Home | History | Annotate | Download | only in eap_peer
      1 /*
      2  * EAP peer state machines (RFC 4137)
      3  * Copyright (c) 2004-2014, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  *
      8  * This file implements the Peer State Machine as defined in RFC 4137. The used
      9  * states and state transitions match mostly with the RFC. However, there are
     10  * couple of additional transitions for working around small issues noticed
     11  * during testing. These exceptions are explained in comments within the
     12  * functions in this file. The method functions, m.func(), are similar to the
     13  * ones used in RFC 4137, but some small changes have used here to optimize
     14  * operations and to add functionality needed for fast re-authentication
     15  * (session resumption).
     16  */
     17 
     18 #include "includes.h"
     19 
     20 #include "common.h"
     21 #include "pcsc_funcs.h"
     22 #include "state_machine.h"
     23 #include "ext_password.h"
     24 #include "crypto/crypto.h"
     25 #include "crypto/tls.h"
     26 #include "crypto/sha256.h"
     27 #include "common/wpa_ctrl.h"
     28 #include "eap_common/eap_wsc_common.h"
     29 #include "eap_i.h"
     30 #include "eap_config.h"
     31 
     32 #define STATE_MACHINE_DATA struct eap_sm
     33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
     34 
     35 #define EAP_MAX_AUTH_ROUNDS 50
     36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
     37 
     38 
     39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
     40 				  EapType method);
     41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
     42 static void eap_sm_processIdentity(struct eap_sm *sm,
     43 				   const struct wpabuf *req);
     44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
     45 static struct wpabuf * eap_sm_buildNotify(int id);
     46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
     47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
     48 static const char * eap_sm_method_state_txt(EapMethodState state);
     49 static const char * eap_sm_decision_txt(EapDecision decision);
     50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
     51 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
     52 			   const char *msg, size_t msglen);
     53 
     54 
     55 
     56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
     57 {
     58 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
     59 }
     60 
     61 
     62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
     63 			   Boolean value)
     64 {
     65 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
     66 }
     67 
     68 
     69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
     70 {
     71 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
     72 }
     73 
     74 
     75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
     76 			  unsigned int value)
     77 {
     78 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
     79 }
     80 
     81 
     82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
     83 {
     84 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
     85 }
     86 
     87 
     88 static void eap_notify_status(struct eap_sm *sm, const char *status,
     89 				      const char *parameter)
     90 {
     91 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
     92 		   status, parameter);
     93 	if (sm->eapol_cb->notify_status)
     94 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
     95 }
     96 
     97 
     98 static void eap_sm_free_key(struct eap_sm *sm)
     99 {
    100 	if (sm->eapKeyData) {
    101 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
    102 		sm->eapKeyData = NULL;
    103 	}
    104 }
    105 
    106 
    107 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
    108 {
    109 	ext_password_free(sm->ext_pw_buf);
    110 	sm->ext_pw_buf = NULL;
    111 
    112 	if (sm->m == NULL || sm->eap_method_priv == NULL)
    113 		return;
    114 
    115 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
    116 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
    117 	sm->m->deinit(sm, sm->eap_method_priv);
    118 	sm->eap_method_priv = NULL;
    119 	sm->m = NULL;
    120 }
    121 
    122 
    123 /**
    124  * eap_allowed_method - Check whether EAP method is allowed
    125  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    126  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
    127  * @method: EAP type
    128  * Returns: 1 = allowed EAP method, 0 = not allowed
    129  */
    130 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
    131 {
    132 	struct eap_peer_config *config = eap_get_config(sm);
    133 	int i;
    134 	struct eap_method_type *m;
    135 
    136 	if (config == NULL || config->eap_methods == NULL)
    137 		return 1;
    138 
    139 	m = config->eap_methods;
    140 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
    141 		     m[i].method != EAP_TYPE_NONE; i++) {
    142 		if (m[i].vendor == vendor && m[i].method == method)
    143 			return 1;
    144 	}
    145 	return 0;
    146 }
    147 
    148 
    149 /*
    150  * This state initializes state machine variables when the machine is
    151  * activated (portEnabled = TRUE). This is also used when re-starting
    152  * authentication (eapRestart == TRUE).
    153  */
    154 SM_STATE(EAP, INITIALIZE)
    155 {
    156 	SM_ENTRY(EAP, INITIALIZE);
    157 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
    158 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
    159 	    !sm->prev_failure &&
    160 	    sm->last_config == eap_get_config(sm)) {
    161 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
    162 			   "fast reauthentication");
    163 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
    164 	} else {
    165 		sm->last_config = eap_get_config(sm);
    166 		eap_deinit_prev_method(sm, "INITIALIZE");
    167 	}
    168 	sm->selectedMethod = EAP_TYPE_NONE;
    169 	sm->methodState = METHOD_NONE;
    170 	sm->allowNotifications = TRUE;
    171 	sm->decision = DECISION_FAIL;
    172 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    173 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    174 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
    175 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
    176 	eap_sm_free_key(sm);
    177 	os_free(sm->eapSessionId);
    178 	sm->eapSessionId = NULL;
    179 	sm->eapKeyAvailable = FALSE;
    180 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
    181 	sm->lastId = -1; /* new session - make sure this does not match with
    182 			  * the first EAP-Packet */
    183 	/*
    184 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
    185 	 * seemed to be able to trigger cases where both were set and if EAPOL
    186 	 * state machine uses eapNoResp first, it may end up not sending a real
    187 	 * reply correctly. This occurred when the workaround in FAIL state set
    188 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
    189 	 * something else(?)
    190 	 */
    191 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
    192 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
    193 	/*
    194 	 * RFC 4137 does not reset ignore here, but since it is possible for
    195 	 * some method code paths to end up not setting ignore=FALSE, clear the
    196 	 * value here to avoid issues if a previous authentication attempt
    197 	 * failed with ignore=TRUE being left behind in the last
    198 	 * m.check(eapReqData) operation.
    199 	 */
    200 	sm->ignore = 0;
    201 	sm->num_rounds = 0;
    202 	sm->prev_failure = 0;
    203 	sm->expected_failure = 0;
    204 	sm->reauthInit = FALSE;
    205 	sm->erp_seq = (u32) -1;
    206 }
    207 
    208 
    209 /*
    210  * This state is reached whenever service from the lower layer is interrupted
    211  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
    212  * occurs when the port becomes enabled.
    213  */
    214 SM_STATE(EAP, DISABLED)
    215 {
    216 	SM_ENTRY(EAP, DISABLED);
    217 	sm->num_rounds = 0;
    218 	/*
    219 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
    220 	 * allows the timer tick to be stopped more quickly when EAP is not in
    221 	 * use.
    222 	 */
    223 	eapol_set_int(sm, EAPOL_idleWhile, 0);
    224 }
    225 
    226 
    227 /*
    228  * The state machine spends most of its time here, waiting for something to
    229  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
    230  * SEND_RESPONSE states.
    231  */
    232 SM_STATE(EAP, IDLE)
    233 {
    234 	SM_ENTRY(EAP, IDLE);
    235 }
    236 
    237 
    238 /*
    239  * This state is entered when an EAP packet is received (eapReq == TRUE) to
    240  * parse the packet header.
    241  */
    242 SM_STATE(EAP, RECEIVED)
    243 {
    244 	const struct wpabuf *eapReqData;
    245 
    246 	SM_ENTRY(EAP, RECEIVED);
    247 	eapReqData = eapol_get_eapReqData(sm);
    248 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
    249 	eap_sm_parseEapReq(sm, eapReqData);
    250 	sm->num_rounds++;
    251 }
    252 
    253 
    254 /*
    255  * This state is entered when a request for a new type comes in. Either the
    256  * correct method is started, or a Nak response is built.
    257  */
    258 SM_STATE(EAP, GET_METHOD)
    259 {
    260 	int reinit;
    261 	EapType method;
    262 	const struct eap_method *eap_method;
    263 
    264 	SM_ENTRY(EAP, GET_METHOD);
    265 
    266 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    267 		method = sm->reqVendorMethod;
    268 	else
    269 		method = sm->reqMethod;
    270 
    271 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
    272 
    273 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
    274 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
    275 			   sm->reqVendor, method);
    276 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    277 			"vendor=%u method=%u -> NAK",
    278 			sm->reqVendor, method);
    279 		eap_notify_status(sm, "refuse proposed method",
    280 				  eap_method ?  eap_method->name : "unknown");
    281 		goto nak;
    282 	}
    283 
    284 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    285 		"vendor=%u method=%u", sm->reqVendor, method);
    286 
    287 	eap_notify_status(sm, "accept proposed method",
    288 			  eap_method ?  eap_method->name : "unknown");
    289 	/*
    290 	 * RFC 4137 does not define specific operation for fast
    291 	 * re-authentication (session resumption). The design here is to allow
    292 	 * the previously used method data to be maintained for
    293 	 * re-authentication if the method support session resumption.
    294 	 * Otherwise, the previously used method data is freed and a new method
    295 	 * is allocated here.
    296 	 */
    297 	if (sm->fast_reauth &&
    298 	    sm->m && sm->m->vendor == sm->reqVendor &&
    299 	    sm->m->method == method &&
    300 	    sm->m->has_reauth_data &&
    301 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
    302 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
    303 			   " for fast re-authentication");
    304 		reinit = 1;
    305 	} else {
    306 		eap_deinit_prev_method(sm, "GET_METHOD");
    307 		reinit = 0;
    308 	}
    309 
    310 	sm->selectedMethod = sm->reqMethod;
    311 	if (sm->m == NULL)
    312 		sm->m = eap_method;
    313 	if (!sm->m) {
    314 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
    315 			   "vendor %d method %d",
    316 			   sm->reqVendor, method);
    317 		goto nak;
    318 	}
    319 
    320 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    321 
    322 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
    323 		   "vendor %u method %u (%s)",
    324 		   sm->reqVendor, method, sm->m->name);
    325 	if (reinit) {
    326 		sm->eap_method_priv = sm->m->init_for_reauth(
    327 			sm, sm->eap_method_priv);
    328 	} else {
    329 		sm->waiting_ext_cert_check = 0;
    330 		sm->ext_cert_check = 0;
    331 		sm->eap_method_priv = sm->m->init(sm);
    332 	}
    333 
    334 	if (sm->eap_method_priv == NULL) {
    335 		struct eap_peer_config *config = eap_get_config(sm);
    336 		wpa_msg(sm->msg_ctx, MSG_INFO,
    337 			"EAP: Failed to initialize EAP method: vendor %u "
    338 			"method %u (%s)",
    339 			sm->reqVendor, method, sm->m->name);
    340 		sm->m = NULL;
    341 		sm->methodState = METHOD_NONE;
    342 		sm->selectedMethod = EAP_TYPE_NONE;
    343 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
    344 		    (config->pending_req_pin ||
    345 		     config->pending_req_passphrase)) {
    346 			/*
    347 			 * Return without generating Nak in order to allow
    348 			 * entering of PIN code or passphrase to retry the
    349 			 * current EAP packet.
    350 			 */
    351 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
    352 				   "request - skip Nak");
    353 			return;
    354 		}
    355 
    356 		goto nak;
    357 	}
    358 
    359 	sm->methodState = METHOD_INIT;
    360 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
    361 		"EAP vendor %u method %u (%s) selected",
    362 		sm->reqVendor, method, sm->m->name);
    363 	return;
    364 
    365 nak:
    366 	wpabuf_free(sm->eapRespData);
    367 	sm->eapRespData = NULL;
    368 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
    369 }
    370 
    371 
    372 #ifdef CONFIG_ERP
    373 
    374 static char * eap_home_realm(struct eap_sm *sm)
    375 {
    376 	struct eap_peer_config *config = eap_get_config(sm);
    377 	char *realm;
    378 	size_t i, realm_len;
    379 
    380 	if (!config)
    381 		return NULL;
    382 
    383 	if (config->identity) {
    384 		for (i = 0; i < config->identity_len; i++) {
    385 			if (config->identity[i] == '@')
    386 				break;
    387 		}
    388 		if (i < config->identity_len) {
    389 			realm_len = config->identity_len - i - 1;
    390 			realm = os_malloc(realm_len + 1);
    391 			if (realm == NULL)
    392 				return NULL;
    393 			os_memcpy(realm, &config->identity[i + 1], realm_len);
    394 			realm[realm_len] = '\0';
    395 			return realm;
    396 		}
    397 	}
    398 
    399 	if (config->anonymous_identity) {
    400 		for (i = 0; i < config->anonymous_identity_len; i++) {
    401 			if (config->anonymous_identity[i] == '@')
    402 				break;
    403 		}
    404 		if (i < config->anonymous_identity_len) {
    405 			realm_len = config->anonymous_identity_len - i - 1;
    406 			realm = os_malloc(realm_len + 1);
    407 			if (realm == NULL)
    408 				return NULL;
    409 			os_memcpy(realm, &config->anonymous_identity[i + 1],
    410 				  realm_len);
    411 			realm[realm_len] = '\0';
    412 			return realm;
    413 		}
    414 	}
    415 
    416 	return os_strdup("");
    417 }
    418 
    419 
    420 static struct eap_erp_key *
    421 eap_erp_get_key(struct eap_sm *sm, const char *realm)
    422 {
    423 	struct eap_erp_key *erp;
    424 
    425 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
    426 		char *pos;
    427 
    428 		pos = os_strchr(erp->keyname_nai, '@');
    429 		if (!pos)
    430 			continue;
    431 		pos++;
    432 		if (os_strcmp(pos, realm) == 0)
    433 			return erp;
    434 	}
    435 
    436 	return NULL;
    437 }
    438 
    439 
    440 static struct eap_erp_key *
    441 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
    442 {
    443 	struct eap_erp_key *erp;
    444 
    445 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
    446 		if (os_strcmp(erp->keyname_nai, nai) == 0)
    447 			return erp;
    448 	}
    449 
    450 	return NULL;
    451 }
    452 
    453 
    454 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
    455 {
    456 	dl_list_del(&erp->list);
    457 	bin_clear_free(erp, sizeof(*erp));
    458 }
    459 
    460 
    461 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
    462 {
    463 	struct eap_erp_key *erp;
    464 
    465 	while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
    466 		wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
    467 			   erp->keyname_nai);
    468 		eap_peer_erp_free_key(erp);
    469 	}
    470 }
    471 
    472 #endif /* CONFIG_ERP */
    473 
    474 
    475 void eap_peer_erp_free_keys(struct eap_sm *sm)
    476 {
    477 #ifdef CONFIG_ERP
    478 	struct eap_erp_key *erp, *tmp;
    479 
    480 	dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
    481 		eap_peer_erp_free_key(erp);
    482 #endif /* CONFIG_ERP */
    483 }
    484 
    485 
    486 static void eap_peer_erp_init(struct eap_sm *sm)
    487 {
    488 #ifdef CONFIG_ERP
    489 	u8 *emsk = NULL;
    490 	size_t emsk_len = 0;
    491 	u8 EMSKname[EAP_EMSK_NAME_LEN];
    492 	u8 len[2];
    493 	char *realm;
    494 	size_t realm_len, nai_buf_len;
    495 	struct eap_erp_key *erp = NULL;
    496 	int pos;
    497 
    498 	realm = eap_home_realm(sm);
    499 	if (!realm)
    500 		return;
    501 	realm_len = os_strlen(realm);
    502 	wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
    503 	eap_erp_remove_keys_realm(sm, realm);
    504 
    505 	nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
    506 	if (nai_buf_len > 253) {
    507 		/*
    508 		 * keyName-NAI has a maximum length of 253 octet to fit in
    509 		 * RADIUS attributes.
    510 		 */
    511 		wpa_printf(MSG_DEBUG,
    512 			   "EAP: Too long realm for ERP keyName-NAI maximum length");
    513 		goto fail;
    514 	}
    515 	nai_buf_len++; /* null termination */
    516 	erp = os_zalloc(sizeof(*erp) + nai_buf_len);
    517 	if (erp == NULL)
    518 		goto fail;
    519 
    520 	emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
    521 	if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
    522 		wpa_printf(MSG_DEBUG,
    523 			   "EAP: No suitable EMSK available for ERP");
    524 		goto fail;
    525 	}
    526 
    527 	wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
    528 
    529 	WPA_PUT_BE16(len, 8);
    530 	if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
    531 			    len, sizeof(len),
    532 			    EMSKname, EAP_EMSK_NAME_LEN) < 0) {
    533 		wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
    534 		goto fail;
    535 	}
    536 	wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
    537 
    538 	pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
    539 			       EMSKname, EAP_EMSK_NAME_LEN);
    540 	erp->keyname_nai[pos] = '@';
    541 	os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
    542 
    543 	WPA_PUT_BE16(len, emsk_len);
    544 	if (hmac_sha256_kdf(emsk, emsk_len,
    545 			    "EAP Re-authentication Root Key (at) ietf.org",
    546 			    len, sizeof(len), erp->rRK, emsk_len) < 0) {
    547 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
    548 		goto fail;
    549 	}
    550 	erp->rRK_len = emsk_len;
    551 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
    552 
    553 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
    554 			    "EAP Re-authentication Integrity Key (at) ietf.org",
    555 			    len, sizeof(len), erp->rIK, erp->rRK_len) < 0) {
    556 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
    557 		goto fail;
    558 	}
    559 	erp->rIK_len = erp->rRK_len;
    560 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
    561 
    562 	wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
    563 	dl_list_add(&sm->erp_keys, &erp->list);
    564 	erp = NULL;
    565 fail:
    566 	bin_clear_free(emsk, emsk_len);
    567 	bin_clear_free(erp, sizeof(*erp));
    568 	os_free(realm);
    569 #endif /* CONFIG_ERP */
    570 }
    571 
    572 
    573 #ifdef CONFIG_ERP
    574 static int eap_peer_erp_reauth_start(struct eap_sm *sm,
    575 				     const struct eap_hdr *hdr, size_t len)
    576 {
    577 	char *realm;
    578 	struct eap_erp_key *erp;
    579 	struct wpabuf *msg;
    580 	u8 hash[SHA256_MAC_LEN];
    581 
    582 	realm = eap_home_realm(sm);
    583 	if (!realm)
    584 		return -1;
    585 
    586 	erp = eap_erp_get_key(sm, realm);
    587 	os_free(realm);
    588 	realm = NULL;
    589 	if (!erp)
    590 		return -1;
    591 
    592 	if (erp->next_seq >= 65536)
    593 		return -1; /* SEQ has range of 0..65535 */
    594 
    595 	/* TODO: check rRK lifetime expiration */
    596 
    597 	wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
    598 		   erp->keyname_nai, erp->next_seq);
    599 
    600 	msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
    601 			    1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
    602 			    EAP_CODE_INITIATE, hdr->identifier);
    603 	if (msg == NULL)
    604 		return -1;
    605 
    606 	wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
    607 	wpabuf_put_be16(msg, erp->next_seq);
    608 
    609 	wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
    610 	wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
    611 	wpabuf_put_str(msg, erp->keyname_nai);
    612 
    613 	wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
    614 
    615 	if (hmac_sha256(erp->rIK, erp->rIK_len,
    616 			wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
    617 		wpabuf_free(msg);
    618 		return -1;
    619 	}
    620 	wpabuf_put_data(msg, hash, 16);
    621 
    622 	wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
    623 	sm->erp_seq = erp->next_seq;
    624 	erp->next_seq++;
    625 	wpabuf_free(sm->eapRespData);
    626 	sm->eapRespData = msg;
    627 	sm->reauthInit = TRUE;
    628 	return 0;
    629 }
    630 #endif /* CONFIG_ERP */
    631 
    632 
    633 /*
    634  * The method processing happens here. The request from the authenticator is
    635  * processed, and an appropriate response packet is built.
    636  */
    637 SM_STATE(EAP, METHOD)
    638 {
    639 	struct wpabuf *eapReqData;
    640 	struct eap_method_ret ret;
    641 	int min_len = 1;
    642 
    643 	SM_ENTRY(EAP, METHOD);
    644 	if (sm->m == NULL) {
    645 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
    646 		return;
    647 	}
    648 
    649 	eapReqData = eapol_get_eapReqData(sm);
    650 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
    651 		min_len = 0; /* LEAP uses EAP-Success without payload */
    652 	if (!eap_hdr_len_valid(eapReqData, min_len))
    653 		return;
    654 
    655 	/*
    656 	 * Get ignore, methodState, decision, allowNotifications, and
    657 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
    658 	 * process, and buildResp) in this state. These have been combined into
    659 	 * a single function call to m->process() in order to optimize EAP
    660 	 * method implementation interface a bit. These procedures are only
    661 	 * used from within this METHOD state, so there is no need to keep
    662 	 * these as separate C functions.
    663 	 *
    664 	 * The RFC 4137 procedures return values as follows:
    665 	 * ignore = m.check(eapReqData)
    666 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
    667 	 * eapRespData = m.buildResp(reqId)
    668 	 */
    669 	os_memset(&ret, 0, sizeof(ret));
    670 	ret.ignore = sm->ignore;
    671 	ret.methodState = sm->methodState;
    672 	ret.decision = sm->decision;
    673 	ret.allowNotifications = sm->allowNotifications;
    674 	wpabuf_free(sm->eapRespData);
    675 	sm->eapRespData = NULL;
    676 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
    677 					 eapReqData);
    678 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
    679 		   "methodState=%s decision=%s eapRespData=%p",
    680 		   ret.ignore ? "TRUE" : "FALSE",
    681 		   eap_sm_method_state_txt(ret.methodState),
    682 		   eap_sm_decision_txt(ret.decision),
    683 		   sm->eapRespData);
    684 
    685 	sm->ignore = ret.ignore;
    686 	if (sm->ignore)
    687 		return;
    688 	sm->methodState = ret.methodState;
    689 	sm->decision = ret.decision;
    690 	sm->allowNotifications = ret.allowNotifications;
    691 
    692 	if (sm->m->isKeyAvailable && sm->m->getKey &&
    693 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
    694 		struct eap_peer_config *config = eap_get_config(sm);
    695 
    696 		eap_sm_free_key(sm);
    697 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
    698 					       &sm->eapKeyDataLen);
    699 		os_free(sm->eapSessionId);
    700 		sm->eapSessionId = NULL;
    701 		if (sm->m->getSessionId) {
    702 			sm->eapSessionId = sm->m->getSessionId(
    703 				sm, sm->eap_method_priv,
    704 				&sm->eapSessionIdLen);
    705 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
    706 				    sm->eapSessionId, sm->eapSessionIdLen);
    707 		}
    708 		if (config->erp && sm->m->get_emsk && sm->eapSessionId)
    709 			eap_peer_erp_init(sm);
    710 	}
    711 }
    712 
    713 
    714 /*
    715  * This state signals the lower layer that a response packet is ready to be
    716  * sent.
    717  */
    718 SM_STATE(EAP, SEND_RESPONSE)
    719 {
    720 	SM_ENTRY(EAP, SEND_RESPONSE);
    721 	wpabuf_free(sm->lastRespData);
    722 	if (sm->eapRespData) {
    723 		if (sm->workaround)
    724 			os_memcpy(sm->last_sha1, sm->req_sha1, 20);
    725 		sm->lastId = sm->reqId;
    726 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
    727 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
    728 	} else {
    729 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
    730 		sm->lastRespData = NULL;
    731 	}
    732 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    733 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    734 	sm->reauthInit = FALSE;
    735 }
    736 
    737 
    738 /*
    739  * This state signals the lower layer that the request was discarded, and no
    740  * response packet will be sent at this time.
    741  */
    742 SM_STATE(EAP, DISCARD)
    743 {
    744 	SM_ENTRY(EAP, DISCARD);
    745 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    746 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    747 }
    748 
    749 
    750 /*
    751  * Handles requests for Identity method and builds a response.
    752  */
    753 SM_STATE(EAP, IDENTITY)
    754 {
    755 	const struct wpabuf *eapReqData;
    756 
    757 	SM_ENTRY(EAP, IDENTITY);
    758 	eapReqData = eapol_get_eapReqData(sm);
    759 	if (!eap_hdr_len_valid(eapReqData, 1))
    760 		return;
    761 	eap_sm_processIdentity(sm, eapReqData);
    762 	wpabuf_free(sm->eapRespData);
    763 	sm->eapRespData = NULL;
    764 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
    765 }
    766 
    767 
    768 /*
    769  * Handles requests for Notification method and builds a response.
    770  */
    771 SM_STATE(EAP, NOTIFICATION)
    772 {
    773 	const struct wpabuf *eapReqData;
    774 
    775 	SM_ENTRY(EAP, NOTIFICATION);
    776 	eapReqData = eapol_get_eapReqData(sm);
    777 	if (!eap_hdr_len_valid(eapReqData, 1))
    778 		return;
    779 	eap_sm_processNotify(sm, eapReqData);
    780 	wpabuf_free(sm->eapRespData);
    781 	sm->eapRespData = NULL;
    782 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
    783 }
    784 
    785 
    786 /*
    787  * This state retransmits the previous response packet.
    788  */
    789 SM_STATE(EAP, RETRANSMIT)
    790 {
    791 	SM_ENTRY(EAP, RETRANSMIT);
    792 	wpabuf_free(sm->eapRespData);
    793 	if (sm->lastRespData)
    794 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
    795 	else
    796 		sm->eapRespData = NULL;
    797 }
    798 
    799 
    800 /*
    801  * This state is entered in case of a successful completion of authentication
    802  * and state machine waits here until port is disabled or EAP authentication is
    803  * restarted.
    804  */
    805 SM_STATE(EAP, SUCCESS)
    806 {
    807 	SM_ENTRY(EAP, SUCCESS);
    808 	if (sm->eapKeyData != NULL)
    809 		sm->eapKeyAvailable = TRUE;
    810 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
    811 
    812 	/*
    813 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    814 	 * to avoid processing the same request twice when state machine is
    815 	 * initialized.
    816 	 */
    817 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    818 
    819 	/*
    820 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
    821 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
    822 	 * addition, either eapResp or eapNoResp is required to be set after
    823 	 * processing the received EAP frame.
    824 	 */
    825 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    826 
    827 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
    828 		"EAP authentication completed successfully");
    829 }
    830 
    831 
    832 /*
    833  * This state is entered in case of a failure and state machine waits here
    834  * until port is disabled or EAP authentication is restarted.
    835  */
    836 SM_STATE(EAP, FAILURE)
    837 {
    838 	SM_ENTRY(EAP, FAILURE);
    839 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
    840 
    841 	/*
    842 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    843 	 * to avoid processing the same request twice when state machine is
    844 	 * initialized.
    845 	 */
    846 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    847 
    848 	/*
    849 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
    850 	 * eapNoResp is required to be set after processing the received EAP
    851 	 * frame.
    852 	 */
    853 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    854 
    855 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
    856 		"EAP authentication failed");
    857 
    858 	sm->prev_failure = 1;
    859 }
    860 
    861 
    862 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
    863 {
    864 	/*
    865 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
    866 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
    867 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
    868 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
    869 	 *
    870 	 * Accept this kind of Id if EAP workarounds are enabled. These are
    871 	 * unauthenticated plaintext messages, so this should have minimal
    872 	 * security implications (bit easier to fake EAP-Success/Failure).
    873 	 */
    874 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
    875 			       reqId == ((lastId + 2) & 0xff))) {
    876 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
    877 			   "identifier field in EAP Success: "
    878 			   "reqId=%d lastId=%d (these are supposed to be "
    879 			   "same)", reqId, lastId);
    880 		return 1;
    881 	}
    882 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
    883 		   "lastId=%d", reqId, lastId);
    884 	return 0;
    885 }
    886 
    887 
    888 /*
    889  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
    890  */
    891 
    892 static void eap_peer_sm_step_idle(struct eap_sm *sm)
    893 {
    894 	/*
    895 	 * The first three transitions are from RFC 4137. The last two are
    896 	 * local additions to handle special cases with LEAP and PEAP server
    897 	 * not sending EAP-Success in some cases.
    898 	 */
    899 	if (eapol_get_bool(sm, EAPOL_eapReq))
    900 		SM_ENTER(EAP, RECEIVED);
    901 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
    902 		  sm->decision != DECISION_FAIL) ||
    903 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    904 		  sm->decision == DECISION_UNCOND_SUCC))
    905 		SM_ENTER(EAP, SUCCESS);
    906 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
    907 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    908 		  sm->decision != DECISION_UNCOND_SUCC) ||
    909 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
    910 		  sm->methodState != METHOD_CONT &&
    911 		  sm->decision == DECISION_FAIL))
    912 		SM_ENTER(EAP, FAILURE);
    913 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    914 		 sm->leap_done && sm->decision != DECISION_FAIL &&
    915 		 sm->methodState == METHOD_DONE)
    916 		SM_ENTER(EAP, SUCCESS);
    917 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
    918 		 sm->peap_done && sm->decision != DECISION_FAIL &&
    919 		 sm->methodState == METHOD_DONE)
    920 		SM_ENTER(EAP, SUCCESS);
    921 }
    922 
    923 
    924 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
    925 {
    926 	int duplicate;
    927 
    928 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
    929 	if (sm->workaround && duplicate &&
    930 	    os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
    931 		/*
    932 		 * RFC 4137 uses (reqId == lastId) as the only verification for
    933 		 * duplicate EAP requests. However, this misses cases where the
    934 		 * AS is incorrectly using the same id again; and
    935 		 * unfortunately, such implementations exist. Use SHA1 hash as
    936 		 * an extra verification for the packets being duplicate to
    937 		 * workaround these issues.
    938 		 */
    939 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
    940 			   "EAP packets were not identical");
    941 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
    942 			   "duplicate packet");
    943 		duplicate = 0;
    944 	}
    945 
    946 	return duplicate;
    947 }
    948 
    949 
    950 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
    951 {
    952 	struct eap_peer_config *config = eap_get_config(sm);
    953 
    954 	return config && config->phase1 &&
    955 		os_strstr(config->phase1, "allow_canned_success=1");
    956 }
    957 
    958 
    959 static void eap_peer_sm_step_received(struct eap_sm *sm)
    960 {
    961 	int duplicate = eap_peer_req_is_duplicate(sm);
    962 
    963 	/*
    964 	 * Two special cases below for LEAP are local additions to work around
    965 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
    966 	 * then swapped roles). Other transitions are based on RFC 4137.
    967 	 */
    968 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
    969 	    (sm->reqId == sm->lastId ||
    970 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
    971 		SM_ENTER(EAP, SUCCESS);
    972 	else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
    973 		 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
    974 		SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
    975 	else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
    976 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
    977 		 eap_peer_sm_allow_canned(sm))
    978 		SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
    979 	else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
    980 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
    981 		 eap_peer_sm_allow_canned(sm))
    982 		SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
    983 	else if (sm->methodState != METHOD_CONT &&
    984 		 ((sm->rxFailure &&
    985 		   sm->decision != DECISION_UNCOND_SUCC) ||
    986 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
    987 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
    988 		    sm->methodState != METHOD_MAY_CONT))) &&
    989 		 (sm->reqId == sm->lastId ||
    990 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
    991 		SM_ENTER(EAP, FAILURE);
    992 	else if (sm->rxReq && duplicate)
    993 		SM_ENTER(EAP, RETRANSMIT);
    994 	else if (sm->rxReq && !duplicate &&
    995 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
    996 		 sm->allowNotifications)
    997 		SM_ENTER(EAP, NOTIFICATION);
    998 	else if (sm->rxReq && !duplicate &&
    999 		 sm->selectedMethod == EAP_TYPE_NONE &&
   1000 		 sm->reqMethod == EAP_TYPE_IDENTITY)
   1001 		SM_ENTER(EAP, IDENTITY);
   1002 	else if (sm->rxReq && !duplicate &&
   1003 		 sm->selectedMethod == EAP_TYPE_NONE &&
   1004 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
   1005 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
   1006 		SM_ENTER(EAP, GET_METHOD);
   1007 	else if (sm->rxReq && !duplicate &&
   1008 		 sm->reqMethod == sm->selectedMethod &&
   1009 		 sm->methodState != METHOD_DONE)
   1010 		SM_ENTER(EAP, METHOD);
   1011 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
   1012 		 (sm->rxSuccess || sm->rxResp))
   1013 		SM_ENTER(EAP, METHOD);
   1014 	else if (sm->reauthInit)
   1015 		SM_ENTER(EAP, SEND_RESPONSE);
   1016 	else
   1017 		SM_ENTER(EAP, DISCARD);
   1018 }
   1019 
   1020 
   1021 static void eap_peer_sm_step_local(struct eap_sm *sm)
   1022 {
   1023 	switch (sm->EAP_state) {
   1024 	case EAP_INITIALIZE:
   1025 		SM_ENTER(EAP, IDLE);
   1026 		break;
   1027 	case EAP_DISABLED:
   1028 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
   1029 		    !sm->force_disabled)
   1030 			SM_ENTER(EAP, INITIALIZE);
   1031 		break;
   1032 	case EAP_IDLE:
   1033 		eap_peer_sm_step_idle(sm);
   1034 		break;
   1035 	case EAP_RECEIVED:
   1036 		eap_peer_sm_step_received(sm);
   1037 		break;
   1038 	case EAP_GET_METHOD:
   1039 		if (sm->selectedMethod == sm->reqMethod)
   1040 			SM_ENTER(EAP, METHOD);
   1041 		else
   1042 			SM_ENTER(EAP, SEND_RESPONSE);
   1043 		break;
   1044 	case EAP_METHOD:
   1045 		/*
   1046 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
   1047 		 * as the condition. eapRespData == NULL here is used to allow
   1048 		 * final EAP method response to be sent without having to change
   1049 		 * all methods to either use methodState MAY_CONT or leaving
   1050 		 * decision to something else than FAIL in cases where the only
   1051 		 * expected response is EAP-Failure.
   1052 		 */
   1053 		if (sm->ignore)
   1054 			SM_ENTER(EAP, DISCARD);
   1055 		else if (sm->methodState == METHOD_DONE &&
   1056 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
   1057 			SM_ENTER(EAP, FAILURE);
   1058 		else
   1059 			SM_ENTER(EAP, SEND_RESPONSE);
   1060 		break;
   1061 	case EAP_SEND_RESPONSE:
   1062 		SM_ENTER(EAP, IDLE);
   1063 		break;
   1064 	case EAP_DISCARD:
   1065 		SM_ENTER(EAP, IDLE);
   1066 		break;
   1067 	case EAP_IDENTITY:
   1068 		SM_ENTER(EAP, SEND_RESPONSE);
   1069 		break;
   1070 	case EAP_NOTIFICATION:
   1071 		SM_ENTER(EAP, SEND_RESPONSE);
   1072 		break;
   1073 	case EAP_RETRANSMIT:
   1074 		SM_ENTER(EAP, SEND_RESPONSE);
   1075 		break;
   1076 	case EAP_SUCCESS:
   1077 		break;
   1078 	case EAP_FAILURE:
   1079 		break;
   1080 	}
   1081 }
   1082 
   1083 
   1084 SM_STEP(EAP)
   1085 {
   1086 	/* Global transitions */
   1087 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
   1088 	    eapol_get_bool(sm, EAPOL_portEnabled))
   1089 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
   1090 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
   1091 		SM_ENTER_GLOBAL(EAP, DISABLED);
   1092 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
   1093 		/* RFC 4137 does not place any limit on number of EAP messages
   1094 		 * in an authentication session. However, some error cases have
   1095 		 * ended up in a state were EAP messages were sent between the
   1096 		 * peer and server in a loop (e.g., TLS ACK frame in both
   1097 		 * direction). Since this is quite undesired outcome, limit the
   1098 		 * total number of EAP round-trips and abort authentication if
   1099 		 * this limit is exceeded.
   1100 		 */
   1101 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
   1102 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
   1103 				"authentication rounds - abort",
   1104 				EAP_MAX_AUTH_ROUNDS);
   1105 			sm->num_rounds++;
   1106 			SM_ENTER_GLOBAL(EAP, FAILURE);
   1107 		}
   1108 	} else {
   1109 		/* Local transitions */
   1110 		eap_peer_sm_step_local(sm);
   1111 	}
   1112 }
   1113 
   1114 
   1115 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
   1116 				  EapType method)
   1117 {
   1118 	if (!eap_allowed_method(sm, vendor, method)) {
   1119 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
   1120 			   "vendor %u method %u", vendor, method);
   1121 		return FALSE;
   1122 	}
   1123 	if (eap_peer_get_eap_method(vendor, method))
   1124 		return TRUE;
   1125 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
   1126 		   "vendor %u method %u", vendor, method);
   1127 	return FALSE;
   1128 }
   1129 
   1130 
   1131 static struct wpabuf * eap_sm_build_expanded_nak(
   1132 	struct eap_sm *sm, int id, const struct eap_method *methods,
   1133 	size_t count)
   1134 {
   1135 	struct wpabuf *resp;
   1136 	int found = 0;
   1137 	const struct eap_method *m;
   1138 
   1139 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
   1140 
   1141 	/* RFC 3748 - 5.3.2: Expanded Nak */
   1142 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
   1143 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
   1144 	if (resp == NULL)
   1145 		return NULL;
   1146 
   1147 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
   1148 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
   1149 
   1150 	for (m = methods; m; m = m->next) {
   1151 		if (sm->reqVendor == m->vendor &&
   1152 		    sm->reqVendorMethod == m->method)
   1153 			continue; /* do not allow the current method again */
   1154 		if (eap_allowed_method(sm, m->vendor, m->method)) {
   1155 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
   1156 				   "vendor=%u method=%u",
   1157 				   m->vendor, m->method);
   1158 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
   1159 			wpabuf_put_be24(resp, m->vendor);
   1160 			wpabuf_put_be32(resp, m->method);
   1161 
   1162 			found++;
   1163 		}
   1164 	}
   1165 	if (!found) {
   1166 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
   1167 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
   1168 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
   1169 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
   1170 	}
   1171 
   1172 	eap_update_len(resp);
   1173 
   1174 	return resp;
   1175 }
   1176 
   1177 
   1178 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
   1179 {
   1180 	struct wpabuf *resp;
   1181 	u8 *start;
   1182 	int found = 0, expanded_found = 0;
   1183 	size_t count;
   1184 	const struct eap_method *methods, *m;
   1185 
   1186 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
   1187 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
   1188 		   sm->reqVendor, sm->reqVendorMethod);
   1189 	methods = eap_peer_get_methods(&count);
   1190 	if (methods == NULL)
   1191 		return NULL;
   1192 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
   1193 		return eap_sm_build_expanded_nak(sm, id, methods, count);
   1194 
   1195 	/* RFC 3748 - 5.3.1: Legacy Nak */
   1196 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
   1197 			     sizeof(struct eap_hdr) + 1 + count + 1,
   1198 			     EAP_CODE_RESPONSE, id);
   1199 	if (resp == NULL)
   1200 		return NULL;
   1201 
   1202 	start = wpabuf_put(resp, 0);
   1203 	for (m = methods; m; m = m->next) {
   1204 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
   1205 			continue; /* do not allow the current method again */
   1206 		if (eap_allowed_method(sm, m->vendor, m->method)) {
   1207 			if (m->vendor != EAP_VENDOR_IETF) {
   1208 				if (expanded_found)
   1209 					continue;
   1210 				expanded_found = 1;
   1211 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
   1212 			} else
   1213 				wpabuf_put_u8(resp, m->method);
   1214 			found++;
   1215 		}
   1216 	}
   1217 	if (!found)
   1218 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
   1219 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
   1220 
   1221 	eap_update_len(resp);
   1222 
   1223 	return resp;
   1224 }
   1225 
   1226 
   1227 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
   1228 {
   1229 	const u8 *pos;
   1230 	size_t msg_len;
   1231 
   1232 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
   1233 		"EAP authentication started");
   1234 	eap_notify_status(sm, "started", "");
   1235 
   1236 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
   1237 			       &msg_len);
   1238 	if (pos == NULL)
   1239 		return;
   1240 
   1241 	/*
   1242 	 * RFC 3748 - 5.1: Identity
   1243 	 * Data field may contain a displayable message in UTF-8. If this
   1244 	 * includes NUL-character, only the data before that should be
   1245 	 * displayed. Some EAP implementasitons may piggy-back additional
   1246 	 * options after the NUL.
   1247 	 */
   1248 	/* TODO: could save displayable message so that it can be shown to the
   1249 	 * user in case of interaction is required */
   1250 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
   1251 			  pos, msg_len);
   1252 }
   1253 
   1254 
   1255 #ifdef PCSC_FUNCS
   1256 
   1257 /*
   1258  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
   1259  * include MNC length field.
   1260  */
   1261 static int mnc_len_from_imsi(const char *imsi)
   1262 {
   1263 	char mcc_str[4];
   1264 	unsigned int mcc;
   1265 
   1266 	os_memcpy(mcc_str, imsi, 3);
   1267 	mcc_str[3] = '\0';
   1268 	mcc = atoi(mcc_str);
   1269 
   1270 	if (mcc == 228)
   1271 		return 2; /* Networks in Switzerland use 2-digit MNC */
   1272 	if (mcc == 244)
   1273 		return 2; /* Networks in Finland use 2-digit MNC */
   1274 
   1275 	return -1;
   1276 }
   1277 
   1278 
   1279 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
   1280 				    size_t max_len, size_t *imsi_len)
   1281 {
   1282 	int mnc_len;
   1283 	char *pos, mnc[4];
   1284 
   1285 	if (*imsi_len + 36 > max_len) {
   1286 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
   1287 		return -1;
   1288 	}
   1289 
   1290 	/* MNC (2 or 3 digits) */
   1291 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
   1292 	if (mnc_len < 0)
   1293 		mnc_len = mnc_len_from_imsi(imsi);
   1294 	if (mnc_len < 0) {
   1295 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
   1296 			   "assuming 3");
   1297 		mnc_len = 3;
   1298 	}
   1299 
   1300 	if (mnc_len == 2) {
   1301 		mnc[0] = '0';
   1302 		mnc[1] = imsi[3];
   1303 		mnc[2] = imsi[4];
   1304 	} else if (mnc_len == 3) {
   1305 		mnc[0] = imsi[3];
   1306 		mnc[1] = imsi[4];
   1307 		mnc[2] = imsi[5];
   1308 	}
   1309 	mnc[3] = '\0';
   1310 
   1311 	pos = imsi + *imsi_len;
   1312 	pos += os_snprintf(pos, imsi + max_len - pos,
   1313 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
   1314 			   mnc, imsi[0], imsi[1], imsi[2]);
   1315 	*imsi_len = pos - imsi;
   1316 
   1317 	return 0;
   1318 }
   1319 
   1320 
   1321 static int eap_sm_imsi_identity(struct eap_sm *sm,
   1322 				struct eap_peer_config *conf)
   1323 {
   1324 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
   1325 	char imsi[100];
   1326 	size_t imsi_len;
   1327 	struct eap_method_type *m = conf->eap_methods;
   1328 	int i;
   1329 
   1330 	imsi_len = sizeof(imsi);
   1331 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
   1332 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
   1333 		return -1;
   1334 	}
   1335 
   1336 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
   1337 
   1338 	if (imsi_len < 7) {
   1339 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
   1340 		return -1;
   1341 	}
   1342 
   1343 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
   1344 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
   1345 		return -1;
   1346 	}
   1347 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
   1348 
   1349 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
   1350 			  m[i].method != EAP_TYPE_NONE); i++) {
   1351 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1352 		    m[i].method == EAP_TYPE_AKA_PRIME) {
   1353 			method = EAP_SM_AKA_PRIME;
   1354 			break;
   1355 		}
   1356 
   1357 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1358 		    m[i].method == EAP_TYPE_AKA) {
   1359 			method = EAP_SM_AKA;
   1360 			break;
   1361 		}
   1362 	}
   1363 
   1364 	os_free(conf->identity);
   1365 	conf->identity = os_malloc(1 + imsi_len);
   1366 	if (conf->identity == NULL) {
   1367 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
   1368 			   "IMSI-based identity");
   1369 		return -1;
   1370 	}
   1371 
   1372 	switch (method) {
   1373 	case EAP_SM_SIM:
   1374 		conf->identity[0] = '1';
   1375 		break;
   1376 	case EAP_SM_AKA:
   1377 		conf->identity[0] = '0';
   1378 		break;
   1379 	case EAP_SM_AKA_PRIME:
   1380 		conf->identity[0] = '6';
   1381 		break;
   1382 	}
   1383 	os_memcpy(conf->identity + 1, imsi, imsi_len);
   1384 	conf->identity_len = 1 + imsi_len;
   1385 
   1386 	return 0;
   1387 }
   1388 
   1389 
   1390 static int eap_sm_set_scard_pin(struct eap_sm *sm,
   1391 				struct eap_peer_config *conf)
   1392 {
   1393 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
   1394 		/*
   1395 		 * Make sure the same PIN is not tried again in order to avoid
   1396 		 * blocking SIM.
   1397 		 */
   1398 		os_free(conf->pin);
   1399 		conf->pin = NULL;
   1400 
   1401 		wpa_printf(MSG_WARNING, "PIN validation failed");
   1402 		eap_sm_request_pin(sm);
   1403 		return -1;
   1404 	}
   1405 	return 0;
   1406 }
   1407 
   1408 
   1409 static int eap_sm_get_scard_identity(struct eap_sm *sm,
   1410 				     struct eap_peer_config *conf)
   1411 {
   1412 	if (eap_sm_set_scard_pin(sm, conf))
   1413 		return -1;
   1414 
   1415 	return eap_sm_imsi_identity(sm, conf);
   1416 }
   1417 
   1418 #endif /* PCSC_FUNCS */
   1419 
   1420 
   1421 /**
   1422  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
   1423  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1424  * @id: EAP identifier for the packet
   1425  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
   1426  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
   1427  * failure
   1428  *
   1429  * This function allocates and builds an EAP-Identity/Response packet for the
   1430  * current network. The caller is responsible for freeing the returned data.
   1431  */
   1432 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
   1433 {
   1434 	struct eap_peer_config *config = eap_get_config(sm);
   1435 	struct wpabuf *resp;
   1436 	const u8 *identity;
   1437 	size_t identity_len;
   1438 
   1439 	if (config == NULL) {
   1440 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
   1441 			   "was not available");
   1442 		return NULL;
   1443 	}
   1444 
   1445 	if (sm->m && sm->m->get_identity &&
   1446 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
   1447 					    &identity_len)) != NULL) {
   1448 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
   1449 				  "identity", identity, identity_len);
   1450 	} else if (!encrypted && config->anonymous_identity) {
   1451 		identity = config->anonymous_identity;
   1452 		identity_len = config->anonymous_identity_len;
   1453 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
   1454 				  identity, identity_len);
   1455 	} else {
   1456 		identity = config->identity;
   1457 		identity_len = config->identity_len;
   1458 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
   1459 				  identity, identity_len);
   1460 	}
   1461 
   1462 	if (config->pcsc) {
   1463 #ifdef PCSC_FUNCS
   1464 		if (!identity) {
   1465 			if (eap_sm_get_scard_identity(sm, config) < 0)
   1466 				return NULL;
   1467 			identity = config->identity;
   1468 			identity_len = config->identity_len;
   1469 			wpa_hexdump_ascii(MSG_DEBUG,
   1470 					  "permanent identity from IMSI",
   1471 					  identity, identity_len);
   1472 		} else if (eap_sm_set_scard_pin(sm, config) < 0) {
   1473 			return NULL;
   1474 		}
   1475 #else /* PCSC_FUNCS */
   1476 		return NULL;
   1477 #endif /* PCSC_FUNCS */
   1478 	} else if (!identity) {
   1479 		wpa_printf(MSG_WARNING,
   1480 			"EAP: buildIdentity: identity configuration was not available");
   1481 		eap_sm_request_identity(sm);
   1482 		return NULL;
   1483 	}
   1484 
   1485 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
   1486 			     EAP_CODE_RESPONSE, id);
   1487 	if (resp == NULL)
   1488 		return NULL;
   1489 
   1490 	wpabuf_put_data(resp, identity, identity_len);
   1491 
   1492 	return resp;
   1493 }
   1494 
   1495 
   1496 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
   1497 {
   1498 	const u8 *pos;
   1499 	char *msg;
   1500 	size_t i, msg_len;
   1501 
   1502 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
   1503 			       &msg_len);
   1504 	if (pos == NULL)
   1505 		return;
   1506 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
   1507 			  pos, msg_len);
   1508 
   1509 	msg = os_malloc(msg_len + 1);
   1510 	if (msg == NULL)
   1511 		return;
   1512 	for (i = 0; i < msg_len; i++)
   1513 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
   1514 	msg[msg_len] = '\0';
   1515 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
   1516 		WPA_EVENT_EAP_NOTIFICATION, msg);
   1517 	os_free(msg);
   1518 }
   1519 
   1520 
   1521 static struct wpabuf * eap_sm_buildNotify(int id)
   1522 {
   1523 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
   1524 	return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
   1525 			EAP_CODE_RESPONSE, id);
   1526 }
   1527 
   1528 
   1529 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
   1530 			      size_t len)
   1531 {
   1532 #ifdef CONFIG_ERP
   1533 	const u8 *pos = (const u8 *) (hdr + 1);
   1534 	const u8 *end = ((const u8 *) hdr) + len;
   1535 	struct erp_tlvs parse;
   1536 
   1537 	if (len < sizeof(*hdr) + 1) {
   1538 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
   1539 		return;
   1540 	}
   1541 
   1542 	if (*pos != EAP_ERP_TYPE_REAUTH_START) {
   1543 		wpa_printf(MSG_DEBUG,
   1544 			   "EAP: Ignored unexpected EAP-Initiate Type=%u",
   1545 			   *pos);
   1546 		return;
   1547 	}
   1548 
   1549 	pos++;
   1550 	if (pos >= end) {
   1551 		wpa_printf(MSG_DEBUG,
   1552 			   "EAP: Too short EAP-Initiate/Re-auth-Start");
   1553 		return;
   1554 	}
   1555 	pos++; /* Reserved */
   1556 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
   1557 		    pos, end - pos);
   1558 
   1559 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
   1560 		goto invalid;
   1561 
   1562 	if (parse.domain) {
   1563 		wpa_hexdump_ascii(MSG_DEBUG,
   1564 				  "EAP: EAP-Initiate/Re-auth-Start - Domain name",
   1565 				  parse.domain, parse.domain_len);
   1566 		/* TODO: Derivation of domain specific keys for local ER */
   1567 	}
   1568 
   1569 	if (eap_peer_erp_reauth_start(sm, hdr, len) == 0)
   1570 		return;
   1571 
   1572 invalid:
   1573 #endif /* CONFIG_ERP */
   1574 	wpa_printf(MSG_DEBUG,
   1575 		   "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
   1576 	eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
   1577 }
   1578 
   1579 
   1580 static void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr,
   1581 			    size_t len)
   1582 {
   1583 #ifdef CONFIG_ERP
   1584 	const u8 *pos = (const u8 *) (hdr + 1);
   1585 	const u8 *end = ((const u8 *) hdr) + len;
   1586 	const u8 *start;
   1587 	struct erp_tlvs parse;
   1588 	u8 flags;
   1589 	u16 seq;
   1590 	u8 hash[SHA256_MAC_LEN];
   1591 	size_t hash_len;
   1592 	struct eap_erp_key *erp;
   1593 	int max_len;
   1594 	char nai[254];
   1595 	u8 seed[4];
   1596 	int auth_tag_ok = 0;
   1597 
   1598 	if (len < sizeof(*hdr) + 1) {
   1599 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
   1600 		return;
   1601 	}
   1602 
   1603 	if (*pos != EAP_ERP_TYPE_REAUTH) {
   1604 		wpa_printf(MSG_DEBUG,
   1605 			   "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
   1606 		return;
   1607 	}
   1608 
   1609 	if (len < sizeof(*hdr) + 4) {
   1610 		wpa_printf(MSG_DEBUG,
   1611 			   "EAP: Ignored too short EAP-Finish/Re-auth");
   1612 		return;
   1613 	}
   1614 
   1615 	pos++;
   1616 	flags = *pos++;
   1617 	seq = WPA_GET_BE16(pos);
   1618 	pos += 2;
   1619 	wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
   1620 
   1621 	if (seq != sm->erp_seq) {
   1622 		wpa_printf(MSG_DEBUG,
   1623 			   "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
   1624 		return;
   1625 	}
   1626 
   1627 	/*
   1628 	 * Parse TVs/TLVs. Since we do not yet know the length of the
   1629 	 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
   1630 	 * just try to find the keyName-NAI first so that we can check the
   1631 	 * Authentication Tag.
   1632 	 */
   1633 	if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
   1634 		return;
   1635 
   1636 	if (!parse.keyname) {
   1637 		wpa_printf(MSG_DEBUG,
   1638 			   "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
   1639 		return;
   1640 	}
   1641 
   1642 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
   1643 			  parse.keyname, parse.keyname_len);
   1644 	if (parse.keyname_len > 253) {
   1645 		wpa_printf(MSG_DEBUG,
   1646 			   "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
   1647 		return;
   1648 	}
   1649 	os_memcpy(nai, parse.keyname, parse.keyname_len);
   1650 	nai[parse.keyname_len] = '\0';
   1651 
   1652 	erp = eap_erp_get_key_nai(sm, nai);
   1653 	if (!erp) {
   1654 		wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
   1655 			   nai);
   1656 		return;
   1657 	}
   1658 
   1659 	/* Is there enough room for Cryptosuite and Authentication Tag? */
   1660 	start = parse.keyname + parse.keyname_len;
   1661 	max_len = end - start;
   1662 	hash_len = 16;
   1663 	if (max_len < 1 + (int) hash_len) {
   1664 		wpa_printf(MSG_DEBUG,
   1665 			   "EAP: Not enough room for Authentication Tag");
   1666 		if (flags & 0x80)
   1667 			goto no_auth_tag;
   1668 		return;
   1669 	}
   1670 	if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
   1671 		wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
   1672 		if (flags & 0x80)
   1673 			goto no_auth_tag;
   1674 		return;
   1675 	}
   1676 
   1677 	if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
   1678 			end - ((const u8 *) hdr) - hash_len, hash) < 0)
   1679 		return;
   1680 	if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
   1681 		wpa_printf(MSG_DEBUG,
   1682 			   "EAP: Authentication Tag mismatch");
   1683 		return;
   1684 	}
   1685 	auth_tag_ok = 1;
   1686 	end -= 1 + hash_len;
   1687 
   1688 no_auth_tag:
   1689 	/*
   1690 	 * Parse TVs/TLVs again now that we know the exact part of the buffer
   1691 	 * that contains them.
   1692 	 */
   1693 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
   1694 		    pos, end - pos);
   1695 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
   1696 		return;
   1697 
   1698 	if (flags & 0x80 || !auth_tag_ok) {
   1699 		wpa_printf(MSG_DEBUG,
   1700 			   "EAP: EAP-Finish/Re-auth indicated failure");
   1701 		eapol_set_bool(sm, EAPOL_eapFail, TRUE);
   1702 		eapol_set_bool(sm, EAPOL_eapReq, FALSE);
   1703 		eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
   1704 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
   1705 			"EAP authentication failed");
   1706 		sm->prev_failure = 1;
   1707 		wpa_printf(MSG_DEBUG,
   1708 			   "EAP: Drop ERP key to try full authentication on next attempt");
   1709 		eap_peer_erp_free_key(erp);
   1710 		return;
   1711 	}
   1712 
   1713 	eap_sm_free_key(sm);
   1714 	sm->eapKeyDataLen = 0;
   1715 	sm->eapKeyData = os_malloc(erp->rRK_len);
   1716 	if (!sm->eapKeyData)
   1717 		return;
   1718 	sm->eapKeyDataLen = erp->rRK_len;
   1719 
   1720 	WPA_PUT_BE16(seed, seq);
   1721 	WPA_PUT_BE16(&seed[2], erp->rRK_len);
   1722 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
   1723 			    "Re-authentication Master Session Key (at) ietf.org",
   1724 			    seed, sizeof(seed),
   1725 			    sm->eapKeyData, erp->rRK_len) < 0) {
   1726 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
   1727 		eap_sm_free_key(sm);
   1728 		return;
   1729 	}
   1730 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
   1731 			sm->eapKeyData, sm->eapKeyDataLen);
   1732 	sm->eapKeyAvailable = TRUE;
   1733 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   1734 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
   1735 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
   1736 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   1737 		"EAP re-authentication completed successfully");
   1738 #endif /* CONFIG_ERP */
   1739 }
   1740 
   1741 
   1742 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
   1743 {
   1744 	const struct eap_hdr *hdr;
   1745 	size_t plen;
   1746 	const u8 *pos;
   1747 
   1748 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
   1749 	sm->reqId = 0;
   1750 	sm->reqMethod = EAP_TYPE_NONE;
   1751 	sm->reqVendor = EAP_VENDOR_IETF;
   1752 	sm->reqVendorMethod = EAP_TYPE_NONE;
   1753 
   1754 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
   1755 		return;
   1756 
   1757 	hdr = wpabuf_head(req);
   1758 	plen = be_to_host16(hdr->length);
   1759 	if (plen > wpabuf_len(req)) {
   1760 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
   1761 			   "(len=%lu plen=%lu)",
   1762 			   (unsigned long) wpabuf_len(req),
   1763 			   (unsigned long) plen);
   1764 		return;
   1765 	}
   1766 
   1767 	sm->reqId = hdr->identifier;
   1768 
   1769 	if (sm->workaround) {
   1770 		const u8 *addr[1];
   1771 		addr[0] = wpabuf_head(req);
   1772 		sha1_vector(1, addr, &plen, sm->req_sha1);
   1773 	}
   1774 
   1775 	switch (hdr->code) {
   1776 	case EAP_CODE_REQUEST:
   1777 		if (plen < sizeof(*hdr) + 1) {
   1778 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
   1779 				   "no Type field");
   1780 			return;
   1781 		}
   1782 		sm->rxReq = TRUE;
   1783 		pos = (const u8 *) (hdr + 1);
   1784 		sm->reqMethod = *pos++;
   1785 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
   1786 			if (plen < sizeof(*hdr) + 8) {
   1787 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
   1788 					   "expanded EAP-Packet (plen=%lu)",
   1789 					   (unsigned long) plen);
   1790 				return;
   1791 			}
   1792 			sm->reqVendor = WPA_GET_BE24(pos);
   1793 			pos += 3;
   1794 			sm->reqVendorMethod = WPA_GET_BE32(pos);
   1795 		}
   1796 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
   1797 			   "method=%u vendor=%u vendorMethod=%u",
   1798 			   sm->reqId, sm->reqMethod, sm->reqVendor,
   1799 			   sm->reqVendorMethod);
   1800 		break;
   1801 	case EAP_CODE_RESPONSE:
   1802 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
   1803 			/*
   1804 			 * LEAP differs from RFC 4137 by using reversed roles
   1805 			 * for mutual authentication and because of this, we
   1806 			 * need to accept EAP-Response frames if LEAP is used.
   1807 			 */
   1808 			if (plen < sizeof(*hdr) + 1) {
   1809 				wpa_printf(MSG_DEBUG, "EAP: Too short "
   1810 					   "EAP-Response - no Type field");
   1811 				return;
   1812 			}
   1813 			sm->rxResp = TRUE;
   1814 			pos = (const u8 *) (hdr + 1);
   1815 			sm->reqMethod = *pos;
   1816 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
   1817 				   "LEAP method=%d id=%d",
   1818 				   sm->reqMethod, sm->reqId);
   1819 			break;
   1820 		}
   1821 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
   1822 		break;
   1823 	case EAP_CODE_SUCCESS:
   1824 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
   1825 		eap_notify_status(sm, "completion", "success");
   1826 		sm->rxSuccess = TRUE;
   1827 		break;
   1828 	case EAP_CODE_FAILURE:
   1829 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
   1830 		eap_notify_status(sm, "completion", "failure");
   1831 		sm->rxFailure = TRUE;
   1832 		break;
   1833 	case EAP_CODE_INITIATE:
   1834 		eap_peer_initiate(sm, hdr, plen);
   1835 		break;
   1836 	case EAP_CODE_FINISH:
   1837 		eap_peer_finish(sm, hdr, plen);
   1838 		break;
   1839 	default:
   1840 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
   1841 			   "code %d", hdr->code);
   1842 		break;
   1843 	}
   1844 }
   1845 
   1846 
   1847 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
   1848 				  union tls_event_data *data)
   1849 {
   1850 	struct eap_sm *sm = ctx;
   1851 	char *hash_hex = NULL;
   1852 
   1853 	switch (ev) {
   1854 	case TLS_CERT_CHAIN_SUCCESS:
   1855 		eap_notify_status(sm, "remote certificate verification",
   1856 				  "success");
   1857 		if (sm->ext_cert_check) {
   1858 			sm->waiting_ext_cert_check = 1;
   1859 			eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
   1860 				       NULL, 0);
   1861 		}
   1862 		break;
   1863 	case TLS_CERT_CHAIN_FAILURE:
   1864 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
   1865 			"reason=%d depth=%d subject='%s' err='%s'",
   1866 			data->cert_fail.reason,
   1867 			data->cert_fail.depth,
   1868 			data->cert_fail.subject,
   1869 			data->cert_fail.reason_txt);
   1870 		eap_notify_status(sm, "remote certificate verification",
   1871 				  data->cert_fail.reason_txt);
   1872 		break;
   1873 	case TLS_PEER_CERTIFICATE:
   1874 		if (!sm->eapol_cb->notify_cert)
   1875 			break;
   1876 
   1877 		if (data->peer_cert.hash) {
   1878 			size_t len = data->peer_cert.hash_len * 2 + 1;
   1879 			hash_hex = os_malloc(len);
   1880 			if (hash_hex) {
   1881 				wpa_snprintf_hex(hash_hex, len,
   1882 						 data->peer_cert.hash,
   1883 						 data->peer_cert.hash_len);
   1884 			}
   1885 		}
   1886 
   1887 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
   1888 					  data->peer_cert.depth,
   1889 					  data->peer_cert.subject,
   1890 					  data->peer_cert.altsubject,
   1891 					  data->peer_cert.num_altsubject,
   1892 					  hash_hex, data->peer_cert.cert);
   1893 		break;
   1894 	case TLS_ALERT:
   1895 		if (data->alert.is_local)
   1896 			eap_notify_status(sm, "local TLS alert",
   1897 					  data->alert.description);
   1898 		else
   1899 			eap_notify_status(sm, "remote TLS alert",
   1900 					  data->alert.description);
   1901 		break;
   1902 	}
   1903 
   1904 	os_free(hash_hex);
   1905 }
   1906 
   1907 
   1908 /**
   1909  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
   1910  * @eapol_ctx: Context data to be used with eapol_cb calls
   1911  * @eapol_cb: Pointer to EAPOL callback functions
   1912  * @msg_ctx: Context data for wpa_msg() calls
   1913  * @conf: EAP configuration
   1914  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
   1915  *
   1916  * This function allocates and initializes an EAP state machine. In addition,
   1917  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
   1918  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
   1919  * state machine. Consequently, the caller must make sure that this data
   1920  * structure remains alive while the EAP state machine is active.
   1921  */
   1922 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
   1923 				 const struct eapol_callbacks *eapol_cb,
   1924 				 void *msg_ctx, struct eap_config *conf)
   1925 {
   1926 	struct eap_sm *sm;
   1927 	struct tls_config tlsconf;
   1928 
   1929 	sm = os_zalloc(sizeof(*sm));
   1930 	if (sm == NULL)
   1931 		return NULL;
   1932 	sm->eapol_ctx = eapol_ctx;
   1933 	sm->eapol_cb = eapol_cb;
   1934 	sm->msg_ctx = msg_ctx;
   1935 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
   1936 	sm->wps = conf->wps;
   1937 	dl_list_init(&sm->erp_keys);
   1938 
   1939 	os_memset(&tlsconf, 0, sizeof(tlsconf));
   1940 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
   1941 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
   1942 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
   1943 	tlsconf.openssl_ciphers = conf->openssl_ciphers;
   1944 #ifdef CONFIG_FIPS
   1945 	tlsconf.fips_mode = 1;
   1946 #endif /* CONFIG_FIPS */
   1947 	tlsconf.event_cb = eap_peer_sm_tls_event;
   1948 	tlsconf.cb_ctx = sm;
   1949 	tlsconf.cert_in_cb = conf->cert_in_cb;
   1950 	sm->ssl_ctx = tls_init(&tlsconf);
   1951 	if (sm->ssl_ctx == NULL) {
   1952 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
   1953 			   "context.");
   1954 		os_free(sm);
   1955 		return NULL;
   1956 	}
   1957 
   1958 	sm->ssl_ctx2 = tls_init(&tlsconf);
   1959 	if (sm->ssl_ctx2 == NULL) {
   1960 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
   1961 			   "context (2).");
   1962 		/* Run without separate TLS context within TLS tunnel */
   1963 	}
   1964 
   1965 	return sm;
   1966 }
   1967 
   1968 
   1969 /**
   1970  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
   1971  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1972  *
   1973  * This function deinitializes EAP state machine and frees all allocated
   1974  * resources.
   1975  */
   1976 void eap_peer_sm_deinit(struct eap_sm *sm)
   1977 {
   1978 	if (sm == NULL)
   1979 		return;
   1980 	eap_deinit_prev_method(sm, "EAP deinit");
   1981 	eap_sm_abort(sm);
   1982 	if (sm->ssl_ctx2)
   1983 		tls_deinit(sm->ssl_ctx2);
   1984 	tls_deinit(sm->ssl_ctx);
   1985 	eap_peer_erp_free_keys(sm);
   1986 	os_free(sm);
   1987 }
   1988 
   1989 
   1990 /**
   1991  * eap_peer_sm_step - Step EAP peer state machine
   1992  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1993  * Returns: 1 if EAP state was changed or 0 if not
   1994  *
   1995  * This function advances EAP state machine to a new state to match with the
   1996  * current variables. This should be called whenever variables used by the EAP
   1997  * state machine have changed.
   1998  */
   1999 int eap_peer_sm_step(struct eap_sm *sm)
   2000 {
   2001 	int res = 0;
   2002 	do {
   2003 		sm->changed = FALSE;
   2004 		SM_STEP_RUN(EAP);
   2005 		if (sm->changed)
   2006 			res = 1;
   2007 	} while (sm->changed);
   2008 	return res;
   2009 }
   2010 
   2011 
   2012 /**
   2013  * eap_sm_abort - Abort EAP authentication
   2014  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2015  *
   2016  * Release system resources that have been allocated for the authentication
   2017  * session without fully deinitializing the EAP state machine.
   2018  */
   2019 void eap_sm_abort(struct eap_sm *sm)
   2020 {
   2021 	wpabuf_free(sm->lastRespData);
   2022 	sm->lastRespData = NULL;
   2023 	wpabuf_free(sm->eapRespData);
   2024 	sm->eapRespData = NULL;
   2025 	eap_sm_free_key(sm);
   2026 	os_free(sm->eapSessionId);
   2027 	sm->eapSessionId = NULL;
   2028 
   2029 	/* This is not clearly specified in the EAP statemachines draft, but
   2030 	 * it seems necessary to make sure that some of the EAPOL variables get
   2031 	 * cleared for the next authentication. */
   2032 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
   2033 }
   2034 
   2035 
   2036 #ifdef CONFIG_CTRL_IFACE
   2037 static const char * eap_sm_state_txt(int state)
   2038 {
   2039 	switch (state) {
   2040 	case EAP_INITIALIZE:
   2041 		return "INITIALIZE";
   2042 	case EAP_DISABLED:
   2043 		return "DISABLED";
   2044 	case EAP_IDLE:
   2045 		return "IDLE";
   2046 	case EAP_RECEIVED:
   2047 		return "RECEIVED";
   2048 	case EAP_GET_METHOD:
   2049 		return "GET_METHOD";
   2050 	case EAP_METHOD:
   2051 		return "METHOD";
   2052 	case EAP_SEND_RESPONSE:
   2053 		return "SEND_RESPONSE";
   2054 	case EAP_DISCARD:
   2055 		return "DISCARD";
   2056 	case EAP_IDENTITY:
   2057 		return "IDENTITY";
   2058 	case EAP_NOTIFICATION:
   2059 		return "NOTIFICATION";
   2060 	case EAP_RETRANSMIT:
   2061 		return "RETRANSMIT";
   2062 	case EAP_SUCCESS:
   2063 		return "SUCCESS";
   2064 	case EAP_FAILURE:
   2065 		return "FAILURE";
   2066 	default:
   2067 		return "UNKNOWN";
   2068 	}
   2069 }
   2070 #endif /* CONFIG_CTRL_IFACE */
   2071 
   2072 
   2073 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   2074 static const char * eap_sm_method_state_txt(EapMethodState state)
   2075 {
   2076 	switch (state) {
   2077 	case METHOD_NONE:
   2078 		return "NONE";
   2079 	case METHOD_INIT:
   2080 		return "INIT";
   2081 	case METHOD_CONT:
   2082 		return "CONT";
   2083 	case METHOD_MAY_CONT:
   2084 		return "MAY_CONT";
   2085 	case METHOD_DONE:
   2086 		return "DONE";
   2087 	default:
   2088 		return "UNKNOWN";
   2089 	}
   2090 }
   2091 
   2092 
   2093 static const char * eap_sm_decision_txt(EapDecision decision)
   2094 {
   2095 	switch (decision) {
   2096 	case DECISION_FAIL:
   2097 		return "FAIL";
   2098 	case DECISION_COND_SUCC:
   2099 		return "COND_SUCC";
   2100 	case DECISION_UNCOND_SUCC:
   2101 		return "UNCOND_SUCC";
   2102 	default:
   2103 		return "UNKNOWN";
   2104 	}
   2105 }
   2106 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   2107 
   2108 
   2109 #ifdef CONFIG_CTRL_IFACE
   2110 
   2111 /**
   2112  * eap_sm_get_status - Get EAP state machine status
   2113  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2114  * @buf: Buffer for status information
   2115  * @buflen: Maximum buffer length
   2116  * @verbose: Whether to include verbose status information
   2117  * Returns: Number of bytes written to buf.
   2118  *
   2119  * Query EAP state machine for status information. This function fills in a
   2120  * text area with current status information from the EAPOL state machine. If
   2121  * the buffer (buf) is not large enough, status information will be truncated
   2122  * to fit the buffer.
   2123  */
   2124 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
   2125 {
   2126 	int len, ret;
   2127 
   2128 	if (sm == NULL)
   2129 		return 0;
   2130 
   2131 	len = os_snprintf(buf, buflen,
   2132 			  "EAP state=%s\n",
   2133 			  eap_sm_state_txt(sm->EAP_state));
   2134 	if (os_snprintf_error(buflen, len))
   2135 		return 0;
   2136 
   2137 	if (sm->selectedMethod != EAP_TYPE_NONE) {
   2138 		const char *name;
   2139 		if (sm->m) {
   2140 			name = sm->m->name;
   2141 		} else {
   2142 			const struct eap_method *m =
   2143 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
   2144 							sm->selectedMethod);
   2145 			if (m)
   2146 				name = m->name;
   2147 			else
   2148 				name = "?";
   2149 		}
   2150 		ret = os_snprintf(buf + len, buflen - len,
   2151 				  "selectedMethod=%d (EAP-%s)\n",
   2152 				  sm->selectedMethod, name);
   2153 		if (os_snprintf_error(buflen - len, ret))
   2154 			return len;
   2155 		len += ret;
   2156 
   2157 		if (sm->m && sm->m->get_status) {
   2158 			len += sm->m->get_status(sm, sm->eap_method_priv,
   2159 						 buf + len, buflen - len,
   2160 						 verbose);
   2161 		}
   2162 	}
   2163 
   2164 	if (verbose) {
   2165 		ret = os_snprintf(buf + len, buflen - len,
   2166 				  "reqMethod=%d\n"
   2167 				  "methodState=%s\n"
   2168 				  "decision=%s\n"
   2169 				  "ClientTimeout=%d\n",
   2170 				  sm->reqMethod,
   2171 				  eap_sm_method_state_txt(sm->methodState),
   2172 				  eap_sm_decision_txt(sm->decision),
   2173 				  sm->ClientTimeout);
   2174 		if (os_snprintf_error(buflen - len, ret))
   2175 			return len;
   2176 		len += ret;
   2177 	}
   2178 
   2179 	return len;
   2180 }
   2181 #endif /* CONFIG_CTRL_IFACE */
   2182 
   2183 
   2184 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
   2185 			   const char *msg, size_t msglen)
   2186 {
   2187 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   2188 	struct eap_peer_config *config;
   2189 	const char *txt = NULL;
   2190 	char *tmp;
   2191 
   2192 	if (sm == NULL)
   2193 		return;
   2194 	config = eap_get_config(sm);
   2195 	if (config == NULL)
   2196 		return;
   2197 
   2198 	switch (field) {
   2199 	case WPA_CTRL_REQ_EAP_IDENTITY:
   2200 		config->pending_req_identity++;
   2201 		break;
   2202 	case WPA_CTRL_REQ_EAP_PASSWORD:
   2203 		config->pending_req_password++;
   2204 		break;
   2205 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
   2206 		config->pending_req_new_password++;
   2207 		break;
   2208 	case WPA_CTRL_REQ_EAP_PIN:
   2209 		config->pending_req_pin++;
   2210 		break;
   2211 	case WPA_CTRL_REQ_EAP_OTP:
   2212 		if (msg) {
   2213 			tmp = os_malloc(msglen + 3);
   2214 			if (tmp == NULL)
   2215 				return;
   2216 			tmp[0] = '[';
   2217 			os_memcpy(tmp + 1, msg, msglen);
   2218 			tmp[msglen + 1] = ']';
   2219 			tmp[msglen + 2] = '\0';
   2220 			txt = tmp;
   2221 			os_free(config->pending_req_otp);
   2222 			config->pending_req_otp = tmp;
   2223 			config->pending_req_otp_len = msglen + 3;
   2224 		} else {
   2225 			if (config->pending_req_otp == NULL)
   2226 				return;
   2227 			txt = config->pending_req_otp;
   2228 		}
   2229 		break;
   2230 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
   2231 		config->pending_req_passphrase++;
   2232 		break;
   2233 	case WPA_CTRL_REQ_SIM:
   2234 		txt = msg;
   2235 		break;
   2236 	case WPA_CTRL_REQ_EXT_CERT_CHECK:
   2237 		break;
   2238 	default:
   2239 		return;
   2240 	}
   2241 
   2242 	if (sm->eapol_cb->eap_param_needed)
   2243 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
   2244 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   2245 }
   2246 
   2247 
   2248 const char * eap_sm_get_method_name(struct eap_sm *sm)
   2249 {
   2250 	if (sm->m == NULL)
   2251 		return "UNKNOWN";
   2252 	return sm->m->name;
   2253 }
   2254 
   2255 
   2256 /**
   2257  * eap_sm_request_identity - Request identity from user (ctrl_iface)
   2258  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2259  *
   2260  * EAP methods can call this function to request identity information for the
   2261  * current network. This is normally called when the identity is not included
   2262  * in the network configuration. The request will be sent to monitor programs
   2263  * through the control interface.
   2264  */
   2265 void eap_sm_request_identity(struct eap_sm *sm)
   2266 {
   2267 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
   2268 }
   2269 
   2270 
   2271 /**
   2272  * eap_sm_request_password - Request password from user (ctrl_iface)
   2273  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2274  *
   2275  * EAP methods can call this function to request password information for the
   2276  * current network. This is normally called when the password is not included
   2277  * in the network configuration. The request will be sent to monitor programs
   2278  * through the control interface.
   2279  */
   2280 void eap_sm_request_password(struct eap_sm *sm)
   2281 {
   2282 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
   2283 }
   2284 
   2285 
   2286 /**
   2287  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
   2288  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2289  *
   2290  * EAP methods can call this function to request new password information for
   2291  * the current network. This is normally called when the EAP method indicates
   2292  * that the current password has expired and password change is required. The
   2293  * request will be sent to monitor programs through the control interface.
   2294  */
   2295 void eap_sm_request_new_password(struct eap_sm *sm)
   2296 {
   2297 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
   2298 }
   2299 
   2300 
   2301 /**
   2302  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
   2303  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2304  *
   2305  * EAP methods can call this function to request SIM or smart card PIN
   2306  * information for the current network. This is normally called when the PIN is
   2307  * not included in the network configuration. The request will be sent to
   2308  * monitor programs through the control interface.
   2309  */
   2310 void eap_sm_request_pin(struct eap_sm *sm)
   2311 {
   2312 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
   2313 }
   2314 
   2315 
   2316 /**
   2317  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
   2318  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2319  * @msg: Message to be displayed to the user when asking for OTP
   2320  * @msg_len: Length of the user displayable message
   2321  *
   2322  * EAP methods can call this function to request open time password (OTP) for
   2323  * the current network. The request will be sent to monitor programs through
   2324  * the control interface.
   2325  */
   2326 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
   2327 {
   2328 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
   2329 }
   2330 
   2331 
   2332 /**
   2333  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
   2334  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2335  *
   2336  * EAP methods can call this function to request passphrase for a private key
   2337  * for the current network. This is normally called when the passphrase is not
   2338  * included in the network configuration. The request will be sent to monitor
   2339  * programs through the control interface.
   2340  */
   2341 void eap_sm_request_passphrase(struct eap_sm *sm)
   2342 {
   2343 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
   2344 }
   2345 
   2346 
   2347 /**
   2348  * eap_sm_request_sim - Request external SIM processing
   2349  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2350  * @req: EAP method specific request
   2351  */
   2352 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
   2353 {
   2354 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
   2355 }
   2356 
   2357 
   2358 /**
   2359  * eap_sm_notify_ctrl_attached - Notification of attached monitor
   2360  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2361  *
   2362  * Notify EAP state machines that a monitor was attached to the control
   2363  * interface to trigger re-sending of pending requests for user input.
   2364  */
   2365 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
   2366 {
   2367 	struct eap_peer_config *config = eap_get_config(sm);
   2368 
   2369 	if (config == NULL)
   2370 		return;
   2371 
   2372 	/* Re-send any pending requests for user data since a new control
   2373 	 * interface was added. This handles cases where the EAP authentication
   2374 	 * starts immediately after system startup when the user interface is
   2375 	 * not yet running. */
   2376 	if (config->pending_req_identity)
   2377 		eap_sm_request_identity(sm);
   2378 	if (config->pending_req_password)
   2379 		eap_sm_request_password(sm);
   2380 	if (config->pending_req_new_password)
   2381 		eap_sm_request_new_password(sm);
   2382 	if (config->pending_req_otp)
   2383 		eap_sm_request_otp(sm, NULL, 0);
   2384 	if (config->pending_req_pin)
   2385 		eap_sm_request_pin(sm);
   2386 	if (config->pending_req_passphrase)
   2387 		eap_sm_request_passphrase(sm);
   2388 }
   2389 
   2390 
   2391 static int eap_allowed_phase2_type(int vendor, int type)
   2392 {
   2393 	if (vendor != EAP_VENDOR_IETF)
   2394 		return 0;
   2395 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
   2396 		type != EAP_TYPE_FAST;
   2397 }
   2398 
   2399 
   2400 /**
   2401  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
   2402  * @name: EAP method name, e.g., MD5
   2403  * @vendor: Buffer for returning EAP Vendor-Id
   2404  * Returns: EAP method type or %EAP_TYPE_NONE if not found
   2405  *
   2406  * This function maps EAP type names into EAP type numbers that are allowed for
   2407  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
   2408  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
   2409  */
   2410 u32 eap_get_phase2_type(const char *name, int *vendor)
   2411 {
   2412 	int v;
   2413 	u32 type = eap_peer_get_type(name, &v);
   2414 	if (eap_allowed_phase2_type(v, type)) {
   2415 		*vendor = v;
   2416 		return type;
   2417 	}
   2418 	*vendor = EAP_VENDOR_IETF;
   2419 	return EAP_TYPE_NONE;
   2420 }
   2421 
   2422 
   2423 /**
   2424  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
   2425  * @config: Pointer to a network configuration
   2426  * @count: Pointer to a variable to be filled with number of returned EAP types
   2427  * Returns: Pointer to allocated type list or %NULL on failure
   2428  *
   2429  * This function generates an array of allowed EAP phase 2 (tunneled) types for
   2430  * the given network configuration.
   2431  */
   2432 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
   2433 					      size_t *count)
   2434 {
   2435 	struct eap_method_type *buf;
   2436 	u32 method;
   2437 	int vendor;
   2438 	size_t mcount;
   2439 	const struct eap_method *methods, *m;
   2440 
   2441 	methods = eap_peer_get_methods(&mcount);
   2442 	if (methods == NULL)
   2443 		return NULL;
   2444 	*count = 0;
   2445 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
   2446 	if (buf == NULL)
   2447 		return NULL;
   2448 
   2449 	for (m = methods; m; m = m->next) {
   2450 		vendor = m->vendor;
   2451 		method = m->method;
   2452 		if (eap_allowed_phase2_type(vendor, method)) {
   2453 			if (vendor == EAP_VENDOR_IETF &&
   2454 			    method == EAP_TYPE_TLS && config &&
   2455 			    config->private_key2 == NULL)
   2456 				continue;
   2457 			buf[*count].vendor = vendor;
   2458 			buf[*count].method = method;
   2459 			(*count)++;
   2460 		}
   2461 	}
   2462 
   2463 	return buf;
   2464 }
   2465 
   2466 
   2467 /**
   2468  * eap_set_fast_reauth - Update fast_reauth setting
   2469  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2470  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
   2471  */
   2472 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
   2473 {
   2474 	sm->fast_reauth = enabled;
   2475 }
   2476 
   2477 
   2478 /**
   2479  * eap_set_workaround - Update EAP workarounds setting
   2480  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2481  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
   2482  */
   2483 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
   2484 {
   2485 	sm->workaround = workaround;
   2486 }
   2487 
   2488 
   2489 /**
   2490  * eap_get_config - Get current network configuration
   2491  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2492  * Returns: Pointer to the current network configuration or %NULL if not found
   2493  *
   2494  * EAP peer methods should avoid using this function if they can use other
   2495  * access functions, like eap_get_config_identity() and
   2496  * eap_get_config_password(), that do not require direct access to
   2497  * struct eap_peer_config.
   2498  */
   2499 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
   2500 {
   2501 	return sm->eapol_cb->get_config(sm->eapol_ctx);
   2502 }
   2503 
   2504 
   2505 /**
   2506  * eap_get_config_identity - Get identity from the network configuration
   2507  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2508  * @len: Buffer for the length of the identity
   2509  * Returns: Pointer to the identity or %NULL if not found
   2510  */
   2511 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
   2512 {
   2513 	struct eap_peer_config *config = eap_get_config(sm);
   2514 	if (config == NULL)
   2515 		return NULL;
   2516 	*len = config->identity_len;
   2517 	return config->identity;
   2518 }
   2519 
   2520 
   2521 static int eap_get_ext_password(struct eap_sm *sm,
   2522 				struct eap_peer_config *config)
   2523 {
   2524 	char *name;
   2525 
   2526 	if (config->password == NULL)
   2527 		return -1;
   2528 
   2529 	name = os_zalloc(config->password_len + 1);
   2530 	if (name == NULL)
   2531 		return -1;
   2532 	os_memcpy(name, config->password, config->password_len);
   2533 
   2534 	ext_password_free(sm->ext_pw_buf);
   2535 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
   2536 	os_free(name);
   2537 
   2538 	return sm->ext_pw_buf == NULL ? -1 : 0;
   2539 }
   2540 
   2541 
   2542 /**
   2543  * eap_get_config_password - Get password from the network configuration
   2544  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2545  * @len: Buffer for the length of the password
   2546  * Returns: Pointer to the password or %NULL if not found
   2547  */
   2548 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
   2549 {
   2550 	struct eap_peer_config *config = eap_get_config(sm);
   2551 	if (config == NULL)
   2552 		return NULL;
   2553 
   2554 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   2555 		if (eap_get_ext_password(sm, config) < 0)
   2556 			return NULL;
   2557 		*len = wpabuf_len(sm->ext_pw_buf);
   2558 		return wpabuf_head(sm->ext_pw_buf);
   2559 	}
   2560 
   2561 	*len = config->password_len;
   2562 	return config->password;
   2563 }
   2564 
   2565 
   2566 /**
   2567  * eap_get_config_password2 - Get password from the network configuration
   2568  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2569  * @len: Buffer for the length of the password
   2570  * @hash: Buffer for returning whether the password is stored as a
   2571  * NtPasswordHash instead of plaintext password; can be %NULL if this
   2572  * information is not needed
   2573  * Returns: Pointer to the password or %NULL if not found
   2574  */
   2575 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
   2576 {
   2577 	struct eap_peer_config *config = eap_get_config(sm);
   2578 	if (config == NULL)
   2579 		return NULL;
   2580 
   2581 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   2582 		if (eap_get_ext_password(sm, config) < 0)
   2583 			return NULL;
   2584 		if (hash)
   2585 			*hash = 0;
   2586 		*len = wpabuf_len(sm->ext_pw_buf);
   2587 		return wpabuf_head(sm->ext_pw_buf);
   2588 	}
   2589 
   2590 	*len = config->password_len;
   2591 	if (hash)
   2592 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
   2593 	return config->password;
   2594 }
   2595 
   2596 
   2597 /**
   2598  * eap_get_config_new_password - Get new password from network configuration
   2599  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2600  * @len: Buffer for the length of the new password
   2601  * Returns: Pointer to the new password or %NULL if not found
   2602  */
   2603 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
   2604 {
   2605 	struct eap_peer_config *config = eap_get_config(sm);
   2606 	if (config == NULL)
   2607 		return NULL;
   2608 	*len = config->new_password_len;
   2609 	return config->new_password;
   2610 }
   2611 
   2612 
   2613 /**
   2614  * eap_get_config_otp - Get one-time password from the network configuration
   2615  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2616  * @len: Buffer for the length of the one-time password
   2617  * Returns: Pointer to the one-time password or %NULL if not found
   2618  */
   2619 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
   2620 {
   2621 	struct eap_peer_config *config = eap_get_config(sm);
   2622 	if (config == NULL)
   2623 		return NULL;
   2624 	*len = config->otp_len;
   2625 	return config->otp;
   2626 }
   2627 
   2628 
   2629 /**
   2630  * eap_clear_config_otp - Clear used one-time password
   2631  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2632  *
   2633  * This function clears a used one-time password (OTP) from the current network
   2634  * configuration. This should be called when the OTP has been used and is not
   2635  * needed anymore.
   2636  */
   2637 void eap_clear_config_otp(struct eap_sm *sm)
   2638 {
   2639 	struct eap_peer_config *config = eap_get_config(sm);
   2640 	if (config == NULL)
   2641 		return;
   2642 	os_memset(config->otp, 0, config->otp_len);
   2643 	os_free(config->otp);
   2644 	config->otp = NULL;
   2645 	config->otp_len = 0;
   2646 }
   2647 
   2648 
   2649 /**
   2650  * eap_get_config_phase1 - Get phase1 data from the network configuration
   2651  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2652  * Returns: Pointer to the phase1 data or %NULL if not found
   2653  */
   2654 const char * eap_get_config_phase1(struct eap_sm *sm)
   2655 {
   2656 	struct eap_peer_config *config = eap_get_config(sm);
   2657 	if (config == NULL)
   2658 		return NULL;
   2659 	return config->phase1;
   2660 }
   2661 
   2662 
   2663 /**
   2664  * eap_get_config_phase2 - Get phase2 data from the network configuration
   2665  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2666  * Returns: Pointer to the phase1 data or %NULL if not found
   2667  */
   2668 const char * eap_get_config_phase2(struct eap_sm *sm)
   2669 {
   2670 	struct eap_peer_config *config = eap_get_config(sm);
   2671 	if (config == NULL)
   2672 		return NULL;
   2673 	return config->phase2;
   2674 }
   2675 
   2676 
   2677 int eap_get_config_fragment_size(struct eap_sm *sm)
   2678 {
   2679 	struct eap_peer_config *config = eap_get_config(sm);
   2680 	if (config == NULL)
   2681 		return -1;
   2682 	return config->fragment_size;
   2683 }
   2684 
   2685 
   2686 /**
   2687  * eap_key_available - Get key availability (eapKeyAvailable variable)
   2688  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2689  * Returns: 1 if EAP keying material is available, 0 if not
   2690  */
   2691 int eap_key_available(struct eap_sm *sm)
   2692 {
   2693 	return sm ? sm->eapKeyAvailable : 0;
   2694 }
   2695 
   2696 
   2697 /**
   2698  * eap_notify_success - Notify EAP state machine about external success trigger
   2699  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2700  *
   2701  * This function is called when external event, e.g., successful completion of
   2702  * WPA-PSK key handshake, is indicating that EAP state machine should move to
   2703  * success state. This is mainly used with security modes that do not use EAP
   2704  * state machine (e.g., WPA-PSK).
   2705  */
   2706 void eap_notify_success(struct eap_sm *sm)
   2707 {
   2708 	if (sm) {
   2709 		sm->decision = DECISION_COND_SUCC;
   2710 		sm->EAP_state = EAP_SUCCESS;
   2711 	}
   2712 }
   2713 
   2714 
   2715 /**
   2716  * eap_notify_lower_layer_success - Notification of lower layer success
   2717  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2718  *
   2719  * Notify EAP state machines that a lower layer has detected a successful
   2720  * authentication. This is used to recover from dropped EAP-Success messages.
   2721  */
   2722 void eap_notify_lower_layer_success(struct eap_sm *sm)
   2723 {
   2724 	if (sm == NULL)
   2725 		return;
   2726 
   2727 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
   2728 	    sm->decision == DECISION_FAIL ||
   2729 	    (sm->methodState != METHOD_MAY_CONT &&
   2730 	     sm->methodState != METHOD_DONE))
   2731 		return;
   2732 
   2733 	if (sm->eapKeyData != NULL)
   2734 		sm->eapKeyAvailable = TRUE;
   2735 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   2736 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   2737 		"EAP authentication completed successfully (based on lower "
   2738 		"layer success)");
   2739 }
   2740 
   2741 
   2742 /**
   2743  * eap_get_eapSessionId - Get Session-Id from EAP state machine
   2744  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2745  * @len: Pointer to variable that will be set to number of bytes in the session
   2746  * Returns: Pointer to the EAP Session-Id or %NULL on failure
   2747  *
   2748  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
   2749  * only after a successful authentication. EAP state machine continues to manage
   2750  * the Session-Id and the caller must not change or free the returned data.
   2751  */
   2752 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
   2753 {
   2754 	if (sm == NULL || sm->eapSessionId == NULL) {
   2755 		*len = 0;
   2756 		return NULL;
   2757 	}
   2758 
   2759 	*len = sm->eapSessionIdLen;
   2760 	return sm->eapSessionId;
   2761 }
   2762 
   2763 
   2764 /**
   2765  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
   2766  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2767  * @len: Pointer to variable that will be set to number of bytes in the key
   2768  * Returns: Pointer to the EAP keying data or %NULL on failure
   2769  *
   2770  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
   2771  * key is available only after a successful authentication. EAP state machine
   2772  * continues to manage the key data and the caller must not change or free the
   2773  * returned data.
   2774  */
   2775 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
   2776 {
   2777 	if (sm == NULL || sm->eapKeyData == NULL) {
   2778 		*len = 0;
   2779 		return NULL;
   2780 	}
   2781 
   2782 	*len = sm->eapKeyDataLen;
   2783 	return sm->eapKeyData;
   2784 }
   2785 
   2786 
   2787 /**
   2788  * eap_get_eapKeyData - Get EAP response data
   2789  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2790  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
   2791  *
   2792  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
   2793  * available when EAP state machine has processed an incoming EAP request. The
   2794  * EAP state machine does not maintain a reference to the response after this
   2795  * function is called and the caller is responsible for freeing the data.
   2796  */
   2797 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
   2798 {
   2799 	struct wpabuf *resp;
   2800 
   2801 	if (sm == NULL || sm->eapRespData == NULL)
   2802 		return NULL;
   2803 
   2804 	resp = sm->eapRespData;
   2805 	sm->eapRespData = NULL;
   2806 
   2807 	return resp;
   2808 }
   2809 
   2810 
   2811 /**
   2812  * eap_sm_register_scard_ctx - Notification of smart card context
   2813  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2814  * @ctx: Context data for smart card operations
   2815  *
   2816  * Notify EAP state machines of context data for smart card operations. This
   2817  * context data will be used as a parameter for scard_*() functions.
   2818  */
   2819 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
   2820 {
   2821 	if (sm)
   2822 		sm->scard_ctx = ctx;
   2823 }
   2824 
   2825 
   2826 /**
   2827  * eap_set_config_blob - Set or add a named configuration blob
   2828  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2829  * @blob: New value for the blob
   2830  *
   2831  * Adds a new configuration blob or replaces the current value of an existing
   2832  * blob.
   2833  */
   2834 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
   2835 {
   2836 #ifndef CONFIG_NO_CONFIG_BLOBS
   2837 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
   2838 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2839 }
   2840 
   2841 
   2842 /**
   2843  * eap_get_config_blob - Get a named configuration blob
   2844  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2845  * @name: Name of the blob
   2846  * Returns: Pointer to blob data or %NULL if not found
   2847  */
   2848 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
   2849 						   const char *name)
   2850 {
   2851 #ifndef CONFIG_NO_CONFIG_BLOBS
   2852 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
   2853 #else /* CONFIG_NO_CONFIG_BLOBS */
   2854 	return NULL;
   2855 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2856 }
   2857 
   2858 
   2859 /**
   2860  * eap_set_force_disabled - Set force_disabled flag
   2861  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2862  * @disabled: 1 = EAP disabled, 0 = EAP enabled
   2863  *
   2864  * This function is used to force EAP state machine to be disabled when it is
   2865  * not in use (e.g., with WPA-PSK or plaintext connections).
   2866  */
   2867 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
   2868 {
   2869 	sm->force_disabled = disabled;
   2870 }
   2871 
   2872 
   2873 /**
   2874  * eap_set_external_sim - Set external_sim flag
   2875  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2876  * @external_sim: Whether external SIM/USIM processing is used
   2877  */
   2878 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
   2879 {
   2880 	sm->external_sim = external_sim;
   2881 }
   2882 
   2883 
   2884  /**
   2885  * eap_notify_pending - Notify that EAP method is ready to re-process a request
   2886  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2887  *
   2888  * An EAP method can perform a pending operation (e.g., to get a response from
   2889  * an external process). Once the response is available, this function can be
   2890  * used to request EAPOL state machine to retry delivering the previously
   2891  * received (and still unanswered) EAP request to EAP state machine.
   2892  */
   2893 void eap_notify_pending(struct eap_sm *sm)
   2894 {
   2895 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
   2896 }
   2897 
   2898 
   2899 /**
   2900  * eap_invalidate_cached_session - Mark cached session data invalid
   2901  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2902  */
   2903 void eap_invalidate_cached_session(struct eap_sm *sm)
   2904 {
   2905 	if (sm)
   2906 		eap_deinit_prev_method(sm, "invalidate");
   2907 }
   2908 
   2909 
   2910 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
   2911 {
   2912 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2913 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2914 		return 0; /* Not a WPS Enrollee */
   2915 
   2916 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
   2917 		return 0; /* Not using PBC */
   2918 
   2919 	return 1;
   2920 }
   2921 
   2922 
   2923 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
   2924 {
   2925 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2926 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2927 		return 0; /* Not a WPS Enrollee */
   2928 
   2929 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
   2930 		return 0; /* Not using PIN */
   2931 
   2932 	return 1;
   2933 }
   2934 
   2935 
   2936 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
   2937 {
   2938 	ext_password_free(sm->ext_pw_buf);
   2939 	sm->ext_pw_buf = NULL;
   2940 	sm->ext_pw = ext;
   2941 }
   2942 
   2943 
   2944 /**
   2945  * eap_set_anon_id - Set or add anonymous identity
   2946  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2947  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
   2948  * @len: Length of anonymous identity in octets
   2949  */
   2950 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
   2951 {
   2952 	if (sm->eapol_cb->set_anon_id)
   2953 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
   2954 }
   2955 
   2956 
   2957 int eap_peer_was_failure_expected(struct eap_sm *sm)
   2958 {
   2959 	return sm->expected_failure;
   2960 }
   2961