Home | History | Annotate | Download | only in adb
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define TRACE_TAG SYSDEPS
     18 
     19 #include "sysdeps.h"
     20 
     21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
     22 #include <windows.h>
     23 
     24 #include <errno.h>
     25 #include <stdio.h>
     26 #include <stdlib.h>
     27 
     28 #include <algorithm>
     29 #include <memory>
     30 #include <string>
     31 #include <unordered_map>
     32 #include <vector>
     33 
     34 #include <cutils/sockets.h>
     35 
     36 #include <android-base/errors.h>
     37 #include <android-base/logging.h>
     38 #include <android-base/stringprintf.h>
     39 #include <android-base/strings.h>
     40 #include <android-base/utf8.h>
     41 
     42 #include "adb.h"
     43 #include "adb_utils.h"
     44 
     45 extern void fatal(const char *fmt, ...);
     46 
     47 /* forward declarations */
     48 
     49 typedef const struct FHClassRec_* FHClass;
     50 typedef struct FHRec_* FH;
     51 typedef struct EventHookRec_* EventHook;
     52 
     53 typedef struct FHClassRec_ {
     54     void (*_fh_init)(FH);
     55     int (*_fh_close)(FH);
     56     int (*_fh_lseek)(FH, int, int);
     57     int (*_fh_read)(FH, void*, int);
     58     int (*_fh_write)(FH, const void*, int);
     59 } FHClassRec;
     60 
     61 static void _fh_file_init(FH);
     62 static int _fh_file_close(FH);
     63 static int _fh_file_lseek(FH, int, int);
     64 static int _fh_file_read(FH, void*, int);
     65 static int _fh_file_write(FH, const void*, int);
     66 
     67 static const FHClassRec _fh_file_class = {
     68     _fh_file_init,
     69     _fh_file_close,
     70     _fh_file_lseek,
     71     _fh_file_read,
     72     _fh_file_write,
     73 };
     74 
     75 static void _fh_socket_init(FH);
     76 static int _fh_socket_close(FH);
     77 static int _fh_socket_lseek(FH, int, int);
     78 static int _fh_socket_read(FH, void*, int);
     79 static int _fh_socket_write(FH, const void*, int);
     80 
     81 static const FHClassRec _fh_socket_class = {
     82     _fh_socket_init,
     83     _fh_socket_close,
     84     _fh_socket_lseek,
     85     _fh_socket_read,
     86     _fh_socket_write,
     87 };
     88 
     89 #define assert(cond)                                                                       \
     90     do {                                                                                   \
     91         if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
     92     } while (0)
     93 
     94 void handle_deleter::operator()(HANDLE h) {
     95     // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
     96     // implying that NULL is a valid handle, but this is probably impossible.
     97     // Other APIs like CreateEvent() are documented to return NULL on error,
     98     // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
     99     // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
    100     // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
    101     // only need to check for INVALID_HANDLE_VALUE.
    102     if (h != INVALID_HANDLE_VALUE) {
    103         if (!CloseHandle(h)) {
    104             D("CloseHandle(%p) failed: %s", h,
    105               android::base::SystemErrorCodeToString(GetLastError()).c_str());
    106         }
    107     }
    108 }
    109 
    110 /**************************************************************************/
    111 /**************************************************************************/
    112 /*****                                                                *****/
    113 /*****      replaces libs/cutils/load_file.c                          *****/
    114 /*****                                                                *****/
    115 /**************************************************************************/
    116 /**************************************************************************/
    117 
    118 void *load_file(const char *fn, unsigned *_sz)
    119 {
    120     HANDLE    file;
    121     char     *data;
    122     DWORD     file_size;
    123 
    124     std::wstring fn_wide;
    125     if (!android::base::UTF8ToWide(fn, &fn_wide))
    126         return NULL;
    127 
    128     file = CreateFileW( fn_wide.c_str(),
    129                         GENERIC_READ,
    130                         FILE_SHARE_READ,
    131                         NULL,
    132                         OPEN_EXISTING,
    133                         0,
    134                         NULL );
    135 
    136     if (file == INVALID_HANDLE_VALUE)
    137         return NULL;
    138 
    139     file_size = GetFileSize( file, NULL );
    140     data      = NULL;
    141 
    142     if (file_size > 0) {
    143         data = (char*) malloc( file_size + 1 );
    144         if (data == NULL) {
    145             D("load_file: could not allocate %ld bytes", file_size );
    146             file_size = 0;
    147         } else {
    148             DWORD  out_bytes;
    149 
    150             if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
    151                  out_bytes != file_size )
    152             {
    153                 D("load_file: could not read %ld bytes from '%s'", file_size, fn);
    154                 free(data);
    155                 data      = NULL;
    156                 file_size = 0;
    157             }
    158         }
    159     }
    160     CloseHandle( file );
    161 
    162     *_sz = (unsigned) file_size;
    163     return  data;
    164 }
    165 
    166 /**************************************************************************/
    167 /**************************************************************************/
    168 /*****                                                                *****/
    169 /*****    common file descriptor handling                             *****/
    170 /*****                                                                *****/
    171 /**************************************************************************/
    172 /**************************************************************************/
    173 
    174 typedef struct FHRec_
    175 {
    176     FHClass    clazz;
    177     int        used;
    178     int        eof;
    179     union {
    180         HANDLE      handle;
    181         SOCKET      socket;
    182     } u;
    183 
    184     int       mask;
    185 
    186     char  name[32];
    187 
    188 } FHRec;
    189 
    190 #define  fh_handle  u.handle
    191 #define  fh_socket  u.socket
    192 
    193 #define  WIN32_FH_BASE    2048
    194 #define  WIN32_MAX_FHS    2048
    195 
    196 static adb_mutex_t   _win32_lock;
    197 static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
    198 static  int          _win32_fh_next;  // where to start search for free FHRec
    199 
    200 static FH
    201 _fh_from_int( int   fd, const char*   func )
    202 {
    203     FH  f;
    204 
    205     fd -= WIN32_FH_BASE;
    206 
    207     if (fd < 0 || fd >= WIN32_MAX_FHS) {
    208         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
    209            func );
    210         errno = EBADF;
    211         return NULL;
    212     }
    213 
    214     f = &_win32_fhs[fd];
    215 
    216     if (f->used == 0) {
    217         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
    218            func );
    219         errno = EBADF;
    220         return NULL;
    221     }
    222 
    223     return f;
    224 }
    225 
    226 
    227 static int
    228 _fh_to_int( FH  f )
    229 {
    230     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
    231         return (int)(f - _win32_fhs) + WIN32_FH_BASE;
    232 
    233     return -1;
    234 }
    235 
    236 static FH
    237 _fh_alloc( FHClass  clazz )
    238 {
    239     FH   f = NULL;
    240 
    241     adb_mutex_lock( &_win32_lock );
    242 
    243     for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
    244         if (_win32_fhs[i].clazz == NULL) {
    245             f = &_win32_fhs[i];
    246             _win32_fh_next = i + 1;
    247             goto Exit;
    248         }
    249     }
    250     D( "_fh_alloc: no more free file descriptors" );
    251     errno = EMFILE;   // Too many open files
    252 Exit:
    253     if (f) {
    254         f->clazz   = clazz;
    255         f->used    = 1;
    256         f->eof     = 0;
    257         f->name[0] = '\0';
    258         clazz->_fh_init(f);
    259     }
    260     adb_mutex_unlock( &_win32_lock );
    261     return f;
    262 }
    263 
    264 
    265 static int
    266 _fh_close( FH   f )
    267 {
    268     // Use lock so that closing only happens once and so that _fh_alloc can't
    269     // allocate a FH that we're in the middle of closing.
    270     adb_mutex_lock(&_win32_lock);
    271 
    272     int offset = f - _win32_fhs;
    273     if (_win32_fh_next > offset) {
    274         _win32_fh_next = offset;
    275     }
    276 
    277     if (f->used) {
    278         f->clazz->_fh_close( f );
    279         f->name[0] = '\0';
    280         f->eof     = 0;
    281         f->used    = 0;
    282         f->clazz   = NULL;
    283     }
    284     adb_mutex_unlock(&_win32_lock);
    285     return 0;
    286 }
    287 
    288 // Deleter for unique_fh.
    289 class fh_deleter {
    290  public:
    291   void operator()(struct FHRec_* fh) {
    292     // We're called from a destructor and destructors should not overwrite
    293     // errno because callers may do:
    294     //   errno = EBLAH;
    295     //   return -1; // calls destructor, which should not overwrite errno
    296     const int saved_errno = errno;
    297     _fh_close(fh);
    298     errno = saved_errno;
    299   }
    300 };
    301 
    302 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
    303 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
    304 
    305 /**************************************************************************/
    306 /**************************************************************************/
    307 /*****                                                                *****/
    308 /*****    file-based descriptor handling                              *****/
    309 /*****                                                                *****/
    310 /**************************************************************************/
    311 /**************************************************************************/
    312 
    313 static void _fh_file_init( FH  f ) {
    314     f->fh_handle = INVALID_HANDLE_VALUE;
    315 }
    316 
    317 static int _fh_file_close( FH  f ) {
    318     CloseHandle( f->fh_handle );
    319     f->fh_handle = INVALID_HANDLE_VALUE;
    320     return 0;
    321 }
    322 
    323 static int _fh_file_read( FH  f,  void*  buf, int   len ) {
    324     DWORD  read_bytes;
    325 
    326     if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
    327         D( "adb_read: could not read %d bytes from %s", len, f->name );
    328         errno = EIO;
    329         return -1;
    330     } else if (read_bytes < (DWORD)len) {
    331         f->eof = 1;
    332     }
    333     return (int)read_bytes;
    334 }
    335 
    336 static int _fh_file_write( FH  f,  const void*  buf, int   len ) {
    337     DWORD  wrote_bytes;
    338 
    339     if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
    340         D( "adb_file_write: could not write %d bytes from %s", len, f->name );
    341         errno = EIO;
    342         return -1;
    343     } else if (wrote_bytes < (DWORD)len) {
    344         f->eof = 1;
    345     }
    346     return  (int)wrote_bytes;
    347 }
    348 
    349 static int _fh_file_lseek( FH  f, int  pos, int  origin ) {
    350     DWORD  method;
    351     DWORD  result;
    352 
    353     switch (origin)
    354     {
    355         case SEEK_SET:  method = FILE_BEGIN; break;
    356         case SEEK_CUR:  method = FILE_CURRENT; break;
    357         case SEEK_END:  method = FILE_END; break;
    358         default:
    359             errno = EINVAL;
    360             return -1;
    361     }
    362 
    363     result = SetFilePointer( f->fh_handle, pos, NULL, method );
    364     if (result == INVALID_SET_FILE_POINTER) {
    365         errno = EIO;
    366         return -1;
    367     } else {
    368         f->eof = 0;
    369     }
    370     return (int)result;
    371 }
    372 
    373 
    374 /**************************************************************************/
    375 /**************************************************************************/
    376 /*****                                                                *****/
    377 /*****    file-based descriptor handling                              *****/
    378 /*****                                                                *****/
    379 /**************************************************************************/
    380 /**************************************************************************/
    381 
    382 int  adb_open(const char*  path, int  options)
    383 {
    384     FH  f;
    385 
    386     DWORD  desiredAccess       = 0;
    387     DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE;
    388 
    389     switch (options) {
    390         case O_RDONLY:
    391             desiredAccess = GENERIC_READ;
    392             break;
    393         case O_WRONLY:
    394             desiredAccess = GENERIC_WRITE;
    395             break;
    396         case O_RDWR:
    397             desiredAccess = GENERIC_READ | GENERIC_WRITE;
    398             break;
    399         default:
    400             D("adb_open: invalid options (0x%0x)", options);
    401             errno = EINVAL;
    402             return -1;
    403     }
    404 
    405     f = _fh_alloc( &_fh_file_class );
    406     if ( !f ) {
    407         return -1;
    408     }
    409 
    410     std::wstring path_wide;
    411     if (!android::base::UTF8ToWide(path, &path_wide)) {
    412         return -1;
    413     }
    414     f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
    415                                 NULL, OPEN_EXISTING, 0, NULL );
    416 
    417     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
    418         const DWORD err = GetLastError();
    419         _fh_close(f);
    420         D( "adb_open: could not open '%s': ", path );
    421         switch (err) {
    422             case ERROR_FILE_NOT_FOUND:
    423                 D( "file not found" );
    424                 errno = ENOENT;
    425                 return -1;
    426 
    427             case ERROR_PATH_NOT_FOUND:
    428                 D( "path not found" );
    429                 errno = ENOTDIR;
    430                 return -1;
    431 
    432             default:
    433                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
    434                 errno = ENOENT;
    435                 return -1;
    436         }
    437     }
    438 
    439     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
    440     D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
    441     return _fh_to_int(f);
    442 }
    443 
    444 /* ignore mode on Win32 */
    445 int  adb_creat(const char*  path, int  mode)
    446 {
    447     FH  f;
    448 
    449     f = _fh_alloc( &_fh_file_class );
    450     if ( !f ) {
    451         return -1;
    452     }
    453 
    454     std::wstring path_wide;
    455     if (!android::base::UTF8ToWide(path, &path_wide)) {
    456         return -1;
    457     }
    458     f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
    459                                 FILE_SHARE_READ | FILE_SHARE_WRITE,
    460                                 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
    461                                 NULL );
    462 
    463     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
    464         const DWORD err = GetLastError();
    465         _fh_close(f);
    466         D( "adb_creat: could not open '%s': ", path );
    467         switch (err) {
    468             case ERROR_FILE_NOT_FOUND:
    469                 D( "file not found" );
    470                 errno = ENOENT;
    471                 return -1;
    472 
    473             case ERROR_PATH_NOT_FOUND:
    474                 D( "path not found" );
    475                 errno = ENOTDIR;
    476                 return -1;
    477 
    478             default:
    479                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
    480                 errno = ENOENT;
    481                 return -1;
    482         }
    483     }
    484     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
    485     D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
    486     return _fh_to_int(f);
    487 }
    488 
    489 
    490 int  adb_read(int  fd, void* buf, int len)
    491 {
    492     FH     f = _fh_from_int(fd, __func__);
    493 
    494     if (f == NULL) {
    495         return -1;
    496     }
    497 
    498     return f->clazz->_fh_read( f, buf, len );
    499 }
    500 
    501 
    502 int  adb_write(int  fd, const void*  buf, int  len)
    503 {
    504     FH     f = _fh_from_int(fd, __func__);
    505 
    506     if (f == NULL) {
    507         return -1;
    508     }
    509 
    510     return f->clazz->_fh_write(f, buf, len);
    511 }
    512 
    513 
    514 int  adb_lseek(int  fd, int  pos, int  where)
    515 {
    516     FH     f = _fh_from_int(fd, __func__);
    517 
    518     if (!f) {
    519         return -1;
    520     }
    521 
    522     return f->clazz->_fh_lseek(f, pos, where);
    523 }
    524 
    525 
    526 int  adb_close(int  fd)
    527 {
    528     FH   f = _fh_from_int(fd, __func__);
    529 
    530     if (!f) {
    531         return -1;
    532     }
    533 
    534     D( "adb_close: %s", f->name);
    535     _fh_close(f);
    536     return 0;
    537 }
    538 
    539 // Overrides strerror() to handle error codes not supported by the Windows C
    540 // Runtime (MSVCRT.DLL).
    541 char* adb_strerror(int err) {
    542     // sysdeps.h defines strerror to adb_strerror, but in this function, we
    543     // want to call the real C Runtime strerror().
    544 #pragma push_macro("strerror")
    545 #undef strerror
    546     const int saved_err = errno;      // Save because we overwrite it later.
    547 
    548     // Lookup the string for an unknown error.
    549     char* errmsg = strerror(-1);
    550     const std::string unknown_error = (errmsg == nullptr) ? "" : errmsg;
    551 
    552     // Lookup the string for this error to see if the C Runtime has it.
    553     errmsg = strerror(err);
    554     if (errmsg != nullptr && unknown_error != errmsg) {
    555         // The CRT returned an error message and it is different than the error
    556         // message for an unknown error, so it is probably valid, so use it.
    557     } else {
    558         // Check if we have a string for this error code.
    559         const char* custom_msg = nullptr;
    560         switch (err) {
    561 #pragma push_macro("ERR")
    562 #undef ERR
    563 #define ERR(errnum, desc) case errnum: custom_msg = desc; break
    564             // These error strings are from AOSP bionic/libc/include/sys/_errdefs.h.
    565             // Note that these cannot be longer than 94 characters because we
    566             // pass this to _strerror() which has that requirement.
    567             ERR(ECONNRESET,    "Connection reset by peer");
    568             ERR(EHOSTUNREACH,  "No route to host");
    569             ERR(ENETDOWN,      "Network is down");
    570             ERR(ENETRESET,     "Network dropped connection because of reset");
    571             ERR(ENOBUFS,       "No buffer space available");
    572             ERR(ENOPROTOOPT,   "Protocol not available");
    573             ERR(ENOTCONN,      "Transport endpoint is not connected");
    574             ERR(ENOTSOCK,      "Socket operation on non-socket");
    575             ERR(EOPNOTSUPP,    "Operation not supported on transport endpoint");
    576 #pragma pop_macro("ERR")
    577         }
    578 
    579         if (custom_msg != nullptr) {
    580             // Use _strerror() to write our string into the writable per-thread
    581             // buffer used by strerror()/_strerror(). _strerror() appends the
    582             // msg for the current value of errno, so set errno to a consistent
    583             // value for every call so that our code-path is always the same.
    584             errno = 0;
    585             errmsg = _strerror(custom_msg);
    586             const size_t custom_msg_len = strlen(custom_msg);
    587             // Just in case _strerror() returned a read-only string, check if
    588             // the returned string starts with our custom message because that
    589             // implies that the string is not read-only.
    590             if ((errmsg != nullptr) &&
    591                 !strncmp(custom_msg, errmsg, custom_msg_len)) {
    592                 // _strerror() puts other text after our custom message, so
    593                 // remove that by terminating after our message.
    594                 errmsg[custom_msg_len] = '\0';
    595             } else {
    596                 // For some reason nullptr was returned or a pointer to a
    597                 // read-only string was returned, so fallback to whatever
    598                 // strerror() can muster (probably "Unknown error" or some
    599                 // generic CRT error string).
    600                 errmsg = strerror(err);
    601             }
    602         } else {
    603             // We don't have a custom message, so use whatever strerror(err)
    604             // returned earlier.
    605         }
    606     }
    607 
    608     errno = saved_err;  // restore
    609 
    610     return errmsg;
    611 #pragma pop_macro("strerror")
    612 }
    613 
    614 /**************************************************************************/
    615 /**************************************************************************/
    616 /*****                                                                *****/
    617 /*****    socket-based file descriptors                               *****/
    618 /*****                                                                *****/
    619 /**************************************************************************/
    620 /**************************************************************************/
    621 
    622 #undef setsockopt
    623 
    624 static void _socket_set_errno( const DWORD err ) {
    625     // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
    626     // lot of POSIX and socket error codes, some of the resulting error codes
    627     // are mapped to strings by adb_strerror() above.
    628     switch ( err ) {
    629     case 0:              errno = 0; break;
    630     // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
    631     // case WSAEINTR:    errno = EINTR; break;
    632     case WSAEFAULT:      errno = EFAULT; break;
    633     case WSAEINVAL:      errno = EINVAL; break;
    634     case WSAEMFILE:      errno = EMFILE; break;
    635     // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
    636     // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
    637     // callers check specifically for EAGAIN.
    638     case WSAEWOULDBLOCK: errno = EAGAIN; break;
    639     case WSAENOTSOCK:    errno = ENOTSOCK; break;
    640     case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
    641     case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break;
    642     case WSAENETDOWN:    errno = ENETDOWN; break;
    643     case WSAENETRESET:   errno = ENETRESET; break;
    644     // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
    645     // to use EPIPE for these situations and there are some callers that look
    646     // for EPIPE.
    647     case WSAECONNABORTED: errno = EPIPE; break;
    648     case WSAECONNRESET:  errno = ECONNRESET; break;
    649     case WSAENOBUFS:     errno = ENOBUFS; break;
    650     case WSAENOTCONN:    errno = ENOTCONN; break;
    651     // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
    652     // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
    653     // considerations: Reportedly send() can return zero on timeout, and POSIX
    654     // code may expect EAGAIN instead of ETIMEDOUT on timeout.
    655     // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
    656     case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
    657     default:
    658         errno = EINVAL;
    659         D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
    660            err, errno );
    661     }
    662 }
    663 
    664 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
    665     // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
    666     int skipped = 0;
    667     std::vector<WSAPOLLFD> sockets;
    668     std::vector<adb_pollfd*> original;
    669     for (size_t i = 0; i < nfds; ++i) {
    670         FH fh = _fh_from_int(fds[i].fd, __func__);
    671         if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
    672             D("adb_poll received bad FD %d", fds[i].fd);
    673             fds[i].revents = POLLNVAL;
    674             ++skipped;
    675         } else {
    676             WSAPOLLFD wsapollfd = {
    677                 .fd = fh->u.socket,
    678                 .events = static_cast<short>(fds[i].events)
    679             };
    680             sockets.push_back(wsapollfd);
    681             original.push_back(&fds[i]);
    682         }
    683     }
    684 
    685     if (sockets.empty()) {
    686         return skipped;
    687     }
    688 
    689     int result = WSAPoll(sockets.data(), sockets.size(), timeout);
    690     if (result == SOCKET_ERROR) {
    691         _socket_set_errno(WSAGetLastError());
    692         return -1;
    693     }
    694 
    695     // Map the results back onto the original set.
    696     for (size_t i = 0; i < sockets.size(); ++i) {
    697         original[i]->revents = sockets[i].revents;
    698     }
    699 
    700     // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
    701     // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
    702     // to do. Ignore its result and calculate the proper return value.
    703     result = 0;
    704     for (size_t i = 0; i < nfds; ++i) {
    705         if (fds[i].revents != 0) {
    706             ++result;
    707         }
    708     }
    709     return result;
    710 }
    711 
    712 static void _fh_socket_init(FH f) {
    713     f->fh_socket = INVALID_SOCKET;
    714     f->mask      = 0;
    715 }
    716 
    717 static int _fh_socket_close( FH  f ) {
    718     if (f->fh_socket != INVALID_SOCKET) {
    719         /* gently tell any peer that we're closing the socket */
    720         if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
    721             // If the socket is not connected, this returns an error. We want to
    722             // minimize logging spam, so don't log these errors for now.
    723 #if 0
    724             D("socket shutdown failed: %s",
    725               android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
    726 #endif
    727         }
    728         if (closesocket(f->fh_socket) == SOCKET_ERROR) {
    729             // Don't set errno here, since adb_close will ignore it.
    730             const DWORD err = WSAGetLastError();
    731             D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
    732         }
    733         f->fh_socket = INVALID_SOCKET;
    734     }
    735     f->mask = 0;
    736     return 0;
    737 }
    738 
    739 static int _fh_socket_lseek( FH  f, int pos, int origin ) {
    740     errno = EPIPE;
    741     return -1;
    742 }
    743 
    744 static int _fh_socket_read(FH f, void* buf, int len) {
    745     int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
    746     if (result == SOCKET_ERROR) {
    747         const DWORD err = WSAGetLastError();
    748         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
    749         // that to reduce spam and confusion.
    750         if (err != WSAEWOULDBLOCK) {
    751             D("recv fd %d failed: %s", _fh_to_int(f),
    752               android::base::SystemErrorCodeToString(err).c_str());
    753         }
    754         _socket_set_errno(err);
    755         result = -1;
    756     }
    757     return  result;
    758 }
    759 
    760 static int _fh_socket_write(FH f, const void* buf, int len) {
    761     int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
    762     if (result == SOCKET_ERROR) {
    763         const DWORD err = WSAGetLastError();
    764         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
    765         // that to reduce spam and confusion.
    766         if (err != WSAEWOULDBLOCK) {
    767             D("send fd %d failed: %s", _fh_to_int(f),
    768               android::base::SystemErrorCodeToString(err).c_str());
    769         }
    770         _socket_set_errno(err);
    771         result = -1;
    772     } else {
    773         // According to https://code.google.com/p/chromium/issues/detail?id=27870
    774         // Winsock Layered Service Providers may cause this.
    775         CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
    776                               << f->name << ", but " << result
    777                               << " bytes reportedly written";
    778     }
    779     return result;
    780 }
    781 
    782 /**************************************************************************/
    783 /**************************************************************************/
    784 /*****                                                                *****/
    785 /*****    replacement for libs/cutils/socket_xxxx.c                   *****/
    786 /*****                                                                *****/
    787 /**************************************************************************/
    788 /**************************************************************************/
    789 
    790 #include <winsock2.h>
    791 
    792 static int  _winsock_init;
    793 
    794 static void
    795 _init_winsock( void )
    796 {
    797     // TODO: Multiple threads calling this may potentially cause multiple calls
    798     // to WSAStartup() which offers no real benefit.
    799     if (!_winsock_init) {
    800         WSADATA  wsaData;
    801         int      rc = WSAStartup( MAKEWORD(2,2), &wsaData);
    802         if (rc != 0) {
    803             fatal("adb: could not initialize Winsock: %s",
    804                   android::base::SystemErrorCodeToString(rc).c_str());
    805         }
    806         _winsock_init = 1;
    807 
    808         // Note that we do not call atexit() to register WSACleanup to be called
    809         // at normal process termination because:
    810         // 1) When exit() is called, there are still threads actively using
    811         //    Winsock because we don't cleanly shutdown all threads, so it
    812         //    doesn't make sense to call WSACleanup() and may cause problems
    813         //    with those threads.
    814         // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
    815         //    calls WSACleanup() which tries to unload a DLL, which tries to
    816         //    grab the LoaderLock. This conflicts with the device_poll_thread
    817         //    which holds the LoaderLock because AdbWinApi.dll calls
    818         //    setupapi.dll which tries to load wintrust.dll which tries to load
    819         //    crypt32.dll which calls atexit() which tries to acquire the C
    820         //    Runtime lock that the other thread holds.
    821     }
    822 }
    823 
    824 // Map a socket type to an explicit socket protocol instead of using the socket
    825 // protocol of 0. Explicit socket protocols are used by most apps and we should
    826 // do the same to reduce the chance of exercising uncommon code-paths that might
    827 // have problems or that might load different Winsock service providers that
    828 // have problems.
    829 static int GetSocketProtocolFromSocketType(int type) {
    830     switch (type) {
    831         case SOCK_STREAM:
    832             return IPPROTO_TCP;
    833         case SOCK_DGRAM:
    834             return IPPROTO_UDP;
    835         default:
    836             LOG(FATAL) << "Unknown socket type: " << type;
    837             return 0;
    838     }
    839 }
    840 
    841 int network_loopback_client(int port, int type, std::string* error) {
    842     struct sockaddr_in addr;
    843     SOCKET s;
    844 
    845     unique_fh f(_fh_alloc(&_fh_socket_class));
    846     if (!f) {
    847         *error = strerror(errno);
    848         return -1;
    849     }
    850 
    851     if (!_winsock_init) _init_winsock();
    852 
    853     memset(&addr, 0, sizeof(addr));
    854     addr.sin_family = AF_INET;
    855     addr.sin_port = htons(port);
    856     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
    857 
    858     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
    859     if (s == INVALID_SOCKET) {
    860         const DWORD err = WSAGetLastError();
    861         *error = android::base::StringPrintf("cannot create socket: %s",
    862                                              android::base::SystemErrorCodeToString(err).c_str());
    863         D("%s", error->c_str());
    864         _socket_set_errno(err);
    865         return -1;
    866     }
    867     f->fh_socket = s;
    868 
    869     if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
    870         // Save err just in case inet_ntoa() or ntohs() changes the last error.
    871         const DWORD err = WSAGetLastError();
    872         *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
    873                                              inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
    874                                              android::base::SystemErrorCodeToString(err).c_str());
    875         D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
    876           error->c_str());
    877         _socket_set_errno(err);
    878         return -1;
    879     }
    880 
    881     const int fd = _fh_to_int(f.get());
    882     snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
    883              port);
    884     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
    885     f.release();
    886     return fd;
    887 }
    888 
    889 #define LISTEN_BACKLOG 4
    890 
    891 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
    892 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
    893     struct sockaddr_in addr;
    894     SOCKET s;
    895     int n;
    896 
    897     unique_fh f(_fh_alloc(&_fh_socket_class));
    898     if (!f) {
    899         *error = strerror(errno);
    900         return -1;
    901     }
    902 
    903     if (!_winsock_init) _init_winsock();
    904 
    905     memset(&addr, 0, sizeof(addr));
    906     addr.sin_family = AF_INET;
    907     addr.sin_port = htons(port);
    908     addr.sin_addr.s_addr = htonl(interface_address);
    909 
    910     // TODO: Consider using dual-stack socket that can simultaneously listen on
    911     // IPv4 and IPv6.
    912     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
    913     if (s == INVALID_SOCKET) {
    914         const DWORD err = WSAGetLastError();
    915         *error = android::base::StringPrintf("cannot create socket: %s",
    916                                              android::base::SystemErrorCodeToString(err).c_str());
    917         D("%s", error->c_str());
    918         _socket_set_errno(err);
    919         return -1;
    920     }
    921 
    922     f->fh_socket = s;
    923 
    924     // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
    925     // same port, so instead use SO_EXCLUSIVEADDRUSE.
    926     n = 1;
    927     if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
    928         const DWORD err = WSAGetLastError();
    929         *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
    930                                              android::base::SystemErrorCodeToString(err).c_str());
    931         D("%s", error->c_str());
    932         _socket_set_errno(err);
    933         return -1;
    934     }
    935 
    936     if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
    937         // Save err just in case inet_ntoa() or ntohs() changes the last error.
    938         const DWORD err = WSAGetLastError();
    939         *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
    940                                              ntohs(addr.sin_port),
    941                                              android::base::SystemErrorCodeToString(err).c_str());
    942         D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
    943         _socket_set_errno(err);
    944         return -1;
    945     }
    946     if (type == SOCK_STREAM) {
    947         if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
    948             const DWORD err = WSAGetLastError();
    949             *error = android::base::StringPrintf(
    950                 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
    951             D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
    952               error->c_str());
    953             _socket_set_errno(err);
    954             return -1;
    955         }
    956     }
    957     const int fd = _fh_to_int(f.get());
    958     snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
    959              interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
    960              port);
    961     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
    962     f.release();
    963     return fd;
    964 }
    965 
    966 int network_loopback_server(int port, int type, std::string* error) {
    967     return _network_server(port, type, INADDR_LOOPBACK, error);
    968 }
    969 
    970 int network_inaddr_any_server(int port, int type, std::string* error) {
    971     return _network_server(port, type, INADDR_ANY, error);
    972 }
    973 
    974 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
    975     unique_fh f(_fh_alloc(&_fh_socket_class));
    976     if (!f) {
    977         *error = strerror(errno);
    978         return -1;
    979     }
    980 
    981     if (!_winsock_init) _init_winsock();
    982 
    983     struct addrinfo hints;
    984     memset(&hints, 0, sizeof(hints));
    985     hints.ai_family = AF_UNSPEC;
    986     hints.ai_socktype = type;
    987     hints.ai_protocol = GetSocketProtocolFromSocketType(type);
    988 
    989     char port_str[16];
    990     snprintf(port_str, sizeof(port_str), "%d", port);
    991 
    992     struct addrinfo* addrinfo_ptr = nullptr;
    993 
    994 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
    995 // TODO: When the Android SDK tools increases the Windows system
    996 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
    997 #else
    998 // Otherwise, keep using getaddrinfo(), or do runtime API detection
    999 // with GetProcAddress("GetAddrInfoW").
   1000 #endif
   1001     if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
   1002         const DWORD err = WSAGetLastError();
   1003         *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
   1004                                              host.c_str(), port_str,
   1005                                              android::base::SystemErrorCodeToString(err).c_str());
   1006 
   1007         D("%s", error->c_str());
   1008         _socket_set_errno(err);
   1009         return -1;
   1010     }
   1011     std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*> addrinfo(addrinfo_ptr, freeaddrinfo);
   1012     addrinfo_ptr = nullptr;
   1013 
   1014     // TODO: Try all the addresses if there's more than one? This just uses
   1015     // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
   1016     // which tries all addresses, takes a timeout and more.
   1017     SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
   1018     if (s == INVALID_SOCKET) {
   1019         const DWORD err = WSAGetLastError();
   1020         *error = android::base::StringPrintf("cannot create socket: %s",
   1021                                              android::base::SystemErrorCodeToString(err).c_str());
   1022         D("%s", error->c_str());
   1023         _socket_set_errno(err);
   1024         return -1;
   1025     }
   1026     f->fh_socket = s;
   1027 
   1028     // TODO: Implement timeouts for Windows. Seems like the default in theory
   1029     // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
   1030     if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
   1031         // TODO: Use WSAAddressToString or inet_ntop on address.
   1032         const DWORD err = WSAGetLastError();
   1033         *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
   1034                                              android::base::SystemErrorCodeToString(err).c_str());
   1035         D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
   1036           port_str, error->c_str());
   1037         _socket_set_errno(err);
   1038         return -1;
   1039     }
   1040 
   1041     const int fd = _fh_to_int(f.get());
   1042     snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
   1043              port);
   1044     D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
   1045       fd);
   1046     f.release();
   1047     return fd;
   1048 }
   1049 
   1050 #undef accept
   1051 int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen)
   1052 {
   1053     FH   serverfh = _fh_from_int(serverfd, __func__);
   1054 
   1055     if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
   1056         D("adb_socket_accept: invalid fd %d", serverfd);
   1057         errno = EBADF;
   1058         return -1;
   1059     }
   1060 
   1061     unique_fh fh(_fh_alloc( &_fh_socket_class ));
   1062     if (!fh) {
   1063         PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
   1064                        "descriptor";
   1065         return -1;
   1066     }
   1067 
   1068     fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
   1069     if (fh->fh_socket == INVALID_SOCKET) {
   1070         const DWORD err = WSAGetLastError();
   1071         LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
   1072                       " failed: " + android::base::SystemErrorCodeToString(err);
   1073         _socket_set_errno( err );
   1074         return -1;
   1075     }
   1076 
   1077     const int fd = _fh_to_int(fh.get());
   1078     snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
   1079     D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
   1080     fh.release();
   1081     return  fd;
   1082 }
   1083 
   1084 
   1085 int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen )
   1086 {
   1087     FH   fh = _fh_from_int(fd, __func__);
   1088 
   1089     if ( !fh || fh->clazz != &_fh_socket_class ) {
   1090         D("adb_setsockopt: invalid fd %d", fd);
   1091         errno = EBADF;
   1092         return -1;
   1093     }
   1094 
   1095     // TODO: Once we can assume Windows Vista or later, if the caller is trying
   1096     // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
   1097     // auto-tuning.
   1098 
   1099     int result = setsockopt( fh->fh_socket, level, optname,
   1100                              reinterpret_cast<const char*>(optval), optlen );
   1101     if ( result == SOCKET_ERROR ) {
   1102         const DWORD err = WSAGetLastError();
   1103         D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
   1104           fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
   1105         _socket_set_errno( err );
   1106         result = -1;
   1107     }
   1108     return result;
   1109 }
   1110 
   1111 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
   1112     FH fh = _fh_from_int(fd, __func__);
   1113 
   1114     if (!fh || fh->clazz != &_fh_socket_class) {
   1115         D("adb_getsockname: invalid fd %d", fd);
   1116         errno = EBADF;
   1117         return -1;
   1118     }
   1119 
   1120     int result = getsockname(fh->fh_socket, sockaddr, optlen);
   1121     if (result == SOCKET_ERROR) {
   1122         const DWORD err = WSAGetLastError();
   1123         D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
   1124           android::base::SystemErrorCodeToString(err).c_str());
   1125         _socket_set_errno(err);
   1126         result = -1;
   1127     }
   1128     return result;
   1129 }
   1130 
   1131 int  adb_shutdown(int  fd)
   1132 {
   1133     FH   f = _fh_from_int(fd, __func__);
   1134 
   1135     if (!f || f->clazz != &_fh_socket_class) {
   1136         D("adb_shutdown: invalid fd %d", fd);
   1137         errno = EBADF;
   1138         return -1;
   1139     }
   1140 
   1141     D( "adb_shutdown: %s", f->name);
   1142     if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
   1143         const DWORD err = WSAGetLastError();
   1144         D("socket shutdown fd %d failed: %s", fd,
   1145           android::base::SystemErrorCodeToString(err).c_str());
   1146         _socket_set_errno(err);
   1147         return -1;
   1148     }
   1149     return 0;
   1150 }
   1151 
   1152 // Emulate socketpair(2) by binding and connecting to a socket.
   1153 int adb_socketpair(int sv[2]) {
   1154     int server = -1;
   1155     int client = -1;
   1156     int accepted = -1;
   1157     sockaddr_storage addr_storage;
   1158     socklen_t addr_len = sizeof(addr_storage);
   1159     sockaddr_in* addr = nullptr;
   1160     std::string error;
   1161 
   1162     server = network_loopback_server(0, SOCK_STREAM, &error);
   1163     if (server < 0) {
   1164         D("adb_socketpair: failed to create server: %s", error.c_str());
   1165         goto fail;
   1166     }
   1167 
   1168     if (adb_getsockname(server, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
   1169         D("adb_socketpair: adb_getsockname failed: %s", strerror(errno));
   1170         goto fail;
   1171     }
   1172 
   1173     if (addr_storage.ss_family != AF_INET) {
   1174         D("adb_socketpair: unknown address family received: %d", addr_storage.ss_family);
   1175         errno = ECONNABORTED;
   1176         goto fail;
   1177     }
   1178 
   1179     addr = reinterpret_cast<sockaddr_in*>(&addr_storage);
   1180     D("adb_socketpair: bound on port %d", ntohs(addr->sin_port));
   1181     client = network_loopback_client(ntohs(addr->sin_port), SOCK_STREAM, &error);
   1182     if (client < 0) {
   1183         D("adb_socketpair: failed to connect client: %s", error.c_str());
   1184         goto fail;
   1185     }
   1186 
   1187     accepted = adb_socket_accept(server, nullptr, nullptr);
   1188     if (accepted < 0) {
   1189         D("adb_socketpair: failed to accept: %s", strerror(errno));
   1190         goto fail;
   1191     }
   1192     adb_close(server);
   1193     sv[0] = client;
   1194     sv[1] = accepted;
   1195     return 0;
   1196 
   1197 fail:
   1198     if (server >= 0) {
   1199         adb_close(server);
   1200     }
   1201     if (client >= 0) {
   1202         adb_close(client);
   1203     }
   1204     if (accepted >= 0) {
   1205         adb_close(accepted);
   1206     }
   1207     return -1;
   1208 }
   1209 
   1210 bool set_file_block_mode(int fd, bool block) {
   1211     FH fh = _fh_from_int(fd, __func__);
   1212 
   1213     if (!fh || !fh->used) {
   1214         errno = EBADF;
   1215         return false;
   1216     }
   1217 
   1218     if (fh->clazz == &_fh_socket_class) {
   1219         u_long x = !block;
   1220         if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
   1221             _socket_set_errno(WSAGetLastError());
   1222             return false;
   1223         }
   1224         return true;
   1225     } else {
   1226         errno = ENOTSOCK;
   1227         return false;
   1228     }
   1229 }
   1230 
   1231 bool set_tcp_keepalive(int fd, int interval_sec) {
   1232     FH fh = _fh_from_int(fd, __func__);
   1233 
   1234     if (!fh || fh->clazz != &_fh_socket_class) {
   1235         D("set_tcp_keepalive(%d) failed: invalid fd", fd);
   1236         errno = EBADF;
   1237         return false;
   1238     }
   1239 
   1240     tcp_keepalive keepalive;
   1241     keepalive.onoff = (interval_sec > 0);
   1242     keepalive.keepalivetime = interval_sec * 1000;
   1243     keepalive.keepaliveinterval = interval_sec * 1000;
   1244 
   1245     DWORD bytes_returned = 0;
   1246     if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
   1247                  &bytes_returned, nullptr, nullptr) != 0) {
   1248         const DWORD err = WSAGetLastError();
   1249         D("set_tcp_keepalive(%d) failed: %s", fd,
   1250           android::base::SystemErrorCodeToString(err).c_str());
   1251         _socket_set_errno(err);
   1252         return false;
   1253     }
   1254 
   1255     return true;
   1256 }
   1257 
   1258 static adb_mutex_t g_console_output_buffer_lock;
   1259 
   1260 void
   1261 adb_sysdeps_init( void )
   1262 {
   1263 #define  ADB_MUTEX(x)  InitializeCriticalSection( & x );
   1264 #include "mutex_list.h"
   1265     InitializeCriticalSection( &_win32_lock );
   1266     InitializeCriticalSection( &g_console_output_buffer_lock );
   1267 }
   1268 
   1269 /**************************************************************************/
   1270 /**************************************************************************/
   1271 /*****                                                                *****/
   1272 /*****      Console Window Terminal Emulation                         *****/
   1273 /*****                                                                *****/
   1274 /**************************************************************************/
   1275 /**************************************************************************/
   1276 
   1277 // This reads input from a Win32 console window and translates it into Unix
   1278 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
   1279 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
   1280 // is emulated instead of xterm because it is probably more popular than xterm:
   1281 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
   1282 // supports modern fonts, etc. It seems best to emulate the terminal that most
   1283 // Android developers use because they'll fix apps (the shell, etc.) to keep
   1284 // working with that terminal's emulation.
   1285 //
   1286 // The point of this emulation is not to be perfect or to solve all issues with
   1287 // console windows on Windows, but to be better than the original code which
   1288 // just called read() (which called ReadFile(), which called ReadConsoleA())
   1289 // which did not support Ctrl-C, tab completion, shell input line editing
   1290 // keys, server echo, and more.
   1291 //
   1292 // This implementation reconfigures the console with SetConsoleMode(), then
   1293 // calls ReadConsoleInput() to get raw input which it remaps to Unix
   1294 // terminal-style sequences which is returned via unix_read() which is used
   1295 // by the 'adb shell' command.
   1296 //
   1297 // Code organization:
   1298 //
   1299 // * _get_console_handle() and unix_isatty() provide console information.
   1300 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
   1301 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
   1302 // * _console_read() is the main code of the emulation.
   1303 
   1304 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
   1305 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
   1306 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
   1307 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
   1308     // First check isatty(); this is very fast and eliminates most non-console
   1309     // FDs, but returns 1 for both consoles and character devices like NUL.
   1310 #pragma push_macro("isatty")
   1311 #undef isatty
   1312     if (!isatty(fd)) {
   1313         return nullptr;
   1314     }
   1315 #pragma pop_macro("isatty")
   1316 
   1317     // To differentiate between character devices and consoles we need to get
   1318     // the underlying HANDLE and use GetConsoleMode(), which is what requires
   1319     // GENERIC_READ permissions.
   1320     const intptr_t intptr_handle = _get_osfhandle(fd);
   1321     if (intptr_handle == -1) {
   1322         return nullptr;
   1323     }
   1324     const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
   1325     DWORD temp_mode = 0;
   1326     if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
   1327         return nullptr;
   1328     }
   1329 
   1330     return handle;
   1331 }
   1332 
   1333 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
   1334 static HANDLE _get_console_handle(FILE* const stream) {
   1335     // Save and restore errno to make it easier for callers to prevent from overwriting errno.
   1336     android::base::ErrnoRestorer er;
   1337     const int fd = fileno(stream);
   1338     if (fd < 0) {
   1339         return nullptr;
   1340     }
   1341     return _get_console_handle(fd);
   1342 }
   1343 
   1344 int unix_isatty(int fd) {
   1345     return _get_console_handle(fd) ? 1 : 0;
   1346 }
   1347 
   1348 // Get the next KEY_EVENT_RECORD that should be processed.
   1349 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
   1350     for (;;) {
   1351         DWORD read_count = 0;
   1352         memset(input_record, 0, sizeof(*input_record));
   1353         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
   1354             D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
   1355               android::base::SystemErrorCodeToString(GetLastError()).c_str());
   1356             errno = EIO;
   1357             return false;
   1358         }
   1359 
   1360         if (read_count == 0) {   // should be impossible
   1361             fatal("ReadConsoleInputA returned 0");
   1362         }
   1363 
   1364         if (read_count != 1) {   // should be impossible
   1365             fatal("ReadConsoleInputA did not return one input record");
   1366         }
   1367 
   1368         // If the console window is resized, emulate SIGWINCH by breaking out
   1369         // of read() with errno == EINTR. Note that there is no event on
   1370         // vertical resize because we don't give the console our own custom
   1371         // screen buffer (with CreateConsoleScreenBuffer() +
   1372         // SetConsoleActiveScreenBuffer()). Instead, we use the default which
   1373         // supports scrollback, but doesn't seem to raise an event for vertical
   1374         // window resize.
   1375         if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
   1376             errno = EINTR;
   1377             return false;
   1378         }
   1379 
   1380         if ((input_record->EventType == KEY_EVENT) &&
   1381             (input_record->Event.KeyEvent.bKeyDown)) {
   1382             if (input_record->Event.KeyEvent.wRepeatCount == 0) {
   1383                 fatal("ReadConsoleInputA returned a key event with zero repeat"
   1384                       " count");
   1385             }
   1386 
   1387             // Got an interesting INPUT_RECORD, so return
   1388             return true;
   1389         }
   1390     }
   1391 }
   1392 
   1393 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
   1394     return (control_key_state & SHIFT_PRESSED) != 0;
   1395 }
   1396 
   1397 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
   1398     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
   1399 }
   1400 
   1401 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
   1402     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
   1403 }
   1404 
   1405 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
   1406     return (control_key_state & NUMLOCK_ON) != 0;
   1407 }
   1408 
   1409 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
   1410     return (control_key_state & CAPSLOCK_ON) != 0;
   1411 }
   1412 
   1413 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
   1414     return (control_key_state & ENHANCED_KEY) != 0;
   1415 }
   1416 
   1417 // Constants from MSDN for ToAscii().
   1418 static const BYTE TOASCII_KEY_OFF = 0x00;
   1419 static const BYTE TOASCII_KEY_DOWN = 0x80;
   1420 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
   1421 
   1422 // Given a key event, ignore a modifier key and return the character that was
   1423 // entered without the modifier. Writes to *ch and returns the number of bytes
   1424 // written.
   1425 static size_t _get_char_ignoring_modifier(char* const ch,
   1426     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
   1427     const WORD modifier) {
   1428     // If there is no character from Windows, try ignoring the specified
   1429     // modifier and look for a character. Note that if AltGr is being used,
   1430     // there will be a character from Windows.
   1431     if (key_event->uChar.AsciiChar == '\0') {
   1432         // Note that we read the control key state from the passed in argument
   1433         // instead of from key_event since the argument has been normalized.
   1434         if (((modifier == VK_SHIFT)   &&
   1435             _is_shift_pressed(control_key_state)) ||
   1436             ((modifier == VK_CONTROL) &&
   1437             _is_ctrl_pressed(control_key_state)) ||
   1438             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
   1439 
   1440             BYTE key_state[256]   = {0};
   1441             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
   1442                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
   1443             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
   1444                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
   1445             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
   1446                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
   1447             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
   1448                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
   1449 
   1450             // cause this modifier to be ignored
   1451             key_state[modifier]   = TOASCII_KEY_OFF;
   1452 
   1453             WORD translated = 0;
   1454             if (ToAscii(key_event->wVirtualKeyCode,
   1455                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
   1456                 // Ignoring the modifier, we found a character.
   1457                 *ch = (CHAR)translated;
   1458                 return 1;
   1459             }
   1460         }
   1461     }
   1462 
   1463     // Just use whatever Windows told us originally.
   1464     *ch = key_event->uChar.AsciiChar;
   1465 
   1466     // If the character from Windows is NULL, return a size of zero.
   1467     return (*ch == '\0') ? 0 : 1;
   1468 }
   1469 
   1470 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
   1471 // but taking into account the shift key. This is because for a sequence like
   1472 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
   1473 // we want to find the character ')'.
   1474 //
   1475 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
   1476 // because it is the default key-sequence to switch the input language.
   1477 // This is configurable in the Region and Language control panel.
   1478 static __inline__ size_t _get_non_control_char(char* const ch,
   1479     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
   1480     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
   1481         VK_CONTROL);
   1482 }
   1483 
   1484 // Get without Alt.
   1485 static __inline__ size_t _get_non_alt_char(char* const ch,
   1486     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
   1487     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
   1488         VK_MENU);
   1489 }
   1490 
   1491 // Ignore the control key, find the character from Windows, and apply any
   1492 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
   1493 // *pch and returns number of bytes written.
   1494 static size_t _get_control_character(char* const pch,
   1495     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
   1496     const size_t len = _get_non_control_char(pch, key_event,
   1497         control_key_state);
   1498 
   1499     if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
   1500         char ch = *pch;
   1501         switch (ch) {
   1502         case '2':
   1503         case '@':
   1504         case '`':
   1505             ch = '\0';
   1506             break;
   1507         case '3':
   1508         case '[':
   1509         case '{':
   1510             ch = '\x1b';
   1511             break;
   1512         case '4':
   1513         case '\\':
   1514         case '|':
   1515             ch = '\x1c';
   1516             break;
   1517         case '5':
   1518         case ']':
   1519         case '}':
   1520             ch = '\x1d';
   1521             break;
   1522         case '6':
   1523         case '^':
   1524         case '~':
   1525             ch = '\x1e';
   1526             break;
   1527         case '7':
   1528         case '-':
   1529         case '_':
   1530             ch = '\x1f';
   1531             break;
   1532         case '8':
   1533             ch = '\x7f';
   1534             break;
   1535         case '/':
   1536             if (!_is_alt_pressed(control_key_state)) {
   1537                 ch = '\x1f';
   1538             }
   1539             break;
   1540         case '?':
   1541             if (!_is_alt_pressed(control_key_state)) {
   1542                 ch = '\x7f';
   1543             }
   1544             break;
   1545         }
   1546         *pch = ch;
   1547     }
   1548 
   1549     return len;
   1550 }
   1551 
   1552 static DWORD _normalize_altgr_control_key_state(
   1553     const KEY_EVENT_RECORD* const key_event) {
   1554     DWORD control_key_state = key_event->dwControlKeyState;
   1555 
   1556     // If we're in an AltGr situation where the AltGr key is down (depending on
   1557     // the keyboard layout, that might be the physical right alt key which
   1558     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
   1559     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
   1560     // a character (which indicates that there was an AltGr mapping), then act
   1561     // as if alt and control are not really down for the purposes of modifiers.
   1562     // This makes it so that if the user with, say, a German keyboard layout
   1563     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
   1564     // output the key and we don't see the Alt and Ctrl keys.
   1565     if (_is_ctrl_pressed(control_key_state) &&
   1566         _is_alt_pressed(control_key_state)
   1567         && (key_event->uChar.AsciiChar != '\0')) {
   1568         // Try to remove as few bits as possible to improve our chances of
   1569         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
   1570         // Left-Alt + Right-Ctrl + AltGr.
   1571         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
   1572             // Remove Right-Alt.
   1573             control_key_state &= ~RIGHT_ALT_PRESSED;
   1574             // If uChar is set, a Ctrl key is pressed, and Right-Alt is
   1575             // pressed, Left-Ctrl is almost always set, except if the user
   1576             // presses Right-Ctrl, then AltGr (in that specific order) for
   1577             // whatever reason. At any rate, make sure the bit is not set.
   1578             control_key_state &= ~LEFT_CTRL_PRESSED;
   1579         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
   1580             // Remove Left-Alt.
   1581             control_key_state &= ~LEFT_ALT_PRESSED;
   1582             // Whichever Ctrl key is down, remove it from the state. We only
   1583             // remove one key, to improve our chances of detecting the
   1584             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
   1585             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
   1586                 // Remove Left-Ctrl.
   1587                 control_key_state &= ~LEFT_CTRL_PRESSED;
   1588             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
   1589                 // Remove Right-Ctrl.
   1590                 control_key_state &= ~RIGHT_CTRL_PRESSED;
   1591             }
   1592         }
   1593 
   1594         // Note that this logic isn't 100% perfect because Windows doesn't
   1595         // allow us to detect all combinations because a physical AltGr key
   1596         // press shows up as two bits, plus some combinations are ambiguous
   1597         // about what is actually physically pressed.
   1598     }
   1599 
   1600     return control_key_state;
   1601 }
   1602 
   1603 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
   1604 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
   1605 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
   1606 // appropriately.
   1607 static DWORD _normalize_keypad_control_key_state(const WORD vk,
   1608     const DWORD control_key_state) {
   1609     if (!_is_numlock_on(control_key_state)) {
   1610         return control_key_state;
   1611     }
   1612     if (!_is_enhanced_key(control_key_state)) {
   1613         switch (vk) {
   1614             case VK_INSERT: // 0
   1615             case VK_DELETE: // .
   1616             case VK_END:    // 1
   1617             case VK_DOWN:   // 2
   1618             case VK_NEXT:   // 3
   1619             case VK_LEFT:   // 4
   1620             case VK_CLEAR:  // 5
   1621             case VK_RIGHT:  // 6
   1622             case VK_HOME:   // 7
   1623             case VK_UP:     // 8
   1624             case VK_PRIOR:  // 9
   1625                 return control_key_state | SHIFT_PRESSED;
   1626         }
   1627     }
   1628 
   1629     return control_key_state;
   1630 }
   1631 
   1632 static const char* _get_keypad_sequence(const DWORD control_key_state,
   1633     const char* const normal, const char* const shifted) {
   1634     if (_is_shift_pressed(control_key_state)) {
   1635         // Shift is pressed and NumLock is off
   1636         return shifted;
   1637     } else {
   1638         // Shift is not pressed and NumLock is off, or,
   1639         // Shift is pressed and NumLock is on, in which case we want the
   1640         // NumLock and Shift to neutralize each other, thus, we want the normal
   1641         // sequence.
   1642         return normal;
   1643     }
   1644     // If Shift is not pressed and NumLock is on, a different virtual key code
   1645     // is returned by Windows, which can be taken care of by a different case
   1646     // statement in _console_read().
   1647 }
   1648 
   1649 // Write sequence to buf and return the number of bytes written.
   1650 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
   1651     DWORD control_key_state, const char* const normal) {
   1652     // Copy the base sequence into buf.
   1653     const size_t len = strlen(normal);
   1654     memcpy(buf, normal, len);
   1655 
   1656     int code = 0;
   1657 
   1658     control_key_state = _normalize_keypad_control_key_state(vk,
   1659         control_key_state);
   1660 
   1661     if (_is_shift_pressed(control_key_state)) {
   1662         code |= 0x1;
   1663     }
   1664     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
   1665         code |= 0x2;
   1666     }
   1667     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
   1668         code |= 0x4;
   1669     }
   1670     // If some modifier was held down, then we need to insert the modifier code
   1671     if (code != 0) {
   1672         if (len == 0) {
   1673             // Should be impossible because caller should pass a string of
   1674             // non-zero length.
   1675             return 0;
   1676         }
   1677         size_t index = len - 1;
   1678         const char lastChar = buf[index];
   1679         if (lastChar != '~') {
   1680             buf[index++] = '1';
   1681         }
   1682         buf[index++] = ';';         // modifier separator
   1683         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
   1684         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
   1685         buf[index++] = '1' + code;
   1686         buf[index++] = lastChar;    // move ~ (or other last char) to the end
   1687         return index;
   1688     }
   1689     return len;
   1690 }
   1691 
   1692 // Write sequence to buf and return the number of bytes written.
   1693 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
   1694     const DWORD control_key_state, const char* const normal,
   1695     const char shifted) {
   1696     if (_is_shift_pressed(control_key_state)) {
   1697         // Shift is pressed and NumLock is off
   1698         if (shifted != '\0') {
   1699             buf[0] = shifted;
   1700             return sizeof(buf[0]);
   1701         } else {
   1702             return 0;
   1703         }
   1704     } else {
   1705         // Shift is not pressed and NumLock is off, or,
   1706         // Shift is pressed and NumLock is on, in which case we want the
   1707         // NumLock and Shift to neutralize each other, thus, we want the normal
   1708         // sequence.
   1709         return _get_modifier_sequence(buf, vk, control_key_state, normal);
   1710     }
   1711     // If Shift is not pressed and NumLock is on, a different virtual key code
   1712     // is returned by Windows, which can be taken care of by a different case
   1713     // statement in _console_read().
   1714 }
   1715 
   1716 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
   1717 // Standard German. Figure this out at runtime so we know what to output for
   1718 // Shift-VK_DELETE.
   1719 static char _get_decimal_char() {
   1720     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
   1721 }
   1722 
   1723 // Prefix the len bytes in buf with the escape character, and then return the
   1724 // new buffer length.
   1725 size_t _escape_prefix(char* const buf, const size_t len) {
   1726     // If nothing to prefix, don't do anything. We might be called with
   1727     // len == 0, if alt was held down with a dead key which produced nothing.
   1728     if (len == 0) {
   1729         return 0;
   1730     }
   1731 
   1732     memmove(&buf[1], buf, len);
   1733     buf[0] = '\x1b';
   1734     return len + 1;
   1735 }
   1736 
   1737 // Internal buffer to satisfy future _console_read() calls.
   1738 static auto& g_console_input_buffer = *new std::vector<char>();
   1739 
   1740 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
   1741 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
   1742 static int _console_read(const HANDLE console, void* buf, size_t len) {
   1743     for (;;) {
   1744         // Read of zero bytes should not block waiting for something from the console.
   1745         if (len == 0) {
   1746             return 0;
   1747         }
   1748 
   1749         // Flush as much as possible from input buffer.
   1750         if (!g_console_input_buffer.empty()) {
   1751             const int bytes_read = std::min(len, g_console_input_buffer.size());
   1752             memcpy(buf, g_console_input_buffer.data(), bytes_read);
   1753             const auto begin = g_console_input_buffer.begin();
   1754             g_console_input_buffer.erase(begin, begin + bytes_read);
   1755             return bytes_read;
   1756         }
   1757 
   1758         // Read from the actual console. This may block until input.
   1759         INPUT_RECORD input_record;
   1760         if (!_get_key_event_record(console, &input_record)) {
   1761             return -1;
   1762         }
   1763 
   1764         KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
   1765         const WORD vk = key_event->wVirtualKeyCode;
   1766         const CHAR ch = key_event->uChar.AsciiChar;
   1767         const DWORD control_key_state = _normalize_altgr_control_key_state(
   1768             key_event);
   1769 
   1770         // The following emulation code should write the output sequence to
   1771         // either seqstr or to seqbuf and seqbuflen.
   1772         const char* seqstr = NULL;  // NULL terminated C-string
   1773         // Enough space for max sequence string below, plus modifiers and/or
   1774         // escape prefix.
   1775         char seqbuf[16];
   1776         size_t seqbuflen = 0;       // Space used in seqbuf.
   1777 
   1778 #define MATCH(vk, normal) \
   1779             case (vk): \
   1780             { \
   1781                 seqstr = (normal); \
   1782             } \
   1783             break;
   1784 
   1785         // Modifier keys should affect the output sequence.
   1786 #define MATCH_MODIFIER(vk, normal) \
   1787             case (vk): \
   1788             { \
   1789                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
   1790                     control_key_state, (normal)); \
   1791             } \
   1792             break;
   1793 
   1794         // The shift key should affect the output sequence.
   1795 #define MATCH_KEYPAD(vk, normal, shifted) \
   1796             case (vk): \
   1797             { \
   1798                 seqstr = _get_keypad_sequence(control_key_state, (normal), \
   1799                     (shifted)); \
   1800             } \
   1801             break;
   1802 
   1803         // The shift key and other modifier keys should affect the output
   1804         // sequence.
   1805 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
   1806             case (vk): \
   1807             { \
   1808                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
   1809                     control_key_state, (normal), (shifted)); \
   1810             } \
   1811             break;
   1812 
   1813 #define ESC "\x1b"
   1814 #define CSI ESC "["
   1815 #define SS3 ESC "O"
   1816 
   1817         // Only support normal mode, not application mode.
   1818 
   1819         // Enhanced keys:
   1820         // * 6-pack: insert, delete, home, end, page up, page down
   1821         // * cursor keys: up, down, right, left
   1822         // * keypad: divide, enter
   1823         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
   1824         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
   1825         if (_is_enhanced_key(control_key_state)) {
   1826             switch (vk) {
   1827                 case VK_RETURN: // Enter key on keypad
   1828                     if (_is_ctrl_pressed(control_key_state)) {
   1829                         seqstr = "\n";
   1830                     } else {
   1831                         seqstr = "\r";
   1832                     }
   1833                     break;
   1834 
   1835                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
   1836                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
   1837 
   1838                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
   1839                 // will be fixed soon to match xterm which sends CSI "F" and
   1840                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
   1841                 MATCH(VK_END,  CSI "F");
   1842                 MATCH(VK_HOME, CSI "H");
   1843 
   1844                 MATCH_MODIFIER(VK_LEFT,  CSI "D");
   1845                 MATCH_MODIFIER(VK_UP,    CSI "A");
   1846                 MATCH_MODIFIER(VK_RIGHT, CSI "C");
   1847                 MATCH_MODIFIER(VK_DOWN,  CSI "B");
   1848 
   1849                 MATCH_MODIFIER(VK_INSERT, CSI "2~");
   1850                 MATCH_MODIFIER(VK_DELETE, CSI "3~");
   1851 
   1852                 MATCH(VK_DIVIDE, "/");
   1853             }
   1854         } else {    // Non-enhanced keys:
   1855             switch (vk) {
   1856                 case VK_BACK:   // backspace
   1857                     if (_is_alt_pressed(control_key_state)) {
   1858                         seqstr = ESC "\x7f";
   1859                     } else {
   1860                         seqstr = "\x7f";
   1861                     }
   1862                     break;
   1863 
   1864                 case VK_TAB:
   1865                     if (_is_shift_pressed(control_key_state)) {
   1866                         seqstr = CSI "Z";
   1867                     } else {
   1868                         seqstr = "\t";
   1869                     }
   1870                     break;
   1871 
   1872                 // Number 5 key in keypad when NumLock is off, or if NumLock is
   1873                 // on and Shift is down.
   1874                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
   1875 
   1876                 case VK_RETURN:     // Enter key on main keyboard
   1877                     if (_is_alt_pressed(control_key_state)) {
   1878                         seqstr = ESC "\n";
   1879                     } else if (_is_ctrl_pressed(control_key_state)) {
   1880                         seqstr = "\n";
   1881                     } else {
   1882                         seqstr = "\r";
   1883                     }
   1884                     break;
   1885 
   1886                 // VK_ESCAPE: Don't do any special handling. The OS uses many
   1887                 // of the sequences with Escape and many of the remaining
   1888                 // sequences don't produce bKeyDown messages, only !bKeyDown
   1889                 // for whatever reason.
   1890 
   1891                 case VK_SPACE:
   1892                     if (_is_alt_pressed(control_key_state)) {
   1893                         seqstr = ESC " ";
   1894                     } else if (_is_ctrl_pressed(control_key_state)) {
   1895                         seqbuf[0] = '\0';   // NULL char
   1896                         seqbuflen = 1;
   1897                     } else {
   1898                         seqstr = " ";
   1899                     }
   1900                     break;
   1901 
   1902                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
   1903                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
   1904 
   1905                 MATCH_KEYPAD(VK_END,  CSI "4~", "1");
   1906                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
   1907 
   1908                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
   1909                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
   1910                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
   1911                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
   1912 
   1913                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
   1914                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
   1915                     _get_decimal_char());
   1916 
   1917                 case 0x30:          // 0
   1918                 case 0x31:          // 1
   1919                 case 0x39:          // 9
   1920                 case VK_OEM_1:      // ;:
   1921                 case VK_OEM_PLUS:   // =+
   1922                 case VK_OEM_COMMA:  // ,<
   1923                 case VK_OEM_PERIOD: // .>
   1924                 case VK_OEM_7:      // '"
   1925                 case VK_OEM_102:    // depends on keyboard, could be <> or \|
   1926                 case VK_OEM_2:      // /?
   1927                 case VK_OEM_3:      // `~
   1928                 case VK_OEM_4:      // [{
   1929                 case VK_OEM_5:      // \|
   1930                 case VK_OEM_6:      // ]}
   1931                 {
   1932                     seqbuflen = _get_control_character(seqbuf, key_event,
   1933                         control_key_state);
   1934 
   1935                     if (_is_alt_pressed(control_key_state)) {
   1936                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
   1937                     }
   1938                 }
   1939                 break;
   1940 
   1941                 case 0x32:          // 2
   1942                 case 0x33:          // 3
   1943                 case 0x34:          // 4
   1944                 case 0x35:          // 5
   1945                 case 0x36:          // 6
   1946                 case 0x37:          // 7
   1947                 case 0x38:          // 8
   1948                 case VK_OEM_MINUS:  // -_
   1949                 {
   1950                     seqbuflen = _get_control_character(seqbuf, key_event,
   1951                         control_key_state);
   1952 
   1953                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
   1954                     // prefix with escape.
   1955                     if (_is_alt_pressed(control_key_state) &&
   1956                         !(_is_ctrl_pressed(control_key_state) &&
   1957                         !_is_shift_pressed(control_key_state))) {
   1958                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
   1959                     }
   1960                 }
   1961                 break;
   1962 
   1963                 case 0x41:  // a
   1964                 case 0x42:  // b
   1965                 case 0x43:  // c
   1966                 case 0x44:  // d
   1967                 case 0x45:  // e
   1968                 case 0x46:  // f
   1969                 case 0x47:  // g
   1970                 case 0x48:  // h
   1971                 case 0x49:  // i
   1972                 case 0x4a:  // j
   1973                 case 0x4b:  // k
   1974                 case 0x4c:  // l
   1975                 case 0x4d:  // m
   1976                 case 0x4e:  // n
   1977                 case 0x4f:  // o
   1978                 case 0x50:  // p
   1979                 case 0x51:  // q
   1980                 case 0x52:  // r
   1981                 case 0x53:  // s
   1982                 case 0x54:  // t
   1983                 case 0x55:  // u
   1984                 case 0x56:  // v
   1985                 case 0x57:  // w
   1986                 case 0x58:  // x
   1987                 case 0x59:  // y
   1988                 case 0x5a:  // z
   1989                 {
   1990                     seqbuflen = _get_non_alt_char(seqbuf, key_event,
   1991                         control_key_state);
   1992 
   1993                     // If Alt is pressed, then prefix with escape.
   1994                     if (_is_alt_pressed(control_key_state)) {
   1995                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
   1996                     }
   1997                 }
   1998                 break;
   1999 
   2000                 // These virtual key codes are generated by the keys on the
   2001                 // keypad *when NumLock is on* and *Shift is up*.
   2002                 MATCH(VK_NUMPAD0, "0");
   2003                 MATCH(VK_NUMPAD1, "1");
   2004                 MATCH(VK_NUMPAD2, "2");
   2005                 MATCH(VK_NUMPAD3, "3");
   2006                 MATCH(VK_NUMPAD4, "4");
   2007                 MATCH(VK_NUMPAD5, "5");
   2008                 MATCH(VK_NUMPAD6, "6");
   2009                 MATCH(VK_NUMPAD7, "7");
   2010                 MATCH(VK_NUMPAD8, "8");
   2011                 MATCH(VK_NUMPAD9, "9");
   2012 
   2013                 MATCH(VK_MULTIPLY, "*");
   2014                 MATCH(VK_ADD,      "+");
   2015                 MATCH(VK_SUBTRACT, "-");
   2016                 // VK_DECIMAL is generated by the . key on the keypad *when
   2017                 // NumLock is on* and *Shift is up* and the sequence is not
   2018                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
   2019                 // Windows Security screen to come up).
   2020                 case VK_DECIMAL:
   2021                     // U.S. English uses '.', Germany German uses ','.
   2022                     seqbuflen = _get_non_control_char(seqbuf, key_event,
   2023                         control_key_state);
   2024                     break;
   2025 
   2026                 MATCH_MODIFIER(VK_F1,  SS3 "P");
   2027                 MATCH_MODIFIER(VK_F2,  SS3 "Q");
   2028                 MATCH_MODIFIER(VK_F3,  SS3 "R");
   2029                 MATCH_MODIFIER(VK_F4,  SS3 "S");
   2030                 MATCH_MODIFIER(VK_F5,  CSI "15~");
   2031                 MATCH_MODIFIER(VK_F6,  CSI "17~");
   2032                 MATCH_MODIFIER(VK_F7,  CSI "18~");
   2033                 MATCH_MODIFIER(VK_F8,  CSI "19~");
   2034                 MATCH_MODIFIER(VK_F9,  CSI "20~");
   2035                 MATCH_MODIFIER(VK_F10, CSI "21~");
   2036                 MATCH_MODIFIER(VK_F11, CSI "23~");
   2037                 MATCH_MODIFIER(VK_F12, CSI "24~");
   2038 
   2039                 MATCH_MODIFIER(VK_F13, CSI "25~");
   2040                 MATCH_MODIFIER(VK_F14, CSI "26~");
   2041                 MATCH_MODIFIER(VK_F15, CSI "28~");
   2042                 MATCH_MODIFIER(VK_F16, CSI "29~");
   2043                 MATCH_MODIFIER(VK_F17, CSI "31~");
   2044                 MATCH_MODIFIER(VK_F18, CSI "32~");
   2045                 MATCH_MODIFIER(VK_F19, CSI "33~");
   2046                 MATCH_MODIFIER(VK_F20, CSI "34~");
   2047 
   2048                 // MATCH_MODIFIER(VK_F21, ???);
   2049                 // MATCH_MODIFIER(VK_F22, ???);
   2050                 // MATCH_MODIFIER(VK_F23, ???);
   2051                 // MATCH_MODIFIER(VK_F24, ???);
   2052             }
   2053         }
   2054 
   2055 #undef MATCH
   2056 #undef MATCH_MODIFIER
   2057 #undef MATCH_KEYPAD
   2058 #undef MATCH_MODIFIER_KEYPAD
   2059 #undef ESC
   2060 #undef CSI
   2061 #undef SS3
   2062 
   2063         const char* out;
   2064         size_t outlen;
   2065 
   2066         // Check for output in any of:
   2067         // * seqstr is set (and strlen can be used to determine the length).
   2068         // * seqbuf and seqbuflen are set
   2069         // Fallback to ch from Windows.
   2070         if (seqstr != NULL) {
   2071             out = seqstr;
   2072             outlen = strlen(seqstr);
   2073         } else if (seqbuflen > 0) {
   2074             out = seqbuf;
   2075             outlen = seqbuflen;
   2076         } else if (ch != '\0') {
   2077             // Use whatever Windows told us it is.
   2078             seqbuf[0] = ch;
   2079             seqbuflen = 1;
   2080             out = seqbuf;
   2081             outlen = seqbuflen;
   2082         } else {
   2083             // No special handling for the virtual key code and Windows isn't
   2084             // telling us a character code, then we don't know how to translate
   2085             // the key press.
   2086             //
   2087             // Consume the input and 'continue' to cause us to get a new key
   2088             // event.
   2089             D("_console_read: unknown virtual key code: %d, enhanced: %s",
   2090                 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
   2091             continue;
   2092         }
   2093 
   2094         // put output wRepeatCount times into g_console_input_buffer
   2095         while (key_event->wRepeatCount-- > 0) {
   2096             g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
   2097         }
   2098 
   2099         // Loop around and try to flush g_console_input_buffer
   2100     }
   2101 }
   2102 
   2103 static DWORD _old_console_mode; // previous GetConsoleMode() result
   2104 static HANDLE _console_handle;  // when set, console mode should be restored
   2105 
   2106 void stdin_raw_init() {
   2107     const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
   2108     if (in == nullptr) {
   2109         return;
   2110     }
   2111 
   2112     // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
   2113     // calling the process Ctrl-C routine (configured by
   2114     // SetConsoleCtrlHandler()).
   2115     // Disable ENABLE_LINE_INPUT so that input is immediately sent.
   2116     // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
   2117     // flag also seems necessary to have proper line-ending processing.
   2118     DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
   2119                                                    ENABLE_LINE_INPUT |
   2120                                                    ENABLE_ECHO_INPUT);
   2121     // Enable ENABLE_WINDOW_INPUT to get window resizes.
   2122     new_console_mode |= ENABLE_WINDOW_INPUT;
   2123 
   2124     if (!SetConsoleMode(in, new_console_mode)) {
   2125         // This really should not fail.
   2126         D("stdin_raw_init: SetConsoleMode() failed: %s",
   2127           android::base::SystemErrorCodeToString(GetLastError()).c_str());
   2128     }
   2129 
   2130     // Once this is set, it means that stdin has been configured for
   2131     // reading from and that the old console mode should be restored later.
   2132     _console_handle = in;
   2133 
   2134     // Note that we don't need to configure C Runtime line-ending
   2135     // translation because _console_read() does not call the C Runtime to
   2136     // read from the console.
   2137 }
   2138 
   2139 void stdin_raw_restore() {
   2140     if (_console_handle != NULL) {
   2141         const HANDLE in = _console_handle;
   2142         _console_handle = NULL;  // clear state
   2143 
   2144         if (!SetConsoleMode(in, _old_console_mode)) {
   2145             // This really should not fail.
   2146             D("stdin_raw_restore: SetConsoleMode() failed: %s",
   2147               android::base::SystemErrorCodeToString(GetLastError()).c_str());
   2148         }
   2149     }
   2150 }
   2151 
   2152 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
   2153 int unix_read_interruptible(int fd, void* buf, size_t len) {
   2154     if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
   2155         // If it is a request to read from stdin, and stdin_raw_init() has been
   2156         // called, and it successfully configured the console, then read from
   2157         // the console using Win32 console APIs and partially emulate a unix
   2158         // terminal.
   2159         return _console_read(_console_handle, buf, len);
   2160     } else {
   2161         // On older versions of Windows (definitely 7, definitely not 10),
   2162         // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
   2163         // we need to limit the read size.
   2164         if (len > 4096 && unix_isatty(fd)) {
   2165             len = 4096;
   2166         }
   2167         // Just call into C Runtime which can read from pipes/files and which
   2168         // can do LF/CR translation (which is overridable with _setmode()).
   2169         // Undefine the macro that is set in sysdeps.h which bans calls to
   2170         // plain read() in favor of unix_read() or adb_read().
   2171 #pragma push_macro("read")
   2172 #undef read
   2173         return read(fd, buf, len);
   2174 #pragma pop_macro("read")
   2175     }
   2176 }
   2177 
   2178 /**************************************************************************/
   2179 /**************************************************************************/
   2180 /*****                                                                *****/
   2181 /*****      Unicode support                                           *****/
   2182 /*****                                                                *****/
   2183 /**************************************************************************/
   2184 /**************************************************************************/
   2185 
   2186 // This implements support for using files with Unicode filenames and for
   2187 // outputting Unicode text to a Win32 console window. This is inspired from
   2188 // http://utf8everywhere.org/.
   2189 //
   2190 // Background
   2191 // ----------
   2192 //
   2193 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
   2194 // filenames to APIs such as open(). This works because filenames are largely
   2195 // opaque 'cookies' (perhaps excluding path separators).
   2196 //
   2197 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
   2198 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
   2199 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
   2200 // CreateFile() API is really just a macro that adds the W/A based on whether
   2201 // the UNICODE preprocessor symbol is defined).
   2202 //
   2203 // Options
   2204 // -------
   2205 //
   2206 // Thus, to write a portable program, there are a few options:
   2207 //
   2208 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
   2209 //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
   2210 //    that takes a wchar_t string, converts it to UTF-8 and then calls the real
   2211 //    open() API.
   2212 //
   2213 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
   2214 //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
   2215 //    potentially touching a lot of code.
   2216 //
   2217 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
   2218 //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
   2219 //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
   2220 //    or C Runtime API.
   2221 //
   2222 // The Choice
   2223 // ----------
   2224 //
   2225 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
   2226 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
   2227 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
   2228 // args that are passed to main() at the beginning of program startup. We also use
   2229 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
   2230 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
   2231 //
   2232 // Unicode console output
   2233 // ----------------------
   2234 //
   2235 // The way to output Unicode to a Win32 console window is to call
   2236 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
   2237 // such as Lucida Console or Consolas, and in the case of East Asian languages
   2238 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
   2239 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
   2240 // font to be used in console windows.)
   2241 //
   2242 // The problem is getting the C Runtime to make fprintf and related APIs call
   2243 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
   2244 // promising, but the various modes have issues:
   2245 //
   2246 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
   2247 //    UTF-16 do not display properly.
   2248 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
   2249 //    totally wrong.
   2250 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
   2251 //    handler to be called (upon a later I/O call), aborting the process.
   2252 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
   2253 //    to output nothing.
   2254 //
   2255 // So the only solution is to write our own adb_fprintf() that converts UTF-8
   2256 // to UTF-16 and then calls WriteConsoleW().
   2257 
   2258 
   2259 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
   2260 // be passed to main().
   2261 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
   2262     narrow_args = new char*[argc + 1];
   2263 
   2264     for (int i = 0; i < argc; ++i) {
   2265         std::string arg_narrow;
   2266         if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
   2267             fatal_errno("cannot convert argument from UTF-16 to UTF-8");
   2268         }
   2269         narrow_args[i] = strdup(arg_narrow.c_str());
   2270     }
   2271     narrow_args[argc] = nullptr;   // terminate
   2272 }
   2273 
   2274 NarrowArgs::~NarrowArgs() {
   2275     if (narrow_args != nullptr) {
   2276         for (char** argp = narrow_args; *argp != nullptr; ++argp) {
   2277             free(*argp);
   2278         }
   2279         delete[] narrow_args;
   2280         narrow_args = nullptr;
   2281     }
   2282 }
   2283 
   2284 int unix_open(const char* path, int options, ...) {
   2285     std::wstring path_wide;
   2286     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2287         return -1;
   2288     }
   2289     if ((options & O_CREAT) == 0) {
   2290         return _wopen(path_wide.c_str(), options);
   2291     } else {
   2292         int      mode;
   2293         va_list  args;
   2294         va_start(args, options);
   2295         mode = va_arg(args, int);
   2296         va_end(args);
   2297         return _wopen(path_wide.c_str(), options, mode);
   2298     }
   2299 }
   2300 
   2301 // Version of opendir() that takes a UTF-8 path.
   2302 DIR* adb_opendir(const char* path) {
   2303     std::wstring path_wide;
   2304     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2305         return nullptr;
   2306     }
   2307 
   2308     // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
   2309     // the fields, but right now all the callers treat the structure as
   2310     // opaque.
   2311     return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
   2312 }
   2313 
   2314 // Version of readdir() that returns UTF-8 paths.
   2315 struct dirent* adb_readdir(DIR* dir) {
   2316     _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
   2317     struct _wdirent* const went = _wreaddir(wdir);
   2318     if (went == nullptr) {
   2319         return nullptr;
   2320     }
   2321 
   2322     // Convert from UTF-16 to UTF-8.
   2323     std::string name_utf8;
   2324     if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
   2325         return nullptr;
   2326     }
   2327 
   2328     // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
   2329     // space for UTF-16 wchar_t's) with UTF-8 char's.
   2330     struct dirent* ent = reinterpret_cast<struct dirent*>(went);
   2331 
   2332     if (name_utf8.length() + 1 > sizeof(went->d_name)) {
   2333         // Name too big to fit in existing buffer.
   2334         errno = ENOMEM;
   2335         return nullptr;
   2336     }
   2337 
   2338     // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
   2339     // because _wdirent contains wchar_t instead of char. So even if name_utf8
   2340     // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
   2341     // bigger than the caller expects because they expect a dirent structure
   2342     // which has a smaller d_name field. Ignore this since the caller should be
   2343     // resilient.
   2344 
   2345     // Rewrite the UTF-16 d_name field to UTF-8.
   2346     strcpy(ent->d_name, name_utf8.c_str());
   2347 
   2348     return ent;
   2349 }
   2350 
   2351 // Version of closedir() to go with our version of adb_opendir().
   2352 int adb_closedir(DIR* dir) {
   2353     return _wclosedir(reinterpret_cast<_WDIR*>(dir));
   2354 }
   2355 
   2356 // Version of unlink() that takes a UTF-8 path.
   2357 int adb_unlink(const char* path) {
   2358     std::wstring wpath;
   2359     if (!android::base::UTF8ToWide(path, &wpath)) {
   2360         return -1;
   2361     }
   2362 
   2363     int  rc = _wunlink(wpath.c_str());
   2364 
   2365     if (rc == -1 && errno == EACCES) {
   2366         /* unlink returns EACCES when the file is read-only, so we first */
   2367         /* try to make it writable, then unlink again...                 */
   2368         rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
   2369         if (rc == 0)
   2370             rc = _wunlink(wpath.c_str());
   2371     }
   2372     return rc;
   2373 }
   2374 
   2375 // Version of mkdir() that takes a UTF-8 path.
   2376 int adb_mkdir(const std::string& path, int mode) {
   2377     std::wstring path_wide;
   2378     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2379         return -1;
   2380     }
   2381 
   2382     return _wmkdir(path_wide.c_str());
   2383 }
   2384 
   2385 // Version of utime() that takes a UTF-8 path.
   2386 int adb_utime(const char* path, struct utimbuf* u) {
   2387     std::wstring path_wide;
   2388     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2389         return -1;
   2390     }
   2391 
   2392     static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
   2393         "utimbuf and _utimbuf should be the same size because they both "
   2394         "contain the same types, namely time_t");
   2395     return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
   2396 }
   2397 
   2398 // Version of chmod() that takes a UTF-8 path.
   2399 int adb_chmod(const char* path, int mode) {
   2400     std::wstring path_wide;
   2401     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2402         return -1;
   2403     }
   2404 
   2405     return _wchmod(path_wide.c_str(), mode);
   2406 }
   2407 
   2408 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
   2409 static inline size_t utf8_codepoint_len(uint8_t ch) {
   2410     return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
   2411 }
   2412 
   2413 namespace internal {
   2414 
   2415 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
   2416 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
   2417 // remaining_bytes.
   2418 size_t ParseCompleteUTF8(const char* const first, const char* const last,
   2419                          std::vector<char>* const remaining_bytes) {
   2420     // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
   2421     // Current_after points one byte past the current byte to be examined.
   2422     for (const char* current_after = last; current_after != first; --current_after) {
   2423         const char* const current = current_after - 1;
   2424         const char ch = *current;
   2425         const char kHighBit = 0x80u;
   2426         const char kTwoHighestBits = 0xC0u;
   2427         if ((ch & kHighBit) == 0) { // high bit not set
   2428             // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
   2429             // bytes with no leading byte, so return the entire buffer.
   2430             break;
   2431         } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
   2432             // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
   2433             const size_t bytes_available = last - current;
   2434             if (bytes_available < utf8_codepoint_len(ch)) {
   2435                 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
   2436                 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
   2437                 // to remaining_bytes.
   2438                 remaining_bytes->insert(remaining_bytes->end(), current, last);
   2439                 return current - first;
   2440             } else {
   2441                 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
   2442                 // trailing bytes with no lead byte, so return the entire buffer.
   2443                 break;
   2444             }
   2445         } else {
   2446             // Trailing byte, so keep going backwards looking for the lead byte.
   2447         }
   2448     }
   2449 
   2450     // Return the size of the entire buffer. It is possible that we walked backward past invalid
   2451     // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
   2452     // so that they can be processed.
   2453     return last - first;
   2454 }
   2455 
   2456 }
   2457 
   2458 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
   2459 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
   2460 // This matches the behavior of Linux.
   2461 // Protected by g_console_output_buffer_lock.
   2462 static auto& g_console_output_buffer = *new std::vector<char>();
   2463 
   2464 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
   2465 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
   2466                                HANDLE console) {
   2467     const int saved_errno = errno;
   2468     std::vector<char> combined_buffer;
   2469 
   2470     // Complete UTF-8 sequences that should be immediately written to the console.
   2471     const char* utf8;
   2472     size_t utf8_size;
   2473 
   2474     adb_mutex_lock(&g_console_output_buffer_lock);
   2475     if (g_console_output_buffer.empty()) {
   2476         // If g_console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
   2477         // common case with plain ASCII), parse buf directly.
   2478         utf8 = buf;
   2479         utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &g_console_output_buffer);
   2480     } else {
   2481         // If g_console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
   2482         // combined_buffer (and effectively clear g_console_output_buffer) and append buf to
   2483         // combined_buffer, then parse it all together.
   2484         combined_buffer.swap(g_console_output_buffer);
   2485         combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
   2486 
   2487         utf8 = combined_buffer.data();
   2488         utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
   2489                                                 &g_console_output_buffer);
   2490     }
   2491     adb_mutex_unlock(&g_console_output_buffer_lock);
   2492 
   2493     std::wstring utf16;
   2494 
   2495     // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
   2496     // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
   2497     // random data, runs dmesg (which might have non-UTF-8), etc.
   2498     // This could throw std::bad_alloc.
   2499     (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
   2500 
   2501     // Note that this does not do \n => \r\n translation because that
   2502     // doesn't seem necessary for the Windows console. For the Windows
   2503     // console \r moves to the beginning of the line and \n moves to a new
   2504     // line.
   2505 
   2506     // Flush any stream buffering so that our output is afterwards which
   2507     // makes sense because our call is afterwards.
   2508     (void)fflush(stream);
   2509 
   2510     // Write UTF-16 to the console.
   2511     DWORD written = 0;
   2512     if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
   2513         errno = EIO;
   2514         return -1;
   2515     }
   2516 
   2517     // Return the size of the original buffer passed in, signifying that we consumed it all, even
   2518     // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
   2519     // matches the Linux behavior.
   2520     errno = saved_errno;
   2521     return buf_size;
   2522 }
   2523 
   2524 // Function prototype because attributes cannot be placed on func definitions.
   2525 static int _console_vfprintf(const HANDLE console, FILE* stream,
   2526                              const char *format, va_list ap)
   2527     __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
   2528 
   2529 // Internal function to format a UTF-8 string and write it to a Win32 console.
   2530 // Returns -1 on error.
   2531 static int _console_vfprintf(const HANDLE console, FILE* stream,
   2532                              const char *format, va_list ap) {
   2533     const int saved_errno = errno;
   2534     std::string output_utf8;
   2535 
   2536     // Format the string.
   2537     // This could throw std::bad_alloc.
   2538     android::base::StringAppendV(&output_utf8, format, ap);
   2539 
   2540     const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
   2541                                            console);
   2542     if (result != -1) {
   2543         errno = saved_errno;
   2544     } else {
   2545         // If -1 was returned, errno has been set.
   2546     }
   2547     return result;
   2548 }
   2549 
   2550 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
   2551 // Windows console.
   2552 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
   2553     const HANDLE console = _get_console_handle(stream);
   2554 
   2555     // If there is an associated Win32 console, write to it specially,
   2556     // otherwise defer to the regular C Runtime, passing it UTF-8.
   2557     if (console != NULL) {
   2558         return _console_vfprintf(console, stream, format, ap);
   2559     } else {
   2560         // If vfprintf is a macro, undefine it, so we can call the real
   2561         // C Runtime API.
   2562 #pragma push_macro("vfprintf")
   2563 #undef vfprintf
   2564         return vfprintf(stream, format, ap);
   2565 #pragma pop_macro("vfprintf")
   2566     }
   2567 }
   2568 
   2569 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
   2570 int adb_vprintf(const char *format, va_list ap) {
   2571     return adb_vfprintf(stdout, format, ap);
   2572 }
   2573 
   2574 // Version of fprintf() that takes UTF-8 and can write Unicode to a
   2575 // Windows console.
   2576 int adb_fprintf(FILE *stream, const char *format, ...) {
   2577     va_list ap;
   2578     va_start(ap, format);
   2579     const int result = adb_vfprintf(stream, format, ap);
   2580     va_end(ap);
   2581 
   2582     return result;
   2583 }
   2584 
   2585 // Version of printf() that takes UTF-8 and can write Unicode to a
   2586 // Windows console.
   2587 int adb_printf(const char *format, ...) {
   2588     va_list ap;
   2589     va_start(ap, format);
   2590     const int result = adb_vfprintf(stdout, format, ap);
   2591     va_end(ap);
   2592 
   2593     return result;
   2594 }
   2595 
   2596 // Version of fputs() that takes UTF-8 and can write Unicode to a
   2597 // Windows console.
   2598 int adb_fputs(const char* buf, FILE* stream) {
   2599     // adb_fprintf returns -1 on error, which is conveniently the same as EOF
   2600     // which fputs (and hence adb_fputs) should return on error.
   2601     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
   2602     return adb_fprintf(stream, "%s", buf);
   2603 }
   2604 
   2605 // Version of fputc() that takes UTF-8 and can write Unicode to a
   2606 // Windows console.
   2607 int adb_fputc(int ch, FILE* stream) {
   2608     const int result = adb_fprintf(stream, "%c", ch);
   2609     if (result == -1) {
   2610         return EOF;
   2611     }
   2612     // For success, fputc returns the char, cast to unsigned char, then to int.
   2613     return static_cast<unsigned char>(ch);
   2614 }
   2615 
   2616 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
   2617 int adb_putchar(int ch) {
   2618     return adb_fputc(ch, stdout);
   2619 }
   2620 
   2621 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
   2622 int adb_puts(const char* buf) {
   2623     // adb_printf returns -1 on error, which is conveniently the same as EOF
   2624     // which puts (and hence adb_puts) should return on error.
   2625     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
   2626     return adb_printf("%s\n", buf);
   2627 }
   2628 
   2629 // Internal function to write UTF-8 to a Win32 console. Returns the number of
   2630 // items (of length size) written. On error, returns a short item count or 0.
   2631 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
   2632                               FILE* stream, HANDLE console) {
   2633     const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
   2634                                            console);
   2635     if (result == -1) {
   2636         return 0;
   2637     }
   2638     return result / size;
   2639 }
   2640 
   2641 // Version of fwrite() that takes UTF-8 and can write Unicode to a
   2642 // Windows console.
   2643 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
   2644     const HANDLE console = _get_console_handle(stream);
   2645 
   2646     // If there is an associated Win32 console, write to it specially,
   2647     // otherwise defer to the regular C Runtime, passing it UTF-8.
   2648     if (console != NULL) {
   2649         return _console_fwrite(ptr, size, nmemb, stream, console);
   2650     } else {
   2651         // If fwrite is a macro, undefine it, so we can call the real
   2652         // C Runtime API.
   2653 #pragma push_macro("fwrite")
   2654 #undef fwrite
   2655         return fwrite(ptr, size, nmemb, stream);
   2656 #pragma pop_macro("fwrite")
   2657     }
   2658 }
   2659 
   2660 // Version of fopen() that takes a UTF-8 filename and can access a file with
   2661 // a Unicode filename.
   2662 FILE* adb_fopen(const char* path, const char* mode) {
   2663     std::wstring path_wide;
   2664     if (!android::base::UTF8ToWide(path, &path_wide)) {
   2665         return nullptr;
   2666     }
   2667 
   2668     std::wstring mode_wide;
   2669     if (!android::base::UTF8ToWide(mode, &mode_wide)) {
   2670         return nullptr;
   2671     }
   2672 
   2673     return _wfopen(path_wide.c_str(), mode_wide.c_str());
   2674 }
   2675 
   2676 // Return a lowercase version of the argument. Uses C Runtime tolower() on
   2677 // each byte which is not UTF-8 aware, and theoretically uses the current C
   2678 // Runtime locale (which in practice is not changed, so this becomes a ASCII
   2679 // conversion).
   2680 static std::string ToLower(const std::string& anycase) {
   2681     // copy string
   2682     std::string str(anycase);
   2683     // transform the copy
   2684     std::transform(str.begin(), str.end(), str.begin(), tolower);
   2685     return str;
   2686 }
   2687 
   2688 extern "C" int main(int argc, char** argv);
   2689 
   2690 // Link with -municode to cause this wmain() to be used as the program
   2691 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
   2692 // regular main() with UTF-8 args.
   2693 extern "C" int wmain(int argc, wchar_t **argv) {
   2694     // Convert args from UTF-16 to UTF-8 and pass that to main().
   2695     NarrowArgs narrow_args(argc, argv);
   2696     return main(argc, narrow_args.data());
   2697 }
   2698 
   2699 // Shadow UTF-8 environment variable name/value pairs that are created from
   2700 // _wenviron the first time that adb_getenv() is called. Note that this is not
   2701 // currently updated if putenv, setenv, unsetenv are called. Note that no
   2702 // thread synchronization is done, but we're called early enough in
   2703 // single-threaded startup that things work ok.
   2704 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
   2705 
   2706 // Make sure that shadow UTF-8 environment variables are setup.
   2707 static void _ensure_env_setup() {
   2708     // If some name/value pairs exist, then we've already done the setup below.
   2709     if (g_environ_utf8.size() != 0) {
   2710         return;
   2711     }
   2712 
   2713     if (_wenviron == nullptr) {
   2714         // If _wenviron is null, then -municode probably wasn't used. That
   2715         // linker flag will cause the entry point to setup _wenviron. It will
   2716         // also require an implementation of wmain() (which we provide above).
   2717         fatal("_wenviron is not set, did you link with -municode?");
   2718     }
   2719 
   2720     // Read name/value pairs from UTF-16 _wenviron and write new name/value
   2721     // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
   2722     // to use the D() macro here because that tracing only works if the
   2723     // ADB_TRACE environment variable is setup, but that env var can't be read
   2724     // until this code completes.
   2725     for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
   2726         wchar_t* const equal = wcschr(*env, L'=');
   2727         if (equal == nullptr) {
   2728             // Malformed environment variable with no equal sign. Shouldn't
   2729             // really happen, but we should be resilient to this.
   2730             continue;
   2731         }
   2732 
   2733         // If we encounter an error converting UTF-16, don't error-out on account of a single env
   2734         // var because the program might never even read this particular variable.
   2735         std::string name_utf8;
   2736         if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
   2737             continue;
   2738         }
   2739 
   2740         // Store lowercase name so that we can do case-insensitive searches.
   2741         name_utf8 = ToLower(name_utf8);
   2742 
   2743         std::string value_utf8;
   2744         if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
   2745             continue;
   2746         }
   2747 
   2748         char* const value_dup = strdup(value_utf8.c_str());
   2749 
   2750         // Don't overwrite a previus env var with the same name. In reality,
   2751         // the system probably won't let two env vars with the same name exist
   2752         // in _wenviron.
   2753         g_environ_utf8.insert({name_utf8, value_dup});
   2754     }
   2755 }
   2756 
   2757 // Version of getenv() that takes a UTF-8 environment variable name and
   2758 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
   2759 char* adb_getenv(const char* name) {
   2760     _ensure_env_setup();
   2761 
   2762     // Case-insensitive search by searching for lowercase name in a map of
   2763     // lowercase names.
   2764     const auto it = g_environ_utf8.find(ToLower(std::string(name)));
   2765     if (it == g_environ_utf8.end()) {
   2766         return nullptr;
   2767     }
   2768 
   2769     return it->second;
   2770 }
   2771 
   2772 // Version of getcwd() that returns the current working directory in UTF-8.
   2773 char* adb_getcwd(char* buf, int size) {
   2774     wchar_t* wbuf = _wgetcwd(nullptr, 0);
   2775     if (wbuf == nullptr) {
   2776         return nullptr;
   2777     }
   2778 
   2779     std::string buf_utf8;
   2780     const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
   2781     free(wbuf);
   2782     wbuf = nullptr;
   2783 
   2784     if (!narrow_result) {
   2785         return nullptr;
   2786     }
   2787 
   2788     // If size was specified, make sure all the chars will fit.
   2789     if (size != 0) {
   2790         if (size < static_cast<int>(buf_utf8.length() + 1)) {
   2791             errno = ERANGE;
   2792             return nullptr;
   2793         }
   2794     }
   2795 
   2796     // If buf was not specified, allocate storage.
   2797     if (buf == nullptr) {
   2798         if (size == 0) {
   2799             size = buf_utf8.length() + 1;
   2800         }
   2801         buf = reinterpret_cast<char*>(malloc(size));
   2802         if (buf == nullptr) {
   2803             return nullptr;
   2804         }
   2805     }
   2806 
   2807     // Destination buffer was allocated with enough space, or we've already
   2808     // checked an existing buffer size for enough space.
   2809     strcpy(buf, buf_utf8.c_str());
   2810 
   2811     return buf;
   2812 }
   2813