/external/opencv3/samples/cpp/tutorial_code/ml/introduction_to_svm/ |
introduction_to_svm.cpp | 27 // Train the SVM 29 Ptr<SVM> svm = SVM::create(); local 30 svm->setType(SVM::C_SVC); 31 svm->setKernel(SVM::LINEAR); 32 svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6)); 35 svm->train(trainingDataMat, ROW_SAMPLE, labelsMat) [all...] |
/external/opencv3/modules/ml/test/ |
test_svmtrainauto.cpp | 46 using cv::ml::SVM; 73 cv::Ptr<SVM> svm = SVM::create(); local 74 svm->trainAuto( data, 10 ); // 2-fold cross validation. 78 float result0 = svm->predict( test_point0 ); 81 float result1 = svm->predict( test_point1 );
|
test_mltests2.cpp | 50 return SVM::C_SVC; 52 return SVM::NU_SVC; 54 return SVM::ONE_CLASS; 56 return SVM::EPS_SVR; 58 return SVM::NU_SVR; 59 CV_Error( CV_StsBadArg, "incorrect svm type string" ); 65 return SVM::LINEAR; 67 return SVM::POLY; 69 return SVM::RBF; 71 return SVM::SIGMOID [all...] |
test_save_load.cpp | 201 model = Algorithm::load<SVM>(filename); 266 Ptr<cv::ml::SVM> svm; 267 string filename = tempfile("svm.xml"); 268 ASSERT_THROW(svm.save(filename.c_str()), Exception); 274 Ptr<cv::ml::SVM> svm1, svm2, svm3; 276 svm1 = Algorithm::load<SVM>("SVM45_X_38-1.xml"); 277 svm2 = Algorithm::load<SVM>("SVM45_X_38-2.xml"); 280 svm3 = Algorithm::load<SVM>(tname);
|
test_precomp.hpp | 20 #define CV_SVM "svm" 34 using cv::ml::SVM;
|
/external/opencv3/modules/ml/include/opencv2/ |
ml.hpp | 479 class CV_EXPORTS_W SVM : public StatModel 490 /** Type of a %SVM formulation. 491 See SVM::Types. Default value is SVM::C_SVC. */ 498 For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */ 505 For SVM::POLY or SVM::SIGMOID. Default value is 0.* [all...] |
/external/opencv3/modules/java/src/ |
ml+SVM.java | 10 // C++: class SVM 11 //javadoc: SVM 12 public class SVM extends StatModel { 14 protected SVM(long addr) { super(addr); } 42 //javadoc: SVM::getType() 56 //javadoc: SVM::setType(val) 70 //javadoc: SVM::getGamma() 84 //javadoc: SVM::setGamma(val) 98 //javadoc: SVM::getCoef0() 112 //javadoc: SVM::setCoef0(val [all...] |
ml.cpp | 487 Ptr<cv::ml::SVM>* me = (Ptr<cv::ml::SVM>*) self; //TODO: check for NULL 512 Ptr<cv::ml::SVM>* me = (Ptr<cv::ml::SVM>*) self; //TODO: check for NULL 537 Ptr<cv::ml::SVM>* me = (Ptr<cv::ml::SVM>*) self; //TODO: check for NULL 562 Ptr<cv::ml::SVM>* me = (Ptr<cv::ml::SVM>*) self; //TODO: check for NULL 587 Ptr<cv::ml::SVM>* me = (Ptr<cv::ml::SVM>*) self; //TODO: check for NUL [all...] |
/external/opencv3/samples/cpp/tutorial_code/ml/non_linear_svms/ |
non_linear_svms.cpp | 78 //------------------------ 3. Train the svm ---------------------------------------------------- 81 Ptr<SVM> svm = SVM::create(); local 82 svm->setType(SVM::C_SVC); 83 svm->setC(0.1); 84 svm->setKernel(SVM::LINEAR); 85 svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6)) [all...] |
/external/opencv3/samples/cpp/ |
train_HOG.cpp | 14 void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector ); 24 void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector ) 27 Mat sv = svm->getSupportVectors(); 31 double rho = svm->getDecisionFunction(0, alpha, svidx); 321 Ptr<SVM> svm = SVM::create(); local 322 /* Default values to train SVM */ 357 Ptr<SVM> svm; local [all...] |
points_classifier.cpp | 7 #define _OCL_SVM_ 1 // select whether using ocl::svm method or not, default is using 127 Ptr<SVM> svm = SVM::create(); local 128 svm->setType(SVM::C_SVC); 129 svm->setKernel(SVM::POLY); //SVM::LINEAR; 130 svm->setDegree(0.5) [all...] |
letter_recog.cpp | 34 " [-boost|-mlp|-knearest|-nbayes|-svm] # to use boost/mlp/knearest/SVM classifier instead of default Random Trees\n" ); 486 Ptr<SVM> model; 494 model = load_classifier<SVM>(filename_to_load); 504 model = SVM::create(); 505 model->setType(SVM::C_SVC); 506 model->setKernel(SVM::LINEAR); 557 else if( strcmp(argv[i], "-svm") == 0)
|
/external/opencv3/samples/python2/ |
letter_recog.py | 25 Models: RTrees, KNearest, Boost, SVM, MLP 106 class SVM(LetterStatModel): 108 self.model = cv2.SVM() 149 models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
digits.py | 4 SVM and KNearest digit recognition. 7 Then it trains a SVM and KNearest classifiers on it and evaluates 87 class SVM(StatModel): 176 print 'training SVM...' 177 model = SVM(C=2.67, gamma=5.383) 180 cv2.imshow('SVM test', vis) 181 print 'saving SVM as "digits_svm.dat"...'
|
digits_video.py | 27 model = SVM()
|
digits_adjust.py | 5 Grid search is used to find the best parameters for SVM and KNearest classifiers. 6 SVM adjustment follows the guidelines given in 13 digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>] 15 --model {svm|knearest} - select the classifier (SVM is the default) 105 print 'adjusting SVM (may take a long time) ...' 110 score = cross_validate(SVM, params, samples, labels) 152 args.setdefault('--model', 'svm') 154 if args['--model'] not in ['svm', 'knearest']:
|
/external/opencv3/modules/ml/src/ |
svm.cpp | 105 // SVM training parameters 121 svmType = SVM::C_SVC; 122 kernelType = SVM::RBF; 151 /////////////////////////////////////// SVM kernel /////////////////////////////////////// 152 class SVMKernelImpl : public SVM::Kernel 307 case SVM::LINEAR: 310 case SVM::RBF: 313 case SVM::POLY: 316 case SVM::SIGMOID: 319 case SVM::CHI2 [all...] |
/external/opencv3/apps/traincascade/ |
old_ml.hpp | 122 #define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" 167 // SVM params type 290 // SVM training parameters 456 // SVM model 460 // SVM type 463 // SVM kernel type 466 // SVM params type [all...] |
/cts/apps/CtsVerifier/libs/ |
opencv3-android.jar | |