/external/ceres-solver/internal/ceres/ |
problem.cc | 32 #include "ceres/problem.h" 40 Problem::Problem() : problem_impl_(new internal::ProblemImpl) {} 41 Problem::Problem(const Problem::Options& options) 43 Problem::~Problem() {} 45 ResidualBlockId Problem::AddResidualBlock( 54 ResidualBlockId Problem::AddResidualBlock [all...] |
c_api.cc | 42 #include "ceres/problem.h" 47 using ceres::Problem; 57 return reinterpret_cast<ceres_problem_t*>(new Problem); 60 void ceres_free_problem(ceres_problem_t* problem) { 61 delete reinterpret_cast<Problem*>(problem); 142 ceres_problem_t* problem, 151 Problem* ceres_problem = reinterpret_cast<Problem*>(problem); 175 Problem* problem = reinterpret_cast<Problem*>(c_problem); local [all...] |
covariance.cc | 36 #include "ceres/problem.h" 50 Problem* problem) { 51 return impl_->Compute(covariance_blocks, problem->problem_impl_.get());
|
problem_test.cc | 32 #include "ceres/problem.h" 119 TEST(Problem, AddResidualWithNullCostFunctionDies) { 122 Problem problem; local 123 problem.AddParameterBlock(x, 3); 124 problem.AddParameterBlock(y, 4); 125 problem.AddParameterBlock(z, 5); 127 EXPECT_DEATH_IF_SUPPORTED(problem.AddResidualBlock(NULL, NULL, x), 131 TEST(Problem, AddResidualWithIncorrectNumberOfParameterBlocksDies) { 134 Problem problem local 148 Problem problem; local 159 Problem problem; local 172 Problem problem; local 187 Problem problem; local 200 Problem problem; local 223 Problem problem; local 251 Problem problem; local 274 Problem problem; local 330 Problem problem; local 349 Problem problem; local 473 scoped_ptr<ProblemImpl> problem; member in struct:ceres::internal::DynamicProblem 481 Problem problem; local 492 Problem problem; local 503 Problem problem; local 515 Problem problem; local 526 Problem problem; local 539 Problem problem; local [all...] |
solver_test.cc | 40 #include "ceres/problem.h" 90 Problem::Options problem_options; 92 Problem problem(problem_options); 93 problem.AddResidualBlock(cost_function.get(), NULL, &x); 106 Solve(options, &problem, &summary); 118 Solve(options, &problem, &summary); 163 Problem problem; local 167 Solve(options, &problem, &summary) 175 Problem problem; local 187 Problem problem; local 201 Problem problem; local 215 Problem problem; local 229 Problem problem; local [all...] |
covariance_impl.h | 56 ProblemImpl* problem); 64 ProblemImpl* problem); 78 Problem::EvaluateOptions evaluate_options_;
|
problem_impl.h | 31 // This is the implementation of the public Problem API. The pointer to 36 // to always put a Problem object into a scoped pointer; this needlessly muddies 49 #include "ceres/problem.h" 70 explicit ProblemImpl(const Problem::Options& options); 74 // See the public problem.h file for description of these methods. 137 bool Evaluate(const Problem::EvaluateOptions& options, 193 const Problem::Options options_; 206 // problem to see if the cost/loss/parameterization is shared with other
|
solver_impl_test.cc | 76 Problem::Options problem_options; 79 ProblemImpl problem(problem_options); 80 problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w); 81 problem.SetParameterBlockConstant(&x); 82 problem.SetParameterBlockConstant(&w); 88 SolverImpl::Solve(options, &problem, &summary); 98 EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state()); 99 EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state()); 100 EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state()); 101 EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state()) [all...] |
system_test.cc | 34 // scalar problem with 4 variables. The second problem is a bundle 35 // adjustment problem with 16 cameras and two thousand cameras. The 36 // first problem is to test the sanity test the factorization based 37 // solvers. The second problem is used to test the various 50 #include "ceres/problem.h" 121 // Problem* mutable_problem(); 158 ->Evaluate(Problem::EvaluateOptions(), 172 // error prone to do so, since the same problem can have nearly 231 Problem* mutable_problem() { return &problem_; [all...] |
/external/ceres-solver/include/ceres/ |
covariance.h | 43 class Problem; 57 // non-linear least squares problem and provides random access to its 66 // Let us consider the non-linear regression problem 73 // solution to the non-linear least squares problem: 96 // of y, then the maximum likelihood problem to be solved is 107 // scaled, e.g. in the above case the cost function for this problem 112 // non-linear least squares problem and provides random access to its 135 // Structural rank deficiency occurs when the problem contains 177 // Problem problem; [all...] |
problem.h | 32 // The Problem object is used to build and hold least squares problems. 66 // blocks from a Problem after adding them. 82 // example, in a structure from motion problem a residual 100 // The canonical example of a sparse least squares problem is 106 // To create a least squares problem, use the AddResidualBlock() and 108 // squares problem containing 3 parameter blocks of sizes 3, 4 and 5 115 // Problem problem; 117 // problem.AddResidualBlock(new MyUnaryCostFunction(...), x1); 118 // problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3) [all...] |
solver.h | 47 class Problem; 60 // Default constructor that sets up a generic sparse problem. 141 // with a message describing the problem. 162 // is contracted and the model optimization problem is solved 191 // maximum rank. The best choice usually requires some problem 210 // performance for certain classes of problem, which is why it is disabled 212 // sensitivity of the problem to different parameters varies significantly, 236 // Solving the line search problem exactly is computationally 528 // If your problem does not have this property (or you do not know), 539 // e.g., consider the following regression problem [all...] |
/external/ceres-solver/examples/ |
helloworld.cc | 41 using ceres::Problem; 64 // Build the problem. 65 Problem problem; local 71 problem.AddResidualBlock(cost_function, NULL, &x); 77 Solve(options, &problem, &summary);
|
helloworld_analytic_diff.cc | 41 using ceres::Problem; 69 // For this simple problem it is overkill to check if jacobians[0] 89 // Build the problem. 90 Problem problem; local 94 problem.AddResidualBlock(cost_function, NULL, &x); 100 Solve(options, &problem, &summary);
|
helloworld_numeric_diff.cc | 40 using ceres::Problem; 60 // Build the problem. 61 Problem problem; local 67 problem.AddResidualBlock(cost_function, NULL, &x); 73 Solve(options, &problem, &summary);
|
circle_fit.cc | 47 // There are closed form solutions [1] to this problem which you may want to 64 using ceres::Problem; 128 Problem problem; local 143 problem.AddResidualBlock(cost, loss, &x, &y, &m); 149 // Build and solve the problem. 154 Solve(options, &problem, &summary);
|
powell.cc | 54 using ceres::Problem; 110 Problem problem; local 111 // Add residual terms to the problem using the using the autodiff 114 problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), 117 problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), 120 problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), 123 problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), 145 Solve(options, &problem, &summary);
|
denoising.cc | 88 // Creates a Fields of Experts MAP inference problem. 91 Problem* problem, 100 problem->AddResidualBlock(cost_function, 129 problem->AddResidualBlock(cost_function[alpha_index], 137 // Solves the FoE problem using Ceres and post-processes it to make sure the 139 void SolveProblem(Problem* problem, PGMImage<double>* solution) { 157 ceres::Solve(options, problem, &summary); 209 ceres::Problem problem local [all...] |
curve_fitting.cc | 36 using ceres::Problem; 143 Problem problem; local 145 problem.AddResidualBlock( 158 Solve(options, &problem, &summary);
|
robot_pose_mle.cc | 51 // There are two types of residuals in this problem: 143 using ceres::Problem; 210 // conveniently add to a ceres problem. 287 ceres::Problem problem; local 296 problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks); 300 problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]), 310 Solve(solver_options, &problem, &summary);
|
robust_curve_fitting.cc | 119 using ceres::Problem; 145 Problem problem; local 150 problem.AddResidualBlock(cost_function, NULL, &m, &c); 158 Solve(options, &problem, &summary);
|
bundle_adjuster.cc | 31 // An example of solving a dynamically sized problem with various 39 // The problem being solved here is known as a Bundle Adjustment 40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n, 50 // The problem used here comes from a collection of bundle adjustment 250 void BuildProblem(BALProblem* bal_problem, Problem* problem) { 289 problem->AddResidualBlock(cost_function, 295 problem->AddResidualBlock(cost_function, loss_function, camera, point); 303 problem->SetParameterization(cameras + camera_block_size * i, 311 Problem problem local [all...] |
simple_bundle_adjuster.cc | 190 // Create residuals for each observation in the bundle adjustment problem. The 192 ceres::Problem problem; local 201 problem.AddResidualBlock(cost_function, 215 ceres::Solve(options, &problem, &summary);
|
/external/bison/lib/ |
argmatch.h | 57 ptrdiff_t problem); 61 # define invalid_arg(Context, Value, Problem) \ 62 argmatch_invalid (Context, Value, Problem)
|
/prebuilts/tools/common/m2/repository/org/apache/maven/maven-builder-support/3.3.9/ |
maven-builder-support-3.3.9.jar | |