Home | History | Annotate | Download | only in AArch64
      1 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AArch64PromoteConstant pass which promotes constants
     11 // to global variables when this is likely to be more efficient. Currently only
     12 // types related to constant vector (i.e., constant vector, array of constant
     13 // vectors, constant structure with a constant vector field, etc.) are promoted
     14 // to global variables. Constant vectors are likely to be lowered in target
     15 // constant pool during instruction selection already; therefore, the access
     16 // will remain the same (memory load), but the structure types are not split
     17 // into different constant pool accesses for each field. A bonus side effect is
     18 // that created globals may be merged by the global merge pass.
     19 //
     20 // FIXME: This pass may be useful for other targets too.
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "AArch64.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/IRBuilder.h"
     33 #include "llvm/IR/InlineAsm.h"
     34 #include "llvm/IR/InstIterator.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/Pass.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "aarch64-promote-const"
     46 
     47 // Stress testing mode - disable heuristics.
     48 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
     49                             cl::desc("Promote all vector constants"));
     50 
     51 STATISTIC(NumPromoted, "Number of promoted constants");
     52 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
     53 
     54 //===----------------------------------------------------------------------===//
     55 //                       AArch64PromoteConstant
     56 //===----------------------------------------------------------------------===//
     57 
     58 namespace {
     59 /// Promotes interesting constant into global variables.
     60 /// The motivating example is:
     61 /// static const uint16_t TableA[32] = {
     62 ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
     63 ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
     64 ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
     65 ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
     66 /// };
     67 ///
     68 /// uint8x16x4_t LoadStatic(void) {
     69 ///   uint8x16x4_t ret;
     70 ///   ret.val[0] = vld1q_u16(TableA +  0);
     71 ///   ret.val[1] = vld1q_u16(TableA +  8);
     72 ///   ret.val[2] = vld1q_u16(TableA + 16);
     73 ///   ret.val[3] = vld1q_u16(TableA + 24);
     74 ///   return ret;
     75 /// }
     76 ///
     77 /// The constants in this example are folded into the uses. Thus, 4 different
     78 /// constants are created.
     79 ///
     80 /// As their type is vector the cheapest way to create them is to load them
     81 /// for the memory.
     82 ///
     83 /// Therefore the final assembly final has 4 different loads. With this pass
     84 /// enabled, only one load is issued for the constants.
     85 class AArch64PromoteConstant : public ModulePass {
     86 
     87 public:
     88   static char ID;
     89   AArch64PromoteConstant() : ModulePass(ID) {}
     90 
     91   const char *getPassName() const override { return "AArch64 Promote Constant"; }
     92 
     93   /// Iterate over the functions and promote the interesting constants into
     94   /// global variables with module scope.
     95   bool runOnModule(Module &M) override {
     96     DEBUG(dbgs() << getPassName() << '\n');
     97     bool Changed = false;
     98     for (auto &MF : M) {
     99       Changed |= runOnFunction(MF);
    100     }
    101     return Changed;
    102   }
    103 
    104 private:
    105   /// Look for interesting constants used within the given function.
    106   /// Promote them into global variables, load these global variables within
    107   /// the related function, so that the number of inserted load is minimal.
    108   bool runOnFunction(Function &F);
    109 
    110   // This transformation requires dominator info
    111   void getAnalysisUsage(AnalysisUsage &AU) const override {
    112     AU.setPreservesCFG();
    113     AU.addRequired<DominatorTreeWrapperPass>();
    114     AU.addPreserved<DominatorTreeWrapperPass>();
    115   }
    116 
    117   /// Type to store a list of Uses.
    118   typedef SmallVector<Use *, 4> Uses;
    119   /// Map an insertion point to all the uses it dominates.
    120   typedef DenseMap<Instruction *, Uses> InsertionPoints;
    121   /// Map a function to the required insertion point of load for a
    122   /// global variable.
    123   typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
    124 
    125   /// Find the closest point that dominates the given Use.
    126   Instruction *findInsertionPoint(Use &Use);
    127 
    128   /// Check if the given insertion point is dominated by an existing
    129   /// insertion point.
    130   /// If true, the given use is added to the list of dominated uses for
    131   /// the related existing point.
    132   /// \param NewPt the insertion point to be checked
    133   /// \param Use the use to be added into the list of dominated uses
    134   /// \param InsertPts existing insertion points
    135   /// \pre NewPt and all instruction in InsertPts belong to the same function
    136   /// \return true if one of the insertion point in InsertPts dominates NewPt,
    137   ///         false otherwise
    138   bool isDominated(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
    139 
    140   /// Check if the given insertion point can be merged with an existing
    141   /// insertion point in a common dominator.
    142   /// If true, the given use is added to the list of the created insertion
    143   /// point.
    144   /// \param NewPt the insertion point to be checked
    145   /// \param Use the use to be added into the list of dominated uses
    146   /// \param InsertPts existing insertion points
    147   /// \pre NewPt and all instruction in InsertPts belong to the same function
    148   /// \pre isDominated returns false for the exact same parameters.
    149   /// \return true if it exists an insertion point in InsertPts that could
    150   ///         have been merged with NewPt in a common dominator,
    151   ///         false otherwise
    152   bool tryAndMerge(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
    153 
    154   /// Compute the minimal insertion points to dominates all the interesting
    155   /// uses of value.
    156   /// Insertion points are group per function and each insertion point
    157   /// contains a list of all the uses it dominates within the related function
    158   /// \param Val constant to be examined
    159   /// \param[out] InsPtsPerFunc output storage of the analysis
    160   void computeInsertionPoints(Constant *Val,
    161                               InsertionPointsPerFunc &InsPtsPerFunc);
    162 
    163   /// Insert a definition of a new global variable at each point contained in
    164   /// InsPtsPerFunc and update the related uses (also contained in
    165   /// InsPtsPerFunc).
    166   bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
    167 
    168   /// Compute the minimal insertion points to dominate all the interesting
    169   /// uses of Val and insert a definition of a new global variable
    170   /// at these points.
    171   /// Also update the uses of Val accordingly.
    172   /// Currently a use of Val is considered interesting if:
    173   /// - Val is not UndefValue
    174   /// - Val is not zeroinitialized
    175   /// - Replacing Val per a load of a global variable is valid.
    176   /// \see shouldConvert for more details
    177   bool computeAndInsertDefinitions(Constant *Val);
    178 
    179   /// Promote the given constant into a global variable if it is expected to
    180   /// be profitable.
    181   /// \return true if Cst has been promoted
    182   bool promoteConstant(Constant *Cst);
    183 
    184   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
    185   /// Append Use to this list and delete the entry of IPI in InsertPts.
    186   static void appendAndTransferDominatedUses(Instruction *NewPt, Use &Use,
    187                                              InsertionPoints::iterator &IPI,
    188                                              InsertionPoints &InsertPts) {
    189     // Record the dominated use.
    190     IPI->second.push_back(&Use);
    191     // Transfer the dominated uses of IPI to NewPt
    192     // Inserting into the DenseMap may invalidate existing iterator.
    193     // Keep a copy of the key to find the iterator to erase.  Keep a copy of the
    194     // value so that we don't have to dereference IPI->second.
    195     Instruction *OldInstr = IPI->first;
    196     Uses OldUses = std::move(IPI->second);
    197     InsertPts[NewPt] = std::move(OldUses);
    198     // Erase IPI.
    199     InsertPts.erase(OldInstr);
    200   }
    201 };
    202 } // end anonymous namespace
    203 
    204 char AArch64PromoteConstant::ID = 0;
    205 
    206 namespace llvm {
    207 void initializeAArch64PromoteConstantPass(PassRegistry &);
    208 }
    209 
    210 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
    211                       "AArch64 Promote Constant Pass", false, false)
    212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    213 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
    214                     "AArch64 Promote Constant Pass", false, false)
    215 
    216 ModulePass *llvm::createAArch64PromoteConstantPass() {
    217   return new AArch64PromoteConstant();
    218 }
    219 
    220 /// Check if the given type uses a vector type.
    221 static bool isConstantUsingVectorTy(const Type *CstTy) {
    222   if (CstTy->isVectorTy())
    223     return true;
    224   if (CstTy->isStructTy()) {
    225     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
    226          EltIdx < EndEltIdx; ++EltIdx)
    227       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
    228         return true;
    229   } else if (CstTy->isArrayTy())
    230     return isConstantUsingVectorTy(CstTy->getArrayElementType());
    231   return false;
    232 }
    233 
    234 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
    235 /// a load of a global variable initialized with Cst.
    236 /// A use should be converted if it is legal to do so.
    237 /// For instance, it is not legal to turn the mask operand of a shuffle vector
    238 /// into a load of a global variable.
    239 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
    240                              unsigned OpIdx) {
    241   // shufflevector instruction expects a const for the mask argument, i.e., the
    242   // third argument. Do not promote this use in that case.
    243   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
    244     return false;
    245 
    246   // extractvalue instruction expects a const idx.
    247   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
    248     return false;
    249 
    250   // extractvalue instruction expects a const idx.
    251   if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
    252     return false;
    253 
    254   if (isa<const AllocaInst>(Instr) && OpIdx > 0)
    255     return false;
    256 
    257   // Alignment argument must be constant.
    258   if (isa<const LoadInst>(Instr) && OpIdx > 0)
    259     return false;
    260 
    261   // Alignment argument must be constant.
    262   if (isa<const StoreInst>(Instr) && OpIdx > 1)
    263     return false;
    264 
    265   // Index must be constant.
    266   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
    267     return false;
    268 
    269   // Personality function and filters must be constant.
    270   // Give up on that instruction.
    271   if (isa<const LandingPadInst>(Instr))
    272     return false;
    273 
    274   // Switch instruction expects constants to compare to.
    275   if (isa<const SwitchInst>(Instr))
    276     return false;
    277 
    278   // Expected address must be a constant.
    279   if (isa<const IndirectBrInst>(Instr))
    280     return false;
    281 
    282   // Do not mess with intrinsics.
    283   if (isa<const IntrinsicInst>(Instr))
    284     return false;
    285 
    286   // Do not mess with inline asm.
    287   const CallInst *CI = dyn_cast<const CallInst>(Instr);
    288   if (CI && isa<const InlineAsm>(CI->getCalledValue()))
    289     return false;
    290 
    291   return true;
    292 }
    293 
    294 /// Check if the given Cst should be converted into
    295 /// a load of a global variable initialized with Cst.
    296 /// A constant should be converted if it is likely that the materialization of
    297 /// the constant will be tricky. Thus, we give up on zero or undef values.
    298 ///
    299 /// \todo Currently, accept only vector related types.
    300 /// Also we give up on all simple vector type to keep the existing
    301 /// behavior. Otherwise, we should push here all the check of the lowering of
    302 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
    303 /// constant via global merge and the fact that the same constant is stored
    304 /// only once with this method (versus, as many function that uses the constant
    305 /// for the regular approach, even for float).
    306 /// Again, the simplest solution would be to promote every
    307 /// constant and rematerialize them when they are actually cheap to create.
    308 static bool shouldConvert(const Constant *Cst) {
    309   if (isa<const UndefValue>(Cst))
    310     return false;
    311 
    312   // FIXME: In some cases, it may be interesting to promote in memory
    313   // a zero initialized constant.
    314   // E.g., when the type of Cst require more instructions than the
    315   // adrp/add/load sequence or when this sequence can be shared by several
    316   // instances of Cst.
    317   // Ideally, we could promote this into a global and rematerialize the constant
    318   // when it was a bad idea.
    319   if (Cst->isZeroValue())
    320     return false;
    321 
    322   if (Stress)
    323     return true;
    324 
    325   // FIXME: see function \todo
    326   if (Cst->getType()->isVectorTy())
    327     return false;
    328   return isConstantUsingVectorTy(Cst->getType());
    329 }
    330 
    331 Instruction *AArch64PromoteConstant::findInsertionPoint(Use &Use) {
    332   Instruction *User = cast<Instruction>(Use.getUser());
    333 
    334   // If this user is a phi, the insertion point is in the related
    335   // incoming basic block.
    336   if (PHINode *PhiInst = dyn_cast<PHINode>(User))
    337     return PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
    338 
    339   return User;
    340 }
    341 
    342 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Use &Use,
    343                                          InsertionPoints &InsertPts) {
    344 
    345   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    346       *NewPt->getParent()->getParent()).getDomTree();
    347 
    348   // Traverse all the existing insertion points and check if one is dominating
    349   // NewPt. If it is, remember that.
    350   for (auto &IPI : InsertPts) {
    351     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
    352         // When IPI.first is a terminator instruction, DT may think that
    353         // the result is defined on the edge.
    354         // Here we are testing the insertion point, not the definition.
    355         (IPI.first->getParent() != NewPt->getParent() &&
    356          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
    357       // No need to insert this point. Just record the dominated use.
    358       DEBUG(dbgs() << "Insertion point dominated by:\n");
    359       DEBUG(IPI.first->print(dbgs()));
    360       DEBUG(dbgs() << '\n');
    361       IPI.second.push_back(&Use);
    362       return true;
    363     }
    364   }
    365   return false;
    366 }
    367 
    368 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Use &Use,
    369                                          InsertionPoints &InsertPts) {
    370   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    371       *NewPt->getParent()->getParent()).getDomTree();
    372   BasicBlock *NewBB = NewPt->getParent();
    373 
    374   // Traverse all the existing insertion point and check if one is dominated by
    375   // NewPt and thus useless or can be combined with NewPt into a common
    376   // dominator.
    377   for (InsertionPoints::iterator IPI = InsertPts.begin(),
    378                                  EndIPI = InsertPts.end();
    379        IPI != EndIPI; ++IPI) {
    380     BasicBlock *CurBB = IPI->first->getParent();
    381     if (NewBB == CurBB) {
    382       // Instructions are in the same block.
    383       // By construction, NewPt is dominating the other.
    384       // Indeed, isDominated returned false with the exact same arguments.
    385       DEBUG(dbgs() << "Merge insertion point with:\n");
    386       DEBUG(IPI->first->print(dbgs()));
    387       DEBUG(dbgs() << "\nat considered insertion point.\n");
    388       appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
    389       return true;
    390     }
    391 
    392     // Look for a common dominator
    393     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
    394     // If none exists, we cannot merge these two points.
    395     if (!CommonDominator)
    396       continue;
    397 
    398     if (CommonDominator != NewBB) {
    399       // By construction, the CommonDominator cannot be CurBB.
    400       assert(CommonDominator != CurBB &&
    401              "Instruction has not been rejected during isDominated check!");
    402       // Take the last instruction of the CommonDominator as insertion point
    403       NewPt = CommonDominator->getTerminator();
    404     }
    405     // else, CommonDominator is the block of NewBB, hence NewBB is the last
    406     // possible insertion point in that block.
    407     DEBUG(dbgs() << "Merge insertion point with:\n");
    408     DEBUG(IPI->first->print(dbgs()));
    409     DEBUG(dbgs() << '\n');
    410     DEBUG(NewPt->print(dbgs()));
    411     DEBUG(dbgs() << '\n');
    412     appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
    413     return true;
    414   }
    415   return false;
    416 }
    417 
    418 void AArch64PromoteConstant::computeInsertionPoints(
    419     Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
    420   DEBUG(dbgs() << "** Compute insertion points **\n");
    421   for (Use &Use : Val->uses()) {
    422     Instruction *User = dyn_cast<Instruction>(Use.getUser());
    423 
    424     // If the user is not an Instruction, we cannot modify it.
    425     if (!User)
    426       continue;
    427 
    428     // Filter out uses that should not be converted.
    429     if (!shouldConvertUse(Val, User, Use.getOperandNo()))
    430       continue;
    431 
    432     DEBUG(dbgs() << "Considered use, opidx " << Use.getOperandNo() << ":\n");
    433     DEBUG(User->print(dbgs()));
    434     DEBUG(dbgs() << '\n');
    435 
    436     Instruction *InsertionPoint = findInsertionPoint(Use);
    437 
    438     DEBUG(dbgs() << "Considered insertion point:\n");
    439     DEBUG(InsertionPoint->print(dbgs()));
    440     DEBUG(dbgs() << '\n');
    441 
    442     // Check if the current insertion point is useless, i.e., it is dominated
    443     // by another one.
    444     InsertionPoints &InsertPts =
    445         InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
    446     if (isDominated(InsertionPoint, Use, InsertPts))
    447       continue;
    448     // This insertion point is useful, check if we can merge some insertion
    449     // point in a common dominator or if NewPt dominates an existing one.
    450     if (tryAndMerge(InsertionPoint, Use, InsertPts))
    451       continue;
    452 
    453     DEBUG(dbgs() << "Keep considered insertion point\n");
    454 
    455     // It is definitely useful by its own
    456     InsertPts[InsertionPoint].push_back(&Use);
    457   }
    458 }
    459 
    460 bool AArch64PromoteConstant::insertDefinitions(
    461     Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
    462   // We will create one global variable per Module.
    463   DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
    464   bool HasChanged = false;
    465 
    466   // Traverse all insertion points in all the function.
    467   for (const auto &FctToInstPtsIt : InsPtsPerFunc) {
    468     const InsertionPoints &InsertPts = FctToInstPtsIt.second;
    469 // Do more checking for debug purposes.
    470 #ifndef NDEBUG
    471     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    472                             *FctToInstPtsIt.first).getDomTree();
    473 #endif
    474     assert(!InsertPts.empty() && "Empty uses does not need a definition");
    475 
    476     Module *M = FctToInstPtsIt.first->getParent();
    477     GlobalVariable *&PromotedGV = ModuleToMergedGV[M];
    478     if (!PromotedGV) {
    479       PromotedGV = new GlobalVariable(
    480           *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
    481           "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
    482       PromotedGV->setInitializer(Cst);
    483       DEBUG(dbgs() << "Global replacement: ");
    484       DEBUG(PromotedGV->print(dbgs()));
    485       DEBUG(dbgs() << '\n');
    486       ++NumPromoted;
    487       HasChanged = true;
    488     }
    489 
    490     for (const auto &IPI : InsertPts) {
    491       // Create the load of the global variable.
    492       IRBuilder<> Builder(IPI.first);
    493       LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
    494       DEBUG(dbgs() << "**********\n");
    495       DEBUG(dbgs() << "New def: ");
    496       DEBUG(LoadedCst->print(dbgs()));
    497       DEBUG(dbgs() << '\n');
    498 
    499       // Update the dominated uses.
    500       for (Use *Use : IPI.second) {
    501 #ifndef NDEBUG
    502         assert(DT.dominates(LoadedCst, findInsertionPoint(*Use)) &&
    503                "Inserted definition does not dominate all its uses!");
    504 #endif
    505         DEBUG(dbgs() << "Use to update " << Use->getOperandNo() << ":");
    506         DEBUG(Use->getUser()->print(dbgs()));
    507         DEBUG(dbgs() << '\n');
    508         Use->set(LoadedCst);
    509         ++NumPromotedUses;
    510       }
    511     }
    512   }
    513   return HasChanged;
    514 }
    515 
    516 bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
    517   InsertionPointsPerFunc InsertPtsPerFunc;
    518   computeInsertionPoints(Val, InsertPtsPerFunc);
    519   return insertDefinitions(Val, InsertPtsPerFunc);
    520 }
    521 
    522 bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
    523   assert(Cst && "Given variable is not a valid constant.");
    524 
    525   if (!shouldConvert(Cst))
    526     return false;
    527 
    528   DEBUG(dbgs() << "******************************\n");
    529   DEBUG(dbgs() << "Candidate constant: ");
    530   DEBUG(Cst->print(dbgs()));
    531   DEBUG(dbgs() << '\n');
    532 
    533   return computeAndInsertDefinitions(Cst);
    534 }
    535 
    536 bool AArch64PromoteConstant::runOnFunction(Function &F) {
    537   // Look for instructions using constant vector. Promote that constant to a
    538   // global variable. Create as few loads of this variable as possible and
    539   // update the uses accordingly.
    540   bool LocalChange = false;
    541   SmallPtrSet<Constant *, 8> AlreadyChecked;
    542 
    543   for (Instruction &I : instructions(&F)) {
    544     // Traverse the operand, looking for constant vectors. Replace them by a
    545     // load of a global variable of constant vector type.
    546     for (Value *Op : I.operand_values()) {
    547       Constant *Cst = dyn_cast<Constant>(Op);
    548       // There is no point in promoting global values as they are already
    549       // global. Do not promote constant expressions either, as they may
    550       // require some code expansion.
    551       if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
    552           AlreadyChecked.insert(Cst).second)
    553         LocalChange |= promoteConstant(Cst);
    554     }
    555   }
    556   return LocalChange;
    557 }
    558