1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Mangle.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/VTableBuilder.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/DiagnosticOptions.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/JamCRC.h" 32 33 using namespace clang; 34 35 namespace { 36 37 /// \brief Retrieve the declaration context that should be used when mangling 38 /// the given declaration. 39 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 40 // The ABI assumes that lambda closure types that occur within 41 // default arguments live in the context of the function. However, due to 42 // the way in which Clang parses and creates function declarations, this is 43 // not the case: the lambda closure type ends up living in the context 44 // where the function itself resides, because the function declaration itself 45 // had not yet been created. Fix the context here. 46 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 47 if (RD->isLambda()) 48 if (ParmVarDecl *ContextParam = 49 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 50 return ContextParam->getDeclContext(); 51 } 52 53 // Perform the same check for block literals. 54 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 55 if (ParmVarDecl *ContextParam = 56 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 57 return ContextParam->getDeclContext(); 58 } 59 60 const DeclContext *DC = D->getDeclContext(); 61 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC)) 62 return getEffectiveDeclContext(CD); 63 64 return DC; 65 } 66 67 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 68 return getEffectiveDeclContext(cast<Decl>(DC)); 69 } 70 71 static const FunctionDecl *getStructor(const NamedDecl *ND) { 72 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 73 return FTD->getTemplatedDecl(); 74 75 const auto *FD = cast<FunctionDecl>(ND); 76 if (const auto *FTD = FD->getPrimaryTemplate()) 77 return FTD->getTemplatedDecl(); 78 79 return FD; 80 } 81 82 static bool isLambda(const NamedDecl *ND) { 83 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 84 if (!Record) 85 return false; 86 87 return Record->isLambda(); 88 } 89 90 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 91 /// Microsoft Visual C++ ABI. 92 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 93 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 94 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 95 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 96 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 97 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; 98 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; 99 100 public: 101 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags) 102 : MicrosoftMangleContext(Context, Diags) {} 103 bool shouldMangleCXXName(const NamedDecl *D) override; 104 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 105 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override; 106 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 107 raw_ostream &) override; 108 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 109 raw_ostream &) override; 110 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 111 const ThisAdjustment &ThisAdjustment, 112 raw_ostream &) override; 113 void mangleCXXVFTable(const CXXRecordDecl *Derived, 114 ArrayRef<const CXXRecordDecl *> BasePath, 115 raw_ostream &Out) override; 116 void mangleCXXVBTable(const CXXRecordDecl *Derived, 117 ArrayRef<const CXXRecordDecl *> BasePath, 118 raw_ostream &Out) override; 119 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 120 const CXXRecordDecl *DstRD, 121 raw_ostream &Out) override; 122 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 123 uint32_t NumEntries, raw_ostream &Out) override; 124 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 125 raw_ostream &Out) override; 126 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 127 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 128 int32_t VBPtrOffset, uint32_t VBIndex, 129 raw_ostream &Out) override; 130 void mangleCXXCatchHandlerType(QualType T, uint32_t Flags, 131 raw_ostream &Out) override; 132 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 133 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; 134 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 135 uint32_t NVOffset, int32_t VBPtrOffset, 136 uint32_t VBTableOffset, uint32_t Flags, 137 raw_ostream &Out) override; 138 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 139 raw_ostream &Out) override; 140 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 141 raw_ostream &Out) override; 142 void 143 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 144 ArrayRef<const CXXRecordDecl *> BasePath, 145 raw_ostream &Out) override; 146 void mangleTypeName(QualType T, raw_ostream &) override; 147 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 148 raw_ostream &) override; 149 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 150 raw_ostream &) override; 151 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 152 raw_ostream &) override; 153 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 154 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 155 raw_ostream &Out) override; 156 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 157 void mangleDynamicAtExitDestructor(const VarDecl *D, 158 raw_ostream &Out) override; 159 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 160 raw_ostream &Out) override; 161 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 162 raw_ostream &Out) override; 163 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 164 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 165 // Lambda closure types are already numbered. 166 if (isLambda(ND)) 167 return false; 168 169 const DeclContext *DC = getEffectiveDeclContext(ND); 170 if (!DC->isFunctionOrMethod()) 171 return false; 172 173 // Use the canonical number for externally visible decls. 174 if (ND->isExternallyVisible()) { 175 disc = getASTContext().getManglingNumber(ND); 176 return true; 177 } 178 179 // Anonymous tags are already numbered. 180 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 181 if (!Tag->hasNameForLinkage() && 182 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 183 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 184 return false; 185 } 186 187 // Make up a reasonable number for internal decls. 188 unsigned &discriminator = Uniquifier[ND]; 189 if (!discriminator) 190 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 191 disc = discriminator + 1; 192 return true; 193 } 194 195 unsigned getLambdaId(const CXXRecordDecl *RD) { 196 assert(RD->isLambda() && "RD must be a lambda!"); 197 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 198 assert(RD->getLambdaManglingNumber() == 0 && 199 "RD must not have a mangling number!"); 200 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 201 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 202 return Result.first->second; 203 } 204 205 private: 206 void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode); 207 }; 208 209 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 210 /// Microsoft Visual C++ ABI. 211 class MicrosoftCXXNameMangler { 212 MicrosoftMangleContextImpl &Context; 213 raw_ostream &Out; 214 215 /// The "structor" is the top-level declaration being mangled, if 216 /// that's not a template specialization; otherwise it's the pattern 217 /// for that specialization. 218 const NamedDecl *Structor; 219 unsigned StructorType; 220 221 typedef llvm::SmallVector<std::string, 10> BackRefVec; 222 BackRefVec NameBackReferences; 223 224 typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap; 225 ArgBackRefMap TypeBackReferences; 226 227 ASTContext &getASTContext() const { return Context.getASTContext(); } 228 229 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push 230 // this check into mangleQualifiers(). 231 const bool PointersAre64Bit; 232 233 public: 234 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 235 236 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 237 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 238 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 239 64) {} 240 241 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 242 const CXXConstructorDecl *D, CXXCtorType Type) 243 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 244 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 245 64) {} 246 247 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 248 const CXXDestructorDecl *D, CXXDtorType Type) 249 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 250 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 251 64) {} 252 253 raw_ostream &getStream() const { return Out; } 254 255 void mangle(const NamedDecl *D, StringRef Prefix = "\01?"); 256 void mangleName(const NamedDecl *ND); 257 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); 258 void mangleVariableEncoding(const VarDecl *VD); 259 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD); 260 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 261 const CXXMethodDecl *MD); 262 void mangleVirtualMemPtrThunk( 263 const CXXMethodDecl *MD, 264 const MicrosoftVTableContext::MethodVFTableLocation &ML); 265 void mangleNumber(int64_t Number); 266 void mangleType(QualType T, SourceRange Range, 267 QualifierMangleMode QMM = QMM_Mangle); 268 void mangleFunctionType(const FunctionType *T, 269 const FunctionDecl *D = nullptr, 270 bool ForceThisQuals = false); 271 void mangleNestedName(const NamedDecl *ND); 272 273 private: 274 void mangleUnqualifiedName(const NamedDecl *ND) { 275 mangleUnqualifiedName(ND, ND->getDeclName()); 276 } 277 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 278 void mangleSourceName(StringRef Name); 279 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 280 void mangleCXXDtorType(CXXDtorType T); 281 void mangleQualifiers(Qualifiers Quals, bool IsMember); 282 void mangleRefQualifier(RefQualifierKind RefQualifier); 283 void manglePointerCVQualifiers(Qualifiers Quals); 284 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 285 286 void mangleUnscopedTemplateName(const TemplateDecl *ND); 287 void 288 mangleTemplateInstantiationName(const TemplateDecl *TD, 289 const TemplateArgumentList &TemplateArgs); 290 void mangleObjCMethodName(const ObjCMethodDecl *MD); 291 292 void mangleArgumentType(QualType T, SourceRange Range); 293 294 // Declare manglers for every type class. 295 #define ABSTRACT_TYPE(CLASS, PARENT) 296 #define NON_CANONICAL_TYPE(CLASS, PARENT) 297 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 298 Qualifiers Quals, \ 299 SourceRange Range); 300 #include "clang/AST/TypeNodes.def" 301 #undef ABSTRACT_TYPE 302 #undef NON_CANONICAL_TYPE 303 #undef TYPE 304 305 void mangleType(const TagDecl *TD); 306 void mangleDecayedArrayType(const ArrayType *T); 307 void mangleArrayType(const ArrayType *T); 308 void mangleFunctionClass(const FunctionDecl *FD); 309 void mangleCallingConvention(CallingConv CC); 310 void mangleCallingConvention(const FunctionType *T); 311 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); 312 void mangleExpression(const Expr *E); 313 void mangleThrowSpecification(const FunctionProtoType *T); 314 315 void mangleTemplateArgs(const TemplateDecl *TD, 316 const TemplateArgumentList &TemplateArgs); 317 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 318 const NamedDecl *Parm); 319 }; 320 } 321 322 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 323 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 324 LanguageLinkage L = FD->getLanguageLinkage(); 325 // Overloadable functions need mangling. 326 if (FD->hasAttr<OverloadableAttr>()) 327 return true; 328 329 // The ABI expects that we would never mangle "typical" user-defined entry 330 // points regardless of visibility or freestanding-ness. 331 // 332 // N.B. This is distinct from asking about "main". "main" has a lot of 333 // special rules associated with it in the standard while these 334 // user-defined entry points are outside of the purview of the standard. 335 // For example, there can be only one definition for "main" in a standards 336 // compliant program; however nothing forbids the existence of wmain and 337 // WinMain in the same translation unit. 338 if (FD->isMSVCRTEntryPoint()) 339 return false; 340 341 // C++ functions and those whose names are not a simple identifier need 342 // mangling. 343 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 344 return true; 345 346 // C functions are not mangled. 347 if (L == CLanguageLinkage) 348 return false; 349 } 350 351 // Otherwise, no mangling is done outside C++ mode. 352 if (!getASTContext().getLangOpts().CPlusPlus) 353 return false; 354 355 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 356 // C variables are not mangled. 357 if (VD->isExternC()) 358 return false; 359 360 // Variables at global scope with non-internal linkage are not mangled. 361 const DeclContext *DC = getEffectiveDeclContext(D); 362 // Check for extern variable declared locally. 363 if (DC->isFunctionOrMethod() && D->hasLinkage()) 364 while (!DC->isNamespace() && !DC->isTranslationUnit()) 365 DC = getEffectiveParentContext(DC); 366 367 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 368 !isa<VarTemplateSpecializationDecl>(D) && 369 D->getIdentifier() != nullptr) 370 return false; 371 } 372 373 return true; 374 } 375 376 bool 377 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 378 return true; 379 } 380 381 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { 382 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 383 // Therefore it's really important that we don't decorate the 384 // name with leading underscores or leading/trailing at signs. So, by 385 // default, we emit an asm marker at the start so we get the name right. 386 // Callers can override this with a custom prefix. 387 388 // <mangled-name> ::= ? <name> <type-encoding> 389 Out << Prefix; 390 mangleName(D); 391 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 392 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); 393 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 394 mangleVariableEncoding(VD); 395 else { 396 // TODO: Fields? Can MSVC even mangle them? 397 // Issue a diagnostic for now. 398 DiagnosticsEngine &Diags = Context.getDiags(); 399 unsigned DiagID = Diags.getCustomDiagID( 400 DiagnosticsEngine::Error, "cannot mangle this declaration yet"); 401 Diags.Report(D->getLocation(), DiagID) << D->getSourceRange(); 402 } 403 } 404 405 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, 406 bool ShouldMangle) { 407 // <type-encoding> ::= <function-class> <function-type> 408 409 // Since MSVC operates on the type as written and not the canonical type, it 410 // actually matters which decl we have here. MSVC appears to choose the 411 // first, since it is most likely to be the declaration in a header file. 412 FD = FD->getFirstDecl(); 413 414 // We should never ever see a FunctionNoProtoType at this point. 415 // We don't even know how to mangle their types anyway :). 416 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 417 418 // extern "C" functions can hold entities that must be mangled. 419 // As it stands, these functions still need to get expressed in the full 420 // external name. They have their class and type omitted, replaced with '9'. 421 if (ShouldMangle) { 422 // We would like to mangle all extern "C" functions using this additional 423 // component but this would break compatibility with MSVC's behavior. 424 // Instead, do this when we know that compatibility isn't important (in 425 // other words, when it is an overloaded extern "C" function). 426 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 427 Out << "$$J0"; 428 429 mangleFunctionClass(FD); 430 431 mangleFunctionType(FT, FD); 432 } else { 433 Out << '9'; 434 } 435 } 436 437 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 438 // <type-encoding> ::= <storage-class> <variable-type> 439 // <storage-class> ::= 0 # private static member 440 // ::= 1 # protected static member 441 // ::= 2 # public static member 442 // ::= 3 # global 443 // ::= 4 # static local 444 445 // The first character in the encoding (after the name) is the storage class. 446 if (VD->isStaticDataMember()) { 447 // If it's a static member, it also encodes the access level. 448 switch (VD->getAccess()) { 449 default: 450 case AS_private: Out << '0'; break; 451 case AS_protected: Out << '1'; break; 452 case AS_public: Out << '2'; break; 453 } 454 } 455 else if (!VD->isStaticLocal()) 456 Out << '3'; 457 else 458 Out << '4'; 459 // Now mangle the type. 460 // <variable-type> ::= <type> <cvr-qualifiers> 461 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 462 // Pointers and references are odd. The type of 'int * const foo;' gets 463 // mangled as 'QAHA' instead of 'PAHB', for example. 464 SourceRange SR = VD->getSourceRange(); 465 QualType Ty = VD->getType(); 466 if (Ty->isPointerType() || Ty->isReferenceType() || 467 Ty->isMemberPointerType()) { 468 mangleType(Ty, SR, QMM_Drop); 469 manglePointerExtQualifiers( 470 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 471 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 472 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 473 // Member pointers are suffixed with a back reference to the member 474 // pointer's class name. 475 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 476 } else 477 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 478 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 479 // Global arrays are funny, too. 480 mangleDecayedArrayType(AT); 481 if (AT->getElementType()->isArrayType()) 482 Out << 'A'; 483 else 484 mangleQualifiers(Ty.getQualifiers(), false); 485 } else { 486 mangleType(Ty, SR, QMM_Drop); 487 mangleQualifiers(Ty.getQualifiers(), false); 488 } 489 } 490 491 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 492 const ValueDecl *VD) { 493 // <member-data-pointer> ::= <integer-literal> 494 // ::= $F <number> <number> 495 // ::= $G <number> <number> <number> 496 497 int64_t FieldOffset; 498 int64_t VBTableOffset; 499 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 500 if (VD) { 501 FieldOffset = getASTContext().getFieldOffset(VD); 502 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 503 "cannot take address of bitfield"); 504 FieldOffset /= getASTContext().getCharWidth(); 505 506 VBTableOffset = 0; 507 508 if (IM == MSInheritanceAttr::Keyword_virtual_inheritance) 509 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 510 } else { 511 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 512 513 VBTableOffset = -1; 514 } 515 516 char Code = '\0'; 517 switch (IM) { 518 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break; 519 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break; 520 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break; 521 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break; 522 } 523 524 Out << '$' << Code; 525 526 mangleNumber(FieldOffset); 527 528 // The C++ standard doesn't allow base-to-derived member pointer conversions 529 // in template parameter contexts, so the vbptr offset of data member pointers 530 // is always zero. 531 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 532 mangleNumber(0); 533 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 534 mangleNumber(VBTableOffset); 535 } 536 537 void 538 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 539 const CXXMethodDecl *MD) { 540 // <member-function-pointer> ::= $1? <name> 541 // ::= $H? <name> <number> 542 // ::= $I? <name> <number> <number> 543 // ::= $J? <name> <number> <number> <number> 544 545 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 546 547 char Code = '\0'; 548 switch (IM) { 549 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break; 550 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break; 551 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break; 552 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break; 553 } 554 555 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 556 // thunk. 557 uint64_t NVOffset = 0; 558 uint64_t VBTableOffset = 0; 559 uint64_t VBPtrOffset = 0; 560 if (MD) { 561 Out << '$' << Code << '?'; 562 if (MD->isVirtual()) { 563 MicrosoftVTableContext *VTContext = 564 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 565 const MicrosoftVTableContext::MethodVFTableLocation &ML = 566 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 567 mangleVirtualMemPtrThunk(MD, ML); 568 NVOffset = ML.VFPtrOffset.getQuantity(); 569 VBTableOffset = ML.VBTableIndex * 4; 570 if (ML.VBase) { 571 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 572 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 573 } 574 } else { 575 mangleName(MD); 576 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 577 } 578 579 if (VBTableOffset == 0 && 580 IM == MSInheritanceAttr::Keyword_virtual_inheritance) 581 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 582 } else { 583 // Null single inheritance member functions are encoded as a simple nullptr. 584 if (IM == MSInheritanceAttr::Keyword_single_inheritance) { 585 Out << "$0A@"; 586 return; 587 } 588 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance) 589 VBTableOffset = -1; 590 Out << '$' << Code; 591 } 592 593 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM)) 594 mangleNumber(static_cast<uint32_t>(NVOffset)); 595 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 596 mangleNumber(VBPtrOffset); 597 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 598 mangleNumber(VBTableOffset); 599 } 600 601 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 602 const CXXMethodDecl *MD, 603 const MicrosoftVTableContext::MethodVFTableLocation &ML) { 604 // Get the vftable offset. 605 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 606 getASTContext().getTargetInfo().getPointerWidth(0)); 607 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 608 609 Out << "?_9"; 610 mangleName(MD->getParent()); 611 Out << "$B"; 612 mangleNumber(OffsetInVFTable); 613 Out << 'A'; 614 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>()); 615 } 616 617 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 618 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 619 620 // Always start with the unqualified name. 621 mangleUnqualifiedName(ND); 622 623 mangleNestedName(ND); 624 625 // Terminate the whole name with an '@'. 626 Out << '@'; 627 } 628 629 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 630 // <non-negative integer> ::= A@ # when Number == 0 631 // ::= <decimal digit> # when 1 <= Number <= 10 632 // ::= <hex digit>+ @ # when Number >= 10 633 // 634 // <number> ::= [?] <non-negative integer> 635 636 uint64_t Value = static_cast<uint64_t>(Number); 637 if (Number < 0) { 638 Value = -Value; 639 Out << '?'; 640 } 641 642 if (Value == 0) 643 Out << "A@"; 644 else if (Value >= 1 && Value <= 10) 645 Out << (Value - 1); 646 else { 647 // Numbers that are not encoded as decimal digits are represented as nibbles 648 // in the range of ASCII characters 'A' to 'P'. 649 // The number 0x123450 would be encoded as 'BCDEFA' 650 char EncodedNumberBuffer[sizeof(uint64_t) * 2]; 651 MutableArrayRef<char> BufferRef(EncodedNumberBuffer); 652 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 653 for (; Value != 0; Value >>= 4) 654 *I++ = 'A' + (Value & 0xf); 655 Out.write(I.base(), I - BufferRef.rbegin()); 656 Out << '@'; 657 } 658 } 659 660 static const TemplateDecl * 661 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 662 // Check if we have a function template. 663 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 664 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 665 TemplateArgs = FD->getTemplateSpecializationArgs(); 666 return TD; 667 } 668 } 669 670 // Check if we have a class template. 671 if (const ClassTemplateSpecializationDecl *Spec = 672 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 673 TemplateArgs = &Spec->getTemplateArgs(); 674 return Spec->getSpecializedTemplate(); 675 } 676 677 // Check if we have a variable template. 678 if (const VarTemplateSpecializationDecl *Spec = 679 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 680 TemplateArgs = &Spec->getTemplateArgs(); 681 return Spec->getSpecializedTemplate(); 682 } 683 684 return nullptr; 685 } 686 687 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 688 DeclarationName Name) { 689 // <unqualified-name> ::= <operator-name> 690 // ::= <ctor-dtor-name> 691 // ::= <source-name> 692 // ::= <template-name> 693 694 // Check if we have a template. 695 const TemplateArgumentList *TemplateArgs = nullptr; 696 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 697 // Function templates aren't considered for name back referencing. This 698 // makes sense since function templates aren't likely to occur multiple 699 // times in a symbol. 700 if (!isa<ClassTemplateDecl>(TD)) { 701 mangleTemplateInstantiationName(TD, *TemplateArgs); 702 Out << '@'; 703 return; 704 } 705 706 // Here comes the tricky thing: if we need to mangle something like 707 // void foo(A::X<Y>, B::X<Y>), 708 // the X<Y> part is aliased. However, if you need to mangle 709 // void foo(A::X<A::Y>, A::X<B::Y>), 710 // the A::X<> part is not aliased. 711 // That said, from the mangler's perspective we have a structure like this: 712 // namespace[s] -> type[ -> template-parameters] 713 // but from the Clang perspective we have 714 // type [ -> template-parameters] 715 // \-> namespace[s] 716 // What we do is we create a new mangler, mangle the same type (without 717 // a namespace suffix) to a string using the extra mangler and then use 718 // the mangled type name as a key to check the mangling of different types 719 // for aliasing. 720 721 llvm::SmallString<64> TemplateMangling; 722 llvm::raw_svector_ostream Stream(TemplateMangling); 723 MicrosoftCXXNameMangler Extra(Context, Stream); 724 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 725 726 mangleSourceName(TemplateMangling); 727 return; 728 } 729 730 switch (Name.getNameKind()) { 731 case DeclarationName::Identifier: { 732 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 733 mangleSourceName(II->getName()); 734 break; 735 } 736 737 // Otherwise, an anonymous entity. We must have a declaration. 738 assert(ND && "mangling empty name without declaration"); 739 740 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 741 if (NS->isAnonymousNamespace()) { 742 Out << "?A@"; 743 break; 744 } 745 } 746 747 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 748 // We must have an anonymous union or struct declaration. 749 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 750 assert(RD && "expected variable decl to have a record type"); 751 // Anonymous types with no tag or typedef get the name of their 752 // declarator mangled in. If they have no declarator, number them with 753 // a $S prefix. 754 llvm::SmallString<64> Name("$S"); 755 // Get a unique id for the anonymous struct. 756 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 757 mangleSourceName(Name.str()); 758 break; 759 } 760 761 // We must have an anonymous struct. 762 const TagDecl *TD = cast<TagDecl>(ND); 763 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 764 assert(TD->getDeclContext() == D->getDeclContext() && 765 "Typedef should not be in another decl context!"); 766 assert(D->getDeclName().getAsIdentifierInfo() && 767 "Typedef was not named!"); 768 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 769 break; 770 } 771 772 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 773 if (Record->isLambda()) { 774 llvm::SmallString<10> Name("<lambda_"); 775 unsigned LambdaId; 776 if (Record->getLambdaManglingNumber()) 777 LambdaId = Record->getLambdaManglingNumber(); 778 else 779 LambdaId = Context.getLambdaId(Record); 780 781 Name += llvm::utostr(LambdaId); 782 Name += ">"; 783 784 mangleSourceName(Name); 785 break; 786 } 787 } 788 789 llvm::SmallString<64> Name("<unnamed-type-"); 790 if (DeclaratorDecl *DD = 791 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 792 // Anonymous types without a name for linkage purposes have their 793 // declarator mangled in if they have one. 794 Name += DD->getName(); 795 } else if (TypedefNameDecl *TND = 796 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 797 TD)) { 798 // Anonymous types without a name for linkage purposes have their 799 // associate typedef mangled in if they have one. 800 Name += TND->getName(); 801 } else { 802 // Otherwise, number the types using a $S prefix. 803 Name += "$S"; 804 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 805 } 806 Name += ">"; 807 mangleSourceName(Name.str()); 808 break; 809 } 810 811 case DeclarationName::ObjCZeroArgSelector: 812 case DeclarationName::ObjCOneArgSelector: 813 case DeclarationName::ObjCMultiArgSelector: 814 llvm_unreachable("Can't mangle Objective-C selector names here!"); 815 816 case DeclarationName::CXXConstructorName: 817 if (Structor == getStructor(ND)) { 818 if (StructorType == Ctor_CopyingClosure) { 819 Out << "?_O"; 820 return; 821 } 822 if (StructorType == Ctor_DefaultClosure) { 823 Out << "?_F"; 824 return; 825 } 826 } 827 Out << "?0"; 828 return; 829 830 case DeclarationName::CXXDestructorName: 831 if (ND == Structor) 832 // If the named decl is the C++ destructor we're mangling, 833 // use the type we were given. 834 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 835 else 836 // Otherwise, use the base destructor name. This is relevant if a 837 // class with a destructor is declared within a destructor. 838 mangleCXXDtorType(Dtor_Base); 839 break; 840 841 case DeclarationName::CXXConversionFunctionName: 842 // <operator-name> ::= ?B # (cast) 843 // The target type is encoded as the return type. 844 Out << "?B"; 845 break; 846 847 case DeclarationName::CXXOperatorName: 848 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 849 break; 850 851 case DeclarationName::CXXLiteralOperatorName: { 852 Out << "?__K"; 853 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 854 break; 855 } 856 857 case DeclarationName::CXXUsingDirective: 858 llvm_unreachable("Can't mangle a using directive name!"); 859 } 860 } 861 862 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { 863 // <postfix> ::= <unqualified-name> [<postfix>] 864 // ::= <substitution> [<postfix>] 865 const DeclContext *DC = getEffectiveDeclContext(ND); 866 867 while (!DC->isTranslationUnit()) { 868 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 869 unsigned Disc; 870 if (Context.getNextDiscriminator(ND, Disc)) { 871 Out << '?'; 872 mangleNumber(Disc); 873 Out << '?'; 874 } 875 } 876 877 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 878 DiagnosticsEngine &Diags = Context.getDiags(); 879 unsigned DiagID = 880 Diags.getCustomDiagID(DiagnosticsEngine::Error, 881 "cannot mangle a local inside this block yet"); 882 Diags.Report(BD->getLocation(), DiagID); 883 884 // FIXME: This is completely, utterly, wrong; see ItaniumMangle 885 // for how this should be done. 886 Out << "__block_invoke" << Context.getBlockId(BD, false); 887 Out << '@'; 888 continue; 889 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 890 mangleObjCMethodName(Method); 891 } else if (isa<NamedDecl>(DC)) { 892 ND = cast<NamedDecl>(DC); 893 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 894 mangle(FD, "?"); 895 break; 896 } else 897 mangleUnqualifiedName(ND); 898 } 899 DC = DC->getParent(); 900 } 901 } 902 903 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 904 // Microsoft uses the names on the case labels for these dtor variants. Clang 905 // uses the Itanium terminology internally. Everything in this ABI delegates 906 // towards the base dtor. 907 switch (T) { 908 // <operator-name> ::= ?1 # destructor 909 case Dtor_Base: Out << "?1"; return; 910 // <operator-name> ::= ?_D # vbase destructor 911 case Dtor_Complete: Out << "?_D"; return; 912 // <operator-name> ::= ?_G # scalar deleting destructor 913 case Dtor_Deleting: Out << "?_G"; return; 914 // <operator-name> ::= ?_E # vector deleting destructor 915 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 916 // it. 917 case Dtor_Comdat: 918 llvm_unreachable("not expecting a COMDAT"); 919 } 920 llvm_unreachable("Unsupported dtor type?"); 921 } 922 923 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 924 SourceLocation Loc) { 925 switch (OO) { 926 // ?0 # constructor 927 // ?1 # destructor 928 // <operator-name> ::= ?2 # new 929 case OO_New: Out << "?2"; break; 930 // <operator-name> ::= ?3 # delete 931 case OO_Delete: Out << "?3"; break; 932 // <operator-name> ::= ?4 # = 933 case OO_Equal: Out << "?4"; break; 934 // <operator-name> ::= ?5 # >> 935 case OO_GreaterGreater: Out << "?5"; break; 936 // <operator-name> ::= ?6 # << 937 case OO_LessLess: Out << "?6"; break; 938 // <operator-name> ::= ?7 # ! 939 case OO_Exclaim: Out << "?7"; break; 940 // <operator-name> ::= ?8 # == 941 case OO_EqualEqual: Out << "?8"; break; 942 // <operator-name> ::= ?9 # != 943 case OO_ExclaimEqual: Out << "?9"; break; 944 // <operator-name> ::= ?A # [] 945 case OO_Subscript: Out << "?A"; break; 946 // ?B # conversion 947 // <operator-name> ::= ?C # -> 948 case OO_Arrow: Out << "?C"; break; 949 // <operator-name> ::= ?D # * 950 case OO_Star: Out << "?D"; break; 951 // <operator-name> ::= ?E # ++ 952 case OO_PlusPlus: Out << "?E"; break; 953 // <operator-name> ::= ?F # -- 954 case OO_MinusMinus: Out << "?F"; break; 955 // <operator-name> ::= ?G # - 956 case OO_Minus: Out << "?G"; break; 957 // <operator-name> ::= ?H # + 958 case OO_Plus: Out << "?H"; break; 959 // <operator-name> ::= ?I # & 960 case OO_Amp: Out << "?I"; break; 961 // <operator-name> ::= ?J # ->* 962 case OO_ArrowStar: Out << "?J"; break; 963 // <operator-name> ::= ?K # / 964 case OO_Slash: Out << "?K"; break; 965 // <operator-name> ::= ?L # % 966 case OO_Percent: Out << "?L"; break; 967 // <operator-name> ::= ?M # < 968 case OO_Less: Out << "?M"; break; 969 // <operator-name> ::= ?N # <= 970 case OO_LessEqual: Out << "?N"; break; 971 // <operator-name> ::= ?O # > 972 case OO_Greater: Out << "?O"; break; 973 // <operator-name> ::= ?P # >= 974 case OO_GreaterEqual: Out << "?P"; break; 975 // <operator-name> ::= ?Q # , 976 case OO_Comma: Out << "?Q"; break; 977 // <operator-name> ::= ?R # () 978 case OO_Call: Out << "?R"; break; 979 // <operator-name> ::= ?S # ~ 980 case OO_Tilde: Out << "?S"; break; 981 // <operator-name> ::= ?T # ^ 982 case OO_Caret: Out << "?T"; break; 983 // <operator-name> ::= ?U # | 984 case OO_Pipe: Out << "?U"; break; 985 // <operator-name> ::= ?V # && 986 case OO_AmpAmp: Out << "?V"; break; 987 // <operator-name> ::= ?W # || 988 case OO_PipePipe: Out << "?W"; break; 989 // <operator-name> ::= ?X # *= 990 case OO_StarEqual: Out << "?X"; break; 991 // <operator-name> ::= ?Y # += 992 case OO_PlusEqual: Out << "?Y"; break; 993 // <operator-name> ::= ?Z # -= 994 case OO_MinusEqual: Out << "?Z"; break; 995 // <operator-name> ::= ?_0 # /= 996 case OO_SlashEqual: Out << "?_0"; break; 997 // <operator-name> ::= ?_1 # %= 998 case OO_PercentEqual: Out << "?_1"; break; 999 // <operator-name> ::= ?_2 # >>= 1000 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1001 // <operator-name> ::= ?_3 # <<= 1002 case OO_LessLessEqual: Out << "?_3"; break; 1003 // <operator-name> ::= ?_4 # &= 1004 case OO_AmpEqual: Out << "?_4"; break; 1005 // <operator-name> ::= ?_5 # |= 1006 case OO_PipeEqual: Out << "?_5"; break; 1007 // <operator-name> ::= ?_6 # ^= 1008 case OO_CaretEqual: Out << "?_6"; break; 1009 // ?_7 # vftable 1010 // ?_8 # vbtable 1011 // ?_9 # vcall 1012 // ?_A # typeof 1013 // ?_B # local static guard 1014 // ?_C # string 1015 // ?_D # vbase destructor 1016 // ?_E # vector deleting destructor 1017 // ?_F # default constructor closure 1018 // ?_G # scalar deleting destructor 1019 // ?_H # vector constructor iterator 1020 // ?_I # vector destructor iterator 1021 // ?_J # vector vbase constructor iterator 1022 // ?_K # virtual displacement map 1023 // ?_L # eh vector constructor iterator 1024 // ?_M # eh vector destructor iterator 1025 // ?_N # eh vector vbase constructor iterator 1026 // ?_O # copy constructor closure 1027 // ?_P<name> # udt returning <name> 1028 // ?_Q # <unknown> 1029 // ?_R0 # RTTI Type Descriptor 1030 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1031 // ?_R2 # RTTI Base Class Array 1032 // ?_R3 # RTTI Class Hierarchy Descriptor 1033 // ?_R4 # RTTI Complete Object Locator 1034 // ?_S # local vftable 1035 // ?_T # local vftable constructor closure 1036 // <operator-name> ::= ?_U # new[] 1037 case OO_Array_New: Out << "?_U"; break; 1038 // <operator-name> ::= ?_V # delete[] 1039 case OO_Array_Delete: Out << "?_V"; break; 1040 1041 case OO_Conditional: { 1042 DiagnosticsEngine &Diags = Context.getDiags(); 1043 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1044 "cannot mangle this conditional operator yet"); 1045 Diags.Report(Loc, DiagID); 1046 break; 1047 } 1048 1049 case OO_Coawait: { 1050 DiagnosticsEngine &Diags = Context.getDiags(); 1051 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1052 "cannot mangle this operator co_await yet"); 1053 Diags.Report(Loc, DiagID); 1054 break; 1055 } 1056 1057 case OO_None: 1058 case NUM_OVERLOADED_OPERATORS: 1059 llvm_unreachable("Not an overloaded operator"); 1060 } 1061 } 1062 1063 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1064 // <source name> ::= <identifier> @ 1065 BackRefVec::iterator Found = 1066 std::find(NameBackReferences.begin(), NameBackReferences.end(), Name); 1067 if (Found == NameBackReferences.end()) { 1068 if (NameBackReferences.size() < 10) 1069 NameBackReferences.push_back(Name); 1070 Out << Name << '@'; 1071 } else { 1072 Out << (Found - NameBackReferences.begin()); 1073 } 1074 } 1075 1076 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1077 Context.mangleObjCMethodName(MD, Out); 1078 } 1079 1080 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1081 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1082 // <template-name> ::= <unscoped-template-name> <template-args> 1083 // ::= <substitution> 1084 // Always start with the unqualified name. 1085 1086 // Templates have their own context for back references. 1087 ArgBackRefMap OuterArgsContext; 1088 BackRefVec OuterTemplateContext; 1089 NameBackReferences.swap(OuterTemplateContext); 1090 TypeBackReferences.swap(OuterArgsContext); 1091 1092 mangleUnscopedTemplateName(TD); 1093 mangleTemplateArgs(TD, TemplateArgs); 1094 1095 // Restore the previous back reference contexts. 1096 NameBackReferences.swap(OuterTemplateContext); 1097 TypeBackReferences.swap(OuterArgsContext); 1098 } 1099 1100 void 1101 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { 1102 // <unscoped-template-name> ::= ?$ <unqualified-name> 1103 Out << "?$"; 1104 mangleUnqualifiedName(TD); 1105 } 1106 1107 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, 1108 bool IsBoolean) { 1109 // <integer-literal> ::= $0 <number> 1110 Out << "$0"; 1111 // Make sure booleans are encoded as 0/1. 1112 if (IsBoolean && Value.getBoolValue()) 1113 mangleNumber(1); 1114 else if (Value.isSigned()) 1115 mangleNumber(Value.getSExtValue()); 1116 else 1117 mangleNumber(Value.getZExtValue()); 1118 } 1119 1120 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { 1121 // See if this is a constant expression. 1122 llvm::APSInt Value; 1123 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { 1124 mangleIntegerLiteral(Value, E->getType()->isBooleanType()); 1125 return; 1126 } 1127 1128 // Look through no-op casts like template parameter substitutions. 1129 E = E->IgnoreParenNoopCasts(Context.getASTContext()); 1130 1131 const CXXUuidofExpr *UE = nullptr; 1132 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1133 if (UO->getOpcode() == UO_AddrOf) 1134 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr()); 1135 } else 1136 UE = dyn_cast<CXXUuidofExpr>(E); 1137 1138 if (UE) { 1139 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from 1140 // const __s_GUID _GUID_{lower case UUID with underscores} 1141 StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext()); 1142 std::string Name = "_GUID_" + Uuid.lower(); 1143 std::replace(Name.begin(), Name.end(), '-', '_'); 1144 1145 // If we had to peek through an address-of operator, treat this like we are 1146 // dealing with a pointer type. Otherwise, treat it like a const reference. 1147 // 1148 // N.B. This matches up with the handling of TemplateArgument::Declaration 1149 // in mangleTemplateArg 1150 if (UE == E) 1151 Out << "$E?"; 1152 else 1153 Out << "$1?"; 1154 Out << Name << "@@3U__s_GUID@@B"; 1155 return; 1156 } 1157 1158 // As bad as this diagnostic is, it's better than crashing. 1159 DiagnosticsEngine &Diags = Context.getDiags(); 1160 unsigned DiagID = Diags.getCustomDiagID( 1161 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1162 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1163 << E->getSourceRange(); 1164 } 1165 1166 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1167 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1168 // <template-args> ::= <template-arg>+ 1169 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1170 assert(TPL->size() == TemplateArgs.size() && 1171 "size mismatch between args and parms!"); 1172 1173 unsigned Idx = 0; 1174 for (const TemplateArgument &TA : TemplateArgs.asArray()) 1175 mangleTemplateArg(TD, TA, TPL->getParam(Idx++)); 1176 } 1177 1178 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1179 const TemplateArgument &TA, 1180 const NamedDecl *Parm) { 1181 // <template-arg> ::= <type> 1182 // ::= <integer-literal> 1183 // ::= <member-data-pointer> 1184 // ::= <member-function-pointer> 1185 // ::= $E? <name> <type-encoding> 1186 // ::= $1? <name> <type-encoding> 1187 // ::= $0A@ 1188 // ::= <template-args> 1189 1190 switch (TA.getKind()) { 1191 case TemplateArgument::Null: 1192 llvm_unreachable("Can't mangle null template arguments!"); 1193 case TemplateArgument::TemplateExpansion: 1194 llvm_unreachable("Can't mangle template expansion arguments!"); 1195 case TemplateArgument::Type: { 1196 QualType T = TA.getAsType(); 1197 mangleType(T, SourceRange(), QMM_Escape); 1198 break; 1199 } 1200 case TemplateArgument::Declaration: { 1201 const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl()); 1202 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1203 mangleMemberDataPointer( 1204 cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(), 1205 cast<ValueDecl>(ND)); 1206 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1207 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1208 if (MD && MD->isInstance()) { 1209 mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD); 1210 } else { 1211 Out << "$1?"; 1212 mangleName(FD); 1213 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1214 } 1215 } else { 1216 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); 1217 } 1218 break; 1219 } 1220 case TemplateArgument::Integral: 1221 mangleIntegerLiteral(TA.getAsIntegral(), 1222 TA.getIntegralType()->isBooleanType()); 1223 break; 1224 case TemplateArgument::NullPtr: { 1225 QualType T = TA.getNullPtrType(); 1226 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1227 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1228 if (MPT->isMemberFunctionPointerType() && 1229 !isa<FunctionTemplateDecl>(TD)) { 1230 mangleMemberFunctionPointer(RD, nullptr); 1231 return; 1232 } 1233 if (MPT->isMemberDataPointer()) { 1234 if (!isa<FunctionTemplateDecl>(TD)) { 1235 mangleMemberDataPointer(RD, nullptr); 1236 return; 1237 } 1238 // nullptr data pointers are always represented with a single field 1239 // which is initialized with either 0 or -1. Why -1? Well, we need to 1240 // distinguish the case where the data member is at offset zero in the 1241 // record. 1242 // However, we are free to use 0 *if* we would use multiple fields for 1243 // non-nullptr member pointers. 1244 if (!RD->nullFieldOffsetIsZero()) { 1245 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false); 1246 return; 1247 } 1248 } 1249 } 1250 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false); 1251 break; 1252 } 1253 case TemplateArgument::Expression: 1254 mangleExpression(TA.getAsExpr()); 1255 break; 1256 case TemplateArgument::Pack: { 1257 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1258 if (TemplateArgs.empty()) { 1259 if (isa<TemplateTypeParmDecl>(Parm) || 1260 isa<TemplateTemplateParmDecl>(Parm)) 1261 // MSVC 2015 changed the mangling for empty expanded template packs, 1262 // use the old mangling for link compatibility for old versions. 1263 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1264 LangOptions::MSVC2015) 1265 ? "$$V" 1266 : "$$$V"); 1267 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1268 Out << "$S"; 1269 else 1270 llvm_unreachable("unexpected template parameter decl!"); 1271 } else { 1272 for (const TemplateArgument &PA : TemplateArgs) 1273 mangleTemplateArg(TD, PA, Parm); 1274 } 1275 break; 1276 } 1277 case TemplateArgument::Template: { 1278 const NamedDecl *ND = 1279 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1280 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1281 mangleType(TD); 1282 } else if (isa<TypeAliasDecl>(ND)) { 1283 Out << "$$Y"; 1284 mangleName(ND); 1285 } else { 1286 llvm_unreachable("unexpected template template NamedDecl!"); 1287 } 1288 break; 1289 } 1290 } 1291 } 1292 1293 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 1294 bool IsMember) { 1295 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 1296 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 1297 // 'I' means __restrict (32/64-bit). 1298 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 1299 // keyword! 1300 // <base-cvr-qualifiers> ::= A # near 1301 // ::= B # near const 1302 // ::= C # near volatile 1303 // ::= D # near const volatile 1304 // ::= E # far (16-bit) 1305 // ::= F # far const (16-bit) 1306 // ::= G # far volatile (16-bit) 1307 // ::= H # far const volatile (16-bit) 1308 // ::= I # huge (16-bit) 1309 // ::= J # huge const (16-bit) 1310 // ::= K # huge volatile (16-bit) 1311 // ::= L # huge const volatile (16-bit) 1312 // ::= M <basis> # based 1313 // ::= N <basis> # based const 1314 // ::= O <basis> # based volatile 1315 // ::= P <basis> # based const volatile 1316 // ::= Q # near member 1317 // ::= R # near const member 1318 // ::= S # near volatile member 1319 // ::= T # near const volatile member 1320 // ::= U # far member (16-bit) 1321 // ::= V # far const member (16-bit) 1322 // ::= W # far volatile member (16-bit) 1323 // ::= X # far const volatile member (16-bit) 1324 // ::= Y # huge member (16-bit) 1325 // ::= Z # huge const member (16-bit) 1326 // ::= 0 # huge volatile member (16-bit) 1327 // ::= 1 # huge const volatile member (16-bit) 1328 // ::= 2 <basis> # based member 1329 // ::= 3 <basis> # based const member 1330 // ::= 4 <basis> # based volatile member 1331 // ::= 5 <basis> # based const volatile member 1332 // ::= 6 # near function (pointers only) 1333 // ::= 7 # far function (pointers only) 1334 // ::= 8 # near method (pointers only) 1335 // ::= 9 # far method (pointers only) 1336 // ::= _A <basis> # based function (pointers only) 1337 // ::= _B <basis> # based function (far?) (pointers only) 1338 // ::= _C <basis> # based method (pointers only) 1339 // ::= _D <basis> # based method (far?) (pointers only) 1340 // ::= _E # block (Clang) 1341 // <basis> ::= 0 # __based(void) 1342 // ::= 1 # __based(segment)? 1343 // ::= 2 <name> # __based(name) 1344 // ::= 3 # ? 1345 // ::= 4 # ? 1346 // ::= 5 # not really based 1347 bool HasConst = Quals.hasConst(), 1348 HasVolatile = Quals.hasVolatile(); 1349 1350 if (!IsMember) { 1351 if (HasConst && HasVolatile) { 1352 Out << 'D'; 1353 } else if (HasVolatile) { 1354 Out << 'C'; 1355 } else if (HasConst) { 1356 Out << 'B'; 1357 } else { 1358 Out << 'A'; 1359 } 1360 } else { 1361 if (HasConst && HasVolatile) { 1362 Out << 'T'; 1363 } else if (HasVolatile) { 1364 Out << 'S'; 1365 } else if (HasConst) { 1366 Out << 'R'; 1367 } else { 1368 Out << 'Q'; 1369 } 1370 } 1371 1372 // FIXME: For now, just drop all extension qualifiers on the floor. 1373 } 1374 1375 void 1376 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 1377 // <ref-qualifier> ::= G # lvalue reference 1378 // ::= H # rvalue-reference 1379 switch (RefQualifier) { 1380 case RQ_None: 1381 break; 1382 1383 case RQ_LValue: 1384 Out << 'G'; 1385 break; 1386 1387 case RQ_RValue: 1388 Out << 'H'; 1389 break; 1390 } 1391 } 1392 1393 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 1394 QualType PointeeType) { 1395 bool HasRestrict = Quals.hasRestrict(); 1396 if (PointersAre64Bit && 1397 (PointeeType.isNull() || !PointeeType->isFunctionType())) 1398 Out << 'E'; 1399 1400 if (HasRestrict) 1401 Out << 'I'; 1402 } 1403 1404 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 1405 // <pointer-cv-qualifiers> ::= P # no qualifiers 1406 // ::= Q # const 1407 // ::= R # volatile 1408 // ::= S # const volatile 1409 bool HasConst = Quals.hasConst(), 1410 HasVolatile = Quals.hasVolatile(); 1411 1412 if (HasConst && HasVolatile) { 1413 Out << 'S'; 1414 } else if (HasVolatile) { 1415 Out << 'R'; 1416 } else if (HasConst) { 1417 Out << 'Q'; 1418 } else { 1419 Out << 'P'; 1420 } 1421 } 1422 1423 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T, 1424 SourceRange Range) { 1425 // MSVC will backreference two canonically equivalent types that have slightly 1426 // different manglings when mangled alone. 1427 1428 // Decayed types do not match up with non-decayed versions of the same type. 1429 // 1430 // e.g. 1431 // void (*x)(void) will not form a backreference with void x(void) 1432 void *TypePtr; 1433 if (const auto *DT = T->getAs<DecayedType>()) { 1434 QualType OriginalType = DT->getOriginalType(); 1435 // All decayed ArrayTypes should be treated identically; as-if they were 1436 // a decayed IncompleteArrayType. 1437 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 1438 OriginalType = getASTContext().getIncompleteArrayType( 1439 AT->getElementType(), AT->getSizeModifier(), 1440 AT->getIndexTypeCVRQualifiers()); 1441 1442 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 1443 // If the original parameter was textually written as an array, 1444 // instead treat the decayed parameter like it's const. 1445 // 1446 // e.g. 1447 // int [] -> int * const 1448 if (OriginalType->isArrayType()) 1449 T = T.withConst(); 1450 } else { 1451 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 1452 } 1453 1454 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr); 1455 1456 if (Found == TypeBackReferences.end()) { 1457 size_t OutSizeBefore = Out.tell(); 1458 1459 mangleType(T, Range, QMM_Drop); 1460 1461 // See if it's worth creating a back reference. 1462 // Only types longer than 1 character are considered 1463 // and only 10 back references slots are available: 1464 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 1465 if (LongerThanOneChar && TypeBackReferences.size() < 10) { 1466 size_t Size = TypeBackReferences.size(); 1467 TypeBackReferences[TypePtr] = Size; 1468 } 1469 } else { 1470 Out << Found->second; 1471 } 1472 } 1473 1474 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 1475 QualifierMangleMode QMM) { 1476 // Don't use the canonical types. MSVC includes things like 'const' on 1477 // pointer arguments to function pointers that canonicalization strips away. 1478 T = T.getDesugaredType(getASTContext()); 1479 Qualifiers Quals = T.getLocalQualifiers(); 1480 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 1481 // If there were any Quals, getAsArrayType() pushed them onto the array 1482 // element type. 1483 if (QMM == QMM_Mangle) 1484 Out << 'A'; 1485 else if (QMM == QMM_Escape || QMM == QMM_Result) 1486 Out << "$$B"; 1487 mangleArrayType(AT); 1488 return; 1489 } 1490 1491 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 1492 T->isReferenceType() || T->isBlockPointerType(); 1493 1494 switch (QMM) { 1495 case QMM_Drop: 1496 break; 1497 case QMM_Mangle: 1498 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 1499 Out << '6'; 1500 mangleFunctionType(FT); 1501 return; 1502 } 1503 mangleQualifiers(Quals, false); 1504 break; 1505 case QMM_Escape: 1506 if (!IsPointer && Quals) { 1507 Out << "$$C"; 1508 mangleQualifiers(Quals, false); 1509 } 1510 break; 1511 case QMM_Result: 1512 if ((!IsPointer && Quals) || isa<TagType>(T)) { 1513 Out << '?'; 1514 mangleQualifiers(Quals, false); 1515 } 1516 break; 1517 } 1518 1519 const Type *ty = T.getTypePtr(); 1520 1521 switch (ty->getTypeClass()) { 1522 #define ABSTRACT_TYPE(CLASS, PARENT) 1523 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 1524 case Type::CLASS: \ 1525 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 1526 return; 1527 #define TYPE(CLASS, PARENT) \ 1528 case Type::CLASS: \ 1529 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 1530 break; 1531 #include "clang/AST/TypeNodes.def" 1532 #undef ABSTRACT_TYPE 1533 #undef NON_CANONICAL_TYPE 1534 #undef TYPE 1535 } 1536 } 1537 1538 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 1539 SourceRange Range) { 1540 // <type> ::= <builtin-type> 1541 // <builtin-type> ::= X # void 1542 // ::= C # signed char 1543 // ::= D # char 1544 // ::= E # unsigned char 1545 // ::= F # short 1546 // ::= G # unsigned short (or wchar_t if it's not a builtin) 1547 // ::= H # int 1548 // ::= I # unsigned int 1549 // ::= J # long 1550 // ::= K # unsigned long 1551 // L # <none> 1552 // ::= M # float 1553 // ::= N # double 1554 // ::= O # long double (__float80 is mangled differently) 1555 // ::= _J # long long, __int64 1556 // ::= _K # unsigned long long, __int64 1557 // ::= _L # __int128 1558 // ::= _M # unsigned __int128 1559 // ::= _N # bool 1560 // _O # <array in parameter> 1561 // ::= _T # __float80 (Intel) 1562 // ::= _W # wchar_t 1563 // ::= _Z # __float80 (Digital Mars) 1564 switch (T->getKind()) { 1565 case BuiltinType::Void: 1566 Out << 'X'; 1567 break; 1568 case BuiltinType::SChar: 1569 Out << 'C'; 1570 break; 1571 case BuiltinType::Char_U: 1572 case BuiltinType::Char_S: 1573 Out << 'D'; 1574 break; 1575 case BuiltinType::UChar: 1576 Out << 'E'; 1577 break; 1578 case BuiltinType::Short: 1579 Out << 'F'; 1580 break; 1581 case BuiltinType::UShort: 1582 Out << 'G'; 1583 break; 1584 case BuiltinType::Int: 1585 Out << 'H'; 1586 break; 1587 case BuiltinType::UInt: 1588 Out << 'I'; 1589 break; 1590 case BuiltinType::Long: 1591 Out << 'J'; 1592 break; 1593 case BuiltinType::ULong: 1594 Out << 'K'; 1595 break; 1596 case BuiltinType::Float: 1597 Out << 'M'; 1598 break; 1599 case BuiltinType::Double: 1600 Out << 'N'; 1601 break; 1602 // TODO: Determine size and mangle accordingly 1603 case BuiltinType::LongDouble: 1604 Out << 'O'; 1605 break; 1606 case BuiltinType::LongLong: 1607 Out << "_J"; 1608 break; 1609 case BuiltinType::ULongLong: 1610 Out << "_K"; 1611 break; 1612 case BuiltinType::Int128: 1613 Out << "_L"; 1614 break; 1615 case BuiltinType::UInt128: 1616 Out << "_M"; 1617 break; 1618 case BuiltinType::Bool: 1619 Out << "_N"; 1620 break; 1621 case BuiltinType::Char16: 1622 Out << "_S"; 1623 break; 1624 case BuiltinType::Char32: 1625 Out << "_U"; 1626 break; 1627 case BuiltinType::WChar_S: 1628 case BuiltinType::WChar_U: 1629 Out << "_W"; 1630 break; 1631 1632 #define BUILTIN_TYPE(Id, SingletonId) 1633 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 1634 case BuiltinType::Id: 1635 #include "clang/AST/BuiltinTypes.def" 1636 case BuiltinType::Dependent: 1637 llvm_unreachable("placeholder types shouldn't get to name mangling"); 1638 1639 case BuiltinType::ObjCId: 1640 Out << "PAUobjc_object@@"; 1641 break; 1642 case BuiltinType::ObjCClass: 1643 Out << "PAUobjc_class@@"; 1644 break; 1645 case BuiltinType::ObjCSel: 1646 Out << "PAUobjc_selector@@"; 1647 break; 1648 1649 case BuiltinType::OCLImage1d: 1650 Out << "PAUocl_image1d@@"; 1651 break; 1652 case BuiltinType::OCLImage1dArray: 1653 Out << "PAUocl_image1darray@@"; 1654 break; 1655 case BuiltinType::OCLImage1dBuffer: 1656 Out << "PAUocl_image1dbuffer@@"; 1657 break; 1658 case BuiltinType::OCLImage2d: 1659 Out << "PAUocl_image2d@@"; 1660 break; 1661 case BuiltinType::OCLImage2dArray: 1662 Out << "PAUocl_image2darray@@"; 1663 break; 1664 case BuiltinType::OCLImage2dDepth: 1665 Out << "PAUocl_image2ddepth@@"; 1666 break; 1667 case BuiltinType::OCLImage2dArrayDepth: 1668 Out << "PAUocl_image2darraydepth@@"; 1669 break; 1670 case BuiltinType::OCLImage2dMSAA: 1671 Out << "PAUocl_image2dmsaa@@"; 1672 break; 1673 case BuiltinType::OCLImage2dArrayMSAA: 1674 Out << "PAUocl_image2darraymsaa@@"; 1675 break; 1676 case BuiltinType::OCLImage2dMSAADepth: 1677 Out << "PAUocl_image2dmsaadepth@@"; 1678 break; 1679 case BuiltinType::OCLImage2dArrayMSAADepth: 1680 Out << "PAUocl_image2darraymsaadepth@@"; 1681 break; 1682 case BuiltinType::OCLImage3d: 1683 Out << "PAUocl_image3d@@"; 1684 break; 1685 case BuiltinType::OCLSampler: 1686 Out << "PAUocl_sampler@@"; 1687 break; 1688 case BuiltinType::OCLEvent: 1689 Out << "PAUocl_event@@"; 1690 break; 1691 case BuiltinType::OCLClkEvent: 1692 Out << "PAUocl_clkevent@@"; 1693 break; 1694 case BuiltinType::OCLQueue: 1695 Out << "PAUocl_queue@@"; 1696 break; 1697 case BuiltinType::OCLNDRange: 1698 Out << "PAUocl_ndrange@@"; 1699 break; 1700 case BuiltinType::OCLReserveID: 1701 Out << "PAUocl_reserveid@@"; 1702 break; 1703 1704 case BuiltinType::NullPtr: 1705 Out << "$$T"; 1706 break; 1707 1708 case BuiltinType::Half: { 1709 DiagnosticsEngine &Diags = Context.getDiags(); 1710 unsigned DiagID = Diags.getCustomDiagID( 1711 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 1712 Diags.Report(Range.getBegin(), DiagID) 1713 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 1714 break; 1715 } 1716 } 1717 } 1718 1719 // <type> ::= <function-type> 1720 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 1721 SourceRange) { 1722 // Structors only appear in decls, so at this point we know it's not a 1723 // structor type. 1724 // FIXME: This may not be lambda-friendly. 1725 if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) { 1726 Out << "$$A8@@"; 1727 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 1728 } else { 1729 Out << "$$A6"; 1730 mangleFunctionType(T); 1731 } 1732 } 1733 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 1734 Qualifiers, SourceRange) { 1735 Out << "$$A6"; 1736 mangleFunctionType(T); 1737 } 1738 1739 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 1740 const FunctionDecl *D, 1741 bool ForceThisQuals) { 1742 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 1743 // <return-type> <argument-list> <throw-spec> 1744 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 1745 1746 SourceRange Range; 1747 if (D) Range = D->getSourceRange(); 1748 1749 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 1750 CallingConv CC = T->getCallConv(); 1751 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 1752 if (MD->isInstance()) 1753 HasThisQuals = true; 1754 if (isa<CXXDestructorDecl>(MD)) { 1755 IsStructor = true; 1756 } else if (isa<CXXConstructorDecl>(MD)) { 1757 IsStructor = true; 1758 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 1759 StructorType == Ctor_DefaultClosure) && 1760 getStructor(MD) == Structor; 1761 if (IsCtorClosure) 1762 CC = getASTContext().getDefaultCallingConvention( 1763 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1764 } 1765 } 1766 1767 // If this is a C++ instance method, mangle the CVR qualifiers for the 1768 // this pointer. 1769 if (HasThisQuals) { 1770 Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals()); 1771 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 1772 mangleRefQualifier(Proto->getRefQualifier()); 1773 mangleQualifiers(Quals, /*IsMember=*/false); 1774 } 1775 1776 mangleCallingConvention(CC); 1777 1778 // <return-type> ::= <type> 1779 // ::= @ # structors (they have no declared return type) 1780 if (IsStructor) { 1781 if (isa<CXXDestructorDecl>(D) && D == Structor && 1782 StructorType == Dtor_Deleting) { 1783 // The scalar deleting destructor takes an extra int argument. 1784 // However, the FunctionType generated has 0 arguments. 1785 // FIXME: This is a temporary hack. 1786 // Maybe should fix the FunctionType creation instead? 1787 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 1788 return; 1789 } 1790 if (IsCtorClosure) { 1791 // Default constructor closure and copy constructor closure both return 1792 // void. 1793 Out << 'X'; 1794 1795 if (StructorType == Ctor_DefaultClosure) { 1796 // Default constructor closure always has no arguments. 1797 Out << 'X'; 1798 } else if (StructorType == Ctor_CopyingClosure) { 1799 // Copy constructor closure always takes an unqualified reference. 1800 mangleArgumentType(getASTContext().getLValueReferenceType( 1801 Proto->getParamType(0) 1802 ->getAs<LValueReferenceType>() 1803 ->getPointeeType(), 1804 /*SpelledAsLValue=*/true), 1805 Range); 1806 Out << '@'; 1807 } else { 1808 llvm_unreachable("unexpected constructor closure!"); 1809 } 1810 Out << 'Z'; 1811 return; 1812 } 1813 Out << '@'; 1814 } else { 1815 QualType ResultType = T->getReturnType(); 1816 if (const auto *AT = 1817 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) { 1818 Out << '?'; 1819 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 1820 Out << '?'; 1821 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 1822 "shouldn't need to mangle __auto_type!"); 1823 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 1824 Out << '@'; 1825 } else { 1826 if (ResultType->isVoidType()) 1827 ResultType = ResultType.getUnqualifiedType(); 1828 mangleType(ResultType, Range, QMM_Result); 1829 } 1830 } 1831 1832 // <argument-list> ::= X # void 1833 // ::= <type>+ @ 1834 // ::= <type>* Z # varargs 1835 if (!Proto) { 1836 // Function types without prototypes can arise when mangling a function type 1837 // within an overloadable function in C. We mangle these as the absence of 1838 // any parameter types (not even an empty parameter list). 1839 Out << '@'; 1840 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 1841 Out << 'X'; 1842 } else { 1843 // Happens for function pointer type arguments for example. 1844 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 1845 mangleArgumentType(Proto->getParamType(I), Range); 1846 // Mangle each pass_object_size parameter as if it's a paramater of enum 1847 // type passed directly after the parameter with the pass_object_size 1848 // attribute. The aforementioned enum's name is __pass_object_size, and we 1849 // pretend it resides in a top-level namespace called __clang. 1850 // 1851 // FIXME: Is there a defined extension notation for the MS ABI, or is it 1852 // necessary to just cross our fingers and hope this type+namespace 1853 // combination doesn't conflict with anything? 1854 if (D) 1855 if (auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 1856 Out << "W4__pass_object_size" << P->getType() << "@__clang@@"; 1857 } 1858 // <builtin-type> ::= Z # ellipsis 1859 if (Proto->isVariadic()) 1860 Out << 'Z'; 1861 else 1862 Out << '@'; 1863 } 1864 1865 mangleThrowSpecification(Proto); 1866 } 1867 1868 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 1869 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 1870 // # pointer. in 64-bit mode *all* 1871 // # 'this' pointers are 64-bit. 1872 // ::= <global-function> 1873 // <member-function> ::= A # private: near 1874 // ::= B # private: far 1875 // ::= C # private: static near 1876 // ::= D # private: static far 1877 // ::= E # private: virtual near 1878 // ::= F # private: virtual far 1879 // ::= I # protected: near 1880 // ::= J # protected: far 1881 // ::= K # protected: static near 1882 // ::= L # protected: static far 1883 // ::= M # protected: virtual near 1884 // ::= N # protected: virtual far 1885 // ::= Q # public: near 1886 // ::= R # public: far 1887 // ::= S # public: static near 1888 // ::= T # public: static far 1889 // ::= U # public: virtual near 1890 // ::= V # public: virtual far 1891 // <global-function> ::= Y # global near 1892 // ::= Z # global far 1893 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1894 switch (MD->getAccess()) { 1895 case AS_none: 1896 llvm_unreachable("Unsupported access specifier"); 1897 case AS_private: 1898 if (MD->isStatic()) 1899 Out << 'C'; 1900 else if (MD->isVirtual()) 1901 Out << 'E'; 1902 else 1903 Out << 'A'; 1904 break; 1905 case AS_protected: 1906 if (MD->isStatic()) 1907 Out << 'K'; 1908 else if (MD->isVirtual()) 1909 Out << 'M'; 1910 else 1911 Out << 'I'; 1912 break; 1913 case AS_public: 1914 if (MD->isStatic()) 1915 Out << 'S'; 1916 else if (MD->isVirtual()) 1917 Out << 'U'; 1918 else 1919 Out << 'Q'; 1920 } 1921 } else { 1922 Out << 'Y'; 1923 } 1924 } 1925 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 1926 // <calling-convention> ::= A # __cdecl 1927 // ::= B # __export __cdecl 1928 // ::= C # __pascal 1929 // ::= D # __export __pascal 1930 // ::= E # __thiscall 1931 // ::= F # __export __thiscall 1932 // ::= G # __stdcall 1933 // ::= H # __export __stdcall 1934 // ::= I # __fastcall 1935 // ::= J # __export __fastcall 1936 // ::= Q # __vectorcall 1937 // The 'export' calling conventions are from a bygone era 1938 // (*cough*Win16*cough*) when functions were declared for export with 1939 // that keyword. (It didn't actually export them, it just made them so 1940 // that they could be in a DLL and somebody from another module could call 1941 // them.) 1942 1943 switch (CC) { 1944 default: 1945 llvm_unreachable("Unsupported CC for mangling"); 1946 case CC_X86_64Win64: 1947 case CC_X86_64SysV: 1948 case CC_C: Out << 'A'; break; 1949 case CC_X86Pascal: Out << 'C'; break; 1950 case CC_X86ThisCall: Out << 'E'; break; 1951 case CC_X86StdCall: Out << 'G'; break; 1952 case CC_X86FastCall: Out << 'I'; break; 1953 case CC_X86VectorCall: Out << 'Q'; break; 1954 } 1955 } 1956 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 1957 mangleCallingConvention(T->getCallConv()); 1958 } 1959 void MicrosoftCXXNameMangler::mangleThrowSpecification( 1960 const FunctionProtoType *FT) { 1961 // <throw-spec> ::= Z # throw(...) (default) 1962 // ::= @ # throw() or __declspec/__attribute__((nothrow)) 1963 // ::= <type>+ 1964 // NOTE: Since the Microsoft compiler ignores throw specifications, they are 1965 // all actually mangled as 'Z'. (They're ignored because their associated 1966 // functionality isn't implemented, and probably never will be.) 1967 Out << 'Z'; 1968 } 1969 1970 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 1971 Qualifiers, SourceRange Range) { 1972 // Probably should be mangled as a template instantiation; need to see what 1973 // VC does first. 1974 DiagnosticsEngine &Diags = Context.getDiags(); 1975 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1976 "cannot mangle this unresolved dependent type yet"); 1977 Diags.Report(Range.getBegin(), DiagID) 1978 << Range; 1979 } 1980 1981 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 1982 // <union-type> ::= T <name> 1983 // <struct-type> ::= U <name> 1984 // <class-type> ::= V <name> 1985 // <enum-type> ::= W4 <name> 1986 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 1987 SourceRange) { 1988 mangleType(cast<TagType>(T)->getDecl()); 1989 } 1990 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 1991 SourceRange) { 1992 mangleType(cast<TagType>(T)->getDecl()); 1993 } 1994 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 1995 switch (TD->getTagKind()) { 1996 case TTK_Union: 1997 Out << 'T'; 1998 break; 1999 case TTK_Struct: 2000 case TTK_Interface: 2001 Out << 'U'; 2002 break; 2003 case TTK_Class: 2004 Out << 'V'; 2005 break; 2006 case TTK_Enum: 2007 Out << "W4"; 2008 break; 2009 } 2010 mangleName(TD); 2011 } 2012 2013 // <type> ::= <array-type> 2014 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2015 // [Y <dimension-count> <dimension>+] 2016 // <element-type> # as global, E is never required 2017 // It's supposed to be the other way around, but for some strange reason, it 2018 // isn't. Today this behavior is retained for the sole purpose of backwards 2019 // compatibility. 2020 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2021 // This isn't a recursive mangling, so now we have to do it all in this 2022 // one call. 2023 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2024 mangleType(T->getElementType(), SourceRange()); 2025 } 2026 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2027 SourceRange) { 2028 llvm_unreachable("Should have been special cased"); 2029 } 2030 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2031 SourceRange) { 2032 llvm_unreachable("Should have been special cased"); 2033 } 2034 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2035 Qualifiers, SourceRange) { 2036 llvm_unreachable("Should have been special cased"); 2037 } 2038 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2039 Qualifiers, SourceRange) { 2040 llvm_unreachable("Should have been special cased"); 2041 } 2042 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2043 QualType ElementTy(T, 0); 2044 SmallVector<llvm::APInt, 3> Dimensions; 2045 for (;;) { 2046 if (ElementTy->isConstantArrayType()) { 2047 const ConstantArrayType *CAT = 2048 getASTContext().getAsConstantArrayType(ElementTy); 2049 Dimensions.push_back(CAT->getSize()); 2050 ElementTy = CAT->getElementType(); 2051 } else if (ElementTy->isIncompleteArrayType()) { 2052 const IncompleteArrayType *IAT = 2053 getASTContext().getAsIncompleteArrayType(ElementTy); 2054 Dimensions.push_back(llvm::APInt(32, 0)); 2055 ElementTy = IAT->getElementType(); 2056 } else if (ElementTy->isVariableArrayType()) { 2057 const VariableArrayType *VAT = 2058 getASTContext().getAsVariableArrayType(ElementTy); 2059 Dimensions.push_back(llvm::APInt(32, 0)); 2060 ElementTy = VAT->getElementType(); 2061 } else if (ElementTy->isDependentSizedArrayType()) { 2062 // The dependent expression has to be folded into a constant (TODO). 2063 const DependentSizedArrayType *DSAT = 2064 getASTContext().getAsDependentSizedArrayType(ElementTy); 2065 DiagnosticsEngine &Diags = Context.getDiags(); 2066 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2067 "cannot mangle this dependent-length array yet"); 2068 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 2069 << DSAT->getBracketsRange(); 2070 return; 2071 } else { 2072 break; 2073 } 2074 } 2075 Out << 'Y'; 2076 // <dimension-count> ::= <number> # number of extra dimensions 2077 mangleNumber(Dimensions.size()); 2078 for (const llvm::APInt &Dimension : Dimensions) 2079 mangleNumber(Dimension.getLimitedValue()); 2080 mangleType(ElementTy, SourceRange(), QMM_Escape); 2081 } 2082 2083 // <type> ::= <pointer-to-member-type> 2084 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2085 // <class name> <type> 2086 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals, 2087 SourceRange Range) { 2088 QualType PointeeType = T->getPointeeType(); 2089 manglePointerCVQualifiers(Quals); 2090 manglePointerExtQualifiers(Quals, PointeeType); 2091 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 2092 Out << '8'; 2093 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2094 mangleFunctionType(FPT, nullptr, true); 2095 } else { 2096 mangleQualifiers(PointeeType.getQualifiers(), true); 2097 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2098 mangleType(PointeeType, Range, QMM_Drop); 2099 } 2100 } 2101 2102 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 2103 Qualifiers, SourceRange Range) { 2104 DiagnosticsEngine &Diags = Context.getDiags(); 2105 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2106 "cannot mangle this template type parameter type yet"); 2107 Diags.Report(Range.getBegin(), DiagID) 2108 << Range; 2109 } 2110 2111 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 2112 Qualifiers, SourceRange Range) { 2113 DiagnosticsEngine &Diags = Context.getDiags(); 2114 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2115 "cannot mangle this substituted parameter pack yet"); 2116 Diags.Report(Range.getBegin(), DiagID) 2117 << Range; 2118 } 2119 2120 // <type> ::= <pointer-type> 2121 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 2122 // # the E is required for 64-bit non-static pointers 2123 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 2124 SourceRange Range) { 2125 QualType PointeeType = T->getPointeeType(); 2126 manglePointerCVQualifiers(Quals); 2127 manglePointerExtQualifiers(Quals, PointeeType); 2128 mangleType(PointeeType, Range); 2129 } 2130 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 2131 Qualifiers Quals, SourceRange Range) { 2132 QualType PointeeType = T->getPointeeType(); 2133 manglePointerCVQualifiers(Quals); 2134 manglePointerExtQualifiers(Quals, PointeeType); 2135 // Object pointers never have qualifiers. 2136 Out << 'A'; 2137 mangleType(PointeeType, Range); 2138 } 2139 2140 // <type> ::= <reference-type> 2141 // <reference-type> ::= A E? <cvr-qualifiers> <type> 2142 // # the E is required for 64-bit non-static lvalue references 2143 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 2144 Qualifiers Quals, SourceRange Range) { 2145 QualType PointeeType = T->getPointeeType(); 2146 Out << (Quals.hasVolatile() ? 'B' : 'A'); 2147 manglePointerExtQualifiers(Quals, PointeeType); 2148 mangleType(PointeeType, Range); 2149 } 2150 2151 // <type> ::= <r-value-reference-type> 2152 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 2153 // # the E is required for 64-bit non-static rvalue references 2154 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 2155 Qualifiers Quals, SourceRange Range) { 2156 QualType PointeeType = T->getPointeeType(); 2157 Out << (Quals.hasVolatile() ? "$$R" : "$$Q"); 2158 manglePointerExtQualifiers(Quals, PointeeType); 2159 mangleType(PointeeType, Range); 2160 } 2161 2162 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 2163 SourceRange Range) { 2164 DiagnosticsEngine &Diags = Context.getDiags(); 2165 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2166 "cannot mangle this complex number type yet"); 2167 Diags.Report(Range.getBegin(), DiagID) 2168 << Range; 2169 } 2170 2171 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 2172 SourceRange Range) { 2173 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); 2174 assert(ET && "vectors with non-builtin elements are unsupported"); 2175 uint64_t Width = getASTContext().getTypeSize(T); 2176 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 2177 // doesn't match the Intel types uses a custom mangling below. 2178 bool IsBuiltin = true; 2179 llvm::Triple::ArchType AT = 2180 getASTContext().getTargetInfo().getTriple().getArch(); 2181 if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) { 2182 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 2183 Out << "T__m64"; 2184 } else if (Width >= 128) { 2185 if (ET->getKind() == BuiltinType::Float) 2186 Out << "T__m" << Width; 2187 else if (ET->getKind() == BuiltinType::LongLong) 2188 Out << "T__m" << Width << 'i'; 2189 else if (ET->getKind() == BuiltinType::Double) 2190 Out << "U__m" << Width << 'd'; 2191 else 2192 IsBuiltin = false; 2193 } else { 2194 IsBuiltin = false; 2195 } 2196 } else { 2197 IsBuiltin = false; 2198 } 2199 2200 if (!IsBuiltin) { 2201 // The MS ABI doesn't have a special mangling for vector types, so we define 2202 // our own mangling to handle uses of __vector_size__ on user-specified 2203 // types, and for extensions like __v4sf. 2204 Out << "T__clang_vec" << T->getNumElements() << '_'; 2205 mangleType(ET, Quals, Range); 2206 } 2207 2208 Out << "@@"; 2209 } 2210 2211 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 2212 Qualifiers Quals, SourceRange Range) { 2213 mangleType(static_cast<const VectorType *>(T), Quals, Range); 2214 } 2215 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 2216 Qualifiers, SourceRange Range) { 2217 DiagnosticsEngine &Diags = Context.getDiags(); 2218 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2219 "cannot mangle this dependent-sized extended vector type yet"); 2220 Diags.Report(Range.getBegin(), DiagID) 2221 << Range; 2222 } 2223 2224 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 2225 SourceRange) { 2226 // ObjC interfaces have structs underlying them. 2227 Out << 'U'; 2228 mangleName(T->getDecl()); 2229 } 2230 2231 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers, 2232 SourceRange Range) { 2233 // We don't allow overloading by different protocol qualification, 2234 // so mangling them isn't necessary. 2235 mangleType(T->getBaseType(), Range); 2236 } 2237 2238 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 2239 Qualifiers Quals, SourceRange Range) { 2240 QualType PointeeType = T->getPointeeType(); 2241 manglePointerCVQualifiers(Quals); 2242 manglePointerExtQualifiers(Quals, PointeeType); 2243 2244 Out << "_E"; 2245 2246 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 2247 } 2248 2249 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 2250 Qualifiers, SourceRange) { 2251 llvm_unreachable("Cannot mangle injected class name type."); 2252 } 2253 2254 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 2255 Qualifiers, SourceRange Range) { 2256 DiagnosticsEngine &Diags = Context.getDiags(); 2257 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2258 "cannot mangle this template specialization type yet"); 2259 Diags.Report(Range.getBegin(), DiagID) 2260 << Range; 2261 } 2262 2263 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 2264 SourceRange Range) { 2265 DiagnosticsEngine &Diags = Context.getDiags(); 2266 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2267 "cannot mangle this dependent name type yet"); 2268 Diags.Report(Range.getBegin(), DiagID) 2269 << Range; 2270 } 2271 2272 void MicrosoftCXXNameMangler::mangleType( 2273 const DependentTemplateSpecializationType *T, Qualifiers, 2274 SourceRange Range) { 2275 DiagnosticsEngine &Diags = Context.getDiags(); 2276 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2277 "cannot mangle this dependent template specialization type yet"); 2278 Diags.Report(Range.getBegin(), DiagID) 2279 << Range; 2280 } 2281 2282 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 2283 SourceRange Range) { 2284 DiagnosticsEngine &Diags = Context.getDiags(); 2285 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2286 "cannot mangle this pack expansion yet"); 2287 Diags.Report(Range.getBegin(), DiagID) 2288 << Range; 2289 } 2290 2291 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 2292 SourceRange Range) { 2293 DiagnosticsEngine &Diags = Context.getDiags(); 2294 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2295 "cannot mangle this typeof(type) yet"); 2296 Diags.Report(Range.getBegin(), DiagID) 2297 << Range; 2298 } 2299 2300 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 2301 SourceRange Range) { 2302 DiagnosticsEngine &Diags = Context.getDiags(); 2303 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2304 "cannot mangle this typeof(expression) yet"); 2305 Diags.Report(Range.getBegin(), DiagID) 2306 << Range; 2307 } 2308 2309 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 2310 SourceRange Range) { 2311 DiagnosticsEngine &Diags = Context.getDiags(); 2312 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2313 "cannot mangle this decltype() yet"); 2314 Diags.Report(Range.getBegin(), DiagID) 2315 << Range; 2316 } 2317 2318 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 2319 Qualifiers, SourceRange Range) { 2320 DiagnosticsEngine &Diags = Context.getDiags(); 2321 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2322 "cannot mangle this unary transform type yet"); 2323 Diags.Report(Range.getBegin(), DiagID) 2324 << Range; 2325 } 2326 2327 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 2328 SourceRange Range) { 2329 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2330 2331 DiagnosticsEngine &Diags = Context.getDiags(); 2332 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2333 "cannot mangle this 'auto' type yet"); 2334 Diags.Report(Range.getBegin(), DiagID) 2335 << Range; 2336 } 2337 2338 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 2339 SourceRange Range) { 2340 DiagnosticsEngine &Diags = Context.getDiags(); 2341 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2342 "cannot mangle this C11 atomic type yet"); 2343 Diags.Report(Range.getBegin(), DiagID) 2344 << Range; 2345 } 2346 2347 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D, 2348 raw_ostream &Out) { 2349 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 2350 "Invalid mangleName() call, argument is not a variable or function!"); 2351 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 2352 "Invalid mangleName() call on 'structor decl!"); 2353 2354 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 2355 getASTContext().getSourceManager(), 2356 "Mangling declaration"); 2357 2358 MicrosoftCXXNameMangler Mangler(*this, Out); 2359 return Mangler.mangle(D); 2360 } 2361 2362 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 2363 // <virtual-adjustment> 2364 // <no-adjustment> ::= A # private near 2365 // ::= B # private far 2366 // ::= I # protected near 2367 // ::= J # protected far 2368 // ::= Q # public near 2369 // ::= R # public far 2370 // <static-adjustment> ::= G <static-offset> # private near 2371 // ::= H <static-offset> # private far 2372 // ::= O <static-offset> # protected near 2373 // ::= P <static-offset> # protected far 2374 // ::= W <static-offset> # public near 2375 // ::= X <static-offset> # public far 2376 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 2377 // ::= $1 <virtual-shift> <static-offset> # private far 2378 // ::= $2 <virtual-shift> <static-offset> # protected near 2379 // ::= $3 <virtual-shift> <static-offset> # protected far 2380 // ::= $4 <virtual-shift> <static-offset> # public near 2381 // ::= $5 <virtual-shift> <static-offset> # public far 2382 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 2383 // <vtordisp-shift> ::= <offset-to-vtordisp> 2384 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 2385 // <offset-to-vtordisp> 2386 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, 2387 const ThisAdjustment &Adjustment, 2388 MicrosoftCXXNameMangler &Mangler, 2389 raw_ostream &Out) { 2390 if (!Adjustment.Virtual.isEmpty()) { 2391 Out << '$'; 2392 char AccessSpec; 2393 switch (MD->getAccess()) { 2394 case AS_none: 2395 llvm_unreachable("Unsupported access specifier"); 2396 case AS_private: 2397 AccessSpec = '0'; 2398 break; 2399 case AS_protected: 2400 AccessSpec = '2'; 2401 break; 2402 case AS_public: 2403 AccessSpec = '4'; 2404 } 2405 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 2406 Out << 'R' << AccessSpec; 2407 Mangler.mangleNumber( 2408 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 2409 Mangler.mangleNumber( 2410 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 2411 Mangler.mangleNumber( 2412 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 2413 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 2414 } else { 2415 Out << AccessSpec; 2416 Mangler.mangleNumber( 2417 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 2418 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 2419 } 2420 } else if (Adjustment.NonVirtual != 0) { 2421 switch (MD->getAccess()) { 2422 case AS_none: 2423 llvm_unreachable("Unsupported access specifier"); 2424 case AS_private: 2425 Out << 'G'; 2426 break; 2427 case AS_protected: 2428 Out << 'O'; 2429 break; 2430 case AS_public: 2431 Out << 'W'; 2432 } 2433 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 2434 } else { 2435 switch (MD->getAccess()) { 2436 case AS_none: 2437 llvm_unreachable("Unsupported access specifier"); 2438 case AS_private: 2439 Out << 'A'; 2440 break; 2441 case AS_protected: 2442 Out << 'I'; 2443 break; 2444 case AS_public: 2445 Out << 'Q'; 2446 } 2447 } 2448 } 2449 2450 void 2451 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 2452 raw_ostream &Out) { 2453 MicrosoftVTableContext *VTContext = 2454 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 2455 const MicrosoftVTableContext::MethodVFTableLocation &ML = 2456 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 2457 2458 MicrosoftCXXNameMangler Mangler(*this, Out); 2459 Mangler.getStream() << "\01?"; 2460 Mangler.mangleVirtualMemPtrThunk(MD, ML); 2461 } 2462 2463 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 2464 const ThunkInfo &Thunk, 2465 raw_ostream &Out) { 2466 MicrosoftCXXNameMangler Mangler(*this, Out); 2467 Out << "\01?"; 2468 Mangler.mangleName(MD); 2469 mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out); 2470 if (!Thunk.Return.isEmpty()) 2471 assert(Thunk.Method != nullptr && 2472 "Thunk info should hold the overridee decl"); 2473 2474 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 2475 Mangler.mangleFunctionType( 2476 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 2477 } 2478 2479 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 2480 const CXXDestructorDecl *DD, CXXDtorType Type, 2481 const ThisAdjustment &Adjustment, raw_ostream &Out) { 2482 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 2483 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 2484 // mangling manually until we support both deleting dtor types. 2485 assert(Type == Dtor_Deleting); 2486 MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type); 2487 Out << "\01??_E"; 2488 Mangler.mangleName(DD->getParent()); 2489 mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out); 2490 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 2491 } 2492 2493 void MicrosoftMangleContextImpl::mangleCXXVFTable( 2494 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 2495 raw_ostream &Out) { 2496 // <mangled-name> ::= ?_7 <class-name> <storage-class> 2497 // <cvr-qualifiers> [<name>] @ 2498 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 2499 // is always '6' for vftables. 2500 MicrosoftCXXNameMangler Mangler(*this, Out); 2501 Mangler.getStream() << "\01??_7"; 2502 Mangler.mangleName(Derived); 2503 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 2504 for (const CXXRecordDecl *RD : BasePath) 2505 Mangler.mangleName(RD); 2506 Mangler.getStream() << '@'; 2507 } 2508 2509 void MicrosoftMangleContextImpl::mangleCXXVBTable( 2510 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 2511 raw_ostream &Out) { 2512 // <mangled-name> ::= ?_8 <class-name> <storage-class> 2513 // <cvr-qualifiers> [<name>] @ 2514 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 2515 // is always '7' for vbtables. 2516 MicrosoftCXXNameMangler Mangler(*this, Out); 2517 Mangler.getStream() << "\01??_8"; 2518 Mangler.mangleName(Derived); 2519 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 2520 for (const CXXRecordDecl *RD : BasePath) 2521 Mangler.mangleName(RD); 2522 Mangler.getStream() << '@'; 2523 } 2524 2525 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 2526 MicrosoftCXXNameMangler Mangler(*this, Out); 2527 Mangler.getStream() << "\01??_R0"; 2528 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 2529 Mangler.getStream() << "@8"; 2530 } 2531 2532 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, 2533 raw_ostream &Out) { 2534 MicrosoftCXXNameMangler Mangler(*this, Out); 2535 Mangler.getStream() << '.'; 2536 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 2537 } 2538 2539 void MicrosoftMangleContextImpl::mangleCXXCatchHandlerType(QualType T, 2540 uint32_t Flags, 2541 raw_ostream &Out) { 2542 MicrosoftCXXNameMangler Mangler(*this, Out); 2543 Mangler.getStream() << "llvm.eh.handlertype."; 2544 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 2545 Mangler.getStream() << '.' << Flags; 2546 } 2547 2548 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 2549 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 2550 MicrosoftCXXNameMangler Mangler(*this, Out); 2551 Mangler.getStream() << "\01??_K"; 2552 Mangler.mangleName(SrcRD); 2553 Mangler.getStream() << "$C"; 2554 Mangler.mangleName(DstRD); 2555 } 2556 2557 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, 2558 bool IsConst, 2559 bool IsVolatile, 2560 uint32_t NumEntries, 2561 raw_ostream &Out) { 2562 MicrosoftCXXNameMangler Mangler(*this, Out); 2563 Mangler.getStream() << "_TI"; 2564 if (IsConst) 2565 Mangler.getStream() << 'C'; 2566 if (IsVolatile) 2567 Mangler.getStream() << 'V'; 2568 Mangler.getStream() << NumEntries; 2569 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 2570 } 2571 2572 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 2573 QualType T, uint32_t NumEntries, raw_ostream &Out) { 2574 MicrosoftCXXNameMangler Mangler(*this, Out); 2575 Mangler.getStream() << "_CTA"; 2576 Mangler.getStream() << NumEntries; 2577 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 2578 } 2579 2580 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 2581 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 2582 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 2583 raw_ostream &Out) { 2584 MicrosoftCXXNameMangler Mangler(*this, Out); 2585 Mangler.getStream() << "_CT"; 2586 2587 llvm::SmallString<64> RTTIMangling; 2588 { 2589 llvm::raw_svector_ostream Stream(RTTIMangling); 2590 mangleCXXRTTI(T, Stream); 2591 } 2592 Mangler.getStream() << RTTIMangling.substr(1); 2593 2594 // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is, 2595 // in fact, superfluous but I'm not sure the change was made consciously. 2596 // TODO: Revisit this when VS2015 gets released. 2597 llvm::SmallString<64> CopyCtorMangling; 2598 if (CD) { 2599 llvm::raw_svector_ostream Stream(CopyCtorMangling); 2600 mangleCXXCtor(CD, CT, Stream); 2601 } 2602 Mangler.getStream() << CopyCtorMangling.substr(1); 2603 2604 Mangler.getStream() << Size; 2605 if (VBPtrOffset == -1) { 2606 if (NVOffset) { 2607 Mangler.getStream() << NVOffset; 2608 } 2609 } else { 2610 Mangler.getStream() << NVOffset; 2611 Mangler.getStream() << VBPtrOffset; 2612 Mangler.getStream() << VBIndex; 2613 } 2614 } 2615 2616 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 2617 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 2618 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 2619 MicrosoftCXXNameMangler Mangler(*this, Out); 2620 Mangler.getStream() << "\01??_R1"; 2621 Mangler.mangleNumber(NVOffset); 2622 Mangler.mangleNumber(VBPtrOffset); 2623 Mangler.mangleNumber(VBTableOffset); 2624 Mangler.mangleNumber(Flags); 2625 Mangler.mangleName(Derived); 2626 Mangler.getStream() << "8"; 2627 } 2628 2629 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 2630 const CXXRecordDecl *Derived, raw_ostream &Out) { 2631 MicrosoftCXXNameMangler Mangler(*this, Out); 2632 Mangler.getStream() << "\01??_R2"; 2633 Mangler.mangleName(Derived); 2634 Mangler.getStream() << "8"; 2635 } 2636 2637 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 2638 const CXXRecordDecl *Derived, raw_ostream &Out) { 2639 MicrosoftCXXNameMangler Mangler(*this, Out); 2640 Mangler.getStream() << "\01??_R3"; 2641 Mangler.mangleName(Derived); 2642 Mangler.getStream() << "8"; 2643 } 2644 2645 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 2646 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 2647 raw_ostream &Out) { 2648 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 2649 // <cvr-qualifiers> [<name>] @ 2650 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 2651 // is always '6' for vftables. 2652 MicrosoftCXXNameMangler Mangler(*this, Out); 2653 Mangler.getStream() << "\01??_R4"; 2654 Mangler.mangleName(Derived); 2655 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 2656 for (const CXXRecordDecl *RD : BasePath) 2657 Mangler.mangleName(RD); 2658 Mangler.getStream() << '@'; 2659 } 2660 2661 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 2662 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 2663 MicrosoftCXXNameMangler Mangler(*this, Out); 2664 // The function body is in the same comdat as the function with the handler, 2665 // so the numbering here doesn't have to be the same across TUs. 2666 // 2667 // <mangled-name> ::= ?filt$ <filter-number> @0 2668 Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 2669 Mangler.mangleName(EnclosingDecl); 2670 } 2671 2672 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 2673 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 2674 MicrosoftCXXNameMangler Mangler(*this, Out); 2675 // The function body is in the same comdat as the function with the handler, 2676 // so the numbering here doesn't have to be the same across TUs. 2677 // 2678 // <mangled-name> ::= ?fin$ <filter-number> @0 2679 Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 2680 Mangler.mangleName(EnclosingDecl); 2681 } 2682 2683 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { 2684 // This is just a made up unique string for the purposes of tbaa. undname 2685 // does *not* know how to demangle it. 2686 MicrosoftCXXNameMangler Mangler(*this, Out); 2687 Mangler.getStream() << '?'; 2688 Mangler.mangleType(T, SourceRange()); 2689 } 2690 2691 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 2692 CXXCtorType Type, 2693 raw_ostream &Out) { 2694 MicrosoftCXXNameMangler mangler(*this, Out, D, Type); 2695 mangler.mangle(D); 2696 } 2697 2698 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 2699 CXXDtorType Type, 2700 raw_ostream &Out) { 2701 MicrosoftCXXNameMangler mangler(*this, Out, D, Type); 2702 mangler.mangle(D); 2703 } 2704 2705 void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD, 2706 unsigned, 2707 raw_ostream &) { 2708 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 2709 "cannot mangle this reference temporary yet"); 2710 getDiags().Report(VD->getLocation(), DiagID); 2711 } 2712 2713 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 2714 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 2715 MicrosoftCXXNameMangler Mangler(*this, Out); 2716 2717 Mangler.getStream() << "\01?$TSS" << GuardNum << '@'; 2718 Mangler.mangleNestedName(VD); 2719 } 2720 2721 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 2722 raw_ostream &Out) { 2723 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 2724 // ::= ?__J <postfix> @5 <scope-depth> 2725 // ::= ?$S <guard-num> @ <postfix> @4IA 2726 2727 // The first mangling is what MSVC uses to guard static locals in inline 2728 // functions. It uses a different mangling in external functions to support 2729 // guarding more than 32 variables. MSVC rejects inline functions with more 2730 // than 32 static locals. We don't fully implement the second mangling 2731 // because those guards are not externally visible, and instead use LLVM's 2732 // default renaming when creating a new guard variable. 2733 MicrosoftCXXNameMangler Mangler(*this, Out); 2734 2735 bool Visible = VD->isExternallyVisible(); 2736 if (Visible) { 2737 Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B"); 2738 } else { 2739 Mangler.getStream() << "\01?$S1@"; 2740 } 2741 unsigned ScopeDepth = 0; 2742 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 2743 // If we do not have a discriminator and are emitting a guard variable for 2744 // use at global scope, then mangling the nested name will not be enough to 2745 // remove ambiguities. 2746 Mangler.mangle(VD, ""); 2747 else 2748 Mangler.mangleNestedName(VD); 2749 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 2750 if (ScopeDepth) 2751 Mangler.mangleNumber(ScopeDepth); 2752 } 2753 2754 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 2755 raw_ostream &Out, 2756 char CharCode) { 2757 MicrosoftCXXNameMangler Mangler(*this, Out); 2758 Mangler.getStream() << "\01??__" << CharCode; 2759 Mangler.mangleName(D); 2760 if (D->isStaticDataMember()) { 2761 Mangler.mangleVariableEncoding(D); 2762 Mangler.getStream() << '@'; 2763 } 2764 // This is the function class mangling. These stubs are global, non-variadic, 2765 // cdecl functions that return void and take no args. 2766 Mangler.getStream() << "YAXXZ"; 2767 } 2768 2769 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 2770 raw_ostream &Out) { 2771 // <initializer-name> ::= ?__E <name> YAXXZ 2772 mangleInitFiniStub(D, Out, 'E'); 2773 } 2774 2775 void 2776 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 2777 raw_ostream &Out) { 2778 // <destructor-name> ::= ?__F <name> YAXXZ 2779 mangleInitFiniStub(D, Out, 'F'); 2780 } 2781 2782 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 2783 raw_ostream &Out) { 2784 // <char-type> ::= 0 # char 2785 // ::= 1 # wchar_t 2786 // ::= ??? # char16_t/char32_t will need a mangling too... 2787 // 2788 // <literal-length> ::= <non-negative integer> # the length of the literal 2789 // 2790 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 2791 // # null-terminator 2792 // 2793 // <encoded-string> ::= <simple character> # uninteresting character 2794 // ::= '?$' <hex digit> <hex digit> # these two nibbles 2795 // # encode the byte for the 2796 // # character 2797 // ::= '?' [a-z] # \xe1 - \xfa 2798 // ::= '?' [A-Z] # \xc1 - \xda 2799 // ::= '?' [0-9] # [,/\:. \n\t'-] 2800 // 2801 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 2802 // <encoded-string> '@' 2803 MicrosoftCXXNameMangler Mangler(*this, Out); 2804 Mangler.getStream() << "\01??_C@_"; 2805 2806 // <char-type>: The "kind" of string literal is encoded into the mangled name. 2807 if (SL->isWide()) 2808 Mangler.getStream() << '1'; 2809 else 2810 Mangler.getStream() << '0'; 2811 2812 // <literal-length>: The next part of the mangled name consists of the length 2813 // of the string. 2814 // The StringLiteral does not consider the NUL terminator byte(s) but the 2815 // mangling does. 2816 // N.B. The length is in terms of bytes, not characters. 2817 Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth()); 2818 2819 auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) { 2820 unsigned CharByteWidth = SL->getCharByteWidth(); 2821 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 2822 unsigned OffsetInCodeUnit = Index % CharByteWidth; 2823 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 2824 }; 2825 2826 auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) { 2827 unsigned CharByteWidth = SL->getCharByteWidth(); 2828 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 2829 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 2830 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 2831 }; 2832 2833 // CRC all the bytes of the StringLiteral. 2834 llvm::JamCRC JC; 2835 for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I) 2836 JC.update(GetLittleEndianByte(I)); 2837 2838 // The NUL terminator byte(s) were not present earlier, 2839 // we need to manually process those bytes into the CRC. 2840 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth(); 2841 ++NullTerminator) 2842 JC.update('\x00'); 2843 2844 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 2845 // scheme. 2846 Mangler.mangleNumber(JC.getCRC()); 2847 2848 // <encoded-string>: The mangled name also contains the first 32 _characters_ 2849 // (including null-terminator bytes) of the StringLiteral. 2850 // Each character is encoded by splitting them into bytes and then encoding 2851 // the constituent bytes. 2852 auto MangleByte = [&Mangler](char Byte) { 2853 // There are five different manglings for characters: 2854 // - [a-zA-Z0-9_$]: A one-to-one mapping. 2855 // - ?[a-z]: The range from \xe1 to \xfa. 2856 // - ?[A-Z]: The range from \xc1 to \xda. 2857 // - ?[0-9]: The set of [,/\:. \n\t'-]. 2858 // - ?$XX: A fallback which maps nibbles. 2859 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { 2860 Mangler.getStream() << Byte; 2861 } else if (isLetter(Byte & 0x7f)) { 2862 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 2863 } else { 2864 const char SpecialChars[] = {',', '/', '\\', ':', '.', 2865 ' ', '\n', '\t', '\'', '-'}; 2866 const char *Pos = 2867 std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte); 2868 if (Pos != std::end(SpecialChars)) { 2869 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 2870 } else { 2871 Mangler.getStream() << "?$"; 2872 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 2873 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 2874 } 2875 } 2876 }; 2877 2878 // Enforce our 32 character max. 2879 unsigned NumCharsToMangle = std::min(32U, SL->getLength()); 2880 for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E; 2881 ++I) 2882 if (SL->isWide()) 2883 MangleByte(GetBigEndianByte(I)); 2884 else 2885 MangleByte(GetLittleEndianByte(I)); 2886 2887 // Encode the NUL terminator if there is room. 2888 if (NumCharsToMangle < 32) 2889 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth(); 2890 ++NullTerminator) 2891 MangleByte(0); 2892 2893 Mangler.getStream() << '@'; 2894 } 2895 2896 MicrosoftMangleContext * 2897 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 2898 return new MicrosoftMangleContextImpl(Context, Diags); 2899 } 2900