1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_BASE_BIT_UTILS_H_ 18 #define ART_RUNTIME_BASE_BIT_UTILS_H_ 19 20 #include <iterator> 21 #include <limits> 22 #include <type_traits> 23 24 #include "base/logging.h" 25 #include "base/iteration_range.h" 26 #include "base/stl_util.h" 27 28 namespace art { 29 30 template<typename T> 31 static constexpr int CLZ(T x) { 32 static_assert(std::is_integral<T>::value, "T must be integral"); 33 static_assert(std::is_unsigned<T>::value, "T must be unsigned"); 34 static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4] 35 "T too large, must be smaller than long long"); 36 return 37 DCHECK_CONSTEXPR(x != 0, "x must not be zero", T(0)) 38 (sizeof(T) == sizeof(uint32_t)) 39 ? __builtin_clz(x) 40 : __builtin_clzll(x); 41 } 42 43 template<typename T> 44 static constexpr int CTZ(T x) { 45 static_assert(std::is_integral<T>::value, "T must be integral"); 46 // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check 47 // that T is an unsigned type. 48 static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4] 49 "T too large, must be smaller than long long"); 50 return 51 DCHECK_CONSTEXPR(x != 0, "x must not be zero", T(0)) 52 (sizeof(T) == sizeof(uint32_t)) 53 ? __builtin_ctz(x) 54 : __builtin_ctzll(x); 55 } 56 57 // Return the number of 1-bits in `x`. 58 template<typename T> 59 static constexpr int POPCOUNT(T x) { 60 return (sizeof(T) == sizeof(uint32_t)) 61 ? __builtin_popcount(x) 62 : __builtin_popcountll(x); 63 } 64 65 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. 66 template <typename T> 67 static constexpr ssize_t MostSignificantBit(T value) { 68 static_assert(std::is_integral<T>::value, "T must be integral"); 69 static_assert(std::is_unsigned<T>::value, "T must be unsigned"); 70 static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); 71 return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value); 72 } 73 74 // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. 75 template <typename T> 76 static constexpr ssize_t LeastSignificantBit(T value) { 77 static_assert(std::is_integral<T>::value, "T must be integral"); 78 static_assert(std::is_unsigned<T>::value, "T must be unsigned"); 79 return (value == 0) ? -1 : CTZ(value); 80 } 81 82 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. 83 template <typename T> 84 static constexpr size_t MinimumBitsToStore(T value) { 85 return static_cast<size_t>(MostSignificantBit(value) + 1); 86 } 87 88 template <typename T> 89 static constexpr inline T RoundUpToPowerOfTwo(T x) { 90 static_assert(std::is_integral<T>::value, "T must be integral"); 91 static_assert(std::is_unsigned<T>::value, "T must be unsigned"); 92 // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)). 93 return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u)); 94 } 95 96 template<typename T> 97 static constexpr bool IsPowerOfTwo(T x) { 98 static_assert(std::is_integral<T>::value, "T must be integral"); 99 // TODO: assert unsigned. There is currently many uses with signed values. 100 return (x & (x - 1)) == 0; 101 } 102 103 template<typename T> 104 static inline int WhichPowerOf2(T x) { 105 static_assert(std::is_integral<T>::value, "T must be integral"); 106 // TODO: assert unsigned. There is currently many uses with signed values. 107 DCHECK((x != 0) && IsPowerOfTwo(x)); 108 return CTZ(x); 109 } 110 111 // For rounding integers. 112 // Note: Omit the `n` from T type deduction, deduce only from the `x` argument. 113 template<typename T> 114 static constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED; 115 116 template<typename T> 117 static constexpr T RoundDown(T x, typename Identity<T>::type n) { 118 return 119 DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) 120 (x & -n); 121 } 122 123 template<typename T> 124 static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED; 125 126 template<typename T> 127 static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) { 128 return RoundDown(x + n - 1, n); 129 } 130 131 // For aligning pointers. 132 template<typename T> 133 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; 134 135 template<typename T> 136 static inline T* AlignDown(T* x, uintptr_t n) { 137 return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); 138 } 139 140 template<typename T> 141 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; 142 143 template<typename T> 144 static inline T* AlignUp(T* x, uintptr_t n) { 145 return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); 146 } 147 148 template<int n, typename T> 149 static constexpr bool IsAligned(T x) { 150 static_assert((n & (n - 1)) == 0, "n is not a power of two"); 151 return (x & (n - 1)) == 0; 152 } 153 154 template<int n, typename T> 155 static inline bool IsAligned(T* x) { 156 return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); 157 } 158 159 template<typename T> 160 static inline bool IsAlignedParam(T x, int n) { 161 return (x & (n - 1)) == 0; 162 } 163 164 #define CHECK_ALIGNED(value, alignment) \ 165 CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 166 167 #define DCHECK_ALIGNED(value, alignment) \ 168 DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 169 170 #define CHECK_ALIGNED_PARAM(value, alignment) \ 171 CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) 172 173 #define DCHECK_ALIGNED_PARAM(value, alignment) \ 174 DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) 175 176 // Like sizeof, but count how many bits a type takes. Pass type explicitly. 177 template <typename T> 178 static constexpr size_t BitSizeOf() { 179 static_assert(std::is_integral<T>::value, "T must be integral"); 180 typedef typename std::make_unsigned<T>::type unsigned_type; 181 static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); 182 static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!"); 183 return std::numeric_limits<unsigned_type>::digits; 184 } 185 186 // Like sizeof, but count how many bits a type takes. Infers type from parameter. 187 template <typename T> 188 static constexpr size_t BitSizeOf(T /*x*/) { 189 return BitSizeOf<T>(); 190 } 191 192 static inline uint16_t Low16Bits(uint32_t value) { 193 return static_cast<uint16_t>(value); 194 } 195 196 static inline uint16_t High16Bits(uint32_t value) { 197 return static_cast<uint16_t>(value >> 16); 198 } 199 200 static inline uint32_t Low32Bits(uint64_t value) { 201 return static_cast<uint32_t>(value); 202 } 203 204 static inline uint32_t High32Bits(uint64_t value) { 205 return static_cast<uint32_t>(value >> 32); 206 } 207 208 // Check whether an N-bit two's-complement representation can hold value. 209 template <typename T> 210 static inline bool IsInt(size_t N, T value) { 211 if (N == BitSizeOf<T>()) { 212 return true; 213 } else { 214 CHECK_LT(0u, N); 215 CHECK_LT(N, BitSizeOf<T>()); 216 T limit = static_cast<T>(1) << (N - 1u); 217 return (-limit <= value) && (value < limit); 218 } 219 } 220 221 template <typename T> 222 static constexpr T GetIntLimit(size_t bits) { 223 return 224 DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0) 225 DCHECK_CONSTEXPR(bits < BitSizeOf<T>(), "kBits must be < max.", 0) 226 static_cast<T>(1) << (bits - 1); 227 } 228 229 template <size_t kBits, typename T> 230 static constexpr bool IsInt(T value) { 231 static_assert(kBits > 0, "kBits cannot be zero."); 232 static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); 233 static_assert(std::is_signed<T>::value, "Needs a signed type."); 234 // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is 235 // trivially true. 236 return (kBits == BitSizeOf<T>()) ? 237 true : 238 (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits)); 239 } 240 241 template <size_t kBits, typename T> 242 static constexpr bool IsUint(T value) { 243 static_assert(kBits > 0, "kBits cannot be zero."); 244 static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); 245 static_assert(std::is_integral<T>::value, "Needs an integral type."); 246 // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is 247 // trivially true. 248 // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(), 249 // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. 250 return (0 <= value) && 251 (kBits == BitSizeOf<T>() || 252 (static_cast<typename std::make_unsigned<T>::type>(value) <= 253 GetIntLimit<typename std::make_unsigned<T>::type>(kBits) * 2u - 1u)); 254 } 255 256 template <size_t kBits, typename T> 257 static constexpr bool IsAbsoluteUint(T value) { 258 static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); 259 static_assert(std::is_integral<T>::value, "Needs an integral type."); 260 typedef typename std::make_unsigned<T>::type unsigned_type; 261 return (kBits == BitSizeOf<T>()) 262 ? true 263 : IsUint<kBits>(value < 0 264 ? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow. 265 : static_cast<unsigned_type>(value)); 266 } 267 268 // Generate maximum/minimum values for signed/unsigned n-bit integers 269 template <typename T> 270 static constexpr T MaxInt(size_t bits) { 271 return 272 DCHECK_CONSTEXPR(std::is_unsigned<T>::value || bits > 0, "bits cannot be zero for signed", 0) 273 DCHECK_CONSTEXPR(bits <= BitSizeOf<T>(), "kBits must be < max.", 0) 274 bits == BitSizeOf<T>() 275 ? std::numeric_limits<T>::max() 276 : std::is_signed<T>::value 277 ? (bits == 1 278 ? 0 279 : static_cast<T>(MaxInt<typename std::make_unsigned<T>::type>(bits - 1))) 280 : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1); 281 } 282 283 template <typename T> 284 static constexpr T MinInt(size_t bits) { 285 return 286 DCHECK_CONSTEXPR(std::is_unsigned<T>::value || bits > 0, "bits cannot be zero for signed", 0) 287 DCHECK_CONSTEXPR(bits <= BitSizeOf<T>(), "kBits must be < max.", 0) 288 bits == BitSizeOf<T>() 289 ? std::numeric_limits<T>::min() 290 : std::is_signed<T>::value 291 ? (bits == 1 ? -1 : static_cast<T>(-1) - MaxInt<T>(bits)) 292 : static_cast<T>(0); 293 } 294 295 // Using the Curiously Recurring Template Pattern to implement everything shared 296 // by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*(). 297 template <typename T, typename Iter> 298 class BitIteratorBase 299 : public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, void> { 300 static_assert(std::is_integral<T>::value, "T must be integral"); 301 static_assert(std::is_unsigned<T>::value, "T must be unsigned"); 302 303 static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size"); 304 305 public: 306 BitIteratorBase() : bits_(0u) { } 307 explicit BitIteratorBase(T bits) : bits_(bits) { } 308 309 Iter& operator++() { 310 DCHECK_NE(bits_, 0u); 311 uint32_t bit = *static_cast<Iter&>(*this); 312 bits_ &= ~(static_cast<T>(1u) << bit); 313 return static_cast<Iter&>(*this); 314 } 315 316 Iter& operator++(int) { 317 Iter tmp(static_cast<Iter&>(*this)); 318 ++*this; 319 return tmp; 320 } 321 322 protected: 323 T bits_; 324 325 template <typename U, typename I> 326 friend bool operator==(const BitIteratorBase<U, I>& lhs, const BitIteratorBase<U, I>& rhs); 327 }; 328 329 template <typename T, typename Iter> 330 bool operator==(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) { 331 return lhs.bits_ == rhs.bits_; 332 } 333 334 template <typename T, typename Iter> 335 bool operator!=(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) { 336 return !(lhs == rhs); 337 } 338 339 template <typename T> 340 class LowToHighBitIterator : public BitIteratorBase<T, LowToHighBitIterator<T>> { 341 public: 342 using BitIteratorBase<T, LowToHighBitIterator<T>>::BitIteratorBase; 343 344 uint32_t operator*() const { 345 DCHECK_NE(this->bits_, 0u); 346 return CTZ(this->bits_); 347 } 348 }; 349 350 template <typename T> 351 class HighToLowBitIterator : public BitIteratorBase<T, HighToLowBitIterator<T>> { 352 public: 353 using BitIteratorBase<T, HighToLowBitIterator<T>>::BitIteratorBase; 354 355 uint32_t operator*() const { 356 DCHECK_NE(this->bits_, 0u); 357 static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); 358 return std::numeric_limits<T>::digits - 1u - CLZ(this->bits_); 359 } 360 }; 361 362 template <typename T> 363 IterationRange<LowToHighBitIterator<T>> LowToHighBits(T bits) { 364 return IterationRange<LowToHighBitIterator<T>>( 365 LowToHighBitIterator<T>(bits), LowToHighBitIterator<T>()); 366 } 367 368 template <typename T> 369 IterationRange<HighToLowBitIterator<T>> HighToLowBits(T bits) { 370 return IterationRange<HighToLowBitIterator<T>>( 371 HighToLowBitIterator<T>(bits), HighToLowBitIterator<T>()); 372 } 373 374 } // namespace art 375 376 #endif // ART_RUNTIME_BASE_BIT_UTILS_H_ 377