1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Hash table. The dominant calls are add and lookup, with removals 5 * happening very infrequently. We use probing, and don't worry much 6 * about tombstone removal. 7 */ 8 #include <stdlib.h> 9 #include <assert.h> 10 11 #define LOG_TAG "minzip" 12 #include "Log.h" 13 #include "Hash.h" 14 15 /* table load factor, i.e. how full can it get before we resize */ 16 //#define LOAD_NUMER 3 // 75% 17 //#define LOAD_DENOM 4 18 #define LOAD_NUMER 5 // 62.5% 19 #define LOAD_DENOM 8 20 //#define LOAD_NUMER 1 // 50% 21 //#define LOAD_DENOM 2 22 23 /* 24 * Compute the capacity needed for a table to hold "size" elements. 25 */ 26 size_t mzHashSize(size_t size) { 27 return (size * LOAD_DENOM) / LOAD_NUMER +1; 28 } 29 30 /* 31 * Round up to the next highest power of 2. 32 * 33 * Found on http://graphics.stanford.edu/~seander/bithacks.html. 34 */ 35 unsigned int roundUpPower2(unsigned int val) 36 { 37 val--; 38 val |= val >> 1; 39 val |= val >> 2; 40 val |= val >> 4; 41 val |= val >> 8; 42 val |= val >> 16; 43 val++; 44 45 return val; 46 } 47 48 /* 49 * Create and initialize a hash table. 50 */ 51 HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc) 52 { 53 HashTable* pHashTable; 54 55 assert(initialSize > 0); 56 57 pHashTable = (HashTable*) malloc(sizeof(*pHashTable)); 58 if (pHashTable == NULL) 59 return NULL; 60 61 pHashTable->tableSize = roundUpPower2(initialSize); 62 pHashTable->numEntries = pHashTable->numDeadEntries = 0; 63 pHashTable->freeFunc = freeFunc; 64 pHashTable->pEntries = 65 (HashEntry*) calloc((size_t)pHashTable->tableSize, sizeof(HashTable)); 66 if (pHashTable->pEntries == NULL) { 67 free(pHashTable); 68 return NULL; 69 } 70 71 return pHashTable; 72 } 73 74 /* 75 * Clear out all entries. 76 */ 77 void mzHashTableClear(HashTable* pHashTable) 78 { 79 HashEntry* pEnt; 80 int i; 81 82 pEnt = pHashTable->pEntries; 83 for (i = 0; i < pHashTable->tableSize; i++, pEnt++) { 84 if (pEnt->data == HASH_TOMBSTONE) { 85 // nuke entry 86 pEnt->data = NULL; 87 } else if (pEnt->data != NULL) { 88 // call free func then nuke entry 89 if (pHashTable->freeFunc != NULL) 90 (*pHashTable->freeFunc)(pEnt->data); 91 pEnt->data = NULL; 92 } 93 } 94 95 pHashTable->numEntries = 0; 96 pHashTable->numDeadEntries = 0; 97 } 98 99 /* 100 * Free the table. 101 */ 102 void mzHashTableFree(HashTable* pHashTable) 103 { 104 if (pHashTable == NULL) 105 return; 106 mzHashTableClear(pHashTable); 107 free(pHashTable->pEntries); 108 free(pHashTable); 109 } 110 111 #ifndef NDEBUG 112 /* 113 * Count up the number of tombstone entries in the hash table. 114 */ 115 static int countTombStones(HashTable* pHashTable) 116 { 117 int i, count; 118 119 for (count = i = 0; i < pHashTable->tableSize; i++) { 120 if (pHashTable->pEntries[i].data == HASH_TOMBSTONE) 121 count++; 122 } 123 return count; 124 } 125 #endif 126 127 /* 128 * Resize a hash table. We do this when adding an entry increased the 129 * size of the table beyond its comfy limit. 130 * 131 * This essentially requires re-inserting all elements into the new storage. 132 * 133 * If multiple threads can access the hash table, the table's lock should 134 * have been grabbed before issuing the "lookup+add" call that led to the 135 * resize, so we don't have a synchronization problem here. 136 */ 137 static bool resizeHash(HashTable* pHashTable, int newSize) 138 { 139 HashEntry* pNewEntries; 140 int i; 141 142 assert(countTombStones(pHashTable) == pHashTable->numDeadEntries); 143 144 pNewEntries = (HashEntry*) calloc(newSize, sizeof(HashTable)); 145 if (pNewEntries == NULL) 146 return false; 147 148 for (i = 0; i < pHashTable->tableSize; i++) { 149 void* data = pHashTable->pEntries[i].data; 150 if (data != NULL && data != HASH_TOMBSTONE) { 151 int hashValue = pHashTable->pEntries[i].hashValue; 152 int newIdx; 153 154 /* probe for new spot, wrapping around */ 155 newIdx = hashValue & (newSize-1); 156 while (pNewEntries[newIdx].data != NULL) 157 newIdx = (newIdx + 1) & (newSize-1); 158 159 pNewEntries[newIdx].hashValue = hashValue; 160 pNewEntries[newIdx].data = data; 161 } 162 } 163 164 free(pHashTable->pEntries); 165 pHashTable->pEntries = pNewEntries; 166 pHashTable->tableSize = newSize; 167 pHashTable->numDeadEntries = 0; 168 169 assert(countTombStones(pHashTable) == 0); 170 return true; 171 } 172 173 /* 174 * Look up an entry. 175 * 176 * We probe on collisions, wrapping around the table. 177 */ 178 void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item, 179 HashCompareFunc cmpFunc, bool doAdd) 180 { 181 HashEntry* pEntry; 182 HashEntry* pEnd; 183 void* result = NULL; 184 185 assert(pHashTable->tableSize > 0); 186 assert(item != HASH_TOMBSTONE); 187 assert(item != NULL); 188 189 /* jump to the first entry and probe for a match */ 190 pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)]; 191 pEnd = &pHashTable->pEntries[pHashTable->tableSize]; 192 while (pEntry->data != NULL) { 193 if (pEntry->data != HASH_TOMBSTONE && 194 pEntry->hashValue == itemHash && 195 (*cmpFunc)(pEntry->data, item) == 0) 196 { 197 /* match */ 198 break; 199 } 200 201 pEntry++; 202 if (pEntry == pEnd) { /* wrap around to start */ 203 if (pHashTable->tableSize == 1) 204 break; /* edge case - single-entry table */ 205 pEntry = pHashTable->pEntries; 206 } 207 } 208 209 if (pEntry->data == NULL) { 210 if (doAdd) { 211 pEntry->hashValue = itemHash; 212 pEntry->data = item; 213 pHashTable->numEntries++; 214 215 /* 216 * We've added an entry. See if this brings us too close to full. 217 */ 218 if ((pHashTable->numEntries+pHashTable->numDeadEntries) * LOAD_DENOM 219 > pHashTable->tableSize * LOAD_NUMER) 220 { 221 if (!resizeHash(pHashTable, pHashTable->tableSize * 2)) { 222 /* don't really have a way to indicate failure */ 223 LOGE("Dalvik hash resize failure\n"); 224 abort(); 225 } 226 /* note "pEntry" is now invalid */ 227 } 228 229 /* full table is bad -- search for nonexistent never halts */ 230 assert(pHashTable->numEntries < pHashTable->tableSize); 231 result = item; 232 } else { 233 assert(result == NULL); 234 } 235 } else { 236 result = pEntry->data; 237 } 238 239 return result; 240 } 241 242 /* 243 * Remove an entry from the table. 244 * 245 * Does NOT invoke the "free" function on the item. 246 */ 247 bool mzHashTableRemove(HashTable* pHashTable, unsigned int itemHash, void* item) 248 { 249 HashEntry* pEntry; 250 HashEntry* pEnd; 251 252 assert(pHashTable->tableSize > 0); 253 254 /* jump to the first entry and probe for a match */ 255 pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)]; 256 pEnd = &pHashTable->pEntries[pHashTable->tableSize]; 257 while (pEntry->data != NULL) { 258 if (pEntry->data == item) { 259 pEntry->data = HASH_TOMBSTONE; 260 pHashTable->numEntries--; 261 pHashTable->numDeadEntries++; 262 return true; 263 } 264 265 pEntry++; 266 if (pEntry == pEnd) { /* wrap around to start */ 267 if (pHashTable->tableSize == 1) 268 break; /* edge case - single-entry table */ 269 pEntry = pHashTable->pEntries; 270 } 271 } 272 273 return false; 274 } 275 276 /* 277 * Execute a function on every entry in the hash table. 278 * 279 * If "func" returns a nonzero value, terminate early and return the value. 280 */ 281 int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg) 282 { 283 int i, val; 284 285 for (i = 0; i < pHashTable->tableSize; i++) { 286 HashEntry* pEnt = &pHashTable->pEntries[i]; 287 288 if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) { 289 val = (*func)(pEnt->data, arg); 290 if (val != 0) 291 return val; 292 } 293 } 294 295 return 0; 296 } 297 298 299 /* 300 * Look up an entry, counting the number of times we have to probe. 301 * 302 * Returns -1 if the entry wasn't found. 303 */ 304 int countProbes(HashTable* pHashTable, unsigned int itemHash, const void* item, 305 HashCompareFunc cmpFunc) 306 { 307 HashEntry* pEntry; 308 HashEntry* pEnd; 309 int count = 0; 310 311 assert(pHashTable->tableSize > 0); 312 assert(item != HASH_TOMBSTONE); 313 assert(item != NULL); 314 315 /* jump to the first entry and probe for a match */ 316 pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)]; 317 pEnd = &pHashTable->pEntries[pHashTable->tableSize]; 318 while (pEntry->data != NULL) { 319 if (pEntry->data != HASH_TOMBSTONE && 320 pEntry->hashValue == itemHash && 321 (*cmpFunc)(pEntry->data, item) == 0) 322 { 323 /* match */ 324 break; 325 } 326 327 pEntry++; 328 if (pEntry == pEnd) { /* wrap around to start */ 329 if (pHashTable->tableSize == 1) 330 break; /* edge case - single-entry table */ 331 pEntry = pHashTable->pEntries; 332 } 333 334 count++; 335 } 336 if (pEntry->data == NULL) 337 return -1; 338 339 return count; 340 } 341 342 /* 343 * Evaluate the amount of probing required for the specified hash table. 344 * 345 * We do this by running through all entries in the hash table, computing 346 * the hash value and then doing a lookup. 347 * 348 * The caller should lock the table before calling here. 349 */ 350 void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc, 351 HashCompareFunc cmpFunc) 352 { 353 int numEntries, minProbe, maxProbe, totalProbe; 354 HashIter iter; 355 356 numEntries = maxProbe = totalProbe = 0; 357 minProbe = 65536*32767; 358 359 for (mzHashIterBegin(pHashTable, &iter); !mzHashIterDone(&iter); 360 mzHashIterNext(&iter)) 361 { 362 const void* data = (const void*)mzHashIterData(&iter); 363 int count; 364 365 count = countProbes(pHashTable, (*calcFunc)(data), data, cmpFunc); 366 367 numEntries++; 368 369 if (count < minProbe) 370 minProbe = count; 371 if (count > maxProbe) 372 maxProbe = count; 373 totalProbe += count; 374 } 375 376 LOGV("Probe: min=%d max=%d, total=%d in %d (%d), avg=%.3f\n", 377 minProbe, maxProbe, totalProbe, numEntries, pHashTable->tableSize, 378 (float) totalProbe / (float) numEntries); 379 } 380