1 //===-- PGOInstrumentation.cpp - MST-based PGO Instrumentation ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements PGO instrumentation using a minimum spanning tree based 11 // on the following paper: 12 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points 13 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, 14 // Issue 3, pp 313-322 15 // The idea of the algorithm based on the fact that for each node (except for 16 // the entry and exit), the sum of incoming edge counts equals the sum of 17 // outgoing edge counts. The count of edge on spanning tree can be derived from 18 // those edges not on the spanning tree. Knuth proves this method instruments 19 // the minimum number of edges. 20 // 21 // The minimal spanning tree here is actually a maximum weight tree -- on-tree 22 // edges have higher frequencies (more likely to execute). The idea is to 23 // instrument those less frequently executed edges to reduce the runtime 24 // overhead of instrumented binaries. 25 // 26 // This file contains two passes: 27 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge 28 // count profile, and 29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and 30 // annotates the branch weights. 31 // To get the precise counter information, These two passes need to invoke at 32 // the same compilation point (so they see the same IR). For pass 33 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For 34 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and 35 // the profile is opened in module level and passed to each PGOUseFunc instance. 36 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put 37 // in class FuncPGOInstrumentation. 38 // 39 // Class PGOEdge represents a CFG edge and some auxiliary information. Class 40 // BBInfo contains auxiliary information for each BB. These two classes are used 41 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived 42 // class of PGOEdge and BBInfo, respectively. They contains extra data structure 43 // used in populating profile counters. 44 // The MST implementation is in Class CFGMST (CFGMST.h). 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Transforms/Instrumentation.h" 49 #include "CFGMST.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/Statistic.h" 53 #include "llvm/Analysis/BlockFrequencyInfo.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/IR/DiagnosticInfo.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstIterator.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/Pass.h" 64 #include "llvm/ProfileData/InstrProfReader.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/JamCRC.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include <string> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "pgo-instrumentation" 76 77 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); 78 STATISTIC(NumOfPGOEdge, "Number of edges."); 79 STATISTIC(NumOfPGOBB, "Number of basic-blocks."); 80 STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); 81 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); 82 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); 83 STATISTIC(NumOfPGOMissing, "Number of functions without profile."); 84 85 // Command line option to specify the file to read profile from. This is 86 // mainly used for testing. 87 static cl::opt<std::string> 88 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, 89 cl::value_desc("filename"), 90 cl::desc("Specify the path of profile data file. This is" 91 "mainly for test purpose.")); 92 93 namespace { 94 class PGOInstrumentationGen : public ModulePass { 95 public: 96 static char ID; 97 98 PGOInstrumentationGen() : ModulePass(ID) { 99 initializePGOInstrumentationGenPass(*PassRegistry::getPassRegistry()); 100 } 101 102 const char *getPassName() const override { 103 return "PGOInstrumentationGenPass"; 104 } 105 106 private: 107 bool runOnModule(Module &M) override; 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 111 } 112 }; 113 114 class PGOInstrumentationUse : public ModulePass { 115 public: 116 static char ID; 117 118 // Provide the profile filename as the parameter. 119 PGOInstrumentationUse(std::string Filename = "") 120 : ModulePass(ID), ProfileFileName(Filename) { 121 if (!PGOTestProfileFile.empty()) 122 ProfileFileName = PGOTestProfileFile; 123 initializePGOInstrumentationUsePass(*PassRegistry::getPassRegistry()); 124 } 125 126 const char *getPassName() const override { 127 return "PGOInstrumentationUsePass"; 128 } 129 130 private: 131 std::string ProfileFileName; 132 std::unique_ptr<IndexedInstrProfReader> PGOReader; 133 bool runOnModule(Module &M) override; 134 135 void getAnalysisUsage(AnalysisUsage &AU) const override { 136 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 137 } 138 }; 139 } // end anonymous namespace 140 141 char PGOInstrumentationGen::ID = 0; 142 INITIALIZE_PASS_BEGIN(PGOInstrumentationGen, "pgo-instr-gen", 143 "PGO instrumentation.", false, false) 144 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 145 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 146 INITIALIZE_PASS_END(PGOInstrumentationGen, "pgo-instr-gen", 147 "PGO instrumentation.", false, false) 148 149 ModulePass *llvm::createPGOInstrumentationGenPass() { 150 return new PGOInstrumentationGen(); 151 } 152 153 char PGOInstrumentationUse::ID = 0; 154 INITIALIZE_PASS_BEGIN(PGOInstrumentationUse, "pgo-instr-use", 155 "Read PGO instrumentation profile.", false, false) 156 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 157 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 158 INITIALIZE_PASS_END(PGOInstrumentationUse, "pgo-instr-use", 159 "Read PGO instrumentation profile.", false, false) 160 161 ModulePass *llvm::createPGOInstrumentationUsePass(StringRef Filename) { 162 return new PGOInstrumentationUse(Filename.str()); 163 } 164 165 namespace { 166 /// \brief An MST based instrumentation for PGO 167 /// 168 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO 169 /// in the function level. 170 struct PGOEdge { 171 // This class implements the CFG edges. Note the CFG can be a multi-graph. 172 // So there might be multiple edges with same SrcBB and DestBB. 173 const BasicBlock *SrcBB; 174 const BasicBlock *DestBB; 175 uint64_t Weight; 176 bool InMST; 177 bool Removed; 178 bool IsCritical; 179 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1) 180 : SrcBB(Src), DestBB(Dest), Weight(W), InMST(false), Removed(false), 181 IsCritical(false) {} 182 // Return the information string of an edge. 183 const std::string infoString() const { 184 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + 185 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); 186 } 187 }; 188 189 // This class stores the auxiliary information for each BB. 190 struct BBInfo { 191 BBInfo *Group; 192 uint32_t Index; 193 uint32_t Rank; 194 195 BBInfo(unsigned IX) : Group(this), Index(IX), Rank(0) {} 196 197 // Return the information string of this object. 198 const std::string infoString() const { 199 return (Twine("Index=") + Twine(Index)).str(); 200 } 201 }; 202 203 // This class implements the CFG edges. Note the CFG can be a multi-graph. 204 template <class Edge, class BBInfo> class FuncPGOInstrumentation { 205 private: 206 Function &F; 207 void computeCFGHash(); 208 209 public: 210 std::string FuncName; 211 GlobalVariable *FuncNameVar; 212 // CFG hash value for this function. 213 uint64_t FunctionHash; 214 215 // The Minimum Spanning Tree of function CFG. 216 CFGMST<Edge, BBInfo> MST; 217 218 // Give an edge, find the BB that will be instrumented. 219 // Return nullptr if there is no BB to be instrumented. 220 BasicBlock *getInstrBB(Edge *E); 221 222 // Return the auxiliary BB information. 223 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } 224 225 // Dump edges and BB information. 226 void dumpInfo(std::string Str = "") const { 227 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + 228 Twine(FunctionHash) + "\t" + Str); 229 } 230 231 FuncPGOInstrumentation(Function &Func, bool CreateGlobalVar = false, 232 BranchProbabilityInfo *BPI = nullptr, 233 BlockFrequencyInfo *BFI = nullptr) 234 : F(Func), FunctionHash(0), MST(F, BPI, BFI) { 235 FuncName = getPGOFuncName(F); 236 computeCFGHash(); 237 DEBUG(dumpInfo("after CFGMST")); 238 239 NumOfPGOBB += MST.BBInfos.size(); 240 for (auto &E : MST.AllEdges) { 241 if (E->Removed) 242 continue; 243 NumOfPGOEdge++; 244 if (!E->InMST) 245 NumOfPGOInstrument++; 246 } 247 248 if (CreateGlobalVar) 249 FuncNameVar = createPGOFuncNameVar(F, FuncName); 250 }; 251 }; 252 253 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 254 // value of each BB in the CFG. The higher 32 bits record the number of edges. 255 template <class Edge, class BBInfo> 256 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { 257 std::vector<char> Indexes; 258 JamCRC JC; 259 for (auto &BB : F) { 260 const TerminatorInst *TI = BB.getTerminator(); 261 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 262 BasicBlock *Succ = TI->getSuccessor(I); 263 uint32_t Index = getBBInfo(Succ).Index; 264 for (int J = 0; J < 4; J++) 265 Indexes.push_back((char)(Index >> (J * 8))); 266 } 267 } 268 JC.update(Indexes); 269 FunctionHash = (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); 270 } 271 272 // Given a CFG E to be instrumented, find which BB to place the instrumented 273 // code. The function will split the critical edge if necessary. 274 template <class Edge, class BBInfo> 275 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { 276 if (E->InMST || E->Removed) 277 return nullptr; 278 279 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); 280 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); 281 // For a fake edge, instrument the real BB. 282 if (SrcBB == nullptr) 283 return DestBB; 284 if (DestBB == nullptr) 285 return SrcBB; 286 287 // Instrument the SrcBB if it has a single successor, 288 // otherwise, the DestBB if this is not a critical edge. 289 TerminatorInst *TI = SrcBB->getTerminator(); 290 if (TI->getNumSuccessors() <= 1) 291 return SrcBB; 292 if (!E->IsCritical) 293 return DestBB; 294 295 // For a critical edge, we have to split. Instrument the newly 296 // created BB. 297 NumOfPGOSplit++; 298 DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> " 299 << getBBInfo(DestBB).Index << "\n"); 300 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 301 BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum); 302 assert(InstrBB && "Critical edge is not split"); 303 304 E->Removed = true; 305 return InstrBB; 306 } 307 308 // Visit all edge and instrument the edges not in MST. 309 // Critical edges will be split. 310 static void instrumentOneFunc(Function &F, Module *M, 311 BranchProbabilityInfo *BPI, 312 BlockFrequencyInfo *BFI) { 313 unsigned NumCounters = 0; 314 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, true, BPI, BFI); 315 for (auto &E : FuncInfo.MST.AllEdges) { 316 if (!E->InMST && !E->Removed) 317 NumCounters++; 318 } 319 320 uint32_t I = 0; 321 for (auto &E : FuncInfo.MST.AllEdges) { 322 BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get()); 323 if (!InstrBB) 324 continue; 325 326 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); 327 assert(Builder.GetInsertPoint() != InstrBB->end() && 328 "Cannot get the Instrumentation point"); 329 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); 330 Builder.CreateCall( 331 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), 332 {llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), 333 Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), 334 Builder.getInt32(I++)}); 335 } 336 } 337 338 // This class represents a CFG edge in profile use compilation. 339 struct PGOUseEdge : public PGOEdge { 340 bool CountValid; 341 uint64_t CountValue; 342 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1) 343 : PGOEdge(Src, Dest, W), CountValid(false), CountValue(0) {} 344 345 // Set edge count value 346 void setEdgeCount(uint64_t Value) { 347 CountValue = Value; 348 CountValid = true; 349 } 350 351 // Return the information string for this object. 352 const std::string infoString() const { 353 if (!CountValid) 354 return PGOEdge::infoString(); 355 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)).str(); 356 } 357 }; 358 359 typedef SmallVector<PGOUseEdge *, 2> DirectEdges; 360 361 // This class stores the auxiliary information for each BB. 362 struct UseBBInfo : public BBInfo { 363 uint64_t CountValue; 364 bool CountValid; 365 int32_t UnknownCountInEdge; 366 int32_t UnknownCountOutEdge; 367 DirectEdges InEdges; 368 DirectEdges OutEdges; 369 UseBBInfo(unsigned IX) 370 : BBInfo(IX), CountValue(0), CountValid(false), UnknownCountInEdge(0), 371 UnknownCountOutEdge(0) {} 372 UseBBInfo(unsigned IX, uint64_t C) 373 : BBInfo(IX), CountValue(C), CountValid(true), UnknownCountInEdge(0), 374 UnknownCountOutEdge(0) {} 375 376 // Set the profile count value for this BB. 377 void setBBInfoCount(uint64_t Value) { 378 CountValue = Value; 379 CountValid = true; 380 } 381 382 // Return the information string of this object. 383 const std::string infoString() const { 384 if (!CountValid) 385 return BBInfo::infoString(); 386 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); 387 } 388 }; 389 390 // Sum up the count values for all the edges. 391 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { 392 uint64_t Total = 0; 393 for (auto &E : Edges) { 394 if (E->Removed) 395 continue; 396 Total += E->CountValue; 397 } 398 return Total; 399 } 400 401 class PGOUseFunc { 402 private: 403 Function &F; 404 Module *M; 405 // This member stores the shared information with class PGOGenFunc. 406 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; 407 408 // Return the auxiliary BB information. 409 UseBBInfo &getBBInfo(const BasicBlock *BB) const { 410 return FuncInfo.getBBInfo(BB); 411 } 412 413 // The maximum count value in the profile. This is only used in PGO use 414 // compilation. 415 uint64_t ProgramMaxCount; 416 417 // Find the Instrumented BB and set the value. 418 void setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); 419 420 // Set the edge counter value for the unknown edge -- there should be only 421 // one unknown edge. 422 void setEdgeCount(DirectEdges &Edges, uint64_t Value); 423 424 // Return FuncName string; 425 const std::string getFuncName() const { return FuncInfo.FuncName; } 426 427 // Set the hot/cold inline hints based on the count values. 428 // FIXME: This function should be removed once the functionality in 429 // the inliner is implemented. 430 void applyFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { 431 if (ProgramMaxCount == 0) 432 return; 433 // Threshold of the hot functions. 434 const BranchProbability HotFunctionThreshold(1, 100); 435 // Threshold of the cold functions. 436 const BranchProbability ColdFunctionThreshold(2, 10000); 437 if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount)) 438 F.addFnAttr(llvm::Attribute::InlineHint); 439 else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount)) 440 F.addFnAttr(llvm::Attribute::Cold); 441 } 442 443 public: 444 PGOUseFunc(Function &Func, Module *Modu, BranchProbabilityInfo *BPI = nullptr, 445 BlockFrequencyInfo *BFI = nullptr) 446 : F(Func), M(Modu), FuncInfo(Func, false, BPI, BFI) {} 447 448 // Read counts for the instrumented BB from profile. 449 bool readCounters(IndexedInstrProfReader *PGOReader); 450 451 // Populate the counts for all BBs. 452 void populateCounters(); 453 454 // Set the branch weights based on the count values. 455 void setBranchWeights(); 456 }; 457 458 // Visit all the edges and assign the count value for the instrumented 459 // edges and the BB. 460 void PGOUseFunc::setInstrumentedCounts( 461 const std::vector<uint64_t> &CountFromProfile) { 462 463 // Use a worklist as we will update the vector during the iteration. 464 std::vector<PGOUseEdge *> WorkList; 465 for (auto &E : FuncInfo.MST.AllEdges) 466 WorkList.push_back(E.get()); 467 468 uint32_t I = 0; 469 for (auto &E : WorkList) { 470 BasicBlock *InstrBB = FuncInfo.getInstrBB(E); 471 if (!InstrBB) 472 continue; 473 uint64_t CountValue = CountFromProfile[I++]; 474 if (!E->Removed) { 475 getBBInfo(InstrBB).setBBInfoCount(CountValue); 476 E->setEdgeCount(CountValue); 477 continue; 478 } 479 480 // Need to add two new edges. 481 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); 482 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); 483 // Add new edge of SrcBB->InstrBB. 484 PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0); 485 NewEdge.setEdgeCount(CountValue); 486 // Add new edge of InstrBB->DestBB. 487 PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0); 488 NewEdge1.setEdgeCount(CountValue); 489 NewEdge1.InMST = true; 490 getBBInfo(InstrBB).setBBInfoCount(CountValue); 491 } 492 } 493 494 // Set the count value for the unknown edge. There should be one and only one 495 // unknown edge in Edges vector. 496 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { 497 for (auto &E : Edges) { 498 if (E->CountValid) 499 continue; 500 E->setEdgeCount(Value); 501 502 getBBInfo(E->SrcBB).UnknownCountOutEdge--; 503 getBBInfo(E->DestBB).UnknownCountInEdge--; 504 return; 505 } 506 llvm_unreachable("Cannot find the unknown count edge"); 507 } 508 509 // Read the profile from ProfileFileName and assign the value to the 510 // instrumented BB and the edges. This function also updates ProgramMaxCount. 511 // Return true if the profile are successfully read, and false on errors. 512 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader) { 513 auto &Ctx = M->getContext(); 514 ErrorOr<InstrProfRecord> Result = 515 PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); 516 if (std::error_code EC = Result.getError()) { 517 if (EC == instrprof_error::unknown_function) 518 NumOfPGOMissing++; 519 else if (EC == instrprof_error::hash_mismatch || 520 EC == llvm::instrprof_error::malformed) 521 NumOfPGOMismatch++; 522 523 std::string Msg = EC.message() + std::string(" ") + F.getName().str(); 524 Ctx.diagnose( 525 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 526 return false; 527 } 528 std::vector<uint64_t> &CountFromProfile = Result.get().Counts; 529 530 NumOfPGOFunc++; 531 DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); 532 uint64_t ValueSum = 0; 533 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { 534 DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); 535 ValueSum += CountFromProfile[I]; 536 } 537 538 DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); 539 540 getBBInfo(nullptr).UnknownCountOutEdge = 2; 541 getBBInfo(nullptr).UnknownCountInEdge = 2; 542 543 setInstrumentedCounts(CountFromProfile); 544 ProgramMaxCount = PGOReader->getMaximumFunctionCount(); 545 return true; 546 } 547 548 // Populate the counters from instrumented BBs to all BBs. 549 // In the end of this operation, all BBs should have a valid count value. 550 void PGOUseFunc::populateCounters() { 551 // First set up Count variable for all BBs. 552 for (auto &E : FuncInfo.MST.AllEdges) { 553 if (E->Removed) 554 continue; 555 556 const BasicBlock *SrcBB = E->SrcBB; 557 const BasicBlock *DestBB = E->DestBB; 558 UseBBInfo &SrcInfo = getBBInfo(SrcBB); 559 UseBBInfo &DestInfo = getBBInfo(DestBB); 560 SrcInfo.OutEdges.push_back(E.get()); 561 DestInfo.InEdges.push_back(E.get()); 562 SrcInfo.UnknownCountOutEdge++; 563 DestInfo.UnknownCountInEdge++; 564 565 if (!E->CountValid) 566 continue; 567 DestInfo.UnknownCountInEdge--; 568 SrcInfo.UnknownCountOutEdge--; 569 } 570 571 bool Changes = true; 572 unsigned NumPasses = 0; 573 while (Changes) { 574 NumPasses++; 575 Changes = false; 576 577 // For efficient traversal, it's better to start from the end as most 578 // of the instrumented edges are at the end. 579 for (auto &BB : reverse(F)) { 580 UseBBInfo &Count = getBBInfo(&BB); 581 if (!Count.CountValid) { 582 if (Count.UnknownCountOutEdge == 0) { 583 Count.CountValue = sumEdgeCount(Count.OutEdges); 584 Count.CountValid = true; 585 Changes = true; 586 } else if (Count.UnknownCountInEdge == 0) { 587 Count.CountValue = sumEdgeCount(Count.InEdges); 588 Count.CountValid = true; 589 Changes = true; 590 } 591 } 592 if (Count.CountValid) { 593 if (Count.UnknownCountOutEdge == 1) { 594 uint64_t Total = Count.CountValue - sumEdgeCount(Count.OutEdges); 595 setEdgeCount(Count.OutEdges, Total); 596 Changes = true; 597 } 598 if (Count.UnknownCountInEdge == 1) { 599 uint64_t Total = Count.CountValue - sumEdgeCount(Count.InEdges); 600 setEdgeCount(Count.InEdges, Total); 601 Changes = true; 602 } 603 } 604 } 605 } 606 607 DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); 608 // Assert every BB has a valid counter. 609 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; 610 uint64_t FuncMaxCount = FuncEntryCount; 611 for (auto &BB : F) { 612 assert(getBBInfo(&BB).CountValid && "BB count is not valid"); 613 uint64_t Count = getBBInfo(&BB).CountValue; 614 if (Count > FuncMaxCount) 615 FuncMaxCount = Count; 616 } 617 applyFunctionAttributes(FuncEntryCount, FuncMaxCount); 618 619 DEBUG(FuncInfo.dumpInfo("after reading profile.")); 620 } 621 622 // Assign the scaled count values to the BB with multiple out edges. 623 void PGOUseFunc::setBranchWeights() { 624 // Generate MD_prof metadata for every branch instruction. 625 DEBUG(dbgs() << "\nSetting branch weights.\n"); 626 MDBuilder MDB(M->getContext()); 627 for (auto &BB : F) { 628 TerminatorInst *TI = BB.getTerminator(); 629 if (TI->getNumSuccessors() < 2) 630 continue; 631 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 632 continue; 633 if (getBBInfo(&BB).CountValue == 0) 634 continue; 635 636 // We have a non-zero Branch BB. 637 const UseBBInfo &BBCountInfo = getBBInfo(&BB); 638 unsigned Size = BBCountInfo.OutEdges.size(); 639 SmallVector<unsigned, 2> EdgeCounts(Size, 0); 640 uint64_t MaxCount = 0; 641 for (unsigned s = 0; s < Size; s++) { 642 const PGOUseEdge *E = BBCountInfo.OutEdges[s]; 643 const BasicBlock *SrcBB = E->SrcBB; 644 const BasicBlock *DestBB = E->DestBB; 645 if (DestBB == 0) 646 continue; 647 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 648 uint64_t EdgeCount = E->CountValue; 649 if (EdgeCount > MaxCount) 650 MaxCount = EdgeCount; 651 EdgeCounts[SuccNum] = EdgeCount; 652 } 653 assert(MaxCount > 0 && "Bad max count"); 654 uint64_t Scale = calculateCountScale(MaxCount); 655 SmallVector<unsigned, 4> Weights; 656 for (const auto &ECI : EdgeCounts) 657 Weights.push_back(scaleBranchCount(ECI, Scale)); 658 659 TI->setMetadata(llvm::LLVMContext::MD_prof, 660 MDB.createBranchWeights(Weights)); 661 DEBUG(dbgs() << "Weight is: "; 662 for (const auto &W : Weights) { dbgs() << W << " "; } 663 dbgs() << "\n";); 664 } 665 } 666 } // end anonymous namespace 667 668 bool PGOInstrumentationGen::runOnModule(Module &M) { 669 for (auto &F : M) { 670 if (F.isDeclaration()) 671 continue; 672 BranchProbabilityInfo *BPI = 673 &(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI()); 674 BlockFrequencyInfo *BFI = 675 &(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI()); 676 instrumentOneFunc(F, &M, BPI, BFI); 677 } 678 return true; 679 } 680 681 static void setPGOCountOnFunc(PGOUseFunc &Func, 682 IndexedInstrProfReader *PGOReader) { 683 if (Func.readCounters(PGOReader)) { 684 Func.populateCounters(); 685 Func.setBranchWeights(); 686 } 687 } 688 689 bool PGOInstrumentationUse::runOnModule(Module &M) { 690 DEBUG(dbgs() << "Read in profile counters: "); 691 auto &Ctx = M.getContext(); 692 // Read the counter array from file. 693 auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName); 694 if (std::error_code EC = ReaderOrErr.getError()) { 695 Ctx.diagnose( 696 DiagnosticInfoPGOProfile(ProfileFileName.data(), EC.message())); 697 return false; 698 } 699 700 PGOReader = std::move(ReaderOrErr.get()); 701 if (!PGOReader) { 702 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), 703 "Cannot get PGOReader")); 704 return false; 705 } 706 707 for (auto &F : M) { 708 if (F.isDeclaration()) 709 continue; 710 BranchProbabilityInfo *BPI = 711 &(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI()); 712 BlockFrequencyInfo *BFI = 713 &(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI()); 714 PGOUseFunc Func(F, &M, BPI, BFI); 715 setPGOCountOnFunc(Func, PGOReader.get()); 716 } 717 return true; 718 } 719