Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     14 // Third party copyrights are property of their respective owners.
     15 //
     16 // Redistribution and use in source and binary forms, with or without modification,
     17 // are permitted provided that the following conditions are met:
     18 //
     19 //   * Redistribution's of source code must retain the above copyright notice,
     20 //     this list of conditions and the following disclaimer.
     21 //
     22 //   * Redistribution's in binary form must reproduce the above copyright notice,
     23 //     this list of conditions and the following disclaimer in the documentation
     24 //     and/or other materials provided with the distribution.
     25 //
     26 //   * The name of Intel Corporation may not be used to endorse or promote products
     27 //     derived from this software without specific prior written permission.
     28 //
     29 // This software is provided by the copyright holders and contributors "as is" and
     30 // any express or implied warranties, including, but not limited to, the implied
     31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     32 // In no event shall the Intel Corporation or contributors be liable for any direct,
     33 // indirect, incidental, special, exemplary, or consequential damages
     34 // (including, but not limited to, procurement of substitute goods or services;
     35 // loss of use, data, or profits; or business interruption) however caused
     36 // and on any theory of liability, whether in contract, strict liability,
     37 // or tort (including negligence or otherwise) arising in any way out of
     38 // the use of this software, even if advised of the possibility of such damage.
     39 //
     40 //M*/
     41 
     42 #include "test_precomp.hpp"
     43 
     44 using namespace cv;
     45 using namespace std;
     46 using cv::ml::SVM;
     47 using cv::ml::TrainData;
     48 
     49 //--------------------------------------------------------------------------------------------
     50 class CV_SVMTrainAutoTest : public cvtest::BaseTest {
     51 public:
     52     CV_SVMTrainAutoTest() {}
     53 protected:
     54     virtual void run( int start_from );
     55 };
     56 
     57 void CV_SVMTrainAutoTest::run( int /*start_from*/ )
     58 {
     59     int datasize = 100;
     60     cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
     61     cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
     62 
     63     RNG rng(0);
     64     for (int i = 0; i < datasize; ++i)
     65     {
     66         int response = rng.uniform(0, 2);  // Random from {0, 1}.
     67         samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
     68         samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
     69         responses.at<int>( i, 0 ) = response;
     70     }
     71 
     72     cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
     73     cv::Ptr<SVM> svm = SVM::create();
     74     svm->trainAuto( data, 10 );  // 2-fold cross validation.
     75 
     76     float test_data0[2] = {0.25f, 0.25f};
     77     cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
     78     float result0 = svm->predict( test_point0 );
     79     float test_data1[2] = {0.75f, 0.75f};
     80     cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
     81     float result1 = svm->predict( test_point1 );
     82 
     83     if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
     84     {
     85         ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
     86     }
     87 }
     88 
     89 TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }
     90