1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for inline asm statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/RecordLayout.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/Preprocessor.h" 20 #include "clang/Sema/Initialization.h" 21 #include "clang/Sema/Lookup.h" 22 #include "clang/Sema/Scope.h" 23 #include "clang/Sema/ScopeInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/MC/MCParser/MCAsmParser.h" 27 using namespace clang; 28 using namespace sema; 29 30 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 31 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 32 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 33 /// provide a strong guidance to not use it. 34 /// 35 /// This method checks to see if the argument is an acceptable l-value and 36 /// returns false if it is a case we can handle. 37 static bool CheckAsmLValue(const Expr *E, Sema &S) { 38 // Type dependent expressions will be checked during instantiation. 39 if (E->isTypeDependent()) 40 return false; 41 42 if (E->isLValue()) 43 return false; // Cool, this is an lvalue. 44 45 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 46 // are supposed to allow. 47 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 48 if (E != E2 && E2->isLValue()) { 49 if (!S.getLangOpts().HeinousExtensions) 50 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) 51 << E->getSourceRange(); 52 else 53 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 54 << E->getSourceRange(); 55 // Accept, even if we emitted an error diagnostic. 56 return false; 57 } 58 59 // None of the above, just randomly invalid non-lvalue. 60 return true; 61 } 62 63 /// isOperandMentioned - Return true if the specified operand # is mentioned 64 /// anywhere in the decomposed asm string. 65 static bool isOperandMentioned(unsigned OpNo, 66 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 67 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 68 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 69 if (!Piece.isOperand()) continue; 70 71 // If this is a reference to the input and if the input was the smaller 72 // one, then we have to reject this asm. 73 if (Piece.getOperandNo() == OpNo) 74 return true; 75 } 76 return false; 77 } 78 79 static bool CheckNakedParmReference(Expr *E, Sema &S) { 80 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 81 if (!Func) 82 return false; 83 if (!Func->hasAttr<NakedAttr>()) 84 return false; 85 86 SmallVector<Expr*, 4> WorkList; 87 WorkList.push_back(E); 88 while (WorkList.size()) { 89 Expr *E = WorkList.pop_back_val(); 90 if (isa<CXXThisExpr>(E)) { 91 S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref); 92 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 93 return true; 94 } 95 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 96 if (isa<ParmVarDecl>(DRE->getDecl())) { 97 S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref); 98 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 99 return true; 100 } 101 } 102 for (Stmt *Child : E->children()) { 103 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 104 WorkList.push_back(E); 105 } 106 } 107 return false; 108 } 109 110 /// \brief Returns true if given expression is not compatible with inline 111 /// assembly's memory constraint; false otherwise. 112 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 113 TargetInfo::ConstraintInfo &Info, 114 bool is_input_expr) { 115 enum { 116 ExprBitfield = 0, 117 ExprVectorElt, 118 ExprGlobalRegVar, 119 ExprSafeType 120 } EType = ExprSafeType; 121 122 // Bitfields, vector elements and global register variables are not 123 // compatible. 124 if (E->refersToBitField()) 125 EType = ExprBitfield; 126 else if (E->refersToVectorElement()) 127 EType = ExprVectorElt; 128 else if (E->refersToGlobalRegisterVar()) 129 EType = ExprGlobalRegVar; 130 131 if (EType != ExprSafeType) { 132 S.Diag(E->getLocStart(), diag::err_asm_non_addr_value_in_memory_constraint) 133 << EType << is_input_expr << Info.getConstraintStr() 134 << E->getSourceRange(); 135 return true; 136 } 137 138 return false; 139 } 140 141 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 142 bool IsVolatile, unsigned NumOutputs, 143 unsigned NumInputs, IdentifierInfo **Names, 144 MultiExprArg constraints, MultiExprArg Exprs, 145 Expr *asmString, MultiExprArg clobbers, 146 SourceLocation RParenLoc) { 147 unsigned NumClobbers = clobbers.size(); 148 StringLiteral **Constraints = 149 reinterpret_cast<StringLiteral**>(constraints.data()); 150 StringLiteral *AsmString = cast<StringLiteral>(asmString); 151 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 152 153 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 154 155 // The parser verifies that there is a string literal here. 156 assert(AsmString->isAscii()); 157 158 // If we're compiling CUDA file and function attributes indicate that it's not 159 // for this compilation side, skip all the checks. 160 if (!DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) { 161 GCCAsmStmt *NS = new (Context) GCCAsmStmt( 162 Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, 163 Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, RParenLoc); 164 return NS; 165 } 166 167 for (unsigned i = 0; i != NumOutputs; i++) { 168 StringLiteral *Literal = Constraints[i]; 169 assert(Literal->isAscii()); 170 171 StringRef OutputName; 172 if (Names[i]) 173 OutputName = Names[i]->getName(); 174 175 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 176 if (!Context.getTargetInfo().validateOutputConstraint(Info)) 177 return StmtError(Diag(Literal->getLocStart(), 178 diag::err_asm_invalid_output_constraint) 179 << Info.getConstraintStr()); 180 181 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 182 if (ER.isInvalid()) 183 return StmtError(); 184 Exprs[i] = ER.get(); 185 186 // Check that the output exprs are valid lvalues. 187 Expr *OutputExpr = Exprs[i]; 188 189 // Referring to parameters is not allowed in naked functions. 190 if (CheckNakedParmReference(OutputExpr, *this)) 191 return StmtError(); 192 193 // Check that the output expression is compatible with memory constraint. 194 if (Info.allowsMemory() && 195 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 196 return StmtError(); 197 198 OutputConstraintInfos.push_back(Info); 199 200 // If this is dependent, just continue. 201 if (OutputExpr->isTypeDependent()) 202 continue; 203 204 Expr::isModifiableLvalueResult IsLV = 205 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 206 switch (IsLV) { 207 case Expr::MLV_Valid: 208 // Cool, this is an lvalue. 209 break; 210 case Expr::MLV_ArrayType: 211 // This is OK too. 212 break; 213 case Expr::MLV_LValueCast: { 214 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 215 if (!getLangOpts().HeinousExtensions) { 216 Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue) 217 << OutputExpr->getSourceRange(); 218 } else { 219 Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 220 << OutputExpr->getSourceRange(); 221 } 222 // Accept, even if we emitted an error diagnostic. 223 break; 224 } 225 case Expr::MLV_IncompleteType: 226 case Expr::MLV_IncompleteVoidType: 227 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(), 228 diag::err_dereference_incomplete_type)) 229 return StmtError(); 230 default: 231 return StmtError(Diag(OutputExpr->getLocStart(), 232 diag::err_asm_invalid_lvalue_in_output) 233 << OutputExpr->getSourceRange()); 234 } 235 236 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 237 if (!Context.getTargetInfo().validateOutputSize(Literal->getString(), 238 Size)) 239 return StmtError(Diag(OutputExpr->getLocStart(), 240 diag::err_asm_invalid_output_size) 241 << Info.getConstraintStr()); 242 } 243 244 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 245 246 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 247 StringLiteral *Literal = Constraints[i]; 248 assert(Literal->isAscii()); 249 250 StringRef InputName; 251 if (Names[i]) 252 InputName = Names[i]->getName(); 253 254 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 255 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 256 Info)) { 257 return StmtError(Diag(Literal->getLocStart(), 258 diag::err_asm_invalid_input_constraint) 259 << Info.getConstraintStr()); 260 } 261 262 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 263 if (ER.isInvalid()) 264 return StmtError(); 265 Exprs[i] = ER.get(); 266 267 Expr *InputExpr = Exprs[i]; 268 269 // Referring to parameters is not allowed in naked functions. 270 if (CheckNakedParmReference(InputExpr, *this)) 271 return StmtError(); 272 273 // Check that the input expression is compatible with memory constraint. 274 if (Info.allowsMemory() && 275 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 276 return StmtError(); 277 278 // Only allow void types for memory constraints. 279 if (Info.allowsMemory() && !Info.allowsRegister()) { 280 if (CheckAsmLValue(InputExpr, *this)) 281 return StmtError(Diag(InputExpr->getLocStart(), 282 diag::err_asm_invalid_lvalue_in_input) 283 << Info.getConstraintStr() 284 << InputExpr->getSourceRange()); 285 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 286 if (!InputExpr->isValueDependent()) { 287 llvm::APSInt Result; 288 if (!InputExpr->EvaluateAsInt(Result, Context)) 289 return StmtError( 290 Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected) 291 << Info.getConstraintStr() << InputExpr->getSourceRange()); 292 if (!Info.isValidAsmImmediate(Result)) 293 return StmtError(Diag(InputExpr->getLocStart(), 294 diag::err_invalid_asm_value_for_constraint) 295 << Result.toString(10) << Info.getConstraintStr() 296 << InputExpr->getSourceRange()); 297 } 298 299 } else { 300 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 301 if (Result.isInvalid()) 302 return StmtError(); 303 304 Exprs[i] = Result.get(); 305 } 306 307 if (Info.allowsRegister()) { 308 if (InputExpr->getType()->isVoidType()) { 309 return StmtError(Diag(InputExpr->getLocStart(), 310 diag::err_asm_invalid_type_in_input) 311 << InputExpr->getType() << Info.getConstraintStr() 312 << InputExpr->getSourceRange()); 313 } 314 } 315 316 InputConstraintInfos.push_back(Info); 317 318 const Type *Ty = Exprs[i]->getType().getTypePtr(); 319 if (Ty->isDependentType()) 320 continue; 321 322 if (!Ty->isVoidType() || !Info.allowsMemory()) 323 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(), 324 diag::err_dereference_incomplete_type)) 325 return StmtError(); 326 327 unsigned Size = Context.getTypeSize(Ty); 328 if (!Context.getTargetInfo().validateInputSize(Literal->getString(), 329 Size)) 330 return StmtError(Diag(InputExpr->getLocStart(), 331 diag::err_asm_invalid_input_size) 332 << Info.getConstraintStr()); 333 } 334 335 // Check that the clobbers are valid. 336 for (unsigned i = 0; i != NumClobbers; i++) { 337 StringLiteral *Literal = Clobbers[i]; 338 assert(Literal->isAscii()); 339 340 StringRef Clobber = Literal->getString(); 341 342 if (!Context.getTargetInfo().isValidClobber(Clobber)) 343 return StmtError(Diag(Literal->getLocStart(), 344 diag::err_asm_unknown_register_name) << Clobber); 345 } 346 347 GCCAsmStmt *NS = 348 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 349 NumInputs, Names, Constraints, Exprs.data(), 350 AsmString, NumClobbers, Clobbers, RParenLoc); 351 // Validate the asm string, ensuring it makes sense given the operands we 352 // have. 353 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 354 unsigned DiagOffs; 355 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 356 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 357 << AsmString->getSourceRange(); 358 return StmtError(); 359 } 360 361 // Validate constraints and modifiers. 362 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 363 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 364 if (!Piece.isOperand()) continue; 365 366 // Look for the correct constraint index. 367 unsigned ConstraintIdx = Piece.getOperandNo(); 368 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 369 370 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 371 // modifier '+'. 372 if (ConstraintIdx >= NumOperands) { 373 unsigned I = 0, E = NS->getNumOutputs(); 374 375 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 376 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 377 ConstraintIdx = I; 378 break; 379 } 380 381 assert(I != E && "Invalid operand number should have been caught in " 382 " AnalyzeAsmString"); 383 } 384 385 // Now that we have the right indexes go ahead and check. 386 StringLiteral *Literal = Constraints[ConstraintIdx]; 387 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 388 if (Ty->isDependentType() || Ty->isIncompleteType()) 389 continue; 390 391 unsigned Size = Context.getTypeSize(Ty); 392 std::string SuggestedModifier; 393 if (!Context.getTargetInfo().validateConstraintModifier( 394 Literal->getString(), Piece.getModifier(), Size, 395 SuggestedModifier)) { 396 Diag(Exprs[ConstraintIdx]->getLocStart(), 397 diag::warn_asm_mismatched_size_modifier); 398 399 if (!SuggestedModifier.empty()) { 400 auto B = Diag(Piece.getRange().getBegin(), 401 diag::note_asm_missing_constraint_modifier) 402 << SuggestedModifier; 403 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 404 B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(), 405 SuggestedModifier)); 406 } 407 } 408 } 409 410 // Validate tied input operands for type mismatches. 411 unsigned NumAlternatives = ~0U; 412 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 413 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 414 StringRef ConstraintStr = Info.getConstraintStr(); 415 unsigned AltCount = ConstraintStr.count(',') + 1; 416 if (NumAlternatives == ~0U) 417 NumAlternatives = AltCount; 418 else if (NumAlternatives != AltCount) 419 return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(), 420 diag::err_asm_unexpected_constraint_alternatives) 421 << NumAlternatives << AltCount); 422 } 423 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 424 ~0U); 425 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 426 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 427 StringRef ConstraintStr = Info.getConstraintStr(); 428 unsigned AltCount = ConstraintStr.count(',') + 1; 429 if (NumAlternatives == ~0U) 430 NumAlternatives = AltCount; 431 else if (NumAlternatives != AltCount) 432 return StmtError(Diag(NS->getInputExpr(i)->getLocStart(), 433 diag::err_asm_unexpected_constraint_alternatives) 434 << NumAlternatives << AltCount); 435 436 // If this is a tied constraint, verify that the output and input have 437 // either exactly the same type, or that they are int/ptr operands with the 438 // same size (int/long, int*/long, are ok etc). 439 if (!Info.hasTiedOperand()) continue; 440 441 unsigned TiedTo = Info.getTiedOperand(); 442 unsigned InputOpNo = i+NumOutputs; 443 Expr *OutputExpr = Exprs[TiedTo]; 444 Expr *InputExpr = Exprs[InputOpNo]; 445 446 // Make sure no more than one input constraint matches each output. 447 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 448 if (InputMatchedToOutput[TiedTo] != ~0U) { 449 Diag(NS->getInputExpr(i)->getLocStart(), 450 diag::err_asm_input_duplicate_match) 451 << TiedTo; 452 Diag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getLocStart(), 453 diag::note_asm_input_duplicate_first) 454 << TiedTo; 455 return StmtError(); 456 } 457 InputMatchedToOutput[TiedTo] = i; 458 459 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 460 continue; 461 462 QualType InTy = InputExpr->getType(); 463 QualType OutTy = OutputExpr->getType(); 464 if (Context.hasSameType(InTy, OutTy)) 465 continue; // All types can be tied to themselves. 466 467 // Decide if the input and output are in the same domain (integer/ptr or 468 // floating point. 469 enum AsmDomain { 470 AD_Int, AD_FP, AD_Other 471 } InputDomain, OutputDomain; 472 473 if (InTy->isIntegerType() || InTy->isPointerType()) 474 InputDomain = AD_Int; 475 else if (InTy->isRealFloatingType()) 476 InputDomain = AD_FP; 477 else 478 InputDomain = AD_Other; 479 480 if (OutTy->isIntegerType() || OutTy->isPointerType()) 481 OutputDomain = AD_Int; 482 else if (OutTy->isRealFloatingType()) 483 OutputDomain = AD_FP; 484 else 485 OutputDomain = AD_Other; 486 487 // They are ok if they are the same size and in the same domain. This 488 // allows tying things like: 489 // void* to int* 490 // void* to int if they are the same size. 491 // double to long double if they are the same size. 492 // 493 uint64_t OutSize = Context.getTypeSize(OutTy); 494 uint64_t InSize = Context.getTypeSize(InTy); 495 if (OutSize == InSize && InputDomain == OutputDomain && 496 InputDomain != AD_Other) 497 continue; 498 499 // If the smaller input/output operand is not mentioned in the asm string, 500 // then we can promote the smaller one to a larger input and the asm string 501 // won't notice. 502 bool SmallerValueMentioned = false; 503 504 // If this is a reference to the input and if the input was the smaller 505 // one, then we have to reject this asm. 506 if (isOperandMentioned(InputOpNo, Pieces)) { 507 // This is a use in the asm string of the smaller operand. Since we 508 // codegen this by promoting to a wider value, the asm will get printed 509 // "wrong". 510 SmallerValueMentioned |= InSize < OutSize; 511 } 512 if (isOperandMentioned(TiedTo, Pieces)) { 513 // If this is a reference to the output, and if the output is the larger 514 // value, then it's ok because we'll promote the input to the larger type. 515 SmallerValueMentioned |= OutSize < InSize; 516 } 517 518 // If the smaller value wasn't mentioned in the asm string, and if the 519 // output was a register, just extend the shorter one to the size of the 520 // larger one. 521 if (!SmallerValueMentioned && InputDomain != AD_Other && 522 OutputConstraintInfos[TiedTo].allowsRegister()) 523 continue; 524 525 // Either both of the operands were mentioned or the smaller one was 526 // mentioned. One more special case that we'll allow: if the tied input is 527 // integer, unmentioned, and is a constant, then we'll allow truncating it 528 // down to the size of the destination. 529 if (InputDomain == AD_Int && OutputDomain == AD_Int && 530 !isOperandMentioned(InputOpNo, Pieces) && 531 InputExpr->isEvaluatable(Context)) { 532 CastKind castKind = 533 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 534 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 535 Exprs[InputOpNo] = InputExpr; 536 NS->setInputExpr(i, InputExpr); 537 continue; 538 } 539 540 Diag(InputExpr->getLocStart(), 541 diag::err_asm_tying_incompatible_types) 542 << InTy << OutTy << OutputExpr->getSourceRange() 543 << InputExpr->getSourceRange(); 544 return StmtError(); 545 } 546 547 return NS; 548 } 549 550 static void fillInlineAsmTypeInfo(const ASTContext &Context, QualType T, 551 llvm::InlineAsmIdentifierInfo &Info) { 552 // Compute the type size (and array length if applicable?). 553 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity(); 554 if (T->isArrayType()) { 555 const ArrayType *ATy = Context.getAsArrayType(T); 556 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 557 Info.Length = Info.Size / Info.Type; 558 } 559 } 560 561 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 562 SourceLocation TemplateKWLoc, 563 UnqualifiedId &Id, 564 llvm::InlineAsmIdentifierInfo &Info, 565 bool IsUnevaluatedContext) { 566 Info.clear(); 567 568 if (IsUnevaluatedContext) 569 PushExpressionEvaluationContext(UnevaluatedAbstract, 570 ReuseLambdaContextDecl); 571 572 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 573 /*trailing lparen*/ false, 574 /*is & operand*/ false, 575 /*CorrectionCandidateCallback=*/nullptr, 576 /*IsInlineAsmIdentifier=*/ true); 577 578 if (IsUnevaluatedContext) 579 PopExpressionEvaluationContext(); 580 581 if (!Result.isUsable()) return Result; 582 583 Result = CheckPlaceholderExpr(Result.get()); 584 if (!Result.isUsable()) return Result; 585 586 // Referring to parameters is not allowed in naked functions. 587 if (CheckNakedParmReference(Result.get(), *this)) 588 return ExprError(); 589 590 QualType T = Result.get()->getType(); 591 592 // For now, reject dependent types. 593 if (T->isDependentType()) { 594 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T; 595 return ExprError(); 596 } 597 598 // Any sort of function type is fine. 599 if (T->isFunctionType()) { 600 return Result; 601 } 602 603 // Otherwise, it needs to be a complete type. 604 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 605 return ExprError(); 606 } 607 608 fillInlineAsmTypeInfo(Context, T, Info); 609 610 // We can work with the expression as long as it's not an r-value. 611 if (!Result.get()->isRValue()) 612 Info.IsVarDecl = true; 613 614 return Result; 615 } 616 617 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 618 unsigned &Offset, SourceLocation AsmLoc) { 619 Offset = 0; 620 SmallVector<StringRef, 2> Members; 621 Member.split(Members, "."); 622 623 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 624 LookupOrdinaryName); 625 626 if (!LookupName(BaseResult, getCurScope())) 627 return true; 628 629 LookupResult CurrBaseResult(BaseResult); 630 631 for (StringRef NextMember : Members) { 632 633 if (!CurrBaseResult.isSingleResult()) 634 return true; 635 636 const RecordType *RT = nullptr; 637 NamedDecl *FoundDecl = CurrBaseResult.getFoundDecl(); 638 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 639 RT = VD->getType()->getAs<RecordType>(); 640 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 641 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 642 RT = TD->getUnderlyingType()->getAs<RecordType>(); 643 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 644 RT = TD->getTypeForDecl()->getAs<RecordType>(); 645 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 646 RT = TD->getType()->getAs<RecordType>(); 647 if (!RT) 648 return true; 649 650 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 651 diag::err_asm_incomplete_type)) 652 return true; 653 654 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 655 SourceLocation(), LookupMemberName); 656 657 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 658 return true; 659 660 // FIXME: Handle IndirectFieldDecl? 661 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 662 if (!FD) 663 return true; 664 665 CurrBaseResult = FieldResult; 666 667 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 668 unsigned i = FD->getFieldIndex(); 669 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 670 Offset += (unsigned)Result.getQuantity(); 671 } 672 673 return false; 674 } 675 676 ExprResult 677 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, unsigned &Offset, 678 llvm::InlineAsmIdentifierInfo &Info, 679 SourceLocation AsmLoc) { 680 Info.clear(); 681 682 const RecordType *RT = E->getType()->getAs<RecordType>(); 683 // FIXME: Diagnose this as field access into a scalar type. 684 if (!RT) 685 return ExprResult(); 686 687 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 688 LookupMemberName); 689 690 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 691 return ExprResult(); 692 693 // Only normal and indirect field results will work. 694 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 695 if (!FD) 696 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 697 if (!FD) 698 return ExprResult(); 699 700 Offset = (unsigned)Context.toCharUnitsFromBits(Context.getFieldOffset(FD)) 701 .getQuantity(); 702 703 // Make an Expr to thread through OpDecl. 704 ExprResult Result = BuildMemberReferenceExpr( 705 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 706 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 707 if (Result.isInvalid()) 708 return Result; 709 Info.OpDecl = Result.get(); 710 711 fillInlineAsmTypeInfo(Context, Result.get()->getType(), Info); 712 713 // Fields are "variables" as far as inline assembly is concerned. 714 Info.IsVarDecl = true; 715 716 return Result; 717 } 718 719 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 720 ArrayRef<Token> AsmToks, 721 StringRef AsmString, 722 unsigned NumOutputs, unsigned NumInputs, 723 ArrayRef<StringRef> Constraints, 724 ArrayRef<StringRef> Clobbers, 725 ArrayRef<Expr*> Exprs, 726 SourceLocation EndLoc) { 727 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 728 getCurFunction()->setHasBranchProtectedScope(); 729 MSAsmStmt *NS = 730 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 731 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 732 Constraints, Exprs, AsmString, 733 Clobbers, EndLoc); 734 return NS; 735 } 736 737 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 738 SourceLocation Location, 739 bool AlwaysCreate) { 740 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 741 Location); 742 743 if (Label->isMSAsmLabel()) { 744 // If we have previously created this label implicitly, mark it as used. 745 Label->markUsed(Context); 746 } else { 747 // Otherwise, insert it, but only resolve it if we have seen the label itself. 748 std::string InternalName; 749 llvm::raw_string_ostream OS(InternalName); 750 // Create an internal name for the label. The name should not be a valid mangled 751 // name, and should be unique. We use a dot to make the name an invalid mangled 752 // name. 753 OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName; 754 Label->setMSAsmLabel(OS.str()); 755 } 756 if (AlwaysCreate) { 757 // The label might have been created implicitly from a previously encountered 758 // goto statement. So, for both newly created and looked up labels, we mark 759 // them as resolved. 760 Label->setMSAsmLabelResolved(); 761 } 762 // Adjust their location for being able to generate accurate diagnostics. 763 Label->setLocation(Location); 764 765 return Label; 766 } 767