1 //===- ThreadSafetyTIL.cpp -------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT in the llvm repository for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 11 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 12 using namespace clang; 13 using namespace threadSafety; 14 using namespace til; 15 16 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { 17 switch (Op) { 18 case UOP_Minus: return "-"; 19 case UOP_BitNot: return "~"; 20 case UOP_LogicNot: return "!"; 21 } 22 return ""; 23 } 24 25 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { 26 switch (Op) { 27 case BOP_Mul: return "*"; 28 case BOP_Div: return "/"; 29 case BOP_Rem: return "%"; 30 case BOP_Add: return "+"; 31 case BOP_Sub: return "-"; 32 case BOP_Shl: return "<<"; 33 case BOP_Shr: return ">>"; 34 case BOP_BitAnd: return "&"; 35 case BOP_BitXor: return "^"; 36 case BOP_BitOr: return "|"; 37 case BOP_Eq: return "=="; 38 case BOP_Neq: return "!="; 39 case BOP_Lt: return "<"; 40 case BOP_Leq: return "<="; 41 case BOP_LogicAnd: return "&&"; 42 case BOP_LogicOr: return "||"; 43 } 44 return ""; 45 } 46 47 48 SExpr* Future::force() { 49 Status = FS_evaluating; 50 Result = compute(); 51 Status = FS_done; 52 return Result; 53 } 54 55 56 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { 57 unsigned Idx = Predecessors.size(); 58 Predecessors.reserveCheck(1, Arena); 59 Predecessors.push_back(Pred); 60 for (SExpr *E : Args) { 61 if (Phi* Ph = dyn_cast<Phi>(E)) { 62 Ph->values().reserveCheck(1, Arena); 63 Ph->values().push_back(nullptr); 64 } 65 } 66 return Idx; 67 } 68 69 70 void BasicBlock::reservePredecessors(unsigned NumPreds) { 71 Predecessors.reserve(NumPreds, Arena); 72 for (SExpr *E : Args) { 73 if (Phi* Ph = dyn_cast<Phi>(E)) { 74 Ph->values().reserve(NumPreds, Arena); 75 } 76 } 77 } 78 79 80 // If E is a variable, then trace back through any aliases or redundant 81 // Phi nodes to find the canonical definition. 82 const SExpr *til::getCanonicalVal(const SExpr *E) { 83 while (true) { 84 if (auto *V = dyn_cast<Variable>(E)) { 85 if (V->kind() == Variable::VK_Let) { 86 E = V->definition(); 87 continue; 88 } 89 } 90 if (const Phi *Ph = dyn_cast<Phi>(E)) { 91 if (Ph->status() == Phi::PH_SingleVal) { 92 E = Ph->values()[0]; 93 continue; 94 } 95 } 96 break; 97 } 98 return E; 99 } 100 101 102 // If E is a variable, then trace back through any aliases or redundant 103 // Phi nodes to find the canonical definition. 104 // The non-const version will simplify incomplete Phi nodes. 105 SExpr *til::simplifyToCanonicalVal(SExpr *E) { 106 while (true) { 107 if (auto *V = dyn_cast<Variable>(E)) { 108 if (V->kind() != Variable::VK_Let) 109 return V; 110 // Eliminate redundant variables, e.g. x = y, or x = 5, 111 // but keep anything more complicated. 112 if (til::ThreadSafetyTIL::isTrivial(V->definition())) { 113 E = V->definition(); 114 continue; 115 } 116 return V; 117 } 118 if (auto *Ph = dyn_cast<Phi>(E)) { 119 if (Ph->status() == Phi::PH_Incomplete) 120 simplifyIncompleteArg(Ph); 121 // Eliminate redundant Phi nodes. 122 if (Ph->status() == Phi::PH_SingleVal) { 123 E = Ph->values()[0]; 124 continue; 125 } 126 } 127 return E; 128 } 129 } 130 131 132 // Trace the arguments of an incomplete Phi node to see if they have the same 133 // canonical definition. If so, mark the Phi node as redundant. 134 // getCanonicalVal() will recursively call simplifyIncompletePhi(). 135 void til::simplifyIncompleteArg(til::Phi *Ph) { 136 assert(Ph && Ph->status() == Phi::PH_Incomplete); 137 138 // eliminate infinite recursion -- assume that this node is not redundant. 139 Ph->setStatus(Phi::PH_MultiVal); 140 141 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); 142 for (unsigned i=1, n=Ph->values().size(); i<n; ++i) { 143 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); 144 if (Ei == Ph) 145 continue; // Recursive reference to itself. Don't count. 146 if (Ei != E0) { 147 return; // Status is already set to MultiVal. 148 } 149 } 150 Ph->setStatus(Phi::PH_SingleVal); 151 } 152 153 154 // Renumbers the arguments and instructions to have unique, sequential IDs. 155 int BasicBlock::renumberInstrs(int ID) { 156 for (auto *Arg : Args) 157 Arg->setID(this, ID++); 158 for (auto *Instr : Instrs) 159 Instr->setID(this, ID++); 160 TermInstr->setID(this, ID++); 161 return ID; 162 } 163 164 // Sorts the CFGs blocks using a reverse post-order depth-first traversal. 165 // Each block will be written into the Blocks array in order, and its BlockID 166 // will be set to the index in the array. Sorting should start from the entry 167 // block, and ID should be the total number of blocks. 168 int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) { 169 if (Visited) return ID; 170 Visited = true; 171 for (auto *Block : successors()) 172 ID = Block->topologicalSort(Blocks, ID); 173 // set ID and update block array in place. 174 // We may lose pointers to unreachable blocks. 175 assert(ID > 0); 176 BlockID = --ID; 177 Blocks[BlockID] = this; 178 return ID; 179 } 180 181 // Performs a reverse topological traversal, starting from the exit block and 182 // following back-edges. The dominator is serialized before any predecessors, 183 // which guarantees that all blocks are serialized after their dominator and 184 // before their post-dominator (because it's a reverse topological traversal). 185 // ID should be initially set to 0. 186 // 187 // This sort assumes that (1) dominators have been computed, (2) there are no 188 // critical edges, and (3) the entry block is reachable from the exit block 189 // and no blocks are accessable via traversal of back-edges from the exit that 190 // weren't accessable via forward edges from the entry. 191 int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) { 192 // Visited is assumed to have been set by the topologicalSort. This pass 193 // assumes !Visited means that we've visited this node before. 194 if (!Visited) return ID; 195 Visited = false; 196 if (DominatorNode.Parent) 197 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); 198 for (auto *Pred : Predecessors) 199 ID = Pred->topologicalFinalSort(Blocks, ID); 200 assert(static_cast<size_t>(ID) < Blocks.size()); 201 BlockID = ID++; 202 Blocks[BlockID] = this; 203 return ID; 204 } 205 206 // Computes the immediate dominator of the current block. Assumes that all of 207 // its predecessors have already computed their dominators. This is achieved 208 // by visiting the nodes in topological order. 209 void BasicBlock::computeDominator() { 210 BasicBlock *Candidate = nullptr; 211 // Walk backwards from each predecessor to find the common dominator node. 212 for (auto *Pred : Predecessors) { 213 // Skip back-edges 214 if (Pred->BlockID >= BlockID) continue; 215 // If we don't yet have a candidate for dominator yet, take this one. 216 if (Candidate == nullptr) { 217 Candidate = Pred; 218 continue; 219 } 220 // Walk the alternate and current candidate back to find a common ancestor. 221 auto *Alternate = Pred; 222 while (Alternate != Candidate) { 223 if (Candidate->BlockID > Alternate->BlockID) 224 Candidate = Candidate->DominatorNode.Parent; 225 else 226 Alternate = Alternate->DominatorNode.Parent; 227 } 228 } 229 DominatorNode.Parent = Candidate; 230 DominatorNode.SizeOfSubTree = 1; 231 } 232 233 // Computes the immediate post-dominator of the current block. Assumes that all 234 // of its successors have already computed their post-dominators. This is 235 // achieved visiting the nodes in reverse topological order. 236 void BasicBlock::computePostDominator() { 237 BasicBlock *Candidate = nullptr; 238 // Walk back from each predecessor to find the common post-dominator node. 239 for (auto *Succ : successors()) { 240 // Skip back-edges 241 if (Succ->BlockID <= BlockID) continue; 242 // If we don't yet have a candidate for post-dominator yet, take this one. 243 if (Candidate == nullptr) { 244 Candidate = Succ; 245 continue; 246 } 247 // Walk the alternate and current candidate back to find a common ancestor. 248 auto *Alternate = Succ; 249 while (Alternate != Candidate) { 250 if (Candidate->BlockID < Alternate->BlockID) 251 Candidate = Candidate->PostDominatorNode.Parent; 252 else 253 Alternate = Alternate->PostDominatorNode.Parent; 254 } 255 } 256 PostDominatorNode.Parent = Candidate; 257 PostDominatorNode.SizeOfSubTree = 1; 258 } 259 260 261 // Renumber instructions in all blocks 262 void SCFG::renumberInstrs() { 263 int InstrID = 0; 264 for (auto *Block : Blocks) 265 InstrID = Block->renumberInstrs(InstrID); 266 } 267 268 269 static inline void computeNodeSize(BasicBlock *B, 270 BasicBlock::TopologyNode BasicBlock::*TN) { 271 BasicBlock::TopologyNode *N = &(B->*TN); 272 if (N->Parent) { 273 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 274 // Initially set ID relative to the (as yet uncomputed) parent ID 275 N->NodeID = P->SizeOfSubTree; 276 P->SizeOfSubTree += N->SizeOfSubTree; 277 } 278 } 279 280 static inline void computeNodeID(BasicBlock *B, 281 BasicBlock::TopologyNode BasicBlock::*TN) { 282 BasicBlock::TopologyNode *N = &(B->*TN); 283 if (N->Parent) { 284 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 285 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. 286 } 287 } 288 289 290 // Normalizes a CFG. Normalization has a few major components: 291 // 1) Removing unreachable blocks. 292 // 2) Computing dominators and post-dominators 293 // 3) Topologically sorting the blocks into the "Blocks" array. 294 void SCFG::computeNormalForm() { 295 // Topologically sort the blocks starting from the entry block. 296 int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); 297 if (NumUnreachableBlocks > 0) { 298 // If there were unreachable blocks shift everything down, and delete them. 299 for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { 300 size_t NI = I - NumUnreachableBlocks; 301 Blocks[NI] = Blocks[I]; 302 Blocks[NI]->BlockID = NI; 303 // FIXME: clean up predecessor pointers to unreachable blocks? 304 } 305 Blocks.drop(NumUnreachableBlocks); 306 } 307 308 // Compute dominators. 309 for (auto *Block : Blocks) 310 Block->computeDominator(); 311 312 // Once dominators have been computed, the final sort may be performed. 313 int NumBlocks = Exit->topologicalFinalSort(Blocks, 0); 314 assert(static_cast<size_t>(NumBlocks) == Blocks.size()); 315 (void) NumBlocks; 316 317 // Renumber the instructions now that we have a final sort. 318 renumberInstrs(); 319 320 // Compute post-dominators and compute the sizes of each node in the 321 // dominator tree. 322 for (auto *Block : Blocks.reverse()) { 323 Block->computePostDominator(); 324 computeNodeSize(Block, &BasicBlock::DominatorNode); 325 } 326 // Compute the sizes of each node in the post-dominator tree and assign IDs in 327 // the dominator tree. 328 for (auto *Block : Blocks) { 329 computeNodeID(Block, &BasicBlock::DominatorNode); 330 computeNodeSize(Block, &BasicBlock::PostDominatorNode); 331 } 332 // Assign IDs in the post-dominator tree. 333 for (auto *Block : Blocks.reverse()) { 334 computeNodeID(Block, &BasicBlock::PostDominatorNode); 335 } 336 } 337