1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "bounds_check_elimination.h" 18 19 #include <limits> 20 21 #include "base/arena_containers.h" 22 #include "induction_var_range.h" 23 #include "side_effects_analysis.h" 24 #include "nodes.h" 25 26 namespace art { 27 28 class MonotonicValueRange; 29 30 /** 31 * A value bound is represented as a pair of value and constant, 32 * e.g. array.length - 1. 33 */ 34 class ValueBound : public ValueObject { 35 public: 36 ValueBound(HInstruction* instruction, int32_t constant) { 37 if (instruction != nullptr && instruction->IsIntConstant()) { 38 // Normalize ValueBound with constant instruction. 39 int32_t instr_const = instruction->AsIntConstant()->GetValue(); 40 if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { 41 instruction_ = nullptr; 42 constant_ = instr_const + constant; 43 return; 44 } 45 } 46 instruction_ = instruction; 47 constant_ = constant; 48 } 49 50 // Return whether (left + right) overflows or underflows. 51 static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { 52 if (right == 0) { 53 return false; 54 } 55 if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) { 56 // No overflow. 57 return false; 58 } 59 if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) { 60 // No underflow. 61 return false; 62 } 63 return true; 64 } 65 66 // Return true if instruction can be expressed as "left_instruction + right_constant". 67 static bool IsAddOrSubAConstant(HInstruction* instruction, 68 /* out */ HInstruction** left_instruction, 69 /* out */ int32_t* right_constant) { 70 HInstruction* left_so_far = nullptr; 71 int32_t right_so_far = 0; 72 while (instruction->IsAdd() || instruction->IsSub()) { 73 HBinaryOperation* bin_op = instruction->AsBinaryOperation(); 74 HInstruction* left = bin_op->GetLeft(); 75 HInstruction* right = bin_op->GetRight(); 76 if (right->IsIntConstant()) { 77 int32_t v = right->AsIntConstant()->GetValue(); 78 int32_t c = instruction->IsAdd() ? v : -v; 79 if (!WouldAddOverflowOrUnderflow(right_so_far, c)) { 80 instruction = left; 81 left_so_far = left; 82 right_so_far += c; 83 continue; 84 } 85 } 86 break; 87 } 88 // Return result: either false and "null+0" or true and "instr+constant". 89 *left_instruction = left_so_far; 90 *right_constant = right_so_far; 91 return left_so_far != nullptr; 92 } 93 94 // Expresses any instruction as a value bound. 95 static ValueBound AsValueBound(HInstruction* instruction) { 96 if (instruction->IsIntConstant()) { 97 return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); 98 } 99 HInstruction *left; 100 int32_t right; 101 if (IsAddOrSubAConstant(instruction, &left, &right)) { 102 return ValueBound(left, right); 103 } 104 return ValueBound(instruction, 0); 105 } 106 107 // Try to detect useful value bound format from an instruction, e.g. 108 // a constant or array length related value. 109 static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) { 110 DCHECK(instruction != nullptr); 111 if (instruction->IsIntConstant()) { 112 *found = true; 113 return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); 114 } 115 116 if (instruction->IsArrayLength()) { 117 *found = true; 118 return ValueBound(instruction, 0); 119 } 120 // Try to detect (array.length + c) format. 121 HInstruction *left; 122 int32_t right; 123 if (IsAddOrSubAConstant(instruction, &left, &right)) { 124 if (left->IsArrayLength()) { 125 *found = true; 126 return ValueBound(left, right); 127 } 128 } 129 130 // No useful bound detected. 131 *found = false; 132 return ValueBound::Max(); 133 } 134 135 HInstruction* GetInstruction() const { return instruction_; } 136 int32_t GetConstant() const { return constant_; } 137 138 bool IsRelatedToArrayLength() const { 139 // Some bounds are created with HNewArray* as the instruction instead 140 // of HArrayLength*. They are treated the same. 141 return (instruction_ != nullptr) && 142 (instruction_->IsArrayLength() || instruction_->IsNewArray()); 143 } 144 145 bool IsConstant() const { 146 return instruction_ == nullptr; 147 } 148 149 static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); } 150 static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); } 151 152 bool Equals(ValueBound bound) const { 153 return instruction_ == bound.instruction_ && constant_ == bound.constant_; 154 } 155 156 /* 157 * Hunt "under the hood" of array lengths (leading to array references), 158 * null checks (also leading to array references), and new arrays 159 * (leading to the actual length). This makes it more likely related 160 * instructions become actually comparable. 161 */ 162 static HInstruction* HuntForDeclaration(HInstruction* instruction) { 163 while (instruction->IsArrayLength() || 164 instruction->IsNullCheck() || 165 instruction->IsNewArray()) { 166 instruction = instruction->InputAt(0); 167 } 168 return instruction; 169 } 170 171 static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { 172 if (instruction1 == instruction2) { 173 return true; 174 } 175 if (instruction1 == nullptr || instruction2 == nullptr) { 176 return false; 177 } 178 instruction1 = HuntForDeclaration(instruction1); 179 instruction2 = HuntForDeclaration(instruction2); 180 return instruction1 == instruction2; 181 } 182 183 // Returns if it's certain this->bound >= `bound`. 184 bool GreaterThanOrEqualTo(ValueBound bound) const { 185 if (Equal(instruction_, bound.instruction_)) { 186 return constant_ >= bound.constant_; 187 } 188 // Not comparable. Just return false. 189 return false; 190 } 191 192 // Returns if it's certain this->bound <= `bound`. 193 bool LessThanOrEqualTo(ValueBound bound) const { 194 if (Equal(instruction_, bound.instruction_)) { 195 return constant_ <= bound.constant_; 196 } 197 // Not comparable. Just return false. 198 return false; 199 } 200 201 // Returns if it's certain this->bound > `bound`. 202 bool GreaterThan(ValueBound bound) const { 203 if (Equal(instruction_, bound.instruction_)) { 204 return constant_ > bound.constant_; 205 } 206 // Not comparable. Just return false. 207 return false; 208 } 209 210 // Returns if it's certain this->bound < `bound`. 211 bool LessThan(ValueBound bound) const { 212 if (Equal(instruction_, bound.instruction_)) { 213 return constant_ < bound.constant_; 214 } 215 // Not comparable. Just return false. 216 return false; 217 } 218 219 // Try to narrow lower bound. Returns the greatest of the two if possible. 220 // Pick one if they are not comparable. 221 static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { 222 if (bound1.GreaterThanOrEqualTo(bound2)) { 223 return bound1; 224 } 225 if (bound2.GreaterThanOrEqualTo(bound1)) { 226 return bound2; 227 } 228 229 // Not comparable. Just pick one. We may lose some info, but that's ok. 230 // Favor constant as lower bound. 231 return bound1.IsConstant() ? bound1 : bound2; 232 } 233 234 // Try to narrow upper bound. Returns the lowest of the two if possible. 235 // Pick one if they are not comparable. 236 static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { 237 if (bound1.LessThanOrEqualTo(bound2)) { 238 return bound1; 239 } 240 if (bound2.LessThanOrEqualTo(bound1)) { 241 return bound2; 242 } 243 244 // Not comparable. Just pick one. We may lose some info, but that's ok. 245 // Favor array length as upper bound. 246 return bound1.IsRelatedToArrayLength() ? bound1 : bound2; 247 } 248 249 // Add a constant to a ValueBound. 250 // `overflow` or `underflow` will return whether the resulting bound may 251 // overflow or underflow an int. 252 ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const { 253 *overflow = *underflow = false; 254 if (c == 0) { 255 return *this; 256 } 257 258 int32_t new_constant; 259 if (c > 0) { 260 if (constant_ > (std::numeric_limits<int32_t>::max() - c)) { 261 *overflow = true; 262 return Max(); 263 } 264 265 new_constant = constant_ + c; 266 // (array.length + non-positive-constant) won't overflow an int. 267 if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { 268 return ValueBound(instruction_, new_constant); 269 } 270 // Be conservative. 271 *overflow = true; 272 return Max(); 273 } else { 274 if (constant_ < (std::numeric_limits<int32_t>::min() - c)) { 275 *underflow = true; 276 return Min(); 277 } 278 279 new_constant = constant_ + c; 280 // Regardless of the value new_constant, (array.length+new_constant) will 281 // never underflow since array.length is no less than 0. 282 if (IsConstant() || IsRelatedToArrayLength()) { 283 return ValueBound(instruction_, new_constant); 284 } 285 // Be conservative. 286 *underflow = true; 287 return Min(); 288 } 289 } 290 291 private: 292 HInstruction* instruction_; 293 int32_t constant_; 294 }; 295 296 /** 297 * Represent a range of lower bound and upper bound, both being inclusive. 298 * Currently a ValueRange may be generated as a result of the following: 299 * comparisons related to array bounds, array bounds check, add/sub on top 300 * of an existing value range, NewArray or a loop phi corresponding to an 301 * incrementing/decrementing array index (MonotonicValueRange). 302 */ 303 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> { 304 public: 305 ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper) 306 : allocator_(allocator), lower_(lower), upper_(upper) {} 307 308 virtual ~ValueRange() {} 309 310 virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } 311 bool IsMonotonicValueRange() { 312 return AsMonotonicValueRange() != nullptr; 313 } 314 315 ArenaAllocator* GetAllocator() const { return allocator_; } 316 ValueBound GetLower() const { return lower_; } 317 ValueBound GetUpper() const { return upper_; } 318 319 bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); } 320 321 // If it's certain that this value range fits in other_range. 322 virtual bool FitsIn(ValueRange* other_range) const { 323 if (other_range == nullptr) { 324 return true; 325 } 326 DCHECK(!other_range->IsMonotonicValueRange()); 327 return lower_.GreaterThanOrEqualTo(other_range->lower_) && 328 upper_.LessThanOrEqualTo(other_range->upper_); 329 } 330 331 // Returns the intersection of this and range. 332 // If it's not possible to do intersection because some 333 // bounds are not comparable, it's ok to pick either bound. 334 virtual ValueRange* Narrow(ValueRange* range) { 335 if (range == nullptr) { 336 return this; 337 } 338 339 if (range->IsMonotonicValueRange()) { 340 return this; 341 } 342 343 return new (allocator_) ValueRange( 344 allocator_, 345 ValueBound::NarrowLowerBound(lower_, range->lower_), 346 ValueBound::NarrowUpperBound(upper_, range->upper_)); 347 } 348 349 // Shift a range by a constant. 350 ValueRange* Add(int32_t constant) const { 351 bool overflow, underflow; 352 ValueBound lower = lower_.Add(constant, &overflow, &underflow); 353 if (underflow) { 354 // Lower bound underflow will wrap around to positive values 355 // and invalidate the upper bound. 356 return nullptr; 357 } 358 ValueBound upper = upper_.Add(constant, &overflow, &underflow); 359 if (overflow) { 360 // Upper bound overflow will wrap around to negative values 361 // and invalidate the lower bound. 362 return nullptr; 363 } 364 return new (allocator_) ValueRange(allocator_, lower, upper); 365 } 366 367 private: 368 ArenaAllocator* const allocator_; 369 const ValueBound lower_; // inclusive 370 const ValueBound upper_; // inclusive 371 372 DISALLOW_COPY_AND_ASSIGN(ValueRange); 373 }; 374 375 /** 376 * A monotonically incrementing/decrementing value range, e.g. 377 * the variable i in "for (int i=0; i<array.length; i++)". 378 * Special care needs to be taken to account for overflow/underflow 379 * of such value ranges. 380 */ 381 class MonotonicValueRange : public ValueRange { 382 public: 383 MonotonicValueRange(ArenaAllocator* allocator, 384 HPhi* induction_variable, 385 HInstruction* initial, 386 int32_t increment, 387 ValueBound bound) 388 // To be conservative, give it full range [Min(), Max()] in case it's 389 // used as a regular value range, due to possible overflow/underflow. 390 : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()), 391 induction_variable_(induction_variable), 392 initial_(initial), 393 increment_(increment), 394 bound_(bound) {} 395 396 virtual ~MonotonicValueRange() {} 397 398 int32_t GetIncrement() const { return increment_; } 399 ValueBound GetBound() const { return bound_; } 400 HBasicBlock* GetLoopHeader() const { 401 DCHECK(induction_variable_->GetBlock()->IsLoopHeader()); 402 return induction_variable_->GetBlock(); 403 } 404 405 MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; } 406 407 // If it's certain that this value range fits in other_range. 408 bool FitsIn(ValueRange* other_range) const OVERRIDE { 409 if (other_range == nullptr) { 410 return true; 411 } 412 DCHECK(!other_range->IsMonotonicValueRange()); 413 return false; 414 } 415 416 // Try to narrow this MonotonicValueRange given another range. 417 // Ideally it will return a normal ValueRange. But due to 418 // possible overflow/underflow, that may not be possible. 419 ValueRange* Narrow(ValueRange* range) OVERRIDE { 420 if (range == nullptr) { 421 return this; 422 } 423 DCHECK(!range->IsMonotonicValueRange()); 424 425 if (increment_ > 0) { 426 // Monotonically increasing. 427 ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); 428 if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) { 429 // Lower bound isn't useful. Leave it to deoptimization. 430 return this; 431 } 432 433 // We currently conservatively assume max array length is Max(). 434 // If we can make assumptions about the max array length, e.g. due to the max heap size, 435 // divided by the element size (such as 4 bytes for each integer array), we can 436 // lower this number and rule out some possible overflows. 437 int32_t max_array_len = std::numeric_limits<int32_t>::max(); 438 439 // max possible integer value of range's upper value. 440 int32_t upper = std::numeric_limits<int32_t>::max(); 441 // Try to lower upper. 442 ValueBound upper_bound = range->GetUpper(); 443 if (upper_bound.IsConstant()) { 444 upper = upper_bound.GetConstant(); 445 } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { 446 // Normal case. e.g. <= array.length - 1. 447 upper = max_array_len + upper_bound.GetConstant(); 448 } 449 450 // If we can prove for the last number in sequence of initial_, 451 // initial_ + increment_, initial_ + 2 x increment_, ... 452 // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, 453 // then this MonoticValueRange is narrowed to a normal value range. 454 455 // Be conservative first, assume last number in the sequence hits upper. 456 int32_t last_num_in_sequence = upper; 457 if (initial_->IsIntConstant()) { 458 int32_t initial_constant = initial_->AsIntConstant()->GetValue(); 459 if (upper <= initial_constant) { 460 last_num_in_sequence = upper; 461 } else { 462 // Cast to int64_t for the substraction part to avoid int32_t overflow. 463 last_num_in_sequence = initial_constant + 464 ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; 465 } 466 } 467 if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) { 468 // No overflow. The sequence will be stopped by the upper bound test as expected. 469 return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); 470 } 471 472 // There might be overflow. Give up narrowing. 473 return this; 474 } else { 475 DCHECK_NE(increment_, 0); 476 // Monotonically decreasing. 477 ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); 478 if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) && 479 !upper.IsRelatedToArrayLength()) { 480 // Upper bound isn't useful. Leave it to deoptimization. 481 return this; 482 } 483 484 // Need to take care of underflow. Try to prove underflow won't happen 485 // for common cases. 486 if (range->GetLower().IsConstant()) { 487 int32_t constant = range->GetLower().GetConstant(); 488 if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) { 489 return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); 490 } 491 } 492 493 // For non-constant lower bound, just assume might be underflow. Give up narrowing. 494 return this; 495 } 496 } 497 498 private: 499 HPhi* const induction_variable_; // Induction variable for this monotonic value range. 500 HInstruction* const initial_; // Initial value. 501 const int32_t increment_; // Increment for each loop iteration. 502 const ValueBound bound_; // Additional value bound info for initial_. 503 504 DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); 505 }; 506 507 class BCEVisitor : public HGraphVisitor { 508 public: 509 // The least number of bounds checks that should be eliminated by triggering 510 // the deoptimization technique. 511 static constexpr size_t kThresholdForAddingDeoptimize = 2; 512 513 // Very large lengths are considered an anomaly. This is a threshold beyond which we don't 514 // bother to apply the deoptimization technique since it's likely, or sometimes certain, 515 // an AIOOBE will be thrown. 516 static constexpr uint32_t kMaxLengthForAddingDeoptimize = 517 std::numeric_limits<int32_t>::max() - 1024 * 1024; 518 519 // Added blocks for loop body entry test. 520 bool IsAddedBlock(HBasicBlock* block) const { 521 return block->GetBlockId() >= initial_block_size_; 522 } 523 524 BCEVisitor(HGraph* graph, 525 const SideEffectsAnalysis& side_effects, 526 HInductionVarAnalysis* induction_analysis) 527 : HGraphVisitor(graph), 528 maps_(graph->GetBlocks().size(), 529 ArenaSafeMap<int, ValueRange*>( 530 std::less<int>(), 531 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 532 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 533 first_index_bounds_check_map_( 534 std::less<int>(), 535 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 536 dynamic_bce_standby_( 537 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 538 record_dynamic_bce_standby_(true), 539 early_exit_loop_( 540 std::less<uint32_t>(), 541 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 542 taken_test_loop_( 543 std::less<uint32_t>(), 544 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 545 finite_loop_(graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)), 546 has_dom_based_dynamic_bce_(false), 547 initial_block_size_(graph->GetBlocks().size()), 548 side_effects_(side_effects), 549 induction_range_(induction_analysis) {} 550 551 void VisitBasicBlock(HBasicBlock* block) OVERRIDE { 552 DCHECK(!IsAddedBlock(block)); 553 first_index_bounds_check_map_.clear(); 554 HGraphVisitor::VisitBasicBlock(block); 555 // We should never deoptimize from an osr method, otherwise we might wrongly optimize 556 // code dominated by the deoptimization. 557 if (!GetGraph()->IsCompilingOsr()) { 558 AddComparesWithDeoptimization(block); 559 } 560 } 561 562 void Finish() { 563 // Retry dynamic bce candidates on standby that are still in the graph. 564 record_dynamic_bce_standby_ = false; 565 for (HBoundsCheck* bounds_check : dynamic_bce_standby_) { 566 if (bounds_check->IsInBlock()) { 567 TryDynamicBCE(bounds_check); 568 } 569 } 570 571 // Preserve SSA structure which may have been broken by adding one or more 572 // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()). 573 InsertPhiNodes(); 574 575 // Clear the loop data structures. 576 early_exit_loop_.clear(); 577 taken_test_loop_.clear(); 578 finite_loop_.clear(); 579 dynamic_bce_standby_.clear(); 580 } 581 582 private: 583 // Return the map of proven value ranges at the beginning of a basic block. 584 ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) { 585 if (IsAddedBlock(basic_block)) { 586 // Added blocks don't keep value ranges. 587 return nullptr; 588 } 589 return &maps_[basic_block->GetBlockId()]; 590 } 591 592 // Traverse up the dominator tree to look for value range info. 593 ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { 594 while (basic_block != nullptr) { 595 ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block); 596 if (map != nullptr) { 597 if (map->find(instruction->GetId()) != map->end()) { 598 return map->Get(instruction->GetId()); 599 } 600 } else { 601 DCHECK(IsAddedBlock(basic_block)); 602 } 603 basic_block = basic_block->GetDominator(); 604 } 605 // Didn't find any. 606 return nullptr; 607 } 608 609 // Helper method to assign a new range to an instruction in given basic block. 610 void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) { 611 GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range); 612 } 613 614 // Narrow the value range of `instruction` at the end of `basic_block` with `range`, 615 // and push the narrowed value range to `successor`. 616 void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, 617 HBasicBlock* successor, ValueRange* range) { 618 ValueRange* existing_range = LookupValueRange(instruction, basic_block); 619 if (existing_range == nullptr) { 620 if (range != nullptr) { 621 AssignRange(successor, instruction, range); 622 } 623 return; 624 } 625 if (existing_range->IsMonotonicValueRange()) { 626 DCHECK(instruction->IsLoopHeaderPhi()); 627 // Make sure the comparison is in the loop header so each increment is 628 // checked with a comparison. 629 if (instruction->GetBlock() != basic_block) { 630 return; 631 } 632 } 633 AssignRange(successor, instruction, existing_range->Narrow(range)); 634 } 635 636 // Special case that we may simultaneously narrow two MonotonicValueRange's to 637 // regular value ranges. 638 void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, 639 HInstruction* left, 640 HInstruction* right, 641 IfCondition cond, 642 MonotonicValueRange* left_range, 643 MonotonicValueRange* right_range) { 644 DCHECK(left->IsLoopHeaderPhi()); 645 DCHECK(right->IsLoopHeaderPhi()); 646 if (instruction->GetBlock() != left->GetBlock()) { 647 // Comparison needs to be in loop header to make sure it's done after each 648 // increment/decrement. 649 return; 650 } 651 652 // Handle common cases which also don't have overflow/underflow concerns. 653 if (left_range->GetIncrement() == 1 && 654 left_range->GetBound().IsConstant() && 655 right_range->GetIncrement() == -1 && 656 right_range->GetBound().IsRelatedToArrayLength() && 657 right_range->GetBound().GetConstant() < 0) { 658 HBasicBlock* successor = nullptr; 659 int32_t left_compensation = 0; 660 int32_t right_compensation = 0; 661 if (cond == kCondLT) { 662 left_compensation = -1; 663 right_compensation = 1; 664 successor = instruction->IfTrueSuccessor(); 665 } else if (cond == kCondLE) { 666 successor = instruction->IfTrueSuccessor(); 667 } else if (cond == kCondGT) { 668 successor = instruction->IfFalseSuccessor(); 669 } else if (cond == kCondGE) { 670 left_compensation = -1; 671 right_compensation = 1; 672 successor = instruction->IfFalseSuccessor(); 673 } else { 674 // We don't handle '=='/'!=' test in case left and right can cross and 675 // miss each other. 676 return; 677 } 678 679 if (successor != nullptr) { 680 bool overflow; 681 bool underflow; 682 ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange( 683 GetGraph()->GetArena(), 684 left_range->GetBound(), 685 right_range->GetBound().Add(left_compensation, &overflow, &underflow)); 686 if (!overflow && !underflow) { 687 ApplyRangeFromComparison(left, instruction->GetBlock(), successor, 688 new_left_range); 689 } 690 691 ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange( 692 GetGraph()->GetArena(), 693 left_range->GetBound().Add(right_compensation, &overflow, &underflow), 694 right_range->GetBound()); 695 if (!overflow && !underflow) { 696 ApplyRangeFromComparison(right, instruction->GetBlock(), successor, 697 new_right_range); 698 } 699 } 700 } 701 } 702 703 // Handle "if (left cmp_cond right)". 704 void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { 705 HBasicBlock* block = instruction->GetBlock(); 706 707 HBasicBlock* true_successor = instruction->IfTrueSuccessor(); 708 // There should be no critical edge at this point. 709 DCHECK_EQ(true_successor->GetPredecessors().size(), 1u); 710 711 HBasicBlock* false_successor = instruction->IfFalseSuccessor(); 712 // There should be no critical edge at this point. 713 DCHECK_EQ(false_successor->GetPredecessors().size(), 1u); 714 715 ValueRange* left_range = LookupValueRange(left, block); 716 MonotonicValueRange* left_monotonic_range = nullptr; 717 if (left_range != nullptr) { 718 left_monotonic_range = left_range->AsMonotonicValueRange(); 719 if (left_monotonic_range != nullptr) { 720 HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); 721 if (instruction->GetBlock() != loop_head) { 722 // For monotonic value range, don't handle `instruction` 723 // if it's not defined in the loop header. 724 return; 725 } 726 } 727 } 728 729 bool found; 730 ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); 731 // Each comparison can establish a lower bound and an upper bound 732 // for the left hand side. 733 ValueBound lower = bound; 734 ValueBound upper = bound; 735 if (!found) { 736 // No constant or array.length+c format bound found. 737 // For i<j, we can still use j's upper bound as i's upper bound. Same for lower. 738 ValueRange* right_range = LookupValueRange(right, block); 739 if (right_range != nullptr) { 740 if (right_range->IsMonotonicValueRange()) { 741 if (left_range != nullptr && left_range->IsMonotonicValueRange()) { 742 HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, 743 left_range->AsMonotonicValueRange(), 744 right_range->AsMonotonicValueRange()); 745 return; 746 } 747 } 748 lower = right_range->GetLower(); 749 upper = right_range->GetUpper(); 750 } else { 751 lower = ValueBound::Min(); 752 upper = ValueBound::Max(); 753 } 754 } 755 756 bool overflow, underflow; 757 if (cond == kCondLT || cond == kCondLE) { 758 if (!upper.Equals(ValueBound::Max())) { 759 int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive 760 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); 761 if (overflow || underflow) { 762 return; 763 } 764 ValueRange* new_range = new (GetGraph()->GetArena()) 765 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); 766 ApplyRangeFromComparison(left, block, true_successor, new_range); 767 } 768 769 // array.length as a lower bound isn't considered useful. 770 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { 771 int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive 772 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); 773 if (overflow || underflow) { 774 return; 775 } 776 ValueRange* new_range = new (GetGraph()->GetArena()) 777 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); 778 ApplyRangeFromComparison(left, block, false_successor, new_range); 779 } 780 } else if (cond == kCondGT || cond == kCondGE) { 781 // array.length as a lower bound isn't considered useful. 782 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { 783 int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive 784 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); 785 if (overflow || underflow) { 786 return; 787 } 788 ValueRange* new_range = new (GetGraph()->GetArena()) 789 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); 790 ApplyRangeFromComparison(left, block, true_successor, new_range); 791 } 792 793 if (!upper.Equals(ValueBound::Max())) { 794 int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive 795 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); 796 if (overflow || underflow) { 797 return; 798 } 799 ValueRange* new_range = new (GetGraph()->GetArena()) 800 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); 801 ApplyRangeFromComparison(left, block, false_successor, new_range); 802 } 803 } 804 } 805 806 void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE { 807 HBasicBlock* block = bounds_check->GetBlock(); 808 HInstruction* index = bounds_check->InputAt(0); 809 HInstruction* array_length = bounds_check->InputAt(1); 810 DCHECK(array_length->IsIntConstant() || 811 array_length->IsArrayLength() || 812 array_length->IsPhi()); 813 bool try_dynamic_bce = true; 814 815 // Analyze index range. 816 if (!index->IsIntConstant()) { 817 // Non-constant index. 818 ValueBound lower = ValueBound(nullptr, 0); // constant 0 819 ValueBound upper = ValueBound(array_length, -1); // array_length - 1 820 ValueRange array_range(GetGraph()->GetArena(), lower, upper); 821 // Try index range obtained by dominator-based analysis. 822 ValueRange* index_range = LookupValueRange(index, block); 823 if (index_range != nullptr && index_range->FitsIn(&array_range)) { 824 ReplaceInstruction(bounds_check, index); 825 return; 826 } 827 // Try index range obtained by induction variable analysis. 828 // Disables dynamic bce if OOB is certain. 829 if (InductionRangeFitsIn(&array_range, bounds_check, index, &try_dynamic_bce)) { 830 ReplaceInstruction(bounds_check, index); 831 return; 832 } 833 } else { 834 // Constant index. 835 int32_t constant = index->AsIntConstant()->GetValue(); 836 if (constant < 0) { 837 // Will always throw exception. 838 return; 839 } else if (array_length->IsIntConstant()) { 840 if (constant < array_length->AsIntConstant()->GetValue()) { 841 ReplaceInstruction(bounds_check, index); 842 } 843 return; 844 } 845 // Analyze array length range. 846 DCHECK(array_length->IsArrayLength()); 847 ValueRange* existing_range = LookupValueRange(array_length, block); 848 if (existing_range != nullptr) { 849 ValueBound lower = existing_range->GetLower(); 850 DCHECK(lower.IsConstant()); 851 if (constant < lower.GetConstant()) { 852 ReplaceInstruction(bounds_check, index); 853 return; 854 } else { 855 // Existing range isn't strong enough to eliminate the bounds check. 856 // Fall through to update the array_length range with info from this 857 // bounds check. 858 } 859 } 860 // Once we have an array access like 'array[5] = 1', we record array.length >= 6. 861 // We currently don't do it for non-constant index since a valid array[i] can't prove 862 // a valid array[i-1] yet due to the lower bound side. 863 if (constant == std::numeric_limits<int32_t>::max()) { 864 // Max() as an index will definitely throw AIOOBE. 865 return; 866 } else { 867 ValueBound lower = ValueBound(nullptr, constant + 1); 868 ValueBound upper = ValueBound::Max(); 869 ValueRange* range = new (GetGraph()->GetArena()) 870 ValueRange(GetGraph()->GetArena(), lower, upper); 871 AssignRange(block, array_length, range); 872 } 873 } 874 875 // If static analysis fails, and OOB is not certain, try dynamic elimination. 876 if (try_dynamic_bce) { 877 // Try loop-based dynamic elimination. 878 if (TryDynamicBCE(bounds_check)) { 879 return; 880 } 881 // Prepare dominator-based dynamic elimination. 882 if (first_index_bounds_check_map_.find(array_length->GetId()) == 883 first_index_bounds_check_map_.end()) { 884 // Remember the first bounds check against each array_length. That bounds check 885 // instruction has an associated HEnvironment where we may add an HDeoptimize 886 // to eliminate subsequent bounds checks against the same array_length. 887 first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); 888 } 889 } 890 } 891 892 static bool HasSameInputAtBackEdges(HPhi* phi) { 893 DCHECK(phi->IsLoopHeaderPhi()); 894 // Start with input 1. Input 0 is from the incoming block. 895 HInstruction* input1 = phi->InputAt(1); 896 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( 897 *phi->GetBlock()->GetPredecessors()[1])); 898 for (size_t i = 2, e = phi->InputCount(); i < e; ++i) { 899 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( 900 *phi->GetBlock()->GetPredecessors()[i])); 901 if (input1 != phi->InputAt(i)) { 902 return false; 903 } 904 } 905 return true; 906 } 907 908 void VisitPhi(HPhi* phi) OVERRIDE { 909 if (phi->IsLoopHeaderPhi() 910 && (phi->GetType() == Primitive::kPrimInt) 911 && HasSameInputAtBackEdges(phi)) { 912 HInstruction* instruction = phi->InputAt(1); 913 HInstruction *left; 914 int32_t increment; 915 if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { 916 if (left == phi) { 917 HInstruction* initial_value = phi->InputAt(0); 918 ValueRange* range = nullptr; 919 if (increment == 0) { 920 // Add constant 0. It's really a fixed value. 921 range = new (GetGraph()->GetArena()) ValueRange( 922 GetGraph()->GetArena(), 923 ValueBound(initial_value, 0), 924 ValueBound(initial_value, 0)); 925 } else { 926 // Monotonically increasing/decreasing. 927 bool found; 928 ValueBound bound = ValueBound::DetectValueBoundFromValue( 929 initial_value, &found); 930 if (!found) { 931 // No constant or array.length+c bound found. 932 // For i=j, we can still use j's upper bound as i's upper bound. 933 // Same for lower. 934 ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); 935 if (initial_range != nullptr) { 936 bound = increment > 0 ? initial_range->GetLower() : 937 initial_range->GetUpper(); 938 } else { 939 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); 940 } 941 } 942 range = new (GetGraph()->GetArena()) MonotonicValueRange( 943 GetGraph()->GetArena(), 944 phi, 945 initial_value, 946 increment, 947 bound); 948 } 949 AssignRange(phi->GetBlock(), phi, range); 950 } 951 } 952 } 953 } 954 955 void VisitIf(HIf* instruction) OVERRIDE { 956 if (instruction->InputAt(0)->IsCondition()) { 957 HCondition* cond = instruction->InputAt(0)->AsCondition(); 958 IfCondition cmp = cond->GetCondition(); 959 if (cmp == kCondGT || cmp == kCondGE || 960 cmp == kCondLT || cmp == kCondLE) { 961 HInstruction* left = cond->GetLeft(); 962 HInstruction* right = cond->GetRight(); 963 HandleIf(instruction, left, right, cmp); 964 } 965 } 966 } 967 968 void VisitAdd(HAdd* add) OVERRIDE { 969 HInstruction* right = add->GetRight(); 970 if (right->IsIntConstant()) { 971 ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); 972 if (left_range == nullptr) { 973 return; 974 } 975 ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); 976 if (range != nullptr) { 977 AssignRange(add->GetBlock(), add, range); 978 } 979 } 980 } 981 982 void VisitSub(HSub* sub) OVERRIDE { 983 HInstruction* left = sub->GetLeft(); 984 HInstruction* right = sub->GetRight(); 985 if (right->IsIntConstant()) { 986 ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); 987 if (left_range == nullptr) { 988 return; 989 } 990 ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); 991 if (range != nullptr) { 992 AssignRange(sub->GetBlock(), sub, range); 993 return; 994 } 995 } 996 997 // Here we are interested in the typical triangular case of nested loops, 998 // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i 999 // is the index for outer loop. In this case, we know j is bounded by array.length-1. 1000 1001 // Try to handle (array.length - i) or (array.length + c - i) format. 1002 HInstruction* left_of_left; // left input of left. 1003 int32_t right_const = 0; 1004 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) { 1005 left = left_of_left; 1006 } 1007 // The value of left input of the sub equals (left + right_const). 1008 1009 if (left->IsArrayLength()) { 1010 HInstruction* array_length = left->AsArrayLength(); 1011 ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); 1012 if (right_range != nullptr) { 1013 ValueBound lower = right_range->GetLower(); 1014 ValueBound upper = right_range->GetUpper(); 1015 if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { 1016 HInstruction* upper_inst = upper.GetInstruction(); 1017 // Make sure it's the same array. 1018 if (ValueBound::Equal(array_length, upper_inst)) { 1019 int32_t c0 = right_const; 1020 int32_t c1 = lower.GetConstant(); 1021 int32_t c2 = upper.GetConstant(); 1022 // (array.length + c0 - v) where v is in [c1, array.length + c2] 1023 // gets [c0 - c2, array.length + c0 - c1] as its value range. 1024 if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && 1025 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { 1026 if ((c0 - c1) <= 0) { 1027 // array.length + (c0 - c1) won't overflow/underflow. 1028 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1029 GetGraph()->GetArena(), 1030 ValueBound(nullptr, right_const - upper.GetConstant()), 1031 ValueBound(array_length, right_const - lower.GetConstant())); 1032 AssignRange(sub->GetBlock(), sub, range); 1033 } 1034 } 1035 } 1036 } 1037 } 1038 } 1039 } 1040 1041 void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { 1042 DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); 1043 HInstruction* right = instruction->GetRight(); 1044 int32_t right_const; 1045 if (right->IsIntConstant()) { 1046 right_const = right->AsIntConstant()->GetValue(); 1047 // Detect division by two or more. 1048 if ((instruction->IsDiv() && right_const <= 1) || 1049 (instruction->IsShr() && right_const < 1) || 1050 (instruction->IsUShr() && right_const < 1)) { 1051 return; 1052 } 1053 } else { 1054 return; 1055 } 1056 1057 // Try to handle array.length/2 or (array.length-1)/2 format. 1058 HInstruction* left = instruction->GetLeft(); 1059 HInstruction* left_of_left; // left input of left. 1060 int32_t c = 0; 1061 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { 1062 left = left_of_left; 1063 } 1064 // The value of left input of instruction equals (left + c). 1065 1066 // (array_length + 1) or smaller divided by two or more 1067 // always generate a value in [Min(), array_length]. 1068 // This is true even if array_length is Max(). 1069 if (left->IsArrayLength() && c <= 1) { 1070 if (instruction->IsUShr() && c < 0) { 1071 // Make sure for unsigned shift, left side is not negative. 1072 // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger 1073 // than array_length. 1074 return; 1075 } 1076 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1077 GetGraph()->GetArena(), 1078 ValueBound(nullptr, std::numeric_limits<int32_t>::min()), 1079 ValueBound(left, 0)); 1080 AssignRange(instruction->GetBlock(), instruction, range); 1081 } 1082 } 1083 1084 void VisitDiv(HDiv* div) OVERRIDE { 1085 FindAndHandlePartialArrayLength(div); 1086 } 1087 1088 void VisitShr(HShr* shr) OVERRIDE { 1089 FindAndHandlePartialArrayLength(shr); 1090 } 1091 1092 void VisitUShr(HUShr* ushr) OVERRIDE { 1093 FindAndHandlePartialArrayLength(ushr); 1094 } 1095 1096 void VisitAnd(HAnd* instruction) OVERRIDE { 1097 if (instruction->GetRight()->IsIntConstant()) { 1098 int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); 1099 if (constant > 0) { 1100 // constant serves as a mask so any number masked with it 1101 // gets a [0, constant] value range. 1102 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1103 GetGraph()->GetArena(), 1104 ValueBound(nullptr, 0), 1105 ValueBound(nullptr, constant)); 1106 AssignRange(instruction->GetBlock(), instruction, range); 1107 } 1108 } 1109 } 1110 1111 void VisitNewArray(HNewArray* new_array) OVERRIDE { 1112 HInstruction* len = new_array->InputAt(0); 1113 if (!len->IsIntConstant()) { 1114 HInstruction *left; 1115 int32_t right_const; 1116 if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { 1117 // (left + right_const) is used as size to new the array. 1118 // We record "-right_const <= left <= new_array - right_const"; 1119 ValueBound lower = ValueBound(nullptr, -right_const); 1120 // We use new_array for the bound instead of new_array.length, 1121 // which isn't available as an instruction yet. new_array will 1122 // be treated the same as new_array.length when it's used in a ValueBound. 1123 ValueBound upper = ValueBound(new_array, -right_const); 1124 ValueRange* range = new (GetGraph()->GetArena()) 1125 ValueRange(GetGraph()->GetArena(), lower, upper); 1126 ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); 1127 if (existing_range != nullptr) { 1128 range = existing_range->Narrow(range); 1129 } 1130 AssignRange(new_array->GetBlock(), left, range); 1131 } 1132 } 1133 } 1134 1135 /** 1136 * After null/bounds checks are eliminated, some invariant array references 1137 * may be exposed underneath which can be hoisted out of the loop to the 1138 * preheader or, in combination with dynamic bce, the deoptimization block. 1139 * 1140 * for (int i = 0; i < n; i++) { 1141 * <-------+ 1142 * for (int j = 0; j < n; j++) | 1143 * a[i][j] = 0; --a[i]--+ 1144 * } 1145 * 1146 * Note: this optimization is no longer applied after dominator-based dynamic deoptimization 1147 * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be 1148 * unsafe to hoist array references across their deoptimization instruction inside a loop. 1149 */ 1150 void VisitArrayGet(HArrayGet* array_get) OVERRIDE { 1151 if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) { 1152 HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation(); 1153 if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) && 1154 loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) { 1155 SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader()); 1156 if (!array_get->GetSideEffects().MayDependOn(loop_effects)) { 1157 // We can hoist ArrayGet only if its execution is guaranteed on every iteration. 1158 // In other words only if array_get_bb dominates all back branches. 1159 if (loop->DominatesAllBackEdges(array_get->GetBlock())) { 1160 HoistToPreHeaderOrDeoptBlock(loop, array_get); 1161 } 1162 } 1163 } 1164 } 1165 } 1166 1167 // Perform dominator-based dynamic elimination on suitable set of bounds checks. 1168 void AddCompareWithDeoptimization(HBasicBlock* block, 1169 HInstruction* array_length, 1170 HInstruction* base, 1171 int32_t min_c, int32_t max_c) { 1172 HBoundsCheck* bounds_check = 1173 first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck(); 1174 // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c], 1175 // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1 1176 // and base+3, since we made the assumption any in between value may occur too. 1177 static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(), 1178 "Incorrect max length may be subject to arithmetic wrap-around"); 1179 HInstruction* upper = GetGraph()->GetIntConstant(max_c); 1180 if (base == nullptr) { 1181 DCHECK_GE(min_c, 0); 1182 } else { 1183 HInstruction* lower = new (GetGraph()->GetArena()) 1184 HAdd(Primitive::kPrimInt, base, GetGraph()->GetIntConstant(min_c)); 1185 upper = new (GetGraph()->GetArena()) HAdd(Primitive::kPrimInt, base, upper); 1186 block->InsertInstructionBefore(lower, bounds_check); 1187 block->InsertInstructionBefore(upper, bounds_check); 1188 InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAbove(lower, upper)); 1189 } 1190 InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAboveOrEqual(upper, array_length)); 1191 // Flag that this kind of deoptimization has occurred. 1192 has_dom_based_dynamic_bce_ = true; 1193 } 1194 1195 // Attempt dominator-based dynamic elimination on remaining candidates. 1196 void AddComparesWithDeoptimization(HBasicBlock* block) { 1197 for (const auto& entry : first_index_bounds_check_map_) { 1198 HBoundsCheck* bounds_check = entry.second; 1199 HInstruction* index = bounds_check->InputAt(0); 1200 HInstruction* array_length = bounds_check->InputAt(1); 1201 if (!array_length->IsArrayLength()) { 1202 continue; // disregard phis and constants 1203 } 1204 // Collect all bounds checks that are still there and that are related as "a[base + constant]" 1205 // for a base instruction (possibly absent) and various constants. Note that no attempt 1206 // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and 1207 // a[base+2] are considered as one set). 1208 // TODO: would such a partitioning be worthwhile? 1209 ValueBound value = ValueBound::AsValueBound(index); 1210 HInstruction* base = value.GetInstruction(); 1211 int32_t min_c = base == nullptr ? 0 : value.GetConstant(); 1212 int32_t max_c = value.GetConstant(); 1213 ArenaVector<HBoundsCheck*> candidates( 1214 GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)); 1215 ArenaVector<HBoundsCheck*> standby( 1216 GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)); 1217 for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) { 1218 // Another bounds check in same or dominated block? 1219 HInstruction* user = use.GetUser(); 1220 HBasicBlock* other_block = user->GetBlock(); 1221 if (user->IsBoundsCheck() && block->Dominates(other_block)) { 1222 HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); 1223 HInstruction* other_index = other_bounds_check->InputAt(0); 1224 HInstruction* other_array_length = other_bounds_check->InputAt(1); 1225 ValueBound other_value = ValueBound::AsValueBound(other_index); 1226 if (array_length == other_array_length && base == other_value.GetInstruction()) { 1227 // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset. 1228 if (array_length == other_index) { 1229 candidates.clear(); 1230 standby.clear(); 1231 break; 1232 } 1233 // Since a subsequent dominated block could be under a conditional, only accept 1234 // the other bounds check if it is in same block or both blocks dominate the exit. 1235 // TODO: we could improve this by testing proper post-dominance, or even if this 1236 // constant is seen along *all* conditional paths that follow. 1237 HBasicBlock* exit = GetGraph()->GetExitBlock(); 1238 if (block == user->GetBlock() || 1239 (block->Dominates(exit) && other_block->Dominates(exit))) { 1240 int32_t other_c = other_value.GetConstant(); 1241 min_c = std::min(min_c, other_c); 1242 max_c = std::max(max_c, other_c); 1243 candidates.push_back(other_bounds_check); 1244 } else { 1245 // Add this candidate later only if it falls into the range. 1246 standby.push_back(other_bounds_check); 1247 } 1248 } 1249 } 1250 } 1251 // Add standby candidates that fall in selected range. 1252 for (HBoundsCheck* other_bounds_check : standby) { 1253 HInstruction* other_index = other_bounds_check->InputAt(0); 1254 int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); 1255 if (min_c <= other_c && other_c <= max_c) { 1256 candidates.push_back(other_bounds_check); 1257 } 1258 } 1259 // Perform dominator-based deoptimization if it seems profitable. Note that we reject cases 1260 // where the distance min_c:max_c range gets close to the maximum possible array length, 1261 // since those cases are likely to always deopt (such situations do not necessarily go 1262 // OOB, though, since the programmer could rely on wrap-around from max to min). 1263 size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1); // extra test? 1264 uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c); 1265 if (candidates.size() >= threshold && 1266 (base != nullptr || min_c >= 0) && // reject certain OOB 1267 distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt 1268 AddCompareWithDeoptimization(block, array_length, base, min_c, max_c); 1269 for (HInstruction* other_bounds_check : candidates) { 1270 // Only replace if still in the graph. This avoids visiting the same 1271 // bounds check twice if it occurred multiple times in the use list. 1272 if (other_bounds_check->IsInBlock()) { 1273 ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0)); 1274 } 1275 } 1276 } 1277 } 1278 } 1279 1280 /** 1281 * Returns true if static range analysis based on induction variables can determine the bounds 1282 * check on the given array range is always satisfied with the computed index range. The output 1283 * parameter try_dynamic_bce is set to false if OOB is certain. 1284 */ 1285 bool InductionRangeFitsIn(ValueRange* array_range, 1286 HInstruction* context, 1287 HInstruction* index, 1288 bool* try_dynamic_bce) { 1289 InductionVarRange::Value v1; 1290 InductionVarRange::Value v2; 1291 bool needs_finite_test = false; 1292 if (induction_range_.GetInductionRange(context, index, &v1, &v2, &needs_finite_test)) { 1293 do { 1294 if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) && 1295 v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) { 1296 DCHECK(v1.a_constant == 1 || v1.instruction == nullptr); 1297 DCHECK(v2.a_constant == 1 || v2.instruction == nullptr); 1298 ValueRange index_range(GetGraph()->GetArena(), 1299 ValueBound(v1.instruction, v1.b_constant), 1300 ValueBound(v2.instruction, v2.b_constant)); 1301 // If analysis reveals a certain OOB, disable dynamic BCE. 1302 if (index_range.GetLower().LessThan(array_range->GetLower()) || 1303 index_range.GetUpper().GreaterThan(array_range->GetUpper())) { 1304 *try_dynamic_bce = false; 1305 return false; 1306 } 1307 // Use analysis for static bce only if loop is finite. 1308 if (!needs_finite_test && index_range.FitsIn(array_range)) { 1309 return true; 1310 } 1311 } 1312 } while (induction_range_.RefineOuter(&v1, &v2)); 1313 } 1314 return false; 1315 } 1316 1317 /** 1318 * When the compiler fails to remove a bounds check statically, we try to remove the bounds 1319 * check dynamically by adding runtime tests that trigger a deoptimization in case bounds 1320 * will go out of range (we want to be rather certain of that given the slowdown of 1321 * deoptimization). If no deoptimization occurs, the loop is executed with all corresponding 1322 * bounds checks and related null checks removed. 1323 */ 1324 bool TryDynamicBCE(HBoundsCheck* instruction) { 1325 HLoopInformation* loop = instruction->GetBlock()->GetLoopInformation(); 1326 HInstruction* index = instruction->InputAt(0); 1327 HInstruction* length = instruction->InputAt(1); 1328 // If dynamic bounds check elimination seems profitable and is possible, then proceed. 1329 bool needs_finite_test = false; 1330 bool needs_taken_test = false; 1331 if (DynamicBCESeemsProfitable(loop, instruction->GetBlock()) && 1332 induction_range_.CanGenerateCode( 1333 instruction, index, &needs_finite_test, &needs_taken_test) && 1334 CanHandleInfiniteLoop(loop, instruction, index, needs_finite_test) && 1335 CanHandleLength(loop, length, needs_taken_test)) { // do this test last (may code gen) 1336 HInstruction* lower = nullptr; 1337 HInstruction* upper = nullptr; 1338 // Generate the following unsigned comparisons 1339 // if (lower > upper) deoptimize; 1340 // if (upper >= length) deoptimize; 1341 // or, for a non-induction index, just the unsigned comparison on its 'upper' value 1342 // if (upper >= length) deoptimize; 1343 // as runtime test. By restricting dynamic bce to unit strides (with a maximum of 32-bit 1344 // iterations) and by not combining access (e.g. a[i], a[i-3], a[i+5] etc.), these tests 1345 // correctly guard against any possible OOB (including arithmetic wrap-around cases). 1346 TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); 1347 HBasicBlock* block = GetPreHeader(loop, instruction); 1348 induction_range_.GenerateRangeCode(instruction, index, GetGraph(), block, &lower, &upper); 1349 if (lower != nullptr) { 1350 InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAbove(lower, upper)); 1351 } 1352 InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAboveOrEqual(upper, length)); 1353 ReplaceInstruction(instruction, index); 1354 return true; 1355 } 1356 return false; 1357 } 1358 1359 /** 1360 * Returns true if heuristics indicate that dynamic bce may be profitable. 1361 */ 1362 bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) { 1363 if (loop != nullptr) { 1364 // The loop preheader of an irreducible loop does not dominate all the blocks in 1365 // the loop. We would need to find the common dominator of all blocks in the loop. 1366 if (loop->IsIrreducible()) { 1367 return false; 1368 } 1369 // We should never deoptimize from an osr method, otherwise we might wrongly optimize 1370 // code dominated by the deoptimization. 1371 if (GetGraph()->IsCompilingOsr()) { 1372 return false; 1373 } 1374 // A try boundary preheader is hard to handle. 1375 // TODO: remove this restriction. 1376 if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) { 1377 return false; 1378 } 1379 // Does loop have early-exits? If so, the full range may not be covered by the loop 1380 // at runtime and testing the range may apply deoptimization unnecessarily. 1381 if (IsEarlyExitLoop(loop)) { 1382 return false; 1383 } 1384 // Does the current basic block dominate all back edges? If not, 1385 // don't apply dynamic bce to something that may not be executed. 1386 return loop->DominatesAllBackEdges(block); 1387 } 1388 return false; 1389 } 1390 1391 /** 1392 * Returns true if the loop has early exits, which implies it may not cover 1393 * the full range computed by range analysis based on induction variables. 1394 */ 1395 bool IsEarlyExitLoop(HLoopInformation* loop) { 1396 const uint32_t loop_id = loop->GetHeader()->GetBlockId(); 1397 // If loop has been analyzed earlier for early-exit, don't repeat the analysis. 1398 auto it = early_exit_loop_.find(loop_id); 1399 if (it != early_exit_loop_.end()) { 1400 return it->second; 1401 } 1402 // First time early-exit analysis for this loop. Since analysis requires scanning 1403 // the full loop-body, results of the analysis is stored for subsequent queries. 1404 HBlocksInLoopReversePostOrderIterator it_loop(*loop); 1405 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { 1406 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { 1407 if (!loop->Contains(*successor)) { 1408 early_exit_loop_.Put(loop_id, true); 1409 return true; 1410 } 1411 } 1412 } 1413 early_exit_loop_.Put(loop_id, false); 1414 return false; 1415 } 1416 1417 /** 1418 * Returns true if the array length is already loop invariant, or can be made so 1419 * by handling the null check under the hood of the array length operation. 1420 */ 1421 bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) { 1422 if (loop->IsDefinedOutOfTheLoop(length)) { 1423 return true; 1424 } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) { 1425 if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) { 1426 HoistToPreHeaderOrDeoptBlock(loop, length); 1427 return true; 1428 } 1429 } 1430 return false; 1431 } 1432 1433 /** 1434 * Returns true if the null check is already loop invariant, or can be made so 1435 * by generating a deoptimization test. 1436 */ 1437 bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) { 1438 if (loop->IsDefinedOutOfTheLoop(check)) { 1439 return true; 1440 } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) { 1441 HInstruction* array = check->InputAt(0); 1442 if (loop->IsDefinedOutOfTheLoop(array)) { 1443 // Generate: if (array == null) deoptimize; 1444 TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); 1445 HBasicBlock* block = GetPreHeader(loop, check); 1446 HInstruction* cond = 1447 new (GetGraph()->GetArena()) HEqual(array, GetGraph()->GetNullConstant()); 1448 InsertDeoptInLoop(loop, block, cond); 1449 ReplaceInstruction(check, array); 1450 return true; 1451 } 1452 } 1453 return false; 1454 } 1455 1456 /** 1457 * Returns true if compiler can apply dynamic bce to loops that may be infinite 1458 * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate 1459 * the range analysis evaluation code by "overshooting" the computed range. 1460 * Since deoptimization would be a bad choice, and there is no other version 1461 * of the loop to use, dynamic bce in such cases is only allowed if other tests 1462 * ensure the loop is finite. 1463 */ 1464 bool CanHandleInfiniteLoop( 1465 HLoopInformation* loop, HBoundsCheck* check, HInstruction* index, bool needs_infinite_test) { 1466 if (needs_infinite_test) { 1467 // If we already forced the loop to be finite, allow directly. 1468 const uint32_t loop_id = loop->GetHeader()->GetBlockId(); 1469 if (finite_loop_.find(loop_id) != finite_loop_.end()) { 1470 return true; 1471 } 1472 // Otherwise, allow dynamic bce if the index (which is necessarily an induction at 1473 // this point) is the direct loop index (viz. a[i]), since then the runtime tests 1474 // ensure upper bound cannot cause an infinite loop. 1475 HInstruction* control = loop->GetHeader()->GetLastInstruction(); 1476 if (control->IsIf()) { 1477 HInstruction* if_expr = control->AsIf()->InputAt(0); 1478 if (if_expr->IsCondition()) { 1479 HCondition* condition = if_expr->AsCondition(); 1480 if (index == condition->InputAt(0) || 1481 index == condition->InputAt(1)) { 1482 finite_loop_.insert(loop_id); 1483 return true; 1484 } 1485 } 1486 } 1487 // If bounds check made it this far, it is worthwhile to check later if 1488 // the loop was forced finite by another candidate. 1489 if (record_dynamic_bce_standby_) { 1490 dynamic_bce_standby_.push_back(check); 1491 } 1492 return false; 1493 } 1494 return true; 1495 } 1496 1497 /** 1498 * Returns appropriate preheader for the loop, depending on whether the 1499 * instruction appears in the loop header or proper loop-body. 1500 */ 1501 HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) { 1502 // Use preheader unless there is an earlier generated deoptimization block since 1503 // hoisted expressions may depend on and/or used by the deoptimization tests. 1504 HBasicBlock* header = loop->GetHeader(); 1505 const uint32_t loop_id = header->GetBlockId(); 1506 auto it = taken_test_loop_.find(loop_id); 1507 if (it != taken_test_loop_.end()) { 1508 HBasicBlock* block = it->second; 1509 // If always taken, keep it that way by returning the original preheader, 1510 // which can be found by following the predecessor of the true-block twice. 1511 if (instruction->GetBlock() == header) { 1512 return block->GetSinglePredecessor()->GetSinglePredecessor(); 1513 } 1514 return block; 1515 } 1516 return loop->GetPreHeader(); 1517 } 1518 1519 /** Inserts a deoptimization test in a loop preheader. */ 1520 void InsertDeoptInLoop(HLoopInformation* loop, HBasicBlock* block, HInstruction* condition) { 1521 HInstruction* suspend = loop->GetSuspendCheck(); 1522 block->InsertInstructionBefore(condition, block->GetLastInstruction()); 1523 HDeoptimize* deoptimize = 1524 new (GetGraph()->GetArena()) HDeoptimize(condition, suspend->GetDexPc()); 1525 block->InsertInstructionBefore(deoptimize, block->GetLastInstruction()); 1526 if (suspend->HasEnvironment()) { 1527 deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( 1528 suspend->GetEnvironment(), loop->GetHeader()); 1529 } 1530 } 1531 1532 /** Inserts a deoptimization test right before a bounds check. */ 1533 void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) { 1534 HBasicBlock* block = bounds_check->GetBlock(); 1535 block->InsertInstructionBefore(condition, bounds_check); 1536 HDeoptimize* deoptimize = 1537 new (GetGraph()->GetArena()) HDeoptimize(condition, bounds_check->GetDexPc()); 1538 block->InsertInstructionBefore(deoptimize, bounds_check); 1539 deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); 1540 } 1541 1542 /** Hoists instruction out of the loop to preheader or deoptimization block. */ 1543 void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) { 1544 HBasicBlock* block = GetPreHeader(loop, instruction); 1545 DCHECK(!instruction->HasEnvironment()); 1546 instruction->MoveBefore(block->GetLastInstruction()); 1547 } 1548 1549 /** 1550 * Adds a new taken-test structure to a loop if needed and not already done. 1551 * The taken-test protects range analysis evaluation code to avoid any 1552 * deoptimization caused by incorrect trip-count evaluation in non-taken loops. 1553 * 1554 * old_preheader 1555 * | 1556 * if_block <- taken-test protects deoptimization block 1557 * / \ 1558 * true_block false_block <- deoptimizations/invariants are placed in true_block 1559 * \ / 1560 * new_preheader <- may require phi nodes to preserve SSA structure 1561 * | 1562 * header 1563 * 1564 * For example, this loop: 1565 * 1566 * for (int i = lower; i < upper; i++) { 1567 * array[i] = 0; 1568 * } 1569 * 1570 * will be transformed to: 1571 * 1572 * if (lower < upper) { 1573 * if (array == null) deoptimize; 1574 * array_length = array.length; 1575 * if (lower > upper) deoptimize; // unsigned 1576 * if (upper >= array_length) deoptimize; // unsigned 1577 * } else { 1578 * array_length = 0; 1579 * } 1580 * for (int i = lower; i < upper; i++) { 1581 * // Loop without null check and bounds check, and any array.length replaced with array_length. 1582 * array[i] = 0; 1583 * } 1584 */ 1585 void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) { 1586 // Not needed (can use preheader) or already done (can reuse)? 1587 const uint32_t loop_id = loop->GetHeader()->GetBlockId(); 1588 if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) { 1589 return; 1590 } 1591 1592 // Generate top test structure. 1593 HBasicBlock* header = loop->GetHeader(); 1594 GetGraph()->TransformLoopHeaderForBCE(header); 1595 HBasicBlock* new_preheader = loop->GetPreHeader(); 1596 HBasicBlock* if_block = new_preheader->GetDominator(); 1597 HBasicBlock* true_block = if_block->GetSuccessors()[0]; // True successor. 1598 HBasicBlock* false_block = if_block->GetSuccessors()[1]; // False successor. 1599 1600 // Goto instructions. 1601 true_block->AddInstruction(new (GetGraph()->GetArena()) HGoto()); 1602 false_block->AddInstruction(new (GetGraph()->GetArena()) HGoto()); 1603 new_preheader->AddInstruction(new (GetGraph()->GetArena()) HGoto()); 1604 1605 // Insert the taken-test to see if the loop body is entered. If the 1606 // loop isn't entered at all, it jumps around the deoptimization block. 1607 if_block->AddInstruction(new (GetGraph()->GetArena()) HGoto()); // placeholder 1608 HInstruction* condition = nullptr; 1609 induction_range_.GenerateTakenTest(header->GetLastInstruction(), 1610 GetGraph(), 1611 if_block, 1612 &condition); 1613 DCHECK(condition != nullptr); 1614 if_block->RemoveInstruction(if_block->GetLastInstruction()); 1615 if_block->AddInstruction(new (GetGraph()->GetArena()) HIf(condition)); 1616 1617 taken_test_loop_.Put(loop_id, true_block); 1618 } 1619 1620 /** 1621 * Inserts phi nodes that preserve SSA structure in generated top test structures. 1622 * All uses of instructions in the deoptimization block that reach the loop need 1623 * a phi node in the new loop preheader to fix the dominance relation. 1624 * 1625 * Example: 1626 * if_block 1627 * / \ 1628 * x_0 = .. false_block 1629 * \ / 1630 * x_1 = phi(x_0, null) <- synthetic phi 1631 * | 1632 * new_preheader 1633 */ 1634 void InsertPhiNodes() { 1635 // Scan all new deoptimization blocks. 1636 for (auto it1 = taken_test_loop_.begin(); it1 != taken_test_loop_.end(); ++it1) { 1637 HBasicBlock* true_block = it1->second; 1638 HBasicBlock* new_preheader = true_block->GetSingleSuccessor(); 1639 // Scan all instructions in a new deoptimization block. 1640 for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) { 1641 HInstruction* instruction = it.Current(); 1642 Primitive::Type type = instruction->GetType(); 1643 HPhi* phi = nullptr; 1644 // Scan all uses of an instruction and replace each later use with a phi node. 1645 const HUseList<HInstruction*>& uses = instruction->GetUses(); 1646 for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) { 1647 HInstruction* user = it2->GetUser(); 1648 size_t index = it2->GetIndex(); 1649 // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput(). 1650 ++it2; 1651 if (user->GetBlock() != true_block) { 1652 if (phi == nullptr) { 1653 phi = NewPhi(new_preheader, instruction, type); 1654 } 1655 user->ReplaceInput(phi, index); // Removes the use node from the list. 1656 } 1657 } 1658 // Scan all environment uses of an instruction and replace each later use with a phi node. 1659 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); 1660 for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) { 1661 HEnvironment* user = it2->GetUser(); 1662 size_t index = it2->GetIndex(); 1663 // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput(). 1664 ++it2; 1665 if (user->GetHolder()->GetBlock() != true_block) { 1666 if (phi == nullptr) { 1667 phi = NewPhi(new_preheader, instruction, type); 1668 } 1669 user->RemoveAsUserOfInput(index); 1670 user->SetRawEnvAt(index, phi); 1671 phi->AddEnvUseAt(user, index); 1672 } 1673 } 1674 } 1675 } 1676 } 1677 1678 /** 1679 * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation. 1680 * These are synthetic phi nodes without a virtual register. 1681 */ 1682 HPhi* NewPhi(HBasicBlock* new_preheader, 1683 HInstruction* instruction, 1684 Primitive::Type type) { 1685 HGraph* graph = GetGraph(); 1686 HInstruction* zero; 1687 switch (type) { 1688 case Primitive::kPrimNot: zero = graph->GetNullConstant(); break; 1689 case Primitive::kPrimFloat: zero = graph->GetFloatConstant(0); break; 1690 case Primitive::kPrimDouble: zero = graph->GetDoubleConstant(0); break; 1691 default: zero = graph->GetConstant(type, 0); break; 1692 } 1693 HPhi* phi = new (graph->GetArena()) 1694 HPhi(graph->GetArena(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type)); 1695 phi->SetRawInputAt(0, instruction); 1696 phi->SetRawInputAt(1, zero); 1697 if (type == Primitive::kPrimNot) { 1698 phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo()); 1699 } 1700 new_preheader->AddPhi(phi); 1701 return phi; 1702 } 1703 1704 /** Helper method to replace an instruction with another instruction. */ 1705 static void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) { 1706 instruction->ReplaceWith(replacement); 1707 instruction->GetBlock()->RemoveInstruction(instruction); 1708 } 1709 1710 // A set of maps, one per basic block, from instruction to range. 1711 ArenaVector<ArenaSafeMap<int, ValueRange*>> maps_; 1712 1713 // Map an HArrayLength instruction's id to the first HBoundsCheck instruction 1714 // in a block that checks an index against that HArrayLength. 1715 ArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_; 1716 1717 // Stand by list for dynamic bce. 1718 ArenaVector<HBoundsCheck*> dynamic_bce_standby_; 1719 bool record_dynamic_bce_standby_; 1720 1721 // Early-exit loop bookkeeping. 1722 ArenaSafeMap<uint32_t, bool> early_exit_loop_; 1723 1724 // Taken-test loop bookkeeping. 1725 ArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_; 1726 1727 // Finite loop bookkeeping. 1728 ArenaSet<uint32_t> finite_loop_; 1729 1730 // Flag that denotes whether dominator-based dynamic elimination has occurred. 1731 bool has_dom_based_dynamic_bce_; 1732 1733 // Initial number of blocks. 1734 uint32_t initial_block_size_; 1735 1736 // Side effects. 1737 const SideEffectsAnalysis& side_effects_; 1738 1739 // Range analysis based on induction variables. 1740 InductionVarRange induction_range_; 1741 1742 DISALLOW_COPY_AND_ASSIGN(BCEVisitor); 1743 }; 1744 1745 void BoundsCheckElimination::Run() { 1746 if (!graph_->HasBoundsChecks()) { 1747 return; 1748 } 1749 1750 // Reverse post order guarantees a node's dominators are visited first. 1751 // We want to visit in the dominator-based order since if a value is known to 1752 // be bounded by a range at one instruction, it must be true that all uses of 1753 // that value dominated by that instruction fits in that range. Range of that 1754 // value can be narrowed further down in the dominator tree. 1755 BCEVisitor visitor(graph_, side_effects_, induction_analysis_); 1756 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { 1757 HBasicBlock* current = it.Current(); 1758 if (visitor.IsAddedBlock(current)) { 1759 // Skip added blocks. Their effects are already taken care of. 1760 continue; 1761 } 1762 visitor.VisitBasicBlock(current); 1763 // Skip forward to the current block in case new basic blocks were inserted 1764 // (which always appear earlier in reverse post order) to avoid visiting the 1765 // same basic block twice. 1766 for ( ; !it.Done() && it.Current() != current; it.Advance()) { 1767 } 1768 } 1769 1770 // Perform cleanup. 1771 visitor.Finish(); 1772 } 1773 1774 } // namespace art 1775