Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <string.h>
     71 
     72 #include <openssl/bn.h>
     73 #include <openssl/err.h>
     74 #include <openssl/mem.h>
     75 #include <openssl/thread.h>
     76 
     77 #include "internal.h"
     78 #include "../internal.h"
     79 
     80 
     81 /* This file implements the wNAF-based interleaving multi-exponentation method
     82  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
     83  * */
     84 
     85 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
     86  * This is an array  r[]  of values that are either zero or odd with an
     87  * absolute value less than  2^w  satisfying
     88  *     scalar = \sum_j r[j]*2^j
     89  * where at most one of any  w+1  consecutive digits is non-zero
     90  * with the exception that the most significant digit may be only
     91  * w-1 zeros away from that next non-zero digit.
     92  */
     93 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
     94   int window_val;
     95   int ok = 0;
     96   signed char *r = NULL;
     97   int sign = 1;
     98   int bit, next_bit, mask;
     99   size_t len = 0, j;
    100 
    101   if (BN_is_zero(scalar)) {
    102     r = OPENSSL_malloc(1);
    103     if (!r) {
    104       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    105       goto err;
    106     }
    107     r[0] = 0;
    108     *ret_len = 1;
    109     return r;
    110   }
    111 
    112   if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
    113                           values less than 2^7 */
    114   {
    115     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    116     goto err;
    117   }
    118   bit = 1 << w;        /* at most 128 */
    119   next_bit = bit << 1; /* at most 256 */
    120   mask = next_bit - 1; /* at most 255 */
    121 
    122   if (BN_is_negative(scalar)) {
    123     sign = -1;
    124   }
    125 
    126   if (scalar->d == NULL || scalar->top == 0) {
    127     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    128     goto err;
    129   }
    130 
    131   len = BN_num_bits(scalar);
    132   r = OPENSSL_malloc(
    133       len +
    134       1); /* modified wNAF may be one digit longer than binary representation
    135            * (*ret_len will be set to the actual length, i.e. at most
    136            * BN_num_bits(scalar) + 1) */
    137   if (r == NULL) {
    138     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    139     goto err;
    140   }
    141   window_val = scalar->d[0] & mask;
    142   j = 0;
    143   while ((window_val != 0) ||
    144          (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
    145   {
    146     int digit = 0;
    147 
    148     /* 0 <= window_val <= 2^(w+1) */
    149 
    150     if (window_val & 1) {
    151       /* 0 < window_val < 2^(w+1) */
    152 
    153       if (window_val & bit) {
    154         digit = window_val - next_bit; /* -2^w < digit < 0 */
    155 
    156 #if 1 /* modified wNAF */
    157         if (j + w + 1 >= len) {
    158           /* special case for generating modified wNAFs:
    159            * no new bits will be added into window_val,
    160            * so using a positive digit here will decrease
    161            * the total length of the representation */
    162 
    163           digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
    164         }
    165 #endif
    166       } else {
    167         digit = window_val; /* 0 < digit < 2^w */
    168       }
    169 
    170       if (digit <= -bit || digit >= bit || !(digit & 1)) {
    171         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    172         goto err;
    173       }
    174 
    175       window_val -= digit;
    176 
    177       /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
    178        * for modified window NAFs, it may also be 2^w
    179        */
    180       if (window_val != 0 && window_val != next_bit && window_val != bit) {
    181         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    182         goto err;
    183       }
    184     }
    185 
    186     r[j++] = sign * digit;
    187 
    188     window_val >>= 1;
    189     window_val += bit * BN_is_bit_set(scalar, j + w);
    190 
    191     if (window_val > next_bit) {
    192       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    193       goto err;
    194     }
    195   }
    196 
    197   if (j > len + 1) {
    198     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    199     goto err;
    200   }
    201   len = j;
    202   ok = 1;
    203 
    204 err:
    205   if (!ok) {
    206     OPENSSL_free(r);
    207     r = NULL;
    208   }
    209   if (ok) {
    210     *ret_len = len;
    211   }
    212   return r;
    213 }
    214 
    215 
    216 /* TODO: table should be optimised for the wNAF-based implementation,
    217  *       sometimes smaller windows will give better performance
    218  *       (thus the boundaries should be increased)
    219  */
    220 #define EC_window_bits_for_scalar_size(b)                                      \
    221   ((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300                      \
    222                                                    ? 4                         \
    223                                                    : (b) >= 70 ? 3 : (b) >= 20 \
    224                                                                          ? 2   \
    225                                                                          : 1))
    226 
    227 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
    228                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
    229   BN_CTX *new_ctx = NULL;
    230   const EC_POINT *generator = NULL;
    231   EC_POINT *tmp = NULL;
    232   size_t total_num;
    233   size_t i, j;
    234   int k;
    235   int r_is_inverted = 0;
    236   int r_is_at_infinity = 1;
    237   size_t *wsize = NULL;      /* individual window sizes */
    238   signed char **wNAF = NULL; /* individual wNAFs */
    239   size_t *wNAF_len = NULL;
    240   size_t max_len = 0;
    241   size_t num_val;
    242   EC_POINT **val = NULL; /* precomputation */
    243   EC_POINT **v;
    244   EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
    245   int ret = 0;
    246 
    247   if (ctx == NULL) {
    248     ctx = new_ctx = BN_CTX_new();
    249     if (ctx == NULL) {
    250       goto err;
    251     }
    252   }
    253 
    254   /* TODO: This function used to take |points| and |scalars| as arrays of
    255    * |num| elements. The code below should be simplified to work in terms of |p|
    256    * and |p_scalar|. */
    257   size_t num = p != NULL ? 1 : 0;
    258   const EC_POINT **points = p != NULL ? &p : NULL;
    259   const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
    260 
    261   total_num = num;
    262 
    263   if (g_scalar != NULL) {
    264     generator = EC_GROUP_get0_generator(group);
    265     if (generator == NULL) {
    266       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
    267       goto err;
    268     }
    269 
    270     ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
    271   }
    272 
    273 
    274   wsize = OPENSSL_malloc(total_num * sizeof wsize[0]);
    275   wNAF_len = OPENSSL_malloc(total_num * sizeof wNAF_len[0]);
    276   wNAF = OPENSSL_malloc((total_num + 1) *
    277                         sizeof wNAF[0]); /* includes space for pivot */
    278   val_sub = OPENSSL_malloc(total_num * sizeof val_sub[0]);
    279 
    280   /* Ensure wNAF is initialised in case we end up going to err. */
    281   if (wNAF) {
    282     wNAF[0] = NULL; /* preliminary pivot */
    283   }
    284 
    285   if (!wsize || !wNAF_len || !wNAF || !val_sub) {
    286     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    287     goto err;
    288   }
    289 
    290   /* num_val will be the total number of temporarily precomputed points */
    291   num_val = 0;
    292 
    293   for (i = 0; i < total_num; i++) {
    294     size_t bits;
    295 
    296     bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
    297     wsize[i] = EC_window_bits_for_scalar_size(bits);
    298     num_val += (size_t)1 << (wsize[i] - 1);
    299     wNAF[i + 1] = NULL; /* make sure we always have a pivot */
    300     wNAF[i] =
    301         compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
    302     if (wNAF[i] == NULL) {
    303       goto err;
    304     }
    305     if (wNAF_len[i] > max_len) {
    306       max_len = wNAF_len[i];
    307     }
    308   }
    309 
    310   /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
    311    * a pointer to the subarray for the i-th point. */
    312   val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
    313   if (val == NULL) {
    314     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    315     goto err;
    316   }
    317   val[num_val] = NULL; /* pivot element */
    318 
    319   /* allocate points for precomputation */
    320   v = val;
    321   for (i = 0; i < total_num; i++) {
    322     val_sub[i] = v;
    323     for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    324       *v = EC_POINT_new(group);
    325       if (*v == NULL) {
    326         goto err;
    327       }
    328       v++;
    329     }
    330   }
    331   if (!(v == val + num_val)) {
    332     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    333     goto err;
    334   }
    335 
    336   if (!(tmp = EC_POINT_new(group))) {
    337     goto err;
    338   }
    339 
    340   /* prepare precomputed values:
    341    *    val_sub[i][0] :=     points[i]
    342    *    val_sub[i][1] := 3 * points[i]
    343    *    val_sub[i][2] := 5 * points[i]
    344    *    ...
    345    */
    346   for (i = 0; i < total_num; i++) {
    347     if (i < num) {
    348       if (!EC_POINT_copy(val_sub[i][0], points[i])) {
    349         goto err;
    350       }
    351     } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
    352       goto err;
    353     }
    354 
    355     if (wsize[i] > 1) {
    356       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
    357         goto err;
    358       }
    359       for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    360         if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
    361           goto err;
    362         }
    363       }
    364     }
    365   }
    366 
    367 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
    368   if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
    369     goto err;
    370   }
    371 #endif
    372 
    373   r_is_at_infinity = 1;
    374 
    375   for (k = max_len - 1; k >= 0; k--) {
    376     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
    377       goto err;
    378     }
    379 
    380     for (i = 0; i < total_num; i++) {
    381       if (wNAF_len[i] > (size_t)k) {
    382         int digit = wNAF[i][k];
    383         int is_neg;
    384 
    385         if (digit) {
    386           is_neg = digit < 0;
    387 
    388           if (is_neg) {
    389             digit = -digit;
    390           }
    391 
    392           if (is_neg != r_is_inverted) {
    393             if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
    394               goto err;
    395             }
    396             r_is_inverted = !r_is_inverted;
    397           }
    398 
    399           /* digit > 0 */
    400 
    401           if (r_is_at_infinity) {
    402             if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
    403               goto err;
    404             }
    405             r_is_at_infinity = 0;
    406           } else {
    407             if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
    408               goto err;
    409             }
    410           }
    411         }
    412       }
    413     }
    414   }
    415 
    416   if (r_is_at_infinity) {
    417     if (!EC_POINT_set_to_infinity(group, r)) {
    418       goto err;
    419     }
    420   } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
    421     goto err;
    422   }
    423 
    424   ret = 1;
    425 
    426 err:
    427   BN_CTX_free(new_ctx);
    428   EC_POINT_free(tmp);
    429   OPENSSL_free(wsize);
    430   OPENSSL_free(wNAF_len);
    431   if (wNAF != NULL) {
    432     signed char **w;
    433 
    434     for (w = wNAF; *w != NULL; w++) {
    435       OPENSSL_free(*w);
    436     }
    437 
    438     OPENSSL_free(wNAF);
    439   }
    440   if (val != NULL) {
    441     for (v = val; *v != NULL; v++) {
    442       EC_POINT_clear_free(*v);
    443     }
    444 
    445     OPENSSL_free(val);
    446   }
    447   OPENSSL_free(val_sub);
    448   return ret;
    449 }
    450