Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <string.h>
     71 
     72 #include <openssl/bn.h>
     73 #include <openssl/err.h>
     74 #include <openssl/mem.h>
     75 
     76 #include "internal.h"
     77 
     78 
     79 /* Most method functions in this file are designed to work with non-trivial
     80  * representations of field elements if necessary (see ecp_mont.c): while
     81  * standard modular addition and subtraction are used, the field_mul and
     82  * field_sqr methods will be used for multiplication, and field_encode and
     83  * field_decode (if defined) will be used for converting between
     84  * representations.
     85 
     86  * Functions ec_GFp_simple_points_make_affine() and
     87  * ec_GFp_simple_point_get_affine_coordinates() specifically assume that if a
     88  * non-trivial representation is used, it is a Montgomery representation (i.e.
     89  * 'encoding' means multiplying by some factor R). */
     90 
     91 int ec_GFp_simple_group_init(EC_GROUP *group) {
     92   BN_init(&group->field);
     93   BN_init(&group->a);
     94   BN_init(&group->b);
     95   group->a_is_minus3 = 0;
     96   return 1;
     97 }
     98 
     99 void ec_GFp_simple_group_finish(EC_GROUP *group) {
    100   BN_free(&group->field);
    101   BN_free(&group->a);
    102   BN_free(&group->b);
    103 }
    104 
    105 void ec_GFp_simple_group_clear_finish(EC_GROUP *group) {
    106   BN_clear_free(&group->field);
    107   BN_clear_free(&group->a);
    108   BN_clear_free(&group->b);
    109 }
    110 
    111 int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
    112   if (!BN_copy(&dest->field, &src->field) ||
    113       !BN_copy(&dest->a, &src->a) ||
    114       !BN_copy(&dest->b, &src->b)) {
    115     return 0;
    116   }
    117 
    118   dest->a_is_minus3 = src->a_is_minus3;
    119   return 1;
    120 }
    121 
    122 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
    123                                   const BIGNUM *a, const BIGNUM *b,
    124                                   BN_CTX *ctx) {
    125   int ret = 0;
    126   BN_CTX *new_ctx = NULL;
    127   BIGNUM *tmp_a;
    128 
    129   /* p must be a prime > 3 */
    130   if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
    131     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
    132     return 0;
    133   }
    134 
    135   if (ctx == NULL) {
    136     ctx = new_ctx = BN_CTX_new();
    137     if (ctx == NULL) {
    138       return 0;
    139     }
    140   }
    141 
    142   BN_CTX_start(ctx);
    143   tmp_a = BN_CTX_get(ctx);
    144   if (tmp_a == NULL) {
    145     goto err;
    146   }
    147 
    148   /* group->field */
    149   if (!BN_copy(&group->field, p)) {
    150     goto err;
    151   }
    152   BN_set_negative(&group->field, 0);
    153 
    154   /* group->a */
    155   if (!BN_nnmod(tmp_a, a, p, ctx)) {
    156     goto err;
    157   }
    158   if (group->meth->field_encode) {
    159     if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
    160       goto err;
    161     }
    162   } else if (!BN_copy(&group->a, tmp_a)) {
    163     goto err;
    164   }
    165 
    166   /* group->b */
    167   if (!BN_nnmod(&group->b, b, p, ctx)) {
    168     goto err;
    169   }
    170   if (group->meth->field_encode &&
    171       !group->meth->field_encode(group, &group->b, &group->b, ctx)) {
    172     goto err;
    173   }
    174 
    175   /* group->a_is_minus3 */
    176   if (!BN_add_word(tmp_a, 3)) {
    177     goto err;
    178   }
    179   group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
    180 
    181   ret = 1;
    182 
    183 err:
    184   BN_CTX_end(ctx);
    185   BN_CTX_free(new_ctx);
    186   return ret;
    187 }
    188 
    189 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
    190                                   BIGNUM *b, BN_CTX *ctx) {
    191   int ret = 0;
    192   BN_CTX *new_ctx = NULL;
    193 
    194   if (p != NULL && !BN_copy(p, &group->field)) {
    195     return 0;
    196   }
    197 
    198   if (a != NULL || b != NULL) {
    199     if (group->meth->field_decode) {
    200       if (ctx == NULL) {
    201         ctx = new_ctx = BN_CTX_new();
    202         if (ctx == NULL) {
    203           return 0;
    204         }
    205       }
    206       if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) {
    207         goto err;
    208       }
    209       if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) {
    210         goto err;
    211       }
    212     } else {
    213       if (a != NULL && !BN_copy(a, &group->a)) {
    214         goto err;
    215       }
    216       if (b != NULL && !BN_copy(b, &group->b)) {
    217         goto err;
    218       }
    219     }
    220   }
    221 
    222   ret = 1;
    223 
    224 err:
    225   BN_CTX_free(new_ctx);
    226   return ret;
    227 }
    228 
    229 unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
    230   return BN_num_bits(&group->field);
    231 }
    232 
    233 int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) {
    234   int ret = 0;
    235   BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
    236   const BIGNUM *p = &group->field;
    237   BN_CTX *new_ctx = NULL;
    238 
    239   if (ctx == NULL) {
    240     ctx = new_ctx = BN_CTX_new();
    241     if (ctx == NULL) {
    242       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    243       goto err;
    244     }
    245   }
    246   BN_CTX_start(ctx);
    247   a = BN_CTX_get(ctx);
    248   b = BN_CTX_get(ctx);
    249   tmp_1 = BN_CTX_get(ctx);
    250   tmp_2 = BN_CTX_get(ctx);
    251   order = BN_CTX_get(ctx);
    252   if (order == NULL) {
    253     goto err;
    254   }
    255 
    256   if (group->meth->field_decode) {
    257     if (!group->meth->field_decode(group, a, &group->a, ctx) ||
    258         !group->meth->field_decode(group, b, &group->b, ctx)) {
    259       goto err;
    260     }
    261   } else {
    262     if (!BN_copy(a, &group->a) || !BN_copy(b, &group->b)) {
    263       goto err;
    264     }
    265   }
    266 
    267   /* check the discriminant:
    268    * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
    269    * 0 =< a, b < p */
    270   if (BN_is_zero(a)) {
    271     if (BN_is_zero(b)) {
    272       goto err;
    273     }
    274   } else if (!BN_is_zero(b)) {
    275     if (!BN_mod_sqr(tmp_1, a, p, ctx) ||
    276         !BN_mod_mul(tmp_2, tmp_1, a, p, ctx) ||
    277         !BN_lshift(tmp_1, tmp_2, 2)) {
    278       goto err;
    279     }
    280     /* tmp_1 = 4*a^3 */
    281 
    282     if (!BN_mod_sqr(tmp_2, b, p, ctx) ||
    283         !BN_mul_word(tmp_2, 27)) {
    284       goto err;
    285     }
    286     /* tmp_2 = 27*b^2 */
    287 
    288     if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx) ||
    289         BN_is_zero(a)) {
    290       goto err;
    291     }
    292   }
    293   ret = 1;
    294 
    295 err:
    296   if (ctx != NULL) {
    297     BN_CTX_end(ctx);
    298   }
    299   BN_CTX_free(new_ctx);
    300   return ret;
    301 }
    302 
    303 int ec_GFp_simple_point_init(EC_POINT *point) {
    304   BN_init(&point->X);
    305   BN_init(&point->Y);
    306   BN_init(&point->Z);
    307   point->Z_is_one = 0;
    308 
    309   return 1;
    310 }
    311 
    312 void ec_GFp_simple_point_finish(EC_POINT *point) {
    313   BN_free(&point->X);
    314   BN_free(&point->Y);
    315   BN_free(&point->Z);
    316 }
    317 
    318 void ec_GFp_simple_point_clear_finish(EC_POINT *point) {
    319   BN_clear_free(&point->X);
    320   BN_clear_free(&point->Y);
    321   BN_clear_free(&point->Z);
    322   point->Z_is_one = 0;
    323 }
    324 
    325 int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
    326   if (!BN_copy(&dest->X, &src->X) ||
    327       !BN_copy(&dest->Y, &src->Y) ||
    328       !BN_copy(&dest->Z, &src->Z)) {
    329     return 0;
    330   }
    331   dest->Z_is_one = src->Z_is_one;
    332 
    333   return 1;
    334 }
    335 
    336 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
    337                                         EC_POINT *point) {
    338   point->Z_is_one = 0;
    339   BN_zero(&point->Z);
    340   return 1;
    341 }
    342 
    343 int ec_GFp_simple_set_Jprojective_coordinates_GFp(
    344     const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y,
    345     const BIGNUM *z, BN_CTX *ctx) {
    346   BN_CTX *new_ctx = NULL;
    347   int ret = 0;
    348 
    349   if (ctx == NULL) {
    350     ctx = new_ctx = BN_CTX_new();
    351     if (ctx == NULL) {
    352       return 0;
    353     }
    354   }
    355 
    356   if (x != NULL) {
    357     if (!BN_nnmod(&point->X, x, &group->field, ctx)) {
    358       goto err;
    359     }
    360     if (group->meth->field_encode &&
    361         !group->meth->field_encode(group, &point->X, &point->X, ctx)) {
    362       goto err;
    363     }
    364   }
    365 
    366   if (y != NULL) {
    367     if (!BN_nnmod(&point->Y, y, &group->field, ctx)) {
    368       goto err;
    369     }
    370     if (group->meth->field_encode &&
    371         !group->meth->field_encode(group, &point->Y, &point->Y, ctx)) {
    372       goto err;
    373     }
    374   }
    375 
    376   if (z != NULL) {
    377     int Z_is_one;
    378 
    379     if (!BN_nnmod(&point->Z, z, &group->field, ctx)) {
    380       goto err;
    381     }
    382     Z_is_one = BN_is_one(&point->Z);
    383     if (group->meth->field_encode) {
    384       if (Z_is_one && (group->meth->field_set_to_one != 0)) {
    385         if (!group->meth->field_set_to_one(group, &point->Z, ctx)) {
    386           goto err;
    387         }
    388       } else if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) {
    389         goto err;
    390       }
    391     }
    392     point->Z_is_one = Z_is_one;
    393   }
    394 
    395   ret = 1;
    396 
    397 err:
    398   BN_CTX_free(new_ctx);
    399   return ret;
    400 }
    401 
    402 int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
    403                                                   const EC_POINT *point,
    404                                                   BIGNUM *x, BIGNUM *y,
    405                                                   BIGNUM *z, BN_CTX *ctx) {
    406   BN_CTX *new_ctx = NULL;
    407   int ret = 0;
    408 
    409   if (group->meth->field_decode != 0) {
    410     if (ctx == NULL) {
    411       ctx = new_ctx = BN_CTX_new();
    412       if (ctx == NULL) {
    413         return 0;
    414       }
    415     }
    416 
    417     if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
    418       goto err;
    419     }
    420     if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
    421       goto err;
    422     }
    423     if (z != NULL && !group->meth->field_decode(group, z, &point->Z, ctx)) {
    424       goto err;
    425     }
    426   } else {
    427     if (x != NULL && !BN_copy(x, &point->X)) {
    428       goto err;
    429     }
    430     if (y != NULL && !BN_copy(y, &point->Y)) {
    431       goto err;
    432     }
    433     if (z != NULL && !BN_copy(z, &point->Z)) {
    434       goto err;
    435     }
    436   }
    437 
    438   ret = 1;
    439 
    440 err:
    441   BN_CTX_free(new_ctx);
    442   return ret;
    443 }
    444 
    445 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
    446                                                EC_POINT *point, const BIGNUM *x,
    447                                                const BIGNUM *y, BN_CTX *ctx) {
    448   if (x == NULL || y == NULL) {
    449     /* unlike for projective coordinates, we do not tolerate this */
    450     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    451     return 0;
    452   }
    453 
    454   return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y,
    455                                                   BN_value_one(), ctx);
    456 }
    457 
    458 int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
    459                                                const EC_POINT *point, BIGNUM *x,
    460                                                BIGNUM *y, BN_CTX *ctx) {
    461   BN_CTX *new_ctx = NULL;
    462   BIGNUM *Z, *Z_1, *Z_2, *Z_3;
    463   const BIGNUM *Z_;
    464   int ret = 0;
    465 
    466   if (EC_POINT_is_at_infinity(group, point)) {
    467     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    468     return 0;
    469   }
    470 
    471   if (ctx == NULL) {
    472     ctx = new_ctx = BN_CTX_new();
    473     if (ctx == NULL) {
    474       return 0;
    475     }
    476   }
    477 
    478   BN_CTX_start(ctx);
    479   Z = BN_CTX_get(ctx);
    480   Z_1 = BN_CTX_get(ctx);
    481   Z_2 = BN_CTX_get(ctx);
    482   Z_3 = BN_CTX_get(ctx);
    483   if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
    484     goto err;
    485   }
    486 
    487   /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
    488 
    489   if (group->meth->field_decode) {
    490     if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
    491       goto err;
    492     }
    493     Z_ = Z;
    494   } else {
    495     Z_ = &point->Z;
    496   }
    497 
    498   if (BN_is_one(Z_)) {
    499     if (group->meth->field_decode) {
    500       if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
    501         goto err;
    502       }
    503       if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
    504         goto err;
    505       }
    506     } else {
    507       if (x != NULL && !BN_copy(x, &point->X)) {
    508         goto err;
    509       }
    510       if (y != NULL && !BN_copy(y, &point->Y)) {
    511         goto err;
    512       }
    513     }
    514   } else {
    515     if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
    516       OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    517       goto err;
    518     }
    519 
    520     if (group->meth->field_encode == 0) {
    521       /* field_sqr works on standard representation */
    522       if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
    523         goto err;
    524       }
    525     } else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
    526       goto err;
    527     }
    528 
    529     /* in the Montgomery case, field_mul will cancel out Montgomery factor in
    530      * X: */
    531     if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
    532       goto err;
    533     }
    534 
    535     if (y != NULL) {
    536       if (group->meth->field_encode == 0) {
    537         /* field_mul works on standard representation */
    538         if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
    539           goto err;
    540         }
    541       } else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
    542         goto err;
    543       }
    544 
    545       /* in the Montgomery case, field_mul will cancel out Montgomery factor in
    546        * Y: */
    547       if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
    548         goto err;
    549       }
    550     }
    551   }
    552 
    553   ret = 1;
    554 
    555 err:
    556   BN_CTX_end(ctx);
    557   BN_CTX_free(new_ctx);
    558   return ret;
    559 }
    560 
    561 int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
    562                       const EC_POINT *b, BN_CTX *ctx) {
    563   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
    564                    BN_CTX *);
    565   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    566   const BIGNUM *p;
    567   BN_CTX *new_ctx = NULL;
    568   BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
    569   int ret = 0;
    570 
    571   if (a == b) {
    572     return EC_POINT_dbl(group, r, a, ctx);
    573   }
    574   if (EC_POINT_is_at_infinity(group, a)) {
    575     return EC_POINT_copy(r, b);
    576   }
    577   if (EC_POINT_is_at_infinity(group, b)) {
    578     return EC_POINT_copy(r, a);
    579   }
    580 
    581   field_mul = group->meth->field_mul;
    582   field_sqr = group->meth->field_sqr;
    583   p = &group->field;
    584 
    585   if (ctx == NULL) {
    586     ctx = new_ctx = BN_CTX_new();
    587     if (ctx == NULL) {
    588       return 0;
    589     }
    590   }
    591 
    592   BN_CTX_start(ctx);
    593   n0 = BN_CTX_get(ctx);
    594   n1 = BN_CTX_get(ctx);
    595   n2 = BN_CTX_get(ctx);
    596   n3 = BN_CTX_get(ctx);
    597   n4 = BN_CTX_get(ctx);
    598   n5 = BN_CTX_get(ctx);
    599   n6 = BN_CTX_get(ctx);
    600   if (n6 == NULL) {
    601     goto end;
    602   }
    603 
    604   /* Note that in this function we must not read components of 'a' or 'b'
    605    * once we have written the corresponding components of 'r'.
    606    * ('r' might be one of 'a' or 'b'.)
    607    */
    608 
    609   /* n1, n2 */
    610   if (b->Z_is_one) {
    611     if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
    612       goto end;
    613     }
    614     /* n1 = X_a */
    615     /* n2 = Y_a */
    616   } else {
    617     if (!field_sqr(group, n0, &b->Z, ctx) ||
    618         !field_mul(group, n1, &a->X, n0, ctx)) {
    619       goto end;
    620     }
    621     /* n1 = X_a * Z_b^2 */
    622 
    623     if (!field_mul(group, n0, n0, &b->Z, ctx) ||
    624         !field_mul(group, n2, &a->Y, n0, ctx)) {
    625       goto end;
    626     }
    627     /* n2 = Y_a * Z_b^3 */
    628   }
    629 
    630   /* n3, n4 */
    631   if (a->Z_is_one) {
    632     if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
    633       goto end;
    634     }
    635     /* n3 = X_b */
    636     /* n4 = Y_b */
    637   } else {
    638     if (!field_sqr(group, n0, &a->Z, ctx) ||
    639         !field_mul(group, n3, &b->X, n0, ctx)) {
    640       goto end;
    641     }
    642     /* n3 = X_b * Z_a^2 */
    643 
    644     if (!field_mul(group, n0, n0, &a->Z, ctx) ||
    645         !field_mul(group, n4, &b->Y, n0, ctx)) {
    646       goto end;
    647     }
    648     /* n4 = Y_b * Z_a^3 */
    649   }
    650 
    651   /* n5, n6 */
    652   if (!BN_mod_sub_quick(n5, n1, n3, p) ||
    653       !BN_mod_sub_quick(n6, n2, n4, p)) {
    654     goto end;
    655   }
    656   /* n5 = n1 - n3 */
    657   /* n6 = n2 - n4 */
    658 
    659   if (BN_is_zero(n5)) {
    660     if (BN_is_zero(n6)) {
    661       /* a is the same point as b */
    662       BN_CTX_end(ctx);
    663       ret = EC_POINT_dbl(group, r, a, ctx);
    664       ctx = NULL;
    665       goto end;
    666     } else {
    667       /* a is the inverse of b */
    668       BN_zero(&r->Z);
    669       r->Z_is_one = 0;
    670       ret = 1;
    671       goto end;
    672     }
    673   }
    674 
    675   /* 'n7', 'n8' */
    676   if (!BN_mod_add_quick(n1, n1, n3, p) ||
    677       !BN_mod_add_quick(n2, n2, n4, p)) {
    678     goto end;
    679   }
    680   /* 'n7' = n1 + n3 */
    681   /* 'n8' = n2 + n4 */
    682 
    683   /* Z_r */
    684   if (a->Z_is_one && b->Z_is_one) {
    685     if (!BN_copy(&r->Z, n5)) {
    686       goto end;
    687     }
    688   } else {
    689     if (a->Z_is_one) {
    690       if (!BN_copy(n0, &b->Z)) {
    691         goto end;
    692       }
    693     } else if (b->Z_is_one) {
    694       if (!BN_copy(n0, &a->Z)) {
    695         goto end;
    696       }
    697     } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
    698       goto end;
    699     }
    700     if (!field_mul(group, &r->Z, n0, n5, ctx)) {
    701       goto end;
    702     }
    703   }
    704   r->Z_is_one = 0;
    705   /* Z_r = Z_a * Z_b * n5 */
    706 
    707   /* X_r */
    708   if (!field_sqr(group, n0, n6, ctx) ||
    709       !field_sqr(group, n4, n5, ctx) ||
    710       !field_mul(group, n3, n1, n4, ctx) ||
    711       !BN_mod_sub_quick(&r->X, n0, n3, p)) {
    712     goto end;
    713   }
    714   /* X_r = n6^2 - n5^2 * 'n7' */
    715 
    716   /* 'n9' */
    717   if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
    718       !BN_mod_sub_quick(n0, n3, n0, p)) {
    719     goto end;
    720   }
    721   /* n9 = n5^2 * 'n7' - 2 * X_r */
    722 
    723   /* Y_r */
    724   if (!field_mul(group, n0, n0, n6, ctx) ||
    725       !field_mul(group, n5, n4, n5, ctx)) {
    726     goto end; /* now n5 is n5^3 */
    727   }
    728   if (!field_mul(group, n1, n2, n5, ctx) ||
    729       !BN_mod_sub_quick(n0, n0, n1, p)) {
    730     goto end;
    731   }
    732   if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
    733     goto end;
    734   }
    735   /* now  0 <= n0 < 2*p,  and n0 is even */
    736   if (!BN_rshift1(&r->Y, n0)) {
    737     goto end;
    738   }
    739   /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
    740 
    741   ret = 1;
    742 
    743 end:
    744   if (ctx) {
    745     /* otherwise we already called BN_CTX_end */
    746     BN_CTX_end(ctx);
    747   }
    748   BN_CTX_free(new_ctx);
    749   return ret;
    750 }
    751 
    752 int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
    753                       BN_CTX *ctx) {
    754   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
    755                    BN_CTX *);
    756   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    757   const BIGNUM *p;
    758   BN_CTX *new_ctx = NULL;
    759   BIGNUM *n0, *n1, *n2, *n3;
    760   int ret = 0;
    761 
    762   if (EC_POINT_is_at_infinity(group, a)) {
    763     BN_zero(&r->Z);
    764     r->Z_is_one = 0;
    765     return 1;
    766   }
    767 
    768   field_mul = group->meth->field_mul;
    769   field_sqr = group->meth->field_sqr;
    770   p = &group->field;
    771 
    772   if (ctx == NULL) {
    773     ctx = new_ctx = BN_CTX_new();
    774     if (ctx == NULL) {
    775       return 0;
    776     }
    777   }
    778 
    779   BN_CTX_start(ctx);
    780   n0 = BN_CTX_get(ctx);
    781   n1 = BN_CTX_get(ctx);
    782   n2 = BN_CTX_get(ctx);
    783   n3 = BN_CTX_get(ctx);
    784   if (n3 == NULL) {
    785     goto err;
    786   }
    787 
    788   /* Note that in this function we must not read components of 'a'
    789    * once we have written the corresponding components of 'r'.
    790    * ('r' might the same as 'a'.)
    791    */
    792 
    793   /* n1 */
    794   if (a->Z_is_one) {
    795     if (!field_sqr(group, n0, &a->X, ctx) ||
    796         !BN_mod_lshift1_quick(n1, n0, p) ||
    797         !BN_mod_add_quick(n0, n0, n1, p) ||
    798         !BN_mod_add_quick(n1, n0, &group->a, p)) {
    799       goto err;
    800     }
    801     /* n1 = 3 * X_a^2 + a_curve */
    802   } else if (group->a_is_minus3) {
    803     if (!field_sqr(group, n1, &a->Z, ctx) ||
    804         !BN_mod_add_quick(n0, &a->X, n1, p) ||
    805         !BN_mod_sub_quick(n2, &a->X, n1, p) ||
    806         !field_mul(group, n1, n0, n2, ctx) ||
    807         !BN_mod_lshift1_quick(n0, n1, p) ||
    808         !BN_mod_add_quick(n1, n0, n1, p)) {
    809       goto err;
    810     }
    811     /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
    812      *    = 3 * X_a^2 - 3 * Z_a^4 */
    813   } else {
    814     if (!field_sqr(group, n0, &a->X, ctx) ||
    815         !BN_mod_lshift1_quick(n1, n0, p) ||
    816         !BN_mod_add_quick(n0, n0, n1, p) ||
    817         !field_sqr(group, n1, &a->Z, ctx) ||
    818         !field_sqr(group, n1, n1, ctx) ||
    819         !field_mul(group, n1, n1, &group->a, ctx) ||
    820         !BN_mod_add_quick(n1, n1, n0, p)) {
    821       goto err;
    822     }
    823     /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
    824   }
    825 
    826   /* Z_r */
    827   if (a->Z_is_one) {
    828     if (!BN_copy(n0, &a->Y)) {
    829       goto err;
    830     }
    831   } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
    832     goto err;
    833   }
    834   if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
    835     goto err;
    836   }
    837   r->Z_is_one = 0;
    838   /* Z_r = 2 * Y_a * Z_a */
    839 
    840   /* n2 */
    841   if (!field_sqr(group, n3, &a->Y, ctx) ||
    842       !field_mul(group, n2, &a->X, n3, ctx) ||
    843       !BN_mod_lshift_quick(n2, n2, 2, p)) {
    844     goto err;
    845   }
    846   /* n2 = 4 * X_a * Y_a^2 */
    847 
    848   /* X_r */
    849   if (!BN_mod_lshift1_quick(n0, n2, p) ||
    850       !field_sqr(group, &r->X, n1, ctx) ||
    851       !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
    852     goto err;
    853   }
    854   /* X_r = n1^2 - 2 * n2 */
    855 
    856   /* n3 */
    857   if (!field_sqr(group, n0, n3, ctx) ||
    858       !BN_mod_lshift_quick(n3, n0, 3, p)) {
    859     goto err;
    860   }
    861   /* n3 = 8 * Y_a^4 */
    862 
    863   /* Y_r */
    864   if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
    865       !field_mul(group, n0, n1, n0, ctx) ||
    866       !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
    867     goto err;
    868   }
    869   /* Y_r = n1 * (n2 - X_r) - n3 */
    870 
    871   ret = 1;
    872 
    873 err:
    874   BN_CTX_end(ctx);
    875   BN_CTX_free(new_ctx);
    876   return ret;
    877 }
    878 
    879 int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
    880   if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
    881     /* point is its own inverse */
    882     return 1;
    883   }
    884 
    885   return BN_usub(&point->Y, &group->field, &point->Y);
    886 }
    887 
    888 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
    889   return !point->Z_is_one && BN_is_zero(&point->Z);
    890 }
    891 
    892 int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
    893                               BN_CTX *ctx) {
    894   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
    895                    BN_CTX *);
    896   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    897   const BIGNUM *p;
    898   BN_CTX *new_ctx = NULL;
    899   BIGNUM *rh, *tmp, *Z4, *Z6;
    900   int ret = -1;
    901 
    902   if (EC_POINT_is_at_infinity(group, point)) {
    903     return 1;
    904   }
    905 
    906   field_mul = group->meth->field_mul;
    907   field_sqr = group->meth->field_sqr;
    908   p = &group->field;
    909 
    910   if (ctx == NULL) {
    911     ctx = new_ctx = BN_CTX_new();
    912     if (ctx == NULL) {
    913       return -1;
    914     }
    915   }
    916 
    917   BN_CTX_start(ctx);
    918   rh = BN_CTX_get(ctx);
    919   tmp = BN_CTX_get(ctx);
    920   Z4 = BN_CTX_get(ctx);
    921   Z6 = BN_CTX_get(ctx);
    922   if (Z6 == NULL) {
    923     goto err;
    924   }
    925 
    926   /* We have a curve defined by a Weierstrass equation
    927    *      y^2 = x^3 + a*x + b.
    928    * The point to consider is given in Jacobian projective coordinates
    929    * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
    930    * Substituting this and multiplying by  Z^6  transforms the above equation
    931    * into
    932    *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
    933    * To test this, we add up the right-hand side in 'rh'.
    934    */
    935 
    936   /* rh := X^2 */
    937   if (!field_sqr(group, rh, &point->X, ctx)) {
    938     goto err;
    939   }
    940 
    941   if (!point->Z_is_one) {
    942     if (!field_sqr(group, tmp, &point->Z, ctx) ||
    943         !field_sqr(group, Z4, tmp, ctx) ||
    944         !field_mul(group, Z6, Z4, tmp, ctx)) {
    945       goto err;
    946     }
    947 
    948     /* rh := (rh + a*Z^4)*X */
    949     if (group->a_is_minus3) {
    950       if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
    951           !BN_mod_add_quick(tmp, tmp, Z4, p) ||
    952           !BN_mod_sub_quick(rh, rh, tmp, p) ||
    953           !field_mul(group, rh, rh, &point->X, ctx)) {
    954         goto err;
    955       }
    956     } else {
    957       if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
    958           !BN_mod_add_quick(rh, rh, tmp, p) ||
    959           !field_mul(group, rh, rh, &point->X, ctx)) {
    960         goto err;
    961       }
    962     }
    963 
    964     /* rh := rh + b*Z^6 */
    965     if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
    966         !BN_mod_add_quick(rh, rh, tmp, p)) {
    967       goto err;
    968     }
    969   } else {
    970     /* point->Z_is_one */
    971 
    972     /* rh := (rh + a)*X */
    973     if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
    974         !field_mul(group, rh, rh, &point->X, ctx)) {
    975       goto err;
    976     }
    977     /* rh := rh + b */
    978     if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
    979       goto err;
    980     }
    981   }
    982 
    983   /* 'lh' := Y^2 */
    984   if (!field_sqr(group, tmp, &point->Y, ctx)) {
    985     goto err;
    986   }
    987 
    988   ret = (0 == BN_ucmp(tmp, rh));
    989 
    990 err:
    991   BN_CTX_end(ctx);
    992   BN_CTX_free(new_ctx);
    993   return ret;
    994 }
    995 
    996 int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
    997                       const EC_POINT *b, BN_CTX *ctx) {
    998   /* return values:
    999    *  -1   error
   1000    *   0   equal (in affine coordinates)
   1001    *   1   not equal
   1002    */
   1003 
   1004   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
   1005                    BN_CTX *);
   1006   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
   1007   BN_CTX *new_ctx = NULL;
   1008   BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
   1009   const BIGNUM *tmp1_, *tmp2_;
   1010   int ret = -1;
   1011 
   1012   if (EC_POINT_is_at_infinity(group, a)) {
   1013     return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
   1014   }
   1015 
   1016   if (EC_POINT_is_at_infinity(group, b)) {
   1017     return 1;
   1018   }
   1019 
   1020   if (a->Z_is_one && b->Z_is_one) {
   1021     return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
   1022   }
   1023 
   1024   field_mul = group->meth->field_mul;
   1025   field_sqr = group->meth->field_sqr;
   1026 
   1027   if (ctx == NULL) {
   1028     ctx = new_ctx = BN_CTX_new();
   1029     if (ctx == NULL) {
   1030       return -1;
   1031     }
   1032   }
   1033 
   1034   BN_CTX_start(ctx);
   1035   tmp1 = BN_CTX_get(ctx);
   1036   tmp2 = BN_CTX_get(ctx);
   1037   Za23 = BN_CTX_get(ctx);
   1038   Zb23 = BN_CTX_get(ctx);
   1039   if (Zb23 == NULL) {
   1040     goto end;
   1041   }
   1042 
   1043   /* We have to decide whether
   1044    *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
   1045    * or equivalently, whether
   1046    *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
   1047    */
   1048 
   1049   if (!b->Z_is_one) {
   1050     if (!field_sqr(group, Zb23, &b->Z, ctx) ||
   1051         !field_mul(group, tmp1, &a->X, Zb23, ctx)) {
   1052       goto end;
   1053     }
   1054     tmp1_ = tmp1;
   1055   } else {
   1056     tmp1_ = &a->X;
   1057   }
   1058   if (!a->Z_is_one) {
   1059     if (!field_sqr(group, Za23, &a->Z, ctx) ||
   1060         !field_mul(group, tmp2, &b->X, Za23, ctx)) {
   1061       goto end;
   1062     }
   1063     tmp2_ = tmp2;
   1064   } else {
   1065     tmp2_ = &b->X;
   1066   }
   1067 
   1068   /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
   1069   if (BN_cmp(tmp1_, tmp2_) != 0) {
   1070     ret = 1; /* points differ */
   1071     goto end;
   1072   }
   1073 
   1074 
   1075   if (!b->Z_is_one) {
   1076     if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
   1077         !field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
   1078       goto end;
   1079     }
   1080     /* tmp1_ = tmp1 */
   1081   } else {
   1082     tmp1_ = &a->Y;
   1083   }
   1084   if (!a->Z_is_one) {
   1085     if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
   1086         !field_mul(group, tmp2, &b->Y, Za23, ctx)) {
   1087       goto end;
   1088     }
   1089     /* tmp2_ = tmp2 */
   1090   } else {
   1091     tmp2_ = &b->Y;
   1092   }
   1093 
   1094   /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
   1095   if (BN_cmp(tmp1_, tmp2_) != 0) {
   1096     ret = 1; /* points differ */
   1097     goto end;
   1098   }
   1099 
   1100   /* points are equal */
   1101   ret = 0;
   1102 
   1103 end:
   1104   BN_CTX_end(ctx);
   1105   BN_CTX_free(new_ctx);
   1106   return ret;
   1107 }
   1108 
   1109 int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
   1110                               BN_CTX *ctx) {
   1111   BN_CTX *new_ctx = NULL;
   1112   BIGNUM *x, *y;
   1113   int ret = 0;
   1114 
   1115   if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) {
   1116     return 1;
   1117   }
   1118 
   1119   if (ctx == NULL) {
   1120     ctx = new_ctx = BN_CTX_new();
   1121     if (ctx == NULL) {
   1122       return 0;
   1123     }
   1124   }
   1125 
   1126   BN_CTX_start(ctx);
   1127   x = BN_CTX_get(ctx);
   1128   y = BN_CTX_get(ctx);
   1129   if (y == NULL) {
   1130     goto err;
   1131   }
   1132 
   1133   if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) ||
   1134       !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
   1135     goto err;
   1136   }
   1137   if (!point->Z_is_one) {
   1138     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
   1139     goto err;
   1140   }
   1141 
   1142   ret = 1;
   1143 
   1144 err:
   1145   BN_CTX_end(ctx);
   1146   BN_CTX_free(new_ctx);
   1147   return ret;
   1148 }
   1149 
   1150 int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
   1151                                      EC_POINT *points[], BN_CTX *ctx) {
   1152   BN_CTX *new_ctx = NULL;
   1153   BIGNUM *tmp, *tmp_Z;
   1154   BIGNUM **prod_Z = NULL;
   1155   size_t i;
   1156   int ret = 0;
   1157 
   1158   if (num == 0) {
   1159     return 1;
   1160   }
   1161 
   1162   if (ctx == NULL) {
   1163     ctx = new_ctx = BN_CTX_new();
   1164     if (ctx == NULL) {
   1165       return 0;
   1166     }
   1167   }
   1168 
   1169   BN_CTX_start(ctx);
   1170   tmp = BN_CTX_get(ctx);
   1171   tmp_Z = BN_CTX_get(ctx);
   1172   if (tmp == NULL || tmp_Z == NULL) {
   1173     goto err;
   1174   }
   1175 
   1176   prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
   1177   if (prod_Z == NULL) {
   1178     goto err;
   1179   }
   1180   memset(prod_Z, 0, num * sizeof(prod_Z[0]));
   1181   for (i = 0; i < num; i++) {
   1182     prod_Z[i] = BN_new();
   1183     if (prod_Z[i] == NULL) {
   1184       goto err;
   1185     }
   1186   }
   1187 
   1188   /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
   1189    * skipping any zero-valued inputs (pretend that they're 1). */
   1190 
   1191   if (!BN_is_zero(&points[0]->Z)) {
   1192     if (!BN_copy(prod_Z[0], &points[0]->Z)) {
   1193       goto err;
   1194     }
   1195   } else {
   1196     if (group->meth->field_set_to_one != 0) {
   1197       if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
   1198         goto err;
   1199       }
   1200     } else {
   1201       if (!BN_one(prod_Z[0])) {
   1202         goto err;
   1203       }
   1204     }
   1205   }
   1206 
   1207   for (i = 1; i < num; i++) {
   1208     if (!BN_is_zero(&points[i]->Z)) {
   1209       if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
   1210                                   &points[i]->Z, ctx)) {
   1211         goto err;
   1212       }
   1213     } else {
   1214       if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
   1215         goto err;
   1216       }
   1217     }
   1218   }
   1219 
   1220   /* Now use a single explicit inversion to replace every
   1221    * non-zero points[i]->Z by its inverse. */
   1222 
   1223   if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
   1224     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1225     goto err;
   1226   }
   1227 
   1228   if (group->meth->field_encode != NULL) {
   1229     /* In the Montgomery case, we just turned R*H (representing H)
   1230      * into 1/(R*H), but we need R*(1/H) (representing 1/H);
   1231      * i.e. we need to multiply by the Montgomery factor twice. */
   1232     if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
   1233         !group->meth->field_encode(group, tmp, tmp, ctx)) {
   1234       goto err;
   1235     }
   1236   }
   1237 
   1238   for (i = num - 1; i > 0; --i) {
   1239     /* Loop invariant: tmp is the product of the inverses of
   1240      * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
   1241     if (BN_is_zero(&points[i]->Z)) {
   1242       continue;
   1243     }
   1244 
   1245     /* Set tmp_Z to the inverse of points[i]->Z (as product
   1246      * of Z inverses 0 .. i, Z values 0 .. i - 1). */
   1247     if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
   1248         /* Update tmp to satisfy the loop invariant for i - 1. */
   1249         !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
   1250         /* Replace points[i]->Z by its inverse. */
   1251         !BN_copy(&points[i]->Z, tmp_Z)) {
   1252       goto err;
   1253     }
   1254   }
   1255 
   1256   /* Replace points[0]->Z by its inverse. */
   1257   if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
   1258     goto err;
   1259   }
   1260 
   1261   /* Finally, fix up the X and Y coordinates for all points. */
   1262   for (i = 0; i < num; i++) {
   1263     EC_POINT *p = points[i];
   1264 
   1265     if (!BN_is_zero(&p->Z)) {
   1266       /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
   1267       if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
   1268           !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
   1269           !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
   1270           !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
   1271         goto err;
   1272       }
   1273 
   1274       if (group->meth->field_set_to_one != NULL) {
   1275         if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
   1276           goto err;
   1277         }
   1278       } else {
   1279         if (!BN_one(&p->Z)) {
   1280           goto err;
   1281         }
   1282       }
   1283       p->Z_is_one = 1;
   1284     }
   1285   }
   1286 
   1287   ret = 1;
   1288 
   1289 err:
   1290   BN_CTX_end(ctx);
   1291   BN_CTX_free(new_ctx);
   1292   if (prod_Z != NULL) {
   1293     for (i = 0; i < num; i++) {
   1294       if (prod_Z[i] == NULL) {
   1295         break;
   1296       }
   1297       BN_clear_free(prod_Z[i]);
   1298     }
   1299     OPENSSL_free(prod_Z);
   1300   }
   1301 
   1302   return ret;
   1303 }
   1304 
   1305 int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
   1306                             const BIGNUM *b, BN_CTX *ctx) {
   1307   return BN_mod_mul(r, a, b, &group->field, ctx);
   1308 }
   1309 
   1310 int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
   1311                             BN_CTX *ctx) {
   1312   return BN_mod_sqr(r, a, &group->field, ctx);
   1313 }
   1314