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
    141 }
    142 
    143 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
    144 
    145 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
    146               const EVP_CIPHER *cipher, ENGINE *engine) {
    147   uint8_t scratch[AES_BLOCK_SIZE];
    148 
    149   if (EVP_CIPHER_block_size(cipher) != AES_BLOCK_SIZE ||
    150       EVP_CIPHER_key_length(cipher) != key_len ||
    151       !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
    152       !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, AES_BLOCK_SIZE) ||
    153       /* Reset context again ready for first data. */
    154       !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
    155     return 0;
    156   }
    157 
    158   binary_field_mul_x(ctx->k1, scratch);
    159   binary_field_mul_x(ctx->k2, ctx->k1);
    160   ctx->block_used = 0;
    161 
    162   return 1;
    163 }
    164 
    165 int CMAC_Reset(CMAC_CTX *ctx) {
    166   ctx->block_used = 0;
    167   return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
    168 }
    169 
    170 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
    171   uint8_t scratch[AES_BLOCK_SIZE];
    172 
    173   if (ctx->block_used > 0) {
    174     size_t todo = AES_BLOCK_SIZE - ctx->block_used;
    175     if (in_len < todo) {
    176       todo = in_len;
    177     }
    178 
    179     memcpy(ctx->block + ctx->block_used, in, todo);
    180     in += todo;
    181     in_len -= todo;
    182     ctx->block_used += todo;
    183 
    184     /* If |in_len| is zero then either |ctx->block_used| is less than
    185      * |AES_BLOCK_SIZE|, in which case we can stop here, or |ctx->block_used|
    186      * is exactly |AES_BLOCK_SIZE| but there's no more data to process. In the
    187      * latter case we don't want to process this block now because it might be
    188      * the last block and that block is treated specially. */
    189     if (in_len == 0) {
    190       return 1;
    191     }
    192 
    193     assert(ctx->block_used == AES_BLOCK_SIZE);
    194 
    195     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, AES_BLOCK_SIZE)) {
    196       return 0;
    197     }
    198   }
    199 
    200   /* Encrypt all but one of the remaining blocks. */
    201   while (in_len > AES_BLOCK_SIZE) {
    202     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, AES_BLOCK_SIZE)) {
    203       return 0;
    204     }
    205     in += AES_BLOCK_SIZE;
    206     in_len -= AES_BLOCK_SIZE;
    207   }
    208 
    209   memcpy(ctx->block, in, in_len);
    210   ctx->block_used = in_len;
    211 
    212   return 1;
    213 }
    214 
    215 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
    216   *out_len = AES_BLOCK_SIZE;
    217   if (out == NULL) {
    218     return 1;
    219   }
    220 
    221   const uint8_t *mask = ctx->k1;
    222 
    223   if (ctx->block_used != AES_BLOCK_SIZE) {
    224     /* If the last block is incomplete, terminate it with a single 'one' bit
    225      * followed by zeros. */
    226     ctx->block[ctx->block_used] = 0x80;
    227     memset(ctx->block + ctx->block_used + 1, 0,
    228            AES_BLOCK_SIZE - (ctx->block_used + 1));
    229 
    230     mask = ctx->k2;
    231   }
    232 
    233   unsigned i;
    234   for (i = 0; i < AES_BLOCK_SIZE; i++) {
    235     out[i] = ctx->block[i] ^ mask[i];
    236   }
    237 
    238   return EVP_Cipher(&ctx->cipher_ctx, out, out, AES_BLOCK_SIZE);
    239 }
    240