Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // An example program that minimizes Powell's singular function.
     32 //
     33 //   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)
     34 //
     35 //   f1 = x1 + 10*x2;
     36 //   f2 = sqrt(5) * (x3 - x4)
     37 //   f3 = (x2 - 2*x3)^2
     38 //   f4 = sqrt(10) * (x1 - x4)^2
     39 //
     40 // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.
     41 // The minimum is 0 at (x1, x2, x3, x4) = 0.
     42 //
     43 // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.
     44 // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,
     45 // Vol 7(1), March 1981.
     46 
     47 #include <vector>
     48 #include "ceres/ceres.h"
     49 #include "gflags/gflags.h"
     50 #include "glog/logging.h"
     51 
     52 using ceres::AutoDiffCostFunction;
     53 using ceres::CostFunction;
     54 using ceres::Problem;
     55 using ceres::Solver;
     56 using ceres::Solve;
     57 
     58 struct F1 {
     59   template <typename T> bool operator()(const T* const x1,
     60                                         const T* const x2,
     61                                         T* residual) const {
     62     // f1 = x1 + 10 * x2;
     63     residual[0] = x1[0] + T(10.0) * x2[0];
     64     return true;
     65   }
     66 };
     67 
     68 struct F2 {
     69   template <typename T> bool operator()(const T* const x3,
     70                                         const T* const x4,
     71                                         T* residual) const {
     72     // f2 = sqrt(5) (x3 - x4)
     73     residual[0] = T(sqrt(5.0)) * (x3[0] - x4[0]);
     74     return true;
     75   }
     76 };
     77 
     78 struct F3 {
     79   template <typename T> bool operator()(const T* const x2,
     80                                         const T* const x4,
     81                                         T* residual) const {
     82     // f3 = (x2 - 2 x3)^2
     83     residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]);
     84     return true;
     85   }
     86 };
     87 
     88 struct F4 {
     89   template <typename T> bool operator()(const T* const x1,
     90                                         const T* const x4,
     91                                         T* residual) const {
     92     // f4 = sqrt(10) (x1 - x4)^2
     93     residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
     94     return true;
     95   }
     96 };
     97 
     98 DEFINE_string(minimizer, "trust_region",
     99               "Minimizer type to use, choices are: line_search & trust_region");
    100 
    101 int main(int argc, char** argv) {
    102   google::ParseCommandLineFlags(&argc, &argv, true);
    103   google::InitGoogleLogging(argv[0]);
    104 
    105   double x1 =  3.0;
    106   double x2 = -1.0;
    107   double x3 =  0.0;
    108   double x4 =  1.0;
    109 
    110   Problem problem;
    111   // Add residual terms to the problem using the using the autodiff
    112   // wrapper to get the derivatives automatically. The parameters, x1 through
    113   // x4, are modified in place.
    114   problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1),
    115                            NULL,
    116                            &x1, &x2);
    117   problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2),
    118                            NULL,
    119                            &x3, &x4);
    120   problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3),
    121                            NULL,
    122                            &x2, &x3);
    123   problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4),
    124                            NULL,
    125                            &x1, &x4);
    126 
    127   Solver::Options options;
    128   LOG_IF(FATAL, !ceres::StringToMinimizerType(FLAGS_minimizer,
    129                                               &options.minimizer_type))
    130       << "Invalid minimizer: " << FLAGS_minimizer
    131       << ", valid options are: trust_region and line_search.";
    132 
    133   options.max_num_iterations = 100;
    134   options.linear_solver_type = ceres::DENSE_QR;
    135   options.minimizer_progress_to_stdout = true;
    136 
    137   std::cout << "Initial x1 = " << x1
    138             << ", x2 = " << x2
    139             << ", x3 = " << x3
    140             << ", x4 = " << x4
    141             << "\n";
    142 
    143   // Run the solver!
    144   Solver::Summary summary;
    145   Solve(options, &problem, &summary);
    146 
    147   std::cout << summary.FullReport() << "\n";
    148   std::cout << "Final x1 = " << x1
    149             << ", x2 = " << x2
    150             << ", x3 = " << x3
    151             << ", x4 = " << x4
    152             << "\n";
    153   return 0;
    154 }
    155