Home | History | Annotate | Download | only in gold
      1 // resolve.cc -- symbol resolution for gold
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include "elfcpp.h"
     26 #include "target.h"
     27 #include "object.h"
     28 #include "symtab.h"
     29 #include "plugin.h"
     30 
     31 namespace gold
     32 {
     33 
     34 // Symbol methods used in this file.
     35 
     36 // This symbol is being overridden by another symbol whose version is
     37 // VERSION.  Update the VERSION_ field accordingly.
     38 
     39 inline void
     40 Symbol::override_version(const char* version)
     41 {
     42   if (version == NULL)
     43     {
     44       // This is the case where this symbol is NAME/VERSION, and the
     45       // version was not marked as hidden.  That makes it the default
     46       // version, so we create NAME/NULL.  Later we see another symbol
     47       // NAME/NULL, and that symbol is overriding this one.  In this
     48       // case, since NAME/VERSION is the default, we make NAME/NULL
     49       // override NAME/VERSION as well.  They are already the same
     50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
     51       // that it will be output with the correct, empty, version.
     52       this->version_ = version;
     53     }
     54   else
     55     {
     56       // This is the case where this symbol is NAME/VERSION_ONE, and
     57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
     58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
     59       // different, then this can only happen when VERSION_ONE is NULL
     60       // and VERSION_TWO is not hidden.
     61       gold_assert(this->version_ == version || this->version_ == NULL);
     62       this->version_ = version;
     63     }
     64 }
     65 
     66 // This symbol is being overidden by another symbol whose visibility
     67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
     68 
     69 inline void
     70 Symbol::override_visibility(elfcpp::STV visibility)
     71 {
     72   // The rule for combining visibility is that we always choose the
     73   // most constrained visibility.  In order of increasing constraint,
     74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
     75   // of the numeric values, so the effect is that we always want the
     76   // smallest non-zero value.
     77   if (visibility != elfcpp::STV_DEFAULT)
     78     {
     79       if (this->visibility_ == elfcpp::STV_DEFAULT)
     80 	this->visibility_ = visibility;
     81       else if (this->visibility_ > visibility)
     82 	this->visibility_ = visibility;
     83     }
     84 }
     85 
     86 // Override the fields in Symbol.
     87 
     88 template<int size, bool big_endian>
     89 void
     90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
     91 		      unsigned int st_shndx, bool is_ordinary,
     92 		      Object* object, const char* version)
     93 {
     94   gold_assert(this->source_ == FROM_OBJECT);
     95   this->u_.from_object.object = object;
     96   this->override_version(version);
     97   this->u_.from_object.shndx = st_shndx;
     98   this->is_ordinary_shndx_ = is_ordinary;
     99   // Don't override st_type from plugin placeholder symbols.
    100   if (object->pluginobj() == NULL)
    101     this->type_ = sym.get_st_type();
    102   this->binding_ = sym.get_st_bind();
    103   this->override_visibility(sym.get_st_visibility());
    104   this->nonvis_ = sym.get_st_nonvis();
    105   if (object->is_dynamic())
    106     this->in_dyn_ = true;
    107   else
    108     this->in_reg_ = true;
    109 }
    110 
    111 // Override the fields in Sized_symbol.
    112 
    113 template<int size>
    114 template<bool big_endian>
    115 void
    116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
    117 			     unsigned st_shndx, bool is_ordinary,
    118 			     Object* object, const char* version)
    119 {
    120   this->override_base(sym, st_shndx, is_ordinary, object, version);
    121   this->value_ = sym.get_st_value();
    122   this->symsize_ = sym.get_st_size();
    123 }
    124 
    125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
    126 // VERSION.  This handles all aliases of TOSYM.
    127 
    128 template<int size, bool big_endian>
    129 void
    130 Symbol_table::override(Sized_symbol<size>* tosym,
    131 		       const elfcpp::Sym<size, big_endian>& fromsym,
    132 		       unsigned int st_shndx, bool is_ordinary,
    133 		       Object* object, const char* version)
    134 {
    135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
    136   if (tosym->has_alias())
    137     {
    138       Symbol* sym = this->weak_aliases_[tosym];
    139       gold_assert(sym != NULL);
    140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
    141       do
    142 	{
    143 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
    144 	  sym = this->weak_aliases_[ssym];
    145 	  gold_assert(sym != NULL);
    146 	  ssym = this->get_sized_symbol<size>(sym);
    147 	}
    148       while (ssym != tosym);
    149     }
    150 }
    151 
    152 // The resolve functions build a little code for each symbol.
    153 // Bit 0: 0 for global, 1 for weak.
    154 // Bit 1: 0 for regular object, 1 for shared object
    155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
    156 // This gives us values from 0 to 11.
    157 
    158 static const int global_or_weak_shift = 0;
    159 static const unsigned int global_flag = 0 << global_or_weak_shift;
    160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
    161 
    162 static const int regular_or_dynamic_shift = 1;
    163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
    164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
    165 
    166 static const int def_undef_or_common_shift = 2;
    167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
    168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
    169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
    170 
    171 // This convenience function combines all the flags based on facts
    172 // about the symbol.
    173 
    174 static unsigned int
    175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
    176 	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
    177 {
    178   unsigned int bits;
    179 
    180   switch (binding)
    181     {
    182     case elfcpp::STB_GLOBAL:
    183     case elfcpp::STB_GNU_UNIQUE:
    184       bits = global_flag;
    185       break;
    186 
    187     case elfcpp::STB_WEAK:
    188       bits = weak_flag;
    189       break;
    190 
    191     case elfcpp::STB_LOCAL:
    192       // We should only see externally visible symbols in the symbol
    193       // table.
    194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
    195       bits = global_flag;
    196 
    197     default:
    198       // Any target which wants to handle STB_LOOS, etc., needs to
    199       // define a resolve method.
    200       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
    201       bits = global_flag;
    202     }
    203 
    204   if (is_dynamic)
    205     bits |= dynamic_flag;
    206   else
    207     bits |= regular_flag;
    208 
    209   switch (shndx)
    210     {
    211     case elfcpp::SHN_UNDEF:
    212       bits |= undef_flag;
    213       break;
    214 
    215     case elfcpp::SHN_COMMON:
    216       if (!is_ordinary)
    217 	bits |= common_flag;
    218       break;
    219 
    220     default:
    221       if (type == elfcpp::STT_COMMON)
    222 	bits |= common_flag;
    223       else if (!is_ordinary && Symbol::is_common_shndx(shndx))
    224 	bits |= common_flag;
    225       else
    226         bits |= def_flag;
    227       break;
    228     }
    229 
    230   return bits;
    231 }
    232 
    233 // Resolve a symbol.  This is called the second and subsequent times
    234 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
    235 // section index for SYM, possibly adjusted for many sections.
    236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
    237 // than a special code.  ORIG_ST_SHNDX is the original section index,
    238 // before any munging because of discarded sections, except that all
    239 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
    240 // the version of SYM.
    241 
    242 template<int size, bool big_endian>
    243 void
    244 Symbol_table::resolve(Sized_symbol<size>* to,
    245 		      const elfcpp::Sym<size, big_endian>& sym,
    246 		      unsigned int st_shndx, bool is_ordinary,
    247 		      unsigned int orig_st_shndx,
    248 		      Object* object, const char* version)
    249 {
    250   // It's possible for a symbol to be defined in an object file
    251   // using .symver to give it a version, and for there to also be
    252   // a linker script giving that symbol the same version.  We
    253   // don't want to give a multiple-definition error for this
    254   // harmless redefinition.
    255   bool to_is_ordinary;
    256   if (to->source() == Symbol::FROM_OBJECT
    257       && to->object() == object
    258       && is_ordinary
    259       && to->is_defined()
    260       && to->shndx(&to_is_ordinary) == st_shndx
    261       && to_is_ordinary
    262       && to->value() == sym.get_st_value())
    263     return;
    264 
    265   if (parameters->target().has_resolve())
    266     {
    267       Sized_target<size, big_endian>* sized_target;
    268       sized_target = parameters->sized_target<size, big_endian>();
    269       sized_target->resolve(to, sym, object, version);
    270       return;
    271     }
    272 
    273   if (!object->is_dynamic())
    274     {
    275       // Record that we've seen this symbol in a regular object.
    276       to->set_in_reg();
    277     }
    278   else if (st_shndx == elfcpp::SHN_UNDEF
    279            && (to->visibility() == elfcpp::STV_HIDDEN
    280                || to->visibility() == elfcpp::STV_INTERNAL))
    281     {
    282       // it is good to be helpful, but the warning leads to build error
    283       // for some users, so disable it if not really wanted.
    284       return;
    285     }
    286   else
    287     {
    288       // Record that we've seen this symbol in a dynamic object.
    289       to->set_in_dyn();
    290     }
    291 
    292   // Record if we've seen this symbol in a real ELF object (i.e., the
    293   // symbol is referenced from outside the world known to the plugin).
    294   if (object->pluginobj() == NULL && !object->is_dynamic())
    295     to->set_in_real_elf();
    296 
    297   // If we're processing replacement files, allow new symbols to override
    298   // the placeholders from the plugin objects.
    299   // Treat common symbols specially since it is possible that an ELF
    300   // file increased the size of the alignment.
    301   if (to->source() == Symbol::FROM_OBJECT)
    302     {
    303       Pluginobj* obj = to->object()->pluginobj();
    304       if (obj != NULL
    305           && parameters->options().plugins()->in_replacement_phase())
    306         {
    307 	  bool adjust_common = false;
    308 	  typename Sized_symbol<size>::Size_type tosize = 0;
    309 	  typename Sized_symbol<size>::Value_type tovalue = 0;
    310 	  if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
    311 	    {
    312 	      adjust_common = true;
    313 	      tosize = to->symsize();
    314 	      tovalue = to->value();
    315 	    }
    316 	  this->override(to, sym, st_shndx, is_ordinary, object, version);
    317 	  if (adjust_common)
    318 	    {
    319 	      if (tosize > to->symsize())
    320 		to->set_symsize(tosize);
    321 	      if (tovalue > to->value())
    322 		to->set_value(tovalue);
    323 	    }
    324 	  return;
    325         }
    326     }
    327 
    328   // A new weak undefined reference, merging with an old weak
    329   // reference, could be a One Definition Rule (ODR) violation --
    330   // especially if the types or sizes of the references differ.  We'll
    331   // store such pairs and look them up later to make sure they
    332   // actually refer to the same lines of code.  We also check
    333   // combinations of weak and strong, which might occur if one case is
    334   // inline and the other is not.  (Note: not all ODR violations can
    335   // be found this way, and not everything this finds is an ODR
    336   // violation.  But it's helpful to warn about.)
    337   if (parameters->options().detect_odr_violations()
    338       && (sym.get_st_bind() == elfcpp::STB_WEAK
    339 	  || to->binding() == elfcpp::STB_WEAK)
    340       && orig_st_shndx != elfcpp::SHN_UNDEF
    341       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
    342       && to_is_ordinary
    343       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
    344       && to->symsize() != 0
    345       && (sym.get_st_type() != to->type()
    346           || sym.get_st_size() != to->symsize())
    347       // C does not have a concept of ODR, so we only need to do this
    348       // on C++ symbols.  These have (mangled) names starting with _Z.
    349       && to->name()[0] == '_' && to->name()[1] == 'Z')
    350     {
    351       Symbol_location fromloc
    352           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
    353       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
    354 				static_cast<off_t>(to->value()) };
    355       this->candidate_odr_violations_[to->name()].insert(fromloc);
    356       this->candidate_odr_violations_[to->name()].insert(toloc);
    357     }
    358 
    359   // Plugins don't provide a symbol type, so adopt the existing type
    360   // if the FROM symbol is from a plugin.
    361   elfcpp::STT fromtype = (object->pluginobj() != NULL
    362 			  ? to->type()
    363 			  : sym.get_st_type());
    364   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
    365                                          object->is_dynamic(),
    366 					 st_shndx, is_ordinary,
    367                                          fromtype);
    368 
    369   bool adjust_common_sizes;
    370   bool adjust_dyndef;
    371   typename Sized_symbol<size>::Size_type tosize = to->symsize();
    372   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
    373 				    object, &adjust_common_sizes,
    374 				    &adjust_dyndef))
    375     {
    376       elfcpp::STB tobinding = to->binding();
    377       typename Sized_symbol<size>::Value_type tovalue = to->value();
    378       this->override(to, sym, st_shndx, is_ordinary, object, version);
    379       if (adjust_common_sizes)
    380 	{
    381 	  if (tosize > to->symsize())
    382 	    to->set_symsize(tosize);
    383 	  if (tovalue > to->value())
    384 	    to->set_value(tovalue);
    385 	}
    386       if (adjust_dyndef)
    387 	{
    388 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
    389 	  // Remember which kind of UNDEF it was for future reference.
    390 	  to->set_undef_binding(tobinding);
    391 	}
    392     }
    393   else
    394     {
    395       if (adjust_common_sizes)
    396 	{
    397 	  if (sym.get_st_size() > tosize)
    398 	    to->set_symsize(sym.get_st_size());
    399 	  if (sym.get_st_value() > to->value())
    400 	    to->set_value(sym.get_st_value());
    401 	}
    402       if (adjust_dyndef)
    403 	{
    404 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
    405 	  // Remember which kind of UNDEF it was.
    406 	  to->set_undef_binding(sym.get_st_bind());
    407 	}
    408       // The ELF ABI says that even for a reference to a symbol we
    409       // merge the visibility.
    410       to->override_visibility(sym.get_st_visibility());
    411     }
    412 
    413   if (adjust_common_sizes && parameters->options().warn_common())
    414     {
    415       if (tosize > sym.get_st_size())
    416 	Symbol_table::report_resolve_problem(false,
    417 					     _("common of '%s' overriding "
    418 					       "smaller common"),
    419 					     to, OBJECT, object);
    420       else if (tosize < sym.get_st_size())
    421 	Symbol_table::report_resolve_problem(false,
    422 					     _("common of '%s' overidden by "
    423 					       "larger common"),
    424 					     to, OBJECT, object);
    425       else
    426 	Symbol_table::report_resolve_problem(false,
    427 					     _("multiple common of '%s'"),
    428 					     to, OBJECT, object);
    429     }
    430 }
    431 
    432 // Handle the core of symbol resolution.  This is called with the
    433 // existing symbol, TO, and a bitflag describing the new symbol.  This
    434 // returns true if we should override the existing symbol with the new
    435 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
    436 // true if we should set the symbol size to the maximum of the TO and
    437 // FROM sizes.  It handles error conditions.
    438 
    439 bool
    440 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
    441 			      elfcpp::STT fromtype, Defined defined,
    442 			      Object* object, bool* adjust_common_sizes,
    443 			      bool* adjust_dyndef)
    444 {
    445   *adjust_common_sizes = false;
    446   *adjust_dyndef = false;
    447 
    448   unsigned int tobits;
    449   if (to->source() == Symbol::IS_UNDEFINED)
    450     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
    451 			    to->type());
    452   else if (to->source() != Symbol::FROM_OBJECT)
    453     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
    454 			    to->type());
    455   else
    456     {
    457       bool is_ordinary;
    458       unsigned int shndx = to->shndx(&is_ordinary);
    459       tobits = symbol_to_bits(to->binding(),
    460 			      to->object()->is_dynamic(),
    461 			      shndx,
    462 			      is_ordinary,
    463 			      to->type());
    464     }
    465 
    466   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
    467       && !to->is_placeholder())
    468     Symbol_table::report_resolve_problem(true,
    469 					 _("symbol '%s' used as both __thread "
    470 					   "and non-__thread"),
    471 					 to, defined, object);
    472 
    473   // We use a giant switch table for symbol resolution.  This code is
    474   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
    475   // cases; 3) it is easy to change the handling of a particular case.
    476   // The alternative would be a series of conditionals, but it is easy
    477   // to get the ordering wrong.  This could also be done as a table,
    478   // but that is no easier to understand than this large switch
    479   // statement.
    480 
    481   // These are the values generated by the bit codes.
    482   enum
    483   {
    484     DEF =              global_flag | regular_flag | def_flag,
    485     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
    486     DYN_DEF =          global_flag | dynamic_flag | def_flag,
    487     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
    488     UNDEF =            global_flag | regular_flag | undef_flag,
    489     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
    490     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
    491     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
    492     COMMON =           global_flag | regular_flag | common_flag,
    493     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
    494     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
    495     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
    496   };
    497 
    498   switch (tobits * 16 + frombits)
    499     {
    500     case DEF * 16 + DEF:
    501       // Two definitions of the same symbol.
    502 
    503       // If either symbol is defined by an object included using
    504       // --just-symbols, then don't warn.  This is for compatibility
    505       // with the GNU linker.  FIXME: This is a hack.
    506       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
    507           || (object != NULL && object->just_symbols()))
    508         return false;
    509 
    510       if (!parameters->options().muldefs())
    511 	Symbol_table::report_resolve_problem(true,
    512 					     _("multiple definition of '%s'"),
    513 					     to, defined, object);
    514       return false;
    515 
    516     case WEAK_DEF * 16 + DEF:
    517       // We've seen a weak definition, and now we see a strong
    518       // definition.  In the original SVR4 linker, this was treated as
    519       // a multiple definition error.  In the Solaris linker and the
    520       // GNU linker, a weak definition followed by a regular
    521       // definition causes the weak definition to be overridden.  We
    522       // are currently compatible with the GNU linker.  In the future
    523       // we should add a target specific option to change this.
    524       // FIXME.
    525       return true;
    526 
    527     case DYN_DEF * 16 + DEF:
    528     case DYN_WEAK_DEF * 16 + DEF:
    529       // We've seen a definition in a dynamic object, and now we see a
    530       // definition in a regular object.  The definition in the
    531       // regular object overrides the definition in the dynamic
    532       // object.
    533       return true;
    534 
    535     case UNDEF * 16 + DEF:
    536     case WEAK_UNDEF * 16 + DEF:
    537     case DYN_UNDEF * 16 + DEF:
    538     case DYN_WEAK_UNDEF * 16 + DEF:
    539       // We've seen an undefined reference, and now we see a
    540       // definition.  We use the definition.
    541       return true;
    542 
    543     case COMMON * 16 + DEF:
    544     case WEAK_COMMON * 16 + DEF:
    545     case DYN_COMMON * 16 + DEF:
    546     case DYN_WEAK_COMMON * 16 + DEF:
    547       // We've seen a common symbol and now we see a definition.  The
    548       // definition overrides.
    549       if (parameters->options().warn_common())
    550 	Symbol_table::report_resolve_problem(false,
    551 					     _("definition of '%s' overriding "
    552 					       "common"),
    553 					     to, defined, object);
    554       return true;
    555 
    556     case DEF * 16 + WEAK_DEF:
    557     case WEAK_DEF * 16 + WEAK_DEF:
    558       // We've seen a definition and now we see a weak definition.  We
    559       // ignore the new weak definition.
    560       return false;
    561 
    562     case DYN_DEF * 16 + WEAK_DEF:
    563     case DYN_WEAK_DEF * 16 + WEAK_DEF:
    564       // We've seen a dynamic definition and now we see a regular weak
    565       // definition.  The regular weak definition overrides.
    566       return true;
    567 
    568     case UNDEF * 16 + WEAK_DEF:
    569     case WEAK_UNDEF * 16 + WEAK_DEF:
    570     case DYN_UNDEF * 16 + WEAK_DEF:
    571     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
    572       // A weak definition of a currently undefined symbol.
    573       return true;
    574 
    575     case COMMON * 16 + WEAK_DEF:
    576     case WEAK_COMMON * 16 + WEAK_DEF:
    577       // A weak definition does not override a common definition.
    578       return false;
    579 
    580     case DYN_COMMON * 16 + WEAK_DEF:
    581     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
    582       // A weak definition does override a definition in a dynamic
    583       // object.
    584       if (parameters->options().warn_common())
    585 	Symbol_table::report_resolve_problem(false,
    586 					     _("definition of '%s' overriding "
    587 					       "dynamic common definition"),
    588 					     to, defined, object);
    589       return true;
    590 
    591     case DEF * 16 + DYN_DEF:
    592     case WEAK_DEF * 16 + DYN_DEF:
    593     case DYN_DEF * 16 + DYN_DEF:
    594     case DYN_WEAK_DEF * 16 + DYN_DEF:
    595       // Ignore a dynamic definition if we already have a definition.
    596       return false;
    597 
    598     case UNDEF * 16 + DYN_DEF:
    599     case DYN_UNDEF * 16 + DYN_DEF:
    600     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
    601       // Use a dynamic definition if we have a reference.
    602       return true;
    603 
    604     case WEAK_UNDEF * 16 + DYN_DEF:
    605       // When overriding a weak undef by a dynamic definition,
    606       // we need to remember that the original undef was weak.
    607       *adjust_dyndef = true;
    608       return true;
    609 
    610     case COMMON * 16 + DYN_DEF:
    611     case WEAK_COMMON * 16 + DYN_DEF:
    612     case DYN_COMMON * 16 + DYN_DEF:
    613     case DYN_WEAK_COMMON * 16 + DYN_DEF:
    614       // Ignore a dynamic definition if we already have a common
    615       // definition.
    616       return false;
    617 
    618     case DEF * 16 + DYN_WEAK_DEF:
    619     case WEAK_DEF * 16 + DYN_WEAK_DEF:
    620     case DYN_DEF * 16 + DYN_WEAK_DEF:
    621     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
    622       // Ignore a weak dynamic definition if we already have a
    623       // definition.
    624       return false;
    625 
    626     case UNDEF * 16 + DYN_WEAK_DEF:
    627       // When overriding an undef by a dynamic weak definition,
    628       // we need to remember that the original undef was not weak.
    629       *adjust_dyndef = true;
    630       return true;
    631 
    632     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
    633     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    634       // Use a weak dynamic definition if we have a reference.
    635       return true;
    636 
    637     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    638       // When overriding a weak undef by a dynamic definition,
    639       // we need to remember that the original undef was weak.
    640       *adjust_dyndef = true;
    641       return true;
    642 
    643     case COMMON * 16 + DYN_WEAK_DEF:
    644     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
    645     case DYN_COMMON * 16 + DYN_WEAK_DEF:
    646     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
    647       // Ignore a weak dynamic definition if we already have a common
    648       // definition.
    649       return false;
    650 
    651     case DEF * 16 + UNDEF:
    652     case WEAK_DEF * 16 + UNDEF:
    653     case UNDEF * 16 + UNDEF:
    654       // A new undefined reference tells us nothing.
    655       return false;
    656 
    657     case DYN_DEF * 16 + UNDEF:
    658     case DYN_WEAK_DEF * 16 + UNDEF:
    659       // For a dynamic def, we need to remember which kind of undef we see.
    660       *adjust_dyndef = true;
    661       return false;
    662 
    663     case WEAK_UNDEF * 16 + UNDEF:
    664     case DYN_UNDEF * 16 + UNDEF:
    665     case DYN_WEAK_UNDEF * 16 + UNDEF:
    666       // A strong undef overrides a dynamic or weak undef.
    667       return true;
    668 
    669     case COMMON * 16 + UNDEF:
    670     case WEAK_COMMON * 16 + UNDEF:
    671     case DYN_COMMON * 16 + UNDEF:
    672     case DYN_WEAK_COMMON * 16 + UNDEF:
    673       // A new undefined reference tells us nothing.
    674       return false;
    675 
    676     case DEF * 16 + WEAK_UNDEF:
    677     case WEAK_DEF * 16 + WEAK_UNDEF:
    678     case UNDEF * 16 + WEAK_UNDEF:
    679     case WEAK_UNDEF * 16 + WEAK_UNDEF:
    680     case DYN_UNDEF * 16 + WEAK_UNDEF:
    681     case COMMON * 16 + WEAK_UNDEF:
    682     case WEAK_COMMON * 16 + WEAK_UNDEF:
    683     case DYN_COMMON * 16 + WEAK_UNDEF:
    684     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
    685       // A new weak undefined reference tells us nothing unless the
    686       // exisiting symbol is a dynamic weak reference.
    687       return false;
    688 
    689     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
    690       // A new weak reference overrides an existing dynamic weak reference.
    691       // This is necessary because a dynamic weak reference remembers
    692       // the old binding, which may not be weak.  If we keeps the existing
    693       // dynamic weak reference, the weakness may be dropped in the output.
    694       return true;
    695 
    696     case DYN_DEF * 16 + WEAK_UNDEF:
    697     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
    698       // For a dynamic def, we need to remember which kind of undef we see.
    699       *adjust_dyndef = true;
    700       return false;
    701 
    702     case DEF * 16 + DYN_UNDEF:
    703     case WEAK_DEF * 16 + DYN_UNDEF:
    704     case DYN_DEF * 16 + DYN_UNDEF:
    705     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
    706     case UNDEF * 16 + DYN_UNDEF:
    707     case WEAK_UNDEF * 16 + DYN_UNDEF:
    708     case DYN_UNDEF * 16 + DYN_UNDEF:
    709     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
    710     case COMMON * 16 + DYN_UNDEF:
    711     case WEAK_COMMON * 16 + DYN_UNDEF:
    712     case DYN_COMMON * 16 + DYN_UNDEF:
    713     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
    714       // A new dynamic undefined reference tells us nothing.
    715       return false;
    716 
    717     case DEF * 16 + DYN_WEAK_UNDEF:
    718     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    719     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
    720     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    721     case UNDEF * 16 + DYN_WEAK_UNDEF:
    722     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    723     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
    724     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    725     case COMMON * 16 + DYN_WEAK_UNDEF:
    726     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    727     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
    728     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    729       // A new weak dynamic undefined reference tells us nothing.
    730       return false;
    731 
    732     case DEF * 16 + COMMON:
    733       // A common symbol does not override a definition.
    734       if (parameters->options().warn_common())
    735 	Symbol_table::report_resolve_problem(false,
    736 					     _("common '%s' overridden by "
    737 					       "previous definition"),
    738 					     to, defined, object);
    739       return false;
    740 
    741     case WEAK_DEF * 16 + COMMON:
    742     case DYN_DEF * 16 + COMMON:
    743     case DYN_WEAK_DEF * 16 + COMMON:
    744       // A common symbol does override a weak definition or a dynamic
    745       // definition.
    746       return true;
    747 
    748     case UNDEF * 16 + COMMON:
    749     case WEAK_UNDEF * 16 + COMMON:
    750     case DYN_UNDEF * 16 + COMMON:
    751     case DYN_WEAK_UNDEF * 16 + COMMON:
    752       // A common symbol is a definition for a reference.
    753       return true;
    754 
    755     case COMMON * 16 + COMMON:
    756       // Set the size to the maximum.
    757       *adjust_common_sizes = true;
    758       return false;
    759 
    760     case WEAK_COMMON * 16 + COMMON:
    761       // I'm not sure just what a weak common symbol means, but
    762       // presumably it can be overridden by a regular common symbol.
    763       return true;
    764 
    765     case DYN_COMMON * 16 + COMMON:
    766     case DYN_WEAK_COMMON * 16 + COMMON:
    767       // Use the real common symbol, but adjust the size if necessary.
    768       *adjust_common_sizes = true;
    769       return true;
    770 
    771     case DEF * 16 + WEAK_COMMON:
    772     case WEAK_DEF * 16 + WEAK_COMMON:
    773     case DYN_DEF * 16 + WEAK_COMMON:
    774     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
    775       // Whatever a weak common symbol is, it won't override a
    776       // definition.
    777       return false;
    778 
    779     case UNDEF * 16 + WEAK_COMMON:
    780     case WEAK_UNDEF * 16 + WEAK_COMMON:
    781     case DYN_UNDEF * 16 + WEAK_COMMON:
    782     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
    783       // A weak common symbol is better than an undefined symbol.
    784       return true;
    785 
    786     case COMMON * 16 + WEAK_COMMON:
    787     case WEAK_COMMON * 16 + WEAK_COMMON:
    788     case DYN_COMMON * 16 + WEAK_COMMON:
    789     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
    790       // Ignore a weak common symbol in the presence of a real common
    791       // symbol.
    792       return false;
    793 
    794     case DEF * 16 + DYN_COMMON:
    795     case WEAK_DEF * 16 + DYN_COMMON:
    796     case DYN_DEF * 16 + DYN_COMMON:
    797     case DYN_WEAK_DEF * 16 + DYN_COMMON:
    798       // Ignore a dynamic common symbol in the presence of a
    799       // definition.
    800       return false;
    801 
    802     case UNDEF * 16 + DYN_COMMON:
    803     case WEAK_UNDEF * 16 + DYN_COMMON:
    804     case DYN_UNDEF * 16 + DYN_COMMON:
    805     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
    806       // A dynamic common symbol is a definition of sorts.
    807       return true;
    808 
    809     case COMMON * 16 + DYN_COMMON:
    810     case WEAK_COMMON * 16 + DYN_COMMON:
    811     case DYN_COMMON * 16 + DYN_COMMON:
    812     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
    813       // Set the size to the maximum.
    814       *adjust_common_sizes = true;
    815       return false;
    816 
    817     case DEF * 16 + DYN_WEAK_COMMON:
    818     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
    819     case DYN_DEF * 16 + DYN_WEAK_COMMON:
    820     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
    821       // A common symbol is ignored in the face of a definition.
    822       return false;
    823 
    824     case UNDEF * 16 + DYN_WEAK_COMMON:
    825     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    826     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
    827     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    828       // I guess a weak common symbol is better than a definition.
    829       return true;
    830 
    831     case COMMON * 16 + DYN_WEAK_COMMON:
    832     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    833     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
    834     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    835       // Set the size to the maximum.
    836       *adjust_common_sizes = true;
    837       return false;
    838 
    839     default:
    840       gold_unreachable();
    841     }
    842 }
    843 
    844 // Issue an error or warning due to symbol resolution.  IS_ERROR
    845 // indicates an error rather than a warning.  MSG is the error
    846 // message; it is expected to have a %s for the symbol name.  TO is
    847 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
    848 // found.
    849 
    850 // FIXME: We should have better location information here.  When the
    851 // symbol is defined, we should be able to pull the location from the
    852 // debug info if there is any.
    853 
    854 void
    855 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
    856 				     const Symbol* to, Defined defined,
    857 				     Object* object)
    858 {
    859   std::string demangled(to->demangled_name());
    860   size_t len = strlen(msg) + demangled.length() + 10;
    861   char* buf = new char[len];
    862   snprintf(buf, len, msg, demangled.c_str());
    863 
    864   const char* objname;
    865   switch (defined)
    866     {
    867     case OBJECT:
    868       objname = object->name().c_str();
    869       break;
    870     case COPY:
    871       objname = _("COPY reloc");
    872       break;
    873     case DEFSYM:
    874     case UNDEFINED:
    875       objname = _("command line");
    876       break;
    877     case SCRIPT:
    878       objname = _("linker script");
    879       break;
    880     case PREDEFINED:
    881     case INCREMENTAL_BASE:
    882       objname = _("linker defined");
    883       break;
    884     default:
    885       gold_unreachable();
    886     }
    887 
    888   if (is_error)
    889     gold_error("%s: %s", objname, buf);
    890   else
    891     gold_warning("%s: %s", objname, buf);
    892 
    893   delete[] buf;
    894 
    895   if (to->source() == Symbol::FROM_OBJECT)
    896     objname = to->object()->name().c_str();
    897   else
    898     objname = _("command line");
    899   gold_info("%s: %s: previous definition here", program_name, objname);
    900 }
    901 
    902 // A special case of should_override which is only called for a strong
    903 // defined symbol from a regular object file.  This is used when
    904 // defining special symbols.
    905 
    906 bool
    907 Symbol_table::should_override_with_special(const Symbol* to,
    908 					   elfcpp::STT fromtype,
    909 					   Defined defined)
    910 {
    911   bool adjust_common_sizes;
    912   bool adjust_dyn_def;
    913   unsigned int frombits = global_flag | regular_flag | def_flag;
    914   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
    915 					   NULL, &adjust_common_sizes,
    916 					   &adjust_dyn_def);
    917   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
    918   return ret;
    919 }
    920 
    921 // Override symbol base with a special symbol.
    922 
    923 void
    924 Symbol::override_base_with_special(const Symbol* from)
    925 {
    926   bool same_name = this->name_ == from->name_;
    927   gold_assert(same_name || this->has_alias());
    928 
    929   // If we are overriding an undef, remember the original binding.
    930   if (this->is_undefined())
    931     this->set_undef_binding(this->binding_);
    932 
    933   this->source_ = from->source_;
    934   switch (from->source_)
    935     {
    936     case FROM_OBJECT:
    937       this->u_.from_object = from->u_.from_object;
    938       break;
    939     case IN_OUTPUT_DATA:
    940       this->u_.in_output_data = from->u_.in_output_data;
    941       break;
    942     case IN_OUTPUT_SEGMENT:
    943       this->u_.in_output_segment = from->u_.in_output_segment;
    944       break;
    945     case IS_CONSTANT:
    946     case IS_UNDEFINED:
    947       break;
    948     default:
    949       gold_unreachable();
    950       break;
    951     }
    952 
    953   if (same_name)
    954     {
    955       // When overriding a versioned symbol with a special symbol, we
    956       // may be changing the version.  This will happen if we see a
    957       // special symbol such as "_end" defined in a shared object with
    958       // one version (from a version script), but we want to define it
    959       // here with a different version (from a different version
    960       // script).
    961       this->version_ = from->version_;
    962     }
    963   this->type_ = from->type_;
    964   this->binding_ = from->binding_;
    965   this->override_visibility(from->visibility_);
    966   this->nonvis_ = from->nonvis_;
    967 
    968   // Special symbols are always considered to be regular symbols.
    969   this->in_reg_ = true;
    970 
    971   if (from->needs_dynsym_entry_)
    972     this->needs_dynsym_entry_ = true;
    973   if (from->needs_dynsym_value_)
    974     this->needs_dynsym_value_ = true;
    975 
    976   this->is_predefined_ = from->is_predefined_;
    977 
    978   // We shouldn't see these flags.  If we do, we need to handle them
    979   // somehow.
    980   gold_assert(!from->is_forwarder_);
    981   gold_assert(!from->has_plt_offset());
    982   gold_assert(!from->has_warning_);
    983   gold_assert(!from->is_copied_from_dynobj_);
    984   gold_assert(!from->is_forced_local_);
    985 }
    986 
    987 // Override a symbol with a special symbol.
    988 
    989 template<int size>
    990 void
    991 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
    992 {
    993   this->override_base_with_special(from);
    994   this->value_ = from->value_;
    995   this->symsize_ = from->symsize_;
    996 }
    997 
    998 // Override TOSYM with the special symbol FROMSYM.  This handles all
    999 // aliases of TOSYM.
   1000 
   1001 template<int size>
   1002 void
   1003 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
   1004 				    const Sized_symbol<size>* fromsym)
   1005 {
   1006   tosym->override_with_special(fromsym);
   1007   if (tosym->has_alias())
   1008     {
   1009       Symbol* sym = this->weak_aliases_[tosym];
   1010       gold_assert(sym != NULL);
   1011       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
   1012       do
   1013 	{
   1014 	  ssym->override_with_special(fromsym);
   1015 	  sym = this->weak_aliases_[ssym];
   1016 	  gold_assert(sym != NULL);
   1017 	  ssym = this->get_sized_symbol<size>(sym);
   1018 	}
   1019       while (ssym != tosym);
   1020     }
   1021   if (tosym->binding() == elfcpp::STB_LOCAL
   1022       || ((tosym->visibility() == elfcpp::STV_HIDDEN
   1023 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
   1024 	  && (tosym->binding() == elfcpp::STB_GLOBAL
   1025 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
   1026 	      || tosym->binding() == elfcpp::STB_WEAK)
   1027 	  && !parameters->options().relocatable()))
   1028     this->force_local(tosym);
   1029 }
   1030 
   1031 // Instantiate the templates we need.  We could use the configure
   1032 // script to restrict this to only the ones needed for implemented
   1033 // targets.
   1034 
   1035 // We have to instantiate both big and little endian versions because
   1036 // these are used by other templates that depends on size only.
   1037 
   1038 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1039 template
   1040 void
   1041 Symbol_table::resolve<32, false>(
   1042     Sized_symbol<32>* to,
   1043     const elfcpp::Sym<32, false>& sym,
   1044     unsigned int st_shndx,
   1045     bool is_ordinary,
   1046     unsigned int orig_st_shndx,
   1047     Object* object,
   1048     const char* version);
   1049 
   1050 template
   1051 void
   1052 Symbol_table::resolve<32, true>(
   1053     Sized_symbol<32>* to,
   1054     const elfcpp::Sym<32, true>& sym,
   1055     unsigned int st_shndx,
   1056     bool is_ordinary,
   1057     unsigned int orig_st_shndx,
   1058     Object* object,
   1059     const char* version);
   1060 #endif
   1061 
   1062 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1063 template
   1064 void
   1065 Symbol_table::resolve<64, false>(
   1066     Sized_symbol<64>* to,
   1067     const elfcpp::Sym<64, false>& sym,
   1068     unsigned int st_shndx,
   1069     bool is_ordinary,
   1070     unsigned int orig_st_shndx,
   1071     Object* object,
   1072     const char* version);
   1073 
   1074 template
   1075 void
   1076 Symbol_table::resolve<64, true>(
   1077     Sized_symbol<64>* to,
   1078     const elfcpp::Sym<64, true>& sym,
   1079     unsigned int st_shndx,
   1080     bool is_ordinary,
   1081     unsigned int orig_st_shndx,
   1082     Object* object,
   1083     const char* version);
   1084 #endif
   1085 
   1086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1087 template
   1088 void
   1089 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
   1090 					const Sized_symbol<32>*);
   1091 #endif
   1092 
   1093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1094 template
   1095 void
   1096 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
   1097 					const Sized_symbol<64>*);
   1098 #endif
   1099 
   1100 } // End namespace gold.
   1101