1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 14 // for more information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 24 #include "clang/Analysis/Analyses/ThreadSafety.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 26 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" 27 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 28 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 29 #include "clang/Analysis/AnalysisContext.h" 30 #include "clang/Analysis/CFG.h" 31 #include "clang/Analysis/CFGStmtMap.h" 32 #include "clang/Basic/OperatorKinds.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "llvm/ADT/BitVector.h" 36 #include "llvm/ADT/FoldingSet.h" 37 #include "llvm/ADT/ImmutableMap.h" 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <ostream> 44 #include <sstream> 45 #include <utility> 46 #include <vector> 47 using namespace clang; 48 using namespace threadSafety; 49 50 // Key method definition 51 ThreadSafetyHandler::~ThreadSafetyHandler() {} 52 53 namespace { 54 class TILPrinter : 55 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 56 57 58 /// Issue a warning about an invalid lock expression 59 static void warnInvalidLock(ThreadSafetyHandler &Handler, 60 const Expr *MutexExp, const NamedDecl *D, 61 const Expr *DeclExp, StringRef Kind) { 62 SourceLocation Loc; 63 if (DeclExp) 64 Loc = DeclExp->getExprLoc(); 65 66 // FIXME: add a note about the attribute location in MutexExp or D 67 if (Loc.isValid()) 68 Handler.handleInvalidLockExp(Kind, Loc); 69 } 70 71 /// \brief A set of CapabilityInfo objects, which are compiled from the 72 /// requires attributes on a function. 73 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 74 public: 75 /// \brief Push M onto list, but discard duplicates. 76 void push_back_nodup(const CapabilityExpr &CapE) { 77 iterator It = std::find_if(begin(), end(), 78 [=](const CapabilityExpr &CapE2) { 79 return CapE.equals(CapE2); 80 }); 81 if (It == end()) 82 push_back(CapE); 83 } 84 }; 85 86 class FactManager; 87 class FactSet; 88 89 /// \brief This is a helper class that stores a fact that is known at a 90 /// particular point in program execution. Currently, a fact is a capability, 91 /// along with additional information, such as where it was acquired, whether 92 /// it is exclusive or shared, etc. 93 /// 94 /// FIXME: this analysis does not currently support either re-entrant 95 /// locking or lock "upgrading" and "downgrading" between exclusive and 96 /// shared. 97 class FactEntry : public CapabilityExpr { 98 private: 99 LockKind LKind; ///< exclusive or shared 100 SourceLocation AcquireLoc; ///< where it was acquired. 101 bool Asserted; ///< true if the lock was asserted 102 bool Declared; ///< true if the lock was declared 103 104 public: 105 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 106 bool Asrt, bool Declrd = false) 107 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), 108 Declared(Declrd) {} 109 110 virtual ~FactEntry() {} 111 112 LockKind kind() const { return LKind; } 113 SourceLocation loc() const { return AcquireLoc; } 114 bool asserted() const { return Asserted; } 115 bool declared() const { return Declared; } 116 117 void setDeclared(bool D) { Declared = D; } 118 119 virtual void 120 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 121 SourceLocation JoinLoc, LockErrorKind LEK, 122 ThreadSafetyHandler &Handler) const = 0; 123 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 124 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 125 bool FullyRemove, ThreadSafetyHandler &Handler, 126 StringRef DiagKind) const = 0; 127 128 // Return true if LKind >= LK, where exclusive > shared 129 bool isAtLeast(LockKind LK) { 130 return (LKind == LK_Exclusive) || (LK == LK_Shared); 131 } 132 }; 133 134 135 typedef unsigned short FactID; 136 137 /// \brief FactManager manages the memory for all facts that are created during 138 /// the analysis of a single routine. 139 class FactManager { 140 private: 141 std::vector<std::unique_ptr<FactEntry>> Facts; 142 143 public: 144 FactID newFact(std::unique_ptr<FactEntry> Entry) { 145 Facts.push_back(std::move(Entry)); 146 return static_cast<unsigned short>(Facts.size() - 1); 147 } 148 149 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 150 FactEntry &operator[](FactID F) { return *Facts[F]; } 151 }; 152 153 154 /// \brief A FactSet is the set of facts that are known to be true at a 155 /// particular program point. FactSets must be small, because they are 156 /// frequently copied, and are thus implemented as a set of indices into a 157 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 158 /// locks, so we can get away with doing a linear search for lookup. Note 159 /// that a hashtable or map is inappropriate in this case, because lookups 160 /// may involve partial pattern matches, rather than exact matches. 161 class FactSet { 162 private: 163 typedef SmallVector<FactID, 4> FactVec; 164 165 FactVec FactIDs; 166 167 public: 168 typedef FactVec::iterator iterator; 169 typedef FactVec::const_iterator const_iterator; 170 171 iterator begin() { return FactIDs.begin(); } 172 const_iterator begin() const { return FactIDs.begin(); } 173 174 iterator end() { return FactIDs.end(); } 175 const_iterator end() const { return FactIDs.end(); } 176 177 bool isEmpty() const { return FactIDs.size() == 0; } 178 179 // Return true if the set contains only negative facts 180 bool isEmpty(FactManager &FactMan) const { 181 for (FactID FID : *this) { 182 if (!FactMan[FID].negative()) 183 return false; 184 } 185 return true; 186 } 187 188 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 189 190 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 191 FactID F = FM.newFact(std::move(Entry)); 192 FactIDs.push_back(F); 193 return F; 194 } 195 196 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 197 unsigned n = FactIDs.size(); 198 if (n == 0) 199 return false; 200 201 for (unsigned i = 0; i < n-1; ++i) { 202 if (FM[FactIDs[i]].matches(CapE)) { 203 FactIDs[i] = FactIDs[n-1]; 204 FactIDs.pop_back(); 205 return true; 206 } 207 } 208 if (FM[FactIDs[n-1]].matches(CapE)) { 209 FactIDs.pop_back(); 210 return true; 211 } 212 return false; 213 } 214 215 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 216 return std::find_if(begin(), end(), [&](FactID ID) { 217 return FM[ID].matches(CapE); 218 }); 219 } 220 221 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 222 auto I = std::find_if(begin(), end(), [&](FactID ID) { 223 return FM[ID].matches(CapE); 224 }); 225 return I != end() ? &FM[*I] : nullptr; 226 } 227 228 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 229 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 230 return FM[ID].matchesUniv(CapE); 231 }); 232 return I != end() ? &FM[*I] : nullptr; 233 } 234 235 FactEntry *findPartialMatch(FactManager &FM, 236 const CapabilityExpr &CapE) const { 237 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 238 return FM[ID].partiallyMatches(CapE); 239 }); 240 return I != end() ? &FM[*I] : nullptr; 241 } 242 243 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 244 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 245 return FM[ID].valueDecl() == Vd; 246 }); 247 return I != end(); 248 } 249 }; 250 251 class ThreadSafetyAnalyzer; 252 } // namespace 253 254 namespace clang { 255 namespace threadSafety { 256 class BeforeSet { 257 private: 258 typedef SmallVector<const ValueDecl*, 4> BeforeVect; 259 260 struct BeforeInfo { 261 BeforeInfo() : Visited(0) {} 262 BeforeInfo(BeforeInfo &&O) : Vect(std::move(O.Vect)), Visited(O.Visited) {} 263 264 BeforeVect Vect; 265 int Visited; 266 }; 267 268 typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>> 269 BeforeMap; 270 typedef llvm::DenseMap<const ValueDecl*, bool> CycleMap; 271 272 public: 273 BeforeSet() { } 274 275 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 276 ThreadSafetyAnalyzer& Analyzer); 277 278 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 279 ThreadSafetyAnalyzer &Analyzer); 280 281 void checkBeforeAfter(const ValueDecl* Vd, 282 const FactSet& FSet, 283 ThreadSafetyAnalyzer& Analyzer, 284 SourceLocation Loc, StringRef CapKind); 285 286 private: 287 BeforeMap BMap; 288 CycleMap CycMap; 289 }; 290 } // end namespace threadSafety 291 } // end namespace clang 292 293 namespace { 294 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 295 class LocalVariableMap; 296 297 /// A side (entry or exit) of a CFG node. 298 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 299 300 /// CFGBlockInfo is a struct which contains all the information that is 301 /// maintained for each block in the CFG. See LocalVariableMap for more 302 /// information about the contexts. 303 struct CFGBlockInfo { 304 FactSet EntrySet; // Lockset held at entry to block 305 FactSet ExitSet; // Lockset held at exit from block 306 LocalVarContext EntryContext; // Context held at entry to block 307 LocalVarContext ExitContext; // Context held at exit from block 308 SourceLocation EntryLoc; // Location of first statement in block 309 SourceLocation ExitLoc; // Location of last statement in block. 310 unsigned EntryIndex; // Used to replay contexts later 311 bool Reachable; // Is this block reachable? 312 313 const FactSet &getSet(CFGBlockSide Side) const { 314 return Side == CBS_Entry ? EntrySet : ExitSet; 315 } 316 SourceLocation getLocation(CFGBlockSide Side) const { 317 return Side == CBS_Entry ? EntryLoc : ExitLoc; 318 } 319 320 private: 321 CFGBlockInfo(LocalVarContext EmptyCtx) 322 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 323 { } 324 325 public: 326 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 327 }; 328 329 330 331 // A LocalVariableMap maintains a map from local variables to their currently 332 // valid definitions. It provides SSA-like functionality when traversing the 333 // CFG. Like SSA, each definition or assignment to a variable is assigned a 334 // unique name (an integer), which acts as the SSA name for that definition. 335 // The total set of names is shared among all CFG basic blocks. 336 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 337 // with their SSA-names. Instead, we compute a Context for each point in the 338 // code, which maps local variables to the appropriate SSA-name. This map 339 // changes with each assignment. 340 // 341 // The map is computed in a single pass over the CFG. Subsequent analyses can 342 // then query the map to find the appropriate Context for a statement, and use 343 // that Context to look up the definitions of variables. 344 class LocalVariableMap { 345 public: 346 typedef LocalVarContext Context; 347 348 /// A VarDefinition consists of an expression, representing the value of the 349 /// variable, along with the context in which that expression should be 350 /// interpreted. A reference VarDefinition does not itself contain this 351 /// information, but instead contains a pointer to a previous VarDefinition. 352 struct VarDefinition { 353 public: 354 friend class LocalVariableMap; 355 356 const NamedDecl *Dec; // The original declaration for this variable. 357 const Expr *Exp; // The expression for this variable, OR 358 unsigned Ref; // Reference to another VarDefinition 359 Context Ctx; // The map with which Exp should be interpreted. 360 361 bool isReference() { return !Exp; } 362 363 private: 364 // Create ordinary variable definition 365 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 366 : Dec(D), Exp(E), Ref(0), Ctx(C) 367 { } 368 369 // Create reference to previous definition 370 VarDefinition(const NamedDecl *D, unsigned R, Context C) 371 : Dec(D), Exp(nullptr), Ref(R), Ctx(C) 372 { } 373 }; 374 375 private: 376 Context::Factory ContextFactory; 377 std::vector<VarDefinition> VarDefinitions; 378 std::vector<unsigned> CtxIndices; 379 std::vector<std::pair<Stmt*, Context> > SavedContexts; 380 381 public: 382 LocalVariableMap() { 383 // index 0 is a placeholder for undefined variables (aka phi-nodes). 384 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 385 } 386 387 /// Look up a definition, within the given context. 388 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 389 const unsigned *i = Ctx.lookup(D); 390 if (!i) 391 return nullptr; 392 assert(*i < VarDefinitions.size()); 393 return &VarDefinitions[*i]; 394 } 395 396 /// Look up the definition for D within the given context. Returns 397 /// NULL if the expression is not statically known. If successful, also 398 /// modifies Ctx to hold the context of the return Expr. 399 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 400 const unsigned *P = Ctx.lookup(D); 401 if (!P) 402 return nullptr; 403 404 unsigned i = *P; 405 while (i > 0) { 406 if (VarDefinitions[i].Exp) { 407 Ctx = VarDefinitions[i].Ctx; 408 return VarDefinitions[i].Exp; 409 } 410 i = VarDefinitions[i].Ref; 411 } 412 return nullptr; 413 } 414 415 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 416 417 /// Return the next context after processing S. This function is used by 418 /// clients of the class to get the appropriate context when traversing the 419 /// CFG. It must be called for every assignment or DeclStmt. 420 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 421 if (SavedContexts[CtxIndex+1].first == S) { 422 CtxIndex++; 423 Context Result = SavedContexts[CtxIndex].second; 424 return Result; 425 } 426 return C; 427 } 428 429 void dumpVarDefinitionName(unsigned i) { 430 if (i == 0) { 431 llvm::errs() << "Undefined"; 432 return; 433 } 434 const NamedDecl *Dec = VarDefinitions[i].Dec; 435 if (!Dec) { 436 llvm::errs() << "<<NULL>>"; 437 return; 438 } 439 Dec->printName(llvm::errs()); 440 llvm::errs() << "." << i << " " << ((const void*) Dec); 441 } 442 443 /// Dumps an ASCII representation of the variable map to llvm::errs() 444 void dump() { 445 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 446 const Expr *Exp = VarDefinitions[i].Exp; 447 unsigned Ref = VarDefinitions[i].Ref; 448 449 dumpVarDefinitionName(i); 450 llvm::errs() << " = "; 451 if (Exp) Exp->dump(); 452 else { 453 dumpVarDefinitionName(Ref); 454 llvm::errs() << "\n"; 455 } 456 } 457 } 458 459 /// Dumps an ASCII representation of a Context to llvm::errs() 460 void dumpContext(Context C) { 461 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 462 const NamedDecl *D = I.getKey(); 463 D->printName(llvm::errs()); 464 const unsigned *i = C.lookup(D); 465 llvm::errs() << " -> "; 466 dumpVarDefinitionName(*i); 467 llvm::errs() << "\n"; 468 } 469 } 470 471 /// Builds the variable map. 472 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 473 std::vector<CFGBlockInfo> &BlockInfo); 474 475 protected: 476 // Get the current context index 477 unsigned getContextIndex() { return SavedContexts.size()-1; } 478 479 // Save the current context for later replay 480 void saveContext(Stmt *S, Context C) { 481 SavedContexts.push_back(std::make_pair(S,C)); 482 } 483 484 // Adds a new definition to the given context, and returns a new context. 485 // This method should be called when declaring a new variable. 486 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 487 assert(!Ctx.contains(D)); 488 unsigned newID = VarDefinitions.size(); 489 Context NewCtx = ContextFactory.add(Ctx, D, newID); 490 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 491 return NewCtx; 492 } 493 494 // Add a new reference to an existing definition. 495 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 496 unsigned newID = VarDefinitions.size(); 497 Context NewCtx = ContextFactory.add(Ctx, D, newID); 498 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 499 return NewCtx; 500 } 501 502 // Updates a definition only if that definition is already in the map. 503 // This method should be called when assigning to an existing variable. 504 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 505 if (Ctx.contains(D)) { 506 unsigned newID = VarDefinitions.size(); 507 Context NewCtx = ContextFactory.remove(Ctx, D); 508 NewCtx = ContextFactory.add(NewCtx, D, newID); 509 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 510 return NewCtx; 511 } 512 return Ctx; 513 } 514 515 // Removes a definition from the context, but keeps the variable name 516 // as a valid variable. The index 0 is a placeholder for cleared definitions. 517 Context clearDefinition(const NamedDecl *D, Context Ctx) { 518 Context NewCtx = Ctx; 519 if (NewCtx.contains(D)) { 520 NewCtx = ContextFactory.remove(NewCtx, D); 521 NewCtx = ContextFactory.add(NewCtx, D, 0); 522 } 523 return NewCtx; 524 } 525 526 // Remove a definition entirely frmo the context. 527 Context removeDefinition(const NamedDecl *D, Context Ctx) { 528 Context NewCtx = Ctx; 529 if (NewCtx.contains(D)) { 530 NewCtx = ContextFactory.remove(NewCtx, D); 531 } 532 return NewCtx; 533 } 534 535 Context intersectContexts(Context C1, Context C2); 536 Context createReferenceContext(Context C); 537 void intersectBackEdge(Context C1, Context C2); 538 539 friend class VarMapBuilder; 540 }; 541 542 543 // This has to be defined after LocalVariableMap. 544 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 545 return CFGBlockInfo(M.getEmptyContext()); 546 } 547 548 549 /// Visitor which builds a LocalVariableMap 550 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 551 public: 552 LocalVariableMap* VMap; 553 LocalVariableMap::Context Ctx; 554 555 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 556 : VMap(VM), Ctx(C) {} 557 558 void VisitDeclStmt(DeclStmt *S); 559 void VisitBinaryOperator(BinaryOperator *BO); 560 }; 561 562 563 // Add new local variables to the variable map 564 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 565 bool modifiedCtx = false; 566 DeclGroupRef DGrp = S->getDeclGroup(); 567 for (const auto *D : DGrp) { 568 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 569 const Expr *E = VD->getInit(); 570 571 // Add local variables with trivial type to the variable map 572 QualType T = VD->getType(); 573 if (T.isTrivialType(VD->getASTContext())) { 574 Ctx = VMap->addDefinition(VD, E, Ctx); 575 modifiedCtx = true; 576 } 577 } 578 } 579 if (modifiedCtx) 580 VMap->saveContext(S, Ctx); 581 } 582 583 // Update local variable definitions in variable map 584 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 585 if (!BO->isAssignmentOp()) 586 return; 587 588 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 589 590 // Update the variable map and current context. 591 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 592 ValueDecl *VDec = DRE->getDecl(); 593 if (Ctx.lookup(VDec)) { 594 if (BO->getOpcode() == BO_Assign) 595 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 596 else 597 // FIXME -- handle compound assignment operators 598 Ctx = VMap->clearDefinition(VDec, Ctx); 599 VMap->saveContext(BO, Ctx); 600 } 601 } 602 } 603 604 605 // Computes the intersection of two contexts. The intersection is the 606 // set of variables which have the same definition in both contexts; 607 // variables with different definitions are discarded. 608 LocalVariableMap::Context 609 LocalVariableMap::intersectContexts(Context C1, Context C2) { 610 Context Result = C1; 611 for (const auto &P : C1) { 612 const NamedDecl *Dec = P.first; 613 const unsigned *i2 = C2.lookup(Dec); 614 if (!i2) // variable doesn't exist on second path 615 Result = removeDefinition(Dec, Result); 616 else if (*i2 != P.second) // variable exists, but has different definition 617 Result = clearDefinition(Dec, Result); 618 } 619 return Result; 620 } 621 622 // For every variable in C, create a new variable that refers to the 623 // definition in C. Return a new context that contains these new variables. 624 // (We use this for a naive implementation of SSA on loop back-edges.) 625 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 626 Context Result = getEmptyContext(); 627 for (const auto &P : C) 628 Result = addReference(P.first, P.second, Result); 629 return Result; 630 } 631 632 // This routine also takes the intersection of C1 and C2, but it does so by 633 // altering the VarDefinitions. C1 must be the result of an earlier call to 634 // createReferenceContext. 635 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 636 for (const auto &P : C1) { 637 unsigned i1 = P.second; 638 VarDefinition *VDef = &VarDefinitions[i1]; 639 assert(VDef->isReference()); 640 641 const unsigned *i2 = C2.lookup(P.first); 642 if (!i2 || (*i2 != i1)) 643 VDef->Ref = 0; // Mark this variable as undefined 644 } 645 } 646 647 648 // Traverse the CFG in topological order, so all predecessors of a block 649 // (excluding back-edges) are visited before the block itself. At 650 // each point in the code, we calculate a Context, which holds the set of 651 // variable definitions which are visible at that point in execution. 652 // Visible variables are mapped to their definitions using an array that 653 // contains all definitions. 654 // 655 // At join points in the CFG, the set is computed as the intersection of 656 // the incoming sets along each edge, E.g. 657 // 658 // { Context | VarDefinitions } 659 // int x = 0; { x -> x1 | x1 = 0 } 660 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 661 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 662 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 663 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 664 // 665 // This is essentially a simpler and more naive version of the standard SSA 666 // algorithm. Those definitions that remain in the intersection are from blocks 667 // that strictly dominate the current block. We do not bother to insert proper 668 // phi nodes, because they are not used in our analysis; instead, wherever 669 // a phi node would be required, we simply remove that definition from the 670 // context (E.g. x above). 671 // 672 // The initial traversal does not capture back-edges, so those need to be 673 // handled on a separate pass. Whenever the first pass encounters an 674 // incoming back edge, it duplicates the context, creating new definitions 675 // that refer back to the originals. (These correspond to places where SSA 676 // might have to insert a phi node.) On the second pass, these definitions are 677 // set to NULL if the variable has changed on the back-edge (i.e. a phi 678 // node was actually required.) E.g. 679 // 680 // { Context | VarDefinitions } 681 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 682 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 683 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 684 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 685 // 686 void LocalVariableMap::traverseCFG(CFG *CFGraph, 687 const PostOrderCFGView *SortedGraph, 688 std::vector<CFGBlockInfo> &BlockInfo) { 689 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 690 691 CtxIndices.resize(CFGraph->getNumBlockIDs()); 692 693 for (const auto *CurrBlock : *SortedGraph) { 694 int CurrBlockID = CurrBlock->getBlockID(); 695 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 696 697 VisitedBlocks.insert(CurrBlock); 698 699 // Calculate the entry context for the current block 700 bool HasBackEdges = false; 701 bool CtxInit = true; 702 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 703 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 704 // if *PI -> CurrBlock is a back edge, so skip it 705 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 706 HasBackEdges = true; 707 continue; 708 } 709 710 int PrevBlockID = (*PI)->getBlockID(); 711 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 712 713 if (CtxInit) { 714 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 715 CtxInit = false; 716 } 717 else { 718 CurrBlockInfo->EntryContext = 719 intersectContexts(CurrBlockInfo->EntryContext, 720 PrevBlockInfo->ExitContext); 721 } 722 } 723 724 // Duplicate the context if we have back-edges, so we can call 725 // intersectBackEdges later. 726 if (HasBackEdges) 727 CurrBlockInfo->EntryContext = 728 createReferenceContext(CurrBlockInfo->EntryContext); 729 730 // Create a starting context index for the current block 731 saveContext(nullptr, CurrBlockInfo->EntryContext); 732 CurrBlockInfo->EntryIndex = getContextIndex(); 733 734 // Visit all the statements in the basic block. 735 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 736 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 737 BE = CurrBlock->end(); BI != BE; ++BI) { 738 switch (BI->getKind()) { 739 case CFGElement::Statement: { 740 CFGStmt CS = BI->castAs<CFGStmt>(); 741 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 742 break; 743 } 744 default: 745 break; 746 } 747 } 748 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 749 750 // Mark variables on back edges as "unknown" if they've been changed. 751 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 752 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 753 // if CurrBlock -> *SI is *not* a back edge 754 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 755 continue; 756 757 CFGBlock *FirstLoopBlock = *SI; 758 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 759 Context LoopEnd = CurrBlockInfo->ExitContext; 760 intersectBackEdge(LoopBegin, LoopEnd); 761 } 762 } 763 764 // Put an extra entry at the end of the indexed context array 765 unsigned exitID = CFGraph->getExit().getBlockID(); 766 saveContext(nullptr, BlockInfo[exitID].ExitContext); 767 } 768 769 /// Find the appropriate source locations to use when producing diagnostics for 770 /// each block in the CFG. 771 static void findBlockLocations(CFG *CFGraph, 772 const PostOrderCFGView *SortedGraph, 773 std::vector<CFGBlockInfo> &BlockInfo) { 774 for (const auto *CurrBlock : *SortedGraph) { 775 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 776 777 // Find the source location of the last statement in the block, if the 778 // block is not empty. 779 if (const Stmt *S = CurrBlock->getTerminator()) { 780 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 781 } else { 782 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 783 BE = CurrBlock->rend(); BI != BE; ++BI) { 784 // FIXME: Handle other CFGElement kinds. 785 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 786 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 787 break; 788 } 789 } 790 } 791 792 if (CurrBlockInfo->ExitLoc.isValid()) { 793 // This block contains at least one statement. Find the source location 794 // of the first statement in the block. 795 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 796 BE = CurrBlock->end(); BI != BE; ++BI) { 797 // FIXME: Handle other CFGElement kinds. 798 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 799 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 800 break; 801 } 802 } 803 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 804 CurrBlock != &CFGraph->getExit()) { 805 // The block is empty, and has a single predecessor. Use its exit 806 // location. 807 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 808 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 809 } 810 } 811 } 812 813 class LockableFactEntry : public FactEntry { 814 private: 815 bool Managed; ///< managed by ScopedLockable object 816 817 public: 818 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 819 bool Mng = false, bool Asrt = false) 820 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 821 822 void 823 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 824 SourceLocation JoinLoc, LockErrorKind LEK, 825 ThreadSafetyHandler &Handler) const override { 826 if (!Managed && !asserted() && !negative() && !isUniversal()) { 827 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 828 LEK); 829 } 830 } 831 832 void handleUnlock(FactSet &FSet, FactManager &FactMan, 833 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 834 bool FullyRemove, ThreadSafetyHandler &Handler, 835 StringRef DiagKind) const override { 836 FSet.removeLock(FactMan, Cp); 837 if (!Cp.negative()) { 838 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 839 !Cp, LK_Exclusive, UnlockLoc)); 840 } 841 } 842 }; 843 844 class ScopedLockableFactEntry : public FactEntry { 845 private: 846 SmallVector<const til::SExpr *, 4> UnderlyingMutexes; 847 848 public: 849 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, 850 const CapExprSet &Excl, const CapExprSet &Shrd) 851 : FactEntry(CE, LK_Exclusive, Loc, false) { 852 for (const auto &M : Excl) 853 UnderlyingMutexes.push_back(M.sexpr()); 854 for (const auto &M : Shrd) 855 UnderlyingMutexes.push_back(M.sexpr()); 856 } 857 858 void 859 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 860 SourceLocation JoinLoc, LockErrorKind LEK, 861 ThreadSafetyHandler &Handler) const override { 862 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 863 if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { 864 // If this scoped lock manages another mutex, and if the underlying 865 // mutex is still held, then warn about the underlying mutex. 866 Handler.handleMutexHeldEndOfScope( 867 "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); 868 } 869 } 870 } 871 872 void handleUnlock(FactSet &FSet, FactManager &FactMan, 873 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 874 bool FullyRemove, ThreadSafetyHandler &Handler, 875 StringRef DiagKind) const override { 876 assert(!Cp.negative() && "Managing object cannot be negative."); 877 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 878 CapabilityExpr UnderCp(UnderlyingMutex, false); 879 auto UnderEntry = llvm::make_unique<LockableFactEntry>( 880 !UnderCp, LK_Exclusive, UnlockLoc); 881 882 if (FullyRemove) { 883 // We're destroying the managing object. 884 // Remove the underlying mutex if it exists; but don't warn. 885 if (FSet.findLock(FactMan, UnderCp)) { 886 FSet.removeLock(FactMan, UnderCp); 887 FSet.addLock(FactMan, std::move(UnderEntry)); 888 } 889 } else { 890 // We're releasing the underlying mutex, but not destroying the 891 // managing object. Warn on dual release. 892 if (!FSet.findLock(FactMan, UnderCp)) { 893 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), 894 UnlockLoc); 895 } 896 FSet.removeLock(FactMan, UnderCp); 897 FSet.addLock(FactMan, std::move(UnderEntry)); 898 } 899 } 900 if (FullyRemove) 901 FSet.removeLock(FactMan, Cp); 902 } 903 }; 904 905 /// \brief Class which implements the core thread safety analysis routines. 906 class ThreadSafetyAnalyzer { 907 friend class BuildLockset; 908 friend class threadSafety::BeforeSet; 909 910 llvm::BumpPtrAllocator Bpa; 911 threadSafety::til::MemRegionRef Arena; 912 threadSafety::SExprBuilder SxBuilder; 913 914 ThreadSafetyHandler &Handler; 915 const CXXMethodDecl *CurrentMethod; 916 LocalVariableMap LocalVarMap; 917 FactManager FactMan; 918 std::vector<CFGBlockInfo> BlockInfo; 919 920 BeforeSet* GlobalBeforeSet; 921 922 public: 923 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 924 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 925 926 bool inCurrentScope(const CapabilityExpr &CapE); 927 928 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 929 StringRef DiagKind, bool ReqAttr = false); 930 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 931 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 932 StringRef DiagKind); 933 934 template <typename AttrType> 935 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 936 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 937 938 template <class AttrType> 939 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 940 const NamedDecl *D, 941 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 942 Expr *BrE, bool Neg); 943 944 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 945 bool &Negate); 946 947 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 948 const CFGBlock* PredBlock, 949 const CFGBlock *CurrBlock); 950 951 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 952 SourceLocation JoinLoc, 953 LockErrorKind LEK1, LockErrorKind LEK2, 954 bool Modify=true); 955 956 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 957 SourceLocation JoinLoc, LockErrorKind LEK1, 958 bool Modify=true) { 959 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 960 } 961 962 void runAnalysis(AnalysisDeclContext &AC); 963 }; 964 } // namespace 965 966 /// Process acquired_before and acquired_after attributes on Vd. 967 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 968 ThreadSafetyAnalyzer& Analyzer) { 969 // Create a new entry for Vd. 970 BeforeInfo *Info = nullptr; 971 { 972 // Keep InfoPtr in its own scope in case BMap is modified later and the 973 // reference becomes invalid. 974 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 975 if (!InfoPtr) 976 InfoPtr.reset(new BeforeInfo()); 977 Info = InfoPtr.get(); 978 } 979 980 for (Attr* At : Vd->attrs()) { 981 switch (At->getKind()) { 982 case attr::AcquiredBefore: { 983 auto *A = cast<AcquiredBeforeAttr>(At); 984 985 // Read exprs from the attribute, and add them to BeforeVect. 986 for (const auto *Arg : A->args()) { 987 CapabilityExpr Cp = 988 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 989 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 990 Info->Vect.push_back(Cpvd); 991 auto It = BMap.find(Cpvd); 992 if (It == BMap.end()) 993 insertAttrExprs(Cpvd, Analyzer); 994 } 995 } 996 break; 997 } 998 case attr::AcquiredAfter: { 999 auto *A = cast<AcquiredAfterAttr>(At); 1000 1001 // Read exprs from the attribute, and add them to BeforeVect. 1002 for (const auto *Arg : A->args()) { 1003 CapabilityExpr Cp = 1004 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1005 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1006 // Get entry for mutex listed in attribute 1007 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1008 ArgInfo->Vect.push_back(Vd); 1009 } 1010 } 1011 break; 1012 } 1013 default: 1014 break; 1015 } 1016 } 1017 1018 return Info; 1019 } 1020 1021 BeforeSet::BeforeInfo * 1022 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1023 ThreadSafetyAnalyzer &Analyzer) { 1024 auto It = BMap.find(Vd); 1025 BeforeInfo *Info = nullptr; 1026 if (It == BMap.end()) 1027 Info = insertAttrExprs(Vd, Analyzer); 1028 else 1029 Info = It->second.get(); 1030 assert(Info && "BMap contained nullptr?"); 1031 return Info; 1032 } 1033 1034 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1035 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1036 const FactSet& FSet, 1037 ThreadSafetyAnalyzer& Analyzer, 1038 SourceLocation Loc, StringRef CapKind) { 1039 SmallVector<BeforeInfo*, 8> InfoVect; 1040 1041 // Do a depth-first traversal of Vd. 1042 // Return true if there are cycles. 1043 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1044 if (!Vd) 1045 return false; 1046 1047 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1048 1049 if (Info->Visited == 1) 1050 return true; 1051 1052 if (Info->Visited == 2) 1053 return false; 1054 1055 if (Info->Vect.empty()) 1056 return false; 1057 1058 InfoVect.push_back(Info); 1059 Info->Visited = 1; 1060 for (auto *Vdb : Info->Vect) { 1061 // Exclude mutexes in our immediate before set. 1062 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1063 StringRef L1 = StartVd->getName(); 1064 StringRef L2 = Vdb->getName(); 1065 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1066 } 1067 // Transitively search other before sets, and warn on cycles. 1068 if (traverse(Vdb)) { 1069 if (CycMap.find(Vd) == CycMap.end()) { 1070 CycMap.insert(std::make_pair(Vd, true)); 1071 StringRef L1 = Vd->getName(); 1072 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1073 } 1074 } 1075 } 1076 Info->Visited = 2; 1077 return false; 1078 }; 1079 1080 traverse(StartVd); 1081 1082 for (auto* Info : InfoVect) 1083 Info->Visited = 0; 1084 } 1085 1086 1087 1088 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. 1089 static const ValueDecl *getValueDecl(const Expr *Exp) { 1090 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1091 return getValueDecl(CE->getSubExpr()); 1092 1093 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1094 return DR->getDecl(); 1095 1096 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1097 return ME->getMemberDecl(); 1098 1099 return nullptr; 1100 } 1101 1102 namespace { 1103 template <typename Ty> 1104 class has_arg_iterator_range { 1105 typedef char yes[1]; 1106 typedef char no[2]; 1107 1108 template <typename Inner> 1109 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1110 1111 template <typename> 1112 static no& test(...); 1113 1114 public: 1115 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1116 }; 1117 } // namespace 1118 1119 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1120 return A->getName(); 1121 } 1122 1123 static StringRef ClassifyDiagnostic(QualType VDT) { 1124 // We need to look at the declaration of the type of the value to determine 1125 // which it is. The type should either be a record or a typedef, or a pointer 1126 // or reference thereof. 1127 if (const auto *RT = VDT->getAs<RecordType>()) { 1128 if (const auto *RD = RT->getDecl()) 1129 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1130 return ClassifyDiagnostic(CA); 1131 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1132 if (const auto *TD = TT->getDecl()) 1133 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1134 return ClassifyDiagnostic(CA); 1135 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1136 return ClassifyDiagnostic(VDT->getPointeeType()); 1137 1138 return "mutex"; 1139 } 1140 1141 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1142 assert(VD && "No ValueDecl passed"); 1143 1144 // The ValueDecl is the declaration of a mutex or role (hopefully). 1145 return ClassifyDiagnostic(VD->getType()); 1146 } 1147 1148 template <typename AttrTy> 1149 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 1150 StringRef>::type 1151 ClassifyDiagnostic(const AttrTy *A) { 1152 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1153 return ClassifyDiagnostic(VD); 1154 return "mutex"; 1155 } 1156 1157 template <typename AttrTy> 1158 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 1159 StringRef>::type 1160 ClassifyDiagnostic(const AttrTy *A) { 1161 for (const auto *Arg : A->args()) { 1162 if (const ValueDecl *VD = getValueDecl(Arg)) 1163 return ClassifyDiagnostic(VD); 1164 } 1165 return "mutex"; 1166 } 1167 1168 1169 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1170 if (!CurrentMethod) 1171 return false; 1172 if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 1173 auto *VD = P->clangDecl(); 1174 if (VD) 1175 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1176 } 1177 return false; 1178 } 1179 1180 1181 /// \brief Add a new lock to the lockset, warning if the lock is already there. 1182 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1183 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1184 std::unique_ptr<FactEntry> Entry, 1185 StringRef DiagKind, bool ReqAttr) { 1186 if (Entry->shouldIgnore()) 1187 return; 1188 1189 if (!ReqAttr && !Entry->negative()) { 1190 // look for the negative capability, and remove it from the fact set. 1191 CapabilityExpr NegC = !*Entry; 1192 FactEntry *Nen = FSet.findLock(FactMan, NegC); 1193 if (Nen) { 1194 FSet.removeLock(FactMan, NegC); 1195 } 1196 else { 1197 if (inCurrentScope(*Entry) && !Entry->asserted()) 1198 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1199 NegC.toString(), Entry->loc()); 1200 } 1201 } 1202 1203 // Check before/after constraints 1204 if (Handler.issueBetaWarnings() && 1205 !Entry->asserted() && !Entry->declared()) { 1206 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1207 Entry->loc(), DiagKind); 1208 } 1209 1210 // FIXME: Don't always warn when we have support for reentrant locks. 1211 if (FSet.findLock(FactMan, *Entry)) { 1212 if (!Entry->asserted()) 1213 Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); 1214 } else { 1215 FSet.addLock(FactMan, std::move(Entry)); 1216 } 1217 } 1218 1219 1220 /// \brief Remove a lock from the lockset, warning if the lock is not there. 1221 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1222 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1223 SourceLocation UnlockLoc, 1224 bool FullyRemove, LockKind ReceivedKind, 1225 StringRef DiagKind) { 1226 if (Cp.shouldIgnore()) 1227 return; 1228 1229 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1230 if (!LDat) { 1231 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 1232 return; 1233 } 1234 1235 // Generic lock removal doesn't care about lock kind mismatches, but 1236 // otherwise diagnose when the lock kinds are mismatched. 1237 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1238 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 1239 LDat->kind(), ReceivedKind, UnlockLoc); 1240 } 1241 1242 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1243 DiagKind); 1244 } 1245 1246 1247 /// \brief Extract the list of mutexIDs from the attribute on an expression, 1248 /// and push them onto Mtxs, discarding any duplicates. 1249 template <typename AttrType> 1250 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1251 Expr *Exp, const NamedDecl *D, 1252 VarDecl *SelfDecl) { 1253 if (Attr->args_size() == 0) { 1254 // The mutex held is the "this" object. 1255 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1256 if (Cp.isInvalid()) { 1257 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1258 return; 1259 } 1260 //else 1261 if (!Cp.shouldIgnore()) 1262 Mtxs.push_back_nodup(Cp); 1263 return; 1264 } 1265 1266 for (const auto *Arg : Attr->args()) { 1267 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1268 if (Cp.isInvalid()) { 1269 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1270 continue; 1271 } 1272 //else 1273 if (!Cp.shouldIgnore()) 1274 Mtxs.push_back_nodup(Cp); 1275 } 1276 } 1277 1278 1279 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 1280 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1281 /// any duplicates. 1282 template <class AttrType> 1283 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1284 Expr *Exp, const NamedDecl *D, 1285 const CFGBlock *PredBlock, 1286 const CFGBlock *CurrBlock, 1287 Expr *BrE, bool Neg) { 1288 // Find out which branch has the lock 1289 bool branch = false; 1290 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1291 branch = BLE->getValue(); 1292 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1293 branch = ILE->getValue().getBoolValue(); 1294 1295 int branchnum = branch ? 0 : 1; 1296 if (Neg) 1297 branchnum = !branchnum; 1298 1299 // If we've taken the trylock branch, then add the lock 1300 int i = 0; 1301 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1302 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1303 if (*SI == CurrBlock && i == branchnum) 1304 getMutexIDs(Mtxs, Attr, Exp, D); 1305 } 1306 } 1307 1308 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1309 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1310 TCond = false; 1311 return true; 1312 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1313 TCond = BLE->getValue(); 1314 return true; 1315 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 1316 TCond = ILE->getValue().getBoolValue(); 1317 return true; 1318 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 1319 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1320 } 1321 return false; 1322 } 1323 1324 1325 // If Cond can be traced back to a function call, return the call expression. 1326 // The negate variable should be called with false, and will be set to true 1327 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1328 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1329 LocalVarContext C, 1330 bool &Negate) { 1331 if (!Cond) 1332 return nullptr; 1333 1334 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1335 return CallExp; 1336 } 1337 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 1338 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1339 } 1340 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1341 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1342 } 1343 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 1344 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1345 } 1346 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1347 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1348 return getTrylockCallExpr(E, C, Negate); 1349 } 1350 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1351 if (UOP->getOpcode() == UO_LNot) { 1352 Negate = !Negate; 1353 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1354 } 1355 return nullptr; 1356 } 1357 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 1358 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1359 if (BOP->getOpcode() == BO_NE) 1360 Negate = !Negate; 1361 1362 bool TCond = false; 1363 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1364 if (!TCond) Negate = !Negate; 1365 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1366 } 1367 TCond = false; 1368 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1369 if (!TCond) Negate = !Negate; 1370 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1371 } 1372 return nullptr; 1373 } 1374 if (BOP->getOpcode() == BO_LAnd) { 1375 // LHS must have been evaluated in a different block. 1376 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1377 } 1378 if (BOP->getOpcode() == BO_LOr) { 1379 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1380 } 1381 return nullptr; 1382 } 1383 return nullptr; 1384 } 1385 1386 1387 /// \brief Find the lockset that holds on the edge between PredBlock 1388 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1389 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1390 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1391 const FactSet &ExitSet, 1392 const CFGBlock *PredBlock, 1393 const CFGBlock *CurrBlock) { 1394 Result = ExitSet; 1395 1396 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1397 if (!Cond) 1398 return; 1399 1400 bool Negate = false; 1401 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1402 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1403 StringRef CapDiagKind = "mutex"; 1404 1405 CallExpr *Exp = 1406 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1407 if (!Exp) 1408 return; 1409 1410 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1411 if(!FunDecl || !FunDecl->hasAttrs()) 1412 return; 1413 1414 CapExprSet ExclusiveLocksToAdd; 1415 CapExprSet SharedLocksToAdd; 1416 1417 // If the condition is a call to a Trylock function, then grab the attributes 1418 for (auto *Attr : FunDecl->attrs()) { 1419 switch (Attr->getKind()) { 1420 case attr::ExclusiveTrylockFunction: { 1421 ExclusiveTrylockFunctionAttr *A = 1422 cast<ExclusiveTrylockFunctionAttr>(Attr); 1423 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1424 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1425 CapDiagKind = ClassifyDiagnostic(A); 1426 break; 1427 } 1428 case attr::SharedTrylockFunction: { 1429 SharedTrylockFunctionAttr *A = 1430 cast<SharedTrylockFunctionAttr>(Attr); 1431 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1432 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1433 CapDiagKind = ClassifyDiagnostic(A); 1434 break; 1435 } 1436 default: 1437 break; 1438 } 1439 } 1440 1441 // Add and remove locks. 1442 SourceLocation Loc = Exp->getExprLoc(); 1443 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1444 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1445 LK_Exclusive, Loc), 1446 CapDiagKind); 1447 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1448 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 1449 LK_Shared, Loc), 1450 CapDiagKind); 1451 } 1452 1453 namespace { 1454 /// \brief We use this class to visit different types of expressions in 1455 /// CFGBlocks, and build up the lockset. 1456 /// An expression may cause us to add or remove locks from the lockset, or else 1457 /// output error messages related to missing locks. 1458 /// FIXME: In future, we may be able to not inherit from a visitor. 1459 class BuildLockset : public StmtVisitor<BuildLockset> { 1460 friend class ThreadSafetyAnalyzer; 1461 1462 ThreadSafetyAnalyzer *Analyzer; 1463 FactSet FSet; 1464 LocalVariableMap::Context LVarCtx; 1465 unsigned CtxIndex; 1466 1467 // helper functions 1468 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1469 Expr *MutexExp, ProtectedOperationKind POK, 1470 StringRef DiagKind, SourceLocation Loc); 1471 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1472 StringRef DiagKind); 1473 1474 void checkAccess(const Expr *Exp, AccessKind AK, 1475 ProtectedOperationKind POK = POK_VarAccess); 1476 void checkPtAccess(const Expr *Exp, AccessKind AK, 1477 ProtectedOperationKind POK = POK_VarAccess); 1478 1479 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1480 1481 public: 1482 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1483 : StmtVisitor<BuildLockset>(), 1484 Analyzer(Anlzr), 1485 FSet(Info.EntrySet), 1486 LVarCtx(Info.EntryContext), 1487 CtxIndex(Info.EntryIndex) 1488 {} 1489 1490 void VisitUnaryOperator(UnaryOperator *UO); 1491 void VisitBinaryOperator(BinaryOperator *BO); 1492 void VisitCastExpr(CastExpr *CE); 1493 void VisitCallExpr(CallExpr *Exp); 1494 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1495 void VisitDeclStmt(DeclStmt *S); 1496 }; 1497 } // namespace 1498 1499 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1500 /// of at least the passed in AccessKind. 1501 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1502 AccessKind AK, Expr *MutexExp, 1503 ProtectedOperationKind POK, 1504 StringRef DiagKind, SourceLocation Loc) { 1505 LockKind LK = getLockKindFromAccessKind(AK); 1506 1507 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1508 if (Cp.isInvalid()) { 1509 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1510 return; 1511 } else if (Cp.shouldIgnore()) { 1512 return; 1513 } 1514 1515 if (Cp.negative()) { 1516 // Negative capabilities act like locks excluded 1517 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1518 if (LDat) { 1519 Analyzer->Handler.handleFunExcludesLock( 1520 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1521 return; 1522 } 1523 1524 // If this does not refer to a negative capability in the same class, 1525 // then stop here. 1526 if (!Analyzer->inCurrentScope(Cp)) 1527 return; 1528 1529 // Otherwise the negative requirement must be propagated to the caller. 1530 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1531 if (!LDat) { 1532 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1533 LK_Shared, Loc); 1534 } 1535 return; 1536 } 1537 1538 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1539 bool NoError = true; 1540 if (!LDat) { 1541 // No exact match found. Look for a partial match. 1542 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1543 if (LDat) { 1544 // Warn that there's no precise match. 1545 std::string PartMatchStr = LDat->toString(); 1546 StringRef PartMatchName(PartMatchStr); 1547 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1548 LK, Loc, &PartMatchName); 1549 } else { 1550 // Warn that there's no match at all. 1551 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1552 LK, Loc); 1553 } 1554 NoError = false; 1555 } 1556 // Make sure the mutex we found is the right kind. 1557 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1558 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1559 LK, Loc); 1560 } 1561 } 1562 1563 /// \brief Warn if the LSet contains the given lock. 1564 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1565 Expr *MutexExp, StringRef DiagKind) { 1566 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1567 if (Cp.isInvalid()) { 1568 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1569 return; 1570 } else if (Cp.shouldIgnore()) { 1571 return; 1572 } 1573 1574 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 1575 if (LDat) { 1576 Analyzer->Handler.handleFunExcludesLock( 1577 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1578 } 1579 } 1580 1581 /// \brief Checks guarded_by and pt_guarded_by attributes. 1582 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1583 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1584 /// Similarly, we check if the access is to an expression that dereferences 1585 /// a pointer marked with pt_guarded_by. 1586 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1587 ProtectedOperationKind POK) { 1588 Exp = Exp->IgnoreParenCasts(); 1589 1590 SourceLocation Loc = Exp->getExprLoc(); 1591 1592 // Local variables of reference type cannot be re-assigned; 1593 // map them to their initializer. 1594 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1595 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1596 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1597 if (const auto *E = VD->getInit()) { 1598 Exp = E; 1599 continue; 1600 } 1601 } 1602 break; 1603 } 1604 1605 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 1606 // For dereferences 1607 if (UO->getOpcode() == clang::UO_Deref) 1608 checkPtAccess(UO->getSubExpr(), AK, POK); 1609 return; 1610 } 1611 1612 if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1613 checkPtAccess(AE->getLHS(), AK, POK); 1614 return; 1615 } 1616 1617 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 1618 if (ME->isArrow()) 1619 checkPtAccess(ME->getBase(), AK, POK); 1620 else 1621 checkAccess(ME->getBase(), AK, POK); 1622 } 1623 1624 const ValueDecl *D = getValueDecl(Exp); 1625 if (!D || !D->hasAttrs()) 1626 return; 1627 1628 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1629 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1630 } 1631 1632 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1633 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1634 ClassifyDiagnostic(I), Loc); 1635 } 1636 1637 1638 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 1639 /// POK is the same operationKind that was passed to checkAccess. 1640 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1641 ProtectedOperationKind POK) { 1642 while (true) { 1643 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 1644 Exp = PE->getSubExpr(); 1645 continue; 1646 } 1647 if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 1648 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1649 // If it's an actual array, and not a pointer, then it's elements 1650 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1651 checkAccess(CE->getSubExpr(), AK, POK); 1652 return; 1653 } 1654 Exp = CE->getSubExpr(); 1655 continue; 1656 } 1657 break; 1658 } 1659 1660 // Pass by reference warnings are under a different flag. 1661 ProtectedOperationKind PtPOK = POK_VarDereference; 1662 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1663 1664 const ValueDecl *D = getValueDecl(Exp); 1665 if (!D || !D->hasAttrs()) 1666 return; 1667 1668 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1669 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1670 Exp->getExprLoc()); 1671 1672 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1673 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1674 ClassifyDiagnostic(I), Exp->getExprLoc()); 1675 } 1676 1677 /// \brief Process a function call, method call, constructor call, 1678 /// or destructor call. This involves looking at the attributes on the 1679 /// corresponding function/method/constructor/destructor, issuing warnings, 1680 /// and updating the locksets accordingly. 1681 /// 1682 /// FIXME: For classes annotated with one of the guarded annotations, we need 1683 /// to treat const method calls as reads and non-const method calls as writes, 1684 /// and check that the appropriate locks are held. Non-const method calls with 1685 /// the same signature as const method calls can be also treated as reads. 1686 /// 1687 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1688 SourceLocation Loc = Exp->getExprLoc(); 1689 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1690 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1691 CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; 1692 StringRef CapDiagKind = "mutex"; 1693 1694 // Figure out if we're calling the constructor of scoped lockable class 1695 bool isScopedVar = false; 1696 if (VD) { 1697 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1698 const CXXRecordDecl* PD = CD->getParent(); 1699 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1700 isScopedVar = true; 1701 } 1702 } 1703 1704 for(Attr *Atconst : D->attrs()) { 1705 Attr* At = const_cast<Attr*>(Atconst); 1706 switch (At->getKind()) { 1707 // When we encounter a lock function, we need to add the lock to our 1708 // lockset. 1709 case attr::AcquireCapability: { 1710 auto *A = cast<AcquireCapabilityAttr>(At); 1711 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1712 : ExclusiveLocksToAdd, 1713 A, Exp, D, VD); 1714 1715 CapDiagKind = ClassifyDiagnostic(A); 1716 break; 1717 } 1718 1719 // An assert will add a lock to the lockset, but will not generate 1720 // a warning if it is already there, and will not generate a warning 1721 // if it is not removed. 1722 case attr::AssertExclusiveLock: { 1723 AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); 1724 1725 CapExprSet AssertLocks; 1726 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1727 for (const auto &AssertLock : AssertLocks) 1728 Analyzer->addLock(FSet, 1729 llvm::make_unique<LockableFactEntry>( 1730 AssertLock, LK_Exclusive, Loc, false, true), 1731 ClassifyDiagnostic(A)); 1732 break; 1733 } 1734 case attr::AssertSharedLock: { 1735 AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); 1736 1737 CapExprSet AssertLocks; 1738 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1739 for (const auto &AssertLock : AssertLocks) 1740 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1741 AssertLock, LK_Shared, Loc, false, true), 1742 ClassifyDiagnostic(A)); 1743 break; 1744 } 1745 1746 // When we encounter an unlock function, we need to remove unlocked 1747 // mutexes from the lockset, and flag a warning if they are not there. 1748 case attr::ReleaseCapability: { 1749 auto *A = cast<ReleaseCapabilityAttr>(At); 1750 if (A->isGeneric()) 1751 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1752 else if (A->isShared()) 1753 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1754 else 1755 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1756 1757 CapDiagKind = ClassifyDiagnostic(A); 1758 break; 1759 } 1760 1761 case attr::RequiresCapability: { 1762 RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); 1763 for (auto *Arg : A->args()) { 1764 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1765 POK_FunctionCall, ClassifyDiagnostic(A), 1766 Exp->getExprLoc()); 1767 // use for adopting a lock 1768 if (isScopedVar) { 1769 Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs 1770 : ScopedExclusiveReqs, 1771 A, Exp, D, VD); 1772 } 1773 } 1774 break; 1775 } 1776 1777 case attr::LocksExcluded: { 1778 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 1779 for (auto *Arg : A->args()) 1780 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1781 break; 1782 } 1783 1784 // Ignore attributes unrelated to thread-safety 1785 default: 1786 break; 1787 } 1788 } 1789 1790 // Add locks. 1791 for (const auto &M : ExclusiveLocksToAdd) 1792 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1793 M, LK_Exclusive, Loc, isScopedVar), 1794 CapDiagKind); 1795 for (const auto &M : SharedLocksToAdd) 1796 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1797 M, LK_Shared, Loc, isScopedVar), 1798 CapDiagKind); 1799 1800 if (isScopedVar) { 1801 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1802 SourceLocation MLoc = VD->getLocation(); 1803 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1804 // FIXME: does this store a pointer to DRE? 1805 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1806 1807 std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(), 1808 std::back_inserter(ExclusiveLocksToAdd)); 1809 std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(), 1810 std::back_inserter(SharedLocksToAdd)); 1811 Analyzer->addLock(FSet, 1812 llvm::make_unique<ScopedLockableFactEntry>( 1813 Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), 1814 CapDiagKind); 1815 } 1816 1817 // Remove locks. 1818 // FIXME -- should only fully remove if the attribute refers to 'this'. 1819 bool Dtor = isa<CXXDestructorDecl>(D); 1820 for (const auto &M : ExclusiveLocksToRemove) 1821 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1822 for (const auto &M : SharedLocksToRemove) 1823 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1824 for (const auto &M : GenericLocksToRemove) 1825 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1826 } 1827 1828 1829 /// \brief For unary operations which read and write a variable, we need to 1830 /// check whether we hold any required mutexes. Reads are checked in 1831 /// VisitCastExpr. 1832 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1833 switch (UO->getOpcode()) { 1834 case clang::UO_PostDec: 1835 case clang::UO_PostInc: 1836 case clang::UO_PreDec: 1837 case clang::UO_PreInc: { 1838 checkAccess(UO->getSubExpr(), AK_Written); 1839 break; 1840 } 1841 default: 1842 break; 1843 } 1844 } 1845 1846 /// For binary operations which assign to a variable (writes), we need to check 1847 /// whether we hold any required mutexes. 1848 /// FIXME: Deal with non-primitive types. 1849 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1850 if (!BO->isAssignmentOp()) 1851 return; 1852 1853 // adjust the context 1854 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1855 1856 checkAccess(BO->getLHS(), AK_Written); 1857 } 1858 1859 1860 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1861 /// need to ensure we hold any required mutexes. 1862 /// FIXME: Deal with non-primitive types. 1863 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1864 if (CE->getCastKind() != CK_LValueToRValue) 1865 return; 1866 checkAccess(CE->getSubExpr(), AK_Read); 1867 } 1868 1869 1870 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1871 bool ExamineArgs = true; 1872 bool OperatorFun = false; 1873 1874 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 1875 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 1876 // ME can be null when calling a method pointer 1877 CXXMethodDecl *MD = CE->getMethodDecl(); 1878 1879 if (ME && MD) { 1880 if (ME->isArrow()) { 1881 if (MD->isConst()) { 1882 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1883 } else { // FIXME -- should be AK_Written 1884 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1885 } 1886 } else { 1887 if (MD->isConst()) 1888 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1889 else // FIXME -- should be AK_Written 1890 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1891 } 1892 } 1893 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 1894 OperatorFun = true; 1895 1896 auto OEop = OE->getOperator(); 1897 switch (OEop) { 1898 case OO_Equal: { 1899 ExamineArgs = false; 1900 const Expr *Target = OE->getArg(0); 1901 const Expr *Source = OE->getArg(1); 1902 checkAccess(Target, AK_Written); 1903 checkAccess(Source, AK_Read); 1904 break; 1905 } 1906 case OO_Star: 1907 case OO_Arrow: 1908 case OO_Subscript: { 1909 const Expr *Obj = OE->getArg(0); 1910 checkAccess(Obj, AK_Read); 1911 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 1912 // Grrr. operator* can be multiplication... 1913 checkPtAccess(Obj, AK_Read); 1914 } 1915 break; 1916 } 1917 default: { 1918 // TODO: get rid of this, and rely on pass-by-ref instead. 1919 const Expr *Obj = OE->getArg(0); 1920 checkAccess(Obj, AK_Read); 1921 break; 1922 } 1923 } 1924 } 1925 1926 if (ExamineArgs) { 1927 if (FunctionDecl *FD = Exp->getDirectCallee()) { 1928 1929 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1930 // only turns off checking within the body of a function, but we also 1931 // use it to turn off checking in arguments to the function. This 1932 // could result in some false negatives, but the alternative is to 1933 // create yet another attribute. 1934 // 1935 if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) { 1936 unsigned Fn = FD->getNumParams(); 1937 unsigned Cn = Exp->getNumArgs(); 1938 unsigned Skip = 0; 1939 1940 unsigned i = 0; 1941 if (OperatorFun) { 1942 if (isa<CXXMethodDecl>(FD)) { 1943 // First arg in operator call is implicit self argument, 1944 // and doesn't appear in the FunctionDecl. 1945 Skip = 1; 1946 Cn--; 1947 } else { 1948 // Ignore the first argument of operators; it's been checked above. 1949 i = 1; 1950 } 1951 } 1952 // Ignore default arguments 1953 unsigned n = (Fn < Cn) ? Fn : Cn; 1954 1955 for (; i < n; ++i) { 1956 ParmVarDecl* Pvd = FD->getParamDecl(i); 1957 Expr* Arg = Exp->getArg(i+Skip); 1958 QualType Qt = Pvd->getType(); 1959 if (Qt->isReferenceType()) 1960 checkAccess(Arg, AK_Read, POK_PassByRef); 1961 } 1962 } 1963 } 1964 } 1965 1966 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1967 if(!D || !D->hasAttrs()) 1968 return; 1969 handleCall(Exp, D); 1970 } 1971 1972 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 1973 const CXXConstructorDecl *D = Exp->getConstructor(); 1974 if (D && D->isCopyConstructor()) { 1975 const Expr* Source = Exp->getArg(0); 1976 checkAccess(Source, AK_Read); 1977 } 1978 // FIXME -- only handles constructors in DeclStmt below. 1979 } 1980 1981 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 1982 // adjust the context 1983 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 1984 1985 for (auto *D : S->getDeclGroup()) { 1986 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 1987 Expr *E = VD->getInit(); 1988 // handle constructors that involve temporaries 1989 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) 1990 E = EWC->getSubExpr(); 1991 1992 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 1993 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 1994 if (!CtorD || !CtorD->hasAttrs()) 1995 return; 1996 handleCall(CE, CtorD, VD); 1997 } 1998 } 1999 } 2000 } 2001 2002 2003 2004 /// \brief Compute the intersection of two locksets and issue warnings for any 2005 /// locks in the symmetric difference. 2006 /// 2007 /// This function is used at a merge point in the CFG when comparing the lockset 2008 /// of each branch being merged. For example, given the following sequence: 2009 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2010 /// are the same. In the event of a difference, we use the intersection of these 2011 /// two locksets at the start of D. 2012 /// 2013 /// \param FSet1 The first lockset. 2014 /// \param FSet2 The second lockset. 2015 /// \param JoinLoc The location of the join point for error reporting 2016 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2017 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2018 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2019 const FactSet &FSet2, 2020 SourceLocation JoinLoc, 2021 LockErrorKind LEK1, 2022 LockErrorKind LEK2, 2023 bool Modify) { 2024 FactSet FSet1Orig = FSet1; 2025 2026 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 2027 for (const auto &Fact : FSet2) { 2028 const FactEntry *LDat1 = nullptr; 2029 const FactEntry *LDat2 = &FactMan[Fact]; 2030 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 2031 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 2032 2033 if (LDat1) { 2034 if (LDat1->kind() != LDat2->kind()) { 2035 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 2036 LDat2->loc(), LDat1->loc()); 2037 if (Modify && LDat1->kind() != LK_Exclusive) { 2038 // Take the exclusive lock, which is the one in FSet2. 2039 *Iter1 = Fact; 2040 } 2041 } 2042 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 2043 // The non-asserted lock in FSet2 is the one we want to track. 2044 *Iter1 = Fact; 2045 } 2046 } else { 2047 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 2048 Handler); 2049 } 2050 } 2051 2052 // Find locks in FSet1 that are not in FSet2, and remove them. 2053 for (const auto &Fact : FSet1Orig) { 2054 const FactEntry *LDat1 = &FactMan[Fact]; 2055 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 2056 2057 if (!LDat2) { 2058 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 2059 Handler); 2060 if (Modify) 2061 FSet1.removeLock(FactMan, *LDat1); 2062 } 2063 } 2064 } 2065 2066 2067 // Return true if block B never continues to its successors. 2068 static bool neverReturns(const CFGBlock *B) { 2069 if (B->hasNoReturnElement()) 2070 return true; 2071 if (B->empty()) 2072 return false; 2073 2074 CFGElement Last = B->back(); 2075 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2076 if (isa<CXXThrowExpr>(S->getStmt())) 2077 return true; 2078 } 2079 return false; 2080 } 2081 2082 2083 /// \brief Check a function's CFG for thread-safety violations. 2084 /// 2085 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2086 /// at the end of each block, and issue warnings for thread safety violations. 2087 /// Each block in the CFG is traversed exactly once. 2088 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2089 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2090 // For now, we just use the walker to set things up. 2091 threadSafety::CFGWalker walker; 2092 if (!walker.init(AC)) 2093 return; 2094 2095 // AC.dumpCFG(true); 2096 // threadSafety::printSCFG(walker); 2097 2098 CFG *CFGraph = walker.getGraph(); 2099 const NamedDecl *D = walker.getDecl(); 2100 const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); 2101 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2102 2103 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2104 return; 2105 2106 // FIXME: Do something a bit more intelligent inside constructor and 2107 // destructor code. Constructors and destructors must assume unique access 2108 // to 'this', so checks on member variable access is disabled, but we should 2109 // still enable checks on other objects. 2110 if (isa<CXXConstructorDecl>(D)) 2111 return; // Don't check inside constructors. 2112 if (isa<CXXDestructorDecl>(D)) 2113 return; // Don't check inside destructors. 2114 2115 Handler.enterFunction(CurrentFunction); 2116 2117 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2118 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2119 2120 // We need to explore the CFG via a "topological" ordering. 2121 // That way, we will be guaranteed to have information about required 2122 // predecessor locksets when exploring a new block. 2123 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2124 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2125 2126 // Mark entry block as reachable 2127 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2128 2129 // Compute SSA names for local variables 2130 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2131 2132 // Fill in source locations for all CFGBlocks. 2133 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2134 2135 CapExprSet ExclusiveLocksAcquired; 2136 CapExprSet SharedLocksAcquired; 2137 CapExprSet LocksReleased; 2138 2139 // Add locks from exclusive_locks_required and shared_locks_required 2140 // to initial lockset. Also turn off checking for lock and unlock functions. 2141 // FIXME: is there a more intelligent way to check lock/unlock functions? 2142 if (!SortedGraph->empty() && D->hasAttrs()) { 2143 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2144 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2145 2146 CapExprSet ExclusiveLocksToAdd; 2147 CapExprSet SharedLocksToAdd; 2148 StringRef CapDiagKind = "mutex"; 2149 2150 SourceLocation Loc = D->getLocation(); 2151 for (const auto *Attr : D->attrs()) { 2152 Loc = Attr->getLocation(); 2153 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2154 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2155 nullptr, D); 2156 CapDiagKind = ClassifyDiagnostic(A); 2157 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2158 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2159 // We must ignore such methods. 2160 if (A->args_size() == 0) 2161 return; 2162 // FIXME -- deal with exclusive vs. shared unlock functions? 2163 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 2164 getMutexIDs(LocksReleased, A, nullptr, D); 2165 CapDiagKind = ClassifyDiagnostic(A); 2166 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2167 if (A->args_size() == 0) 2168 return; 2169 getMutexIDs(A->isShared() ? SharedLocksAcquired 2170 : ExclusiveLocksAcquired, 2171 A, nullptr, D); 2172 CapDiagKind = ClassifyDiagnostic(A); 2173 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2174 // Don't try to check trylock functions for now 2175 return; 2176 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2177 // Don't try to check trylock functions for now 2178 return; 2179 } 2180 } 2181 2182 // FIXME -- Loc can be wrong here. 2183 for (const auto &Mu : ExclusiveLocksToAdd) { 2184 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); 2185 Entry->setDeclared(true); 2186 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2187 } 2188 for (const auto &Mu : SharedLocksToAdd) { 2189 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); 2190 Entry->setDeclared(true); 2191 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2192 } 2193 } 2194 2195 for (const auto *CurrBlock : *SortedGraph) { 2196 int CurrBlockID = CurrBlock->getBlockID(); 2197 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2198 2199 // Use the default initial lockset in case there are no predecessors. 2200 VisitedBlocks.insert(CurrBlock); 2201 2202 // Iterate through the predecessor blocks and warn if the lockset for all 2203 // predecessors is not the same. We take the entry lockset of the current 2204 // block to be the intersection of all previous locksets. 2205 // FIXME: By keeping the intersection, we may output more errors in future 2206 // for a lock which is not in the intersection, but was in the union. We 2207 // may want to also keep the union in future. As an example, let's say 2208 // the intersection contains Mutex L, and the union contains L and M. 2209 // Later we unlock M. At this point, we would output an error because we 2210 // never locked M; although the real error is probably that we forgot to 2211 // lock M on all code paths. Conversely, let's say that later we lock M. 2212 // In this case, we should compare against the intersection instead of the 2213 // union because the real error is probably that we forgot to unlock M on 2214 // all code paths. 2215 bool LocksetInitialized = false; 2216 SmallVector<CFGBlock *, 8> SpecialBlocks; 2217 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2218 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2219 2220 // if *PI -> CurrBlock is a back edge 2221 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2222 continue; 2223 2224 int PrevBlockID = (*PI)->getBlockID(); 2225 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2226 2227 // Ignore edges from blocks that can't return. 2228 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2229 continue; 2230 2231 // Okay, we can reach this block from the entry. 2232 CurrBlockInfo->Reachable = true; 2233 2234 // If the previous block ended in a 'continue' or 'break' statement, then 2235 // a difference in locksets is probably due to a bug in that block, rather 2236 // than in some other predecessor. In that case, keep the other 2237 // predecessor's lockset. 2238 if (const Stmt *Terminator = (*PI)->getTerminator()) { 2239 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2240 SpecialBlocks.push_back(*PI); 2241 continue; 2242 } 2243 } 2244 2245 FactSet PrevLockset; 2246 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2247 2248 if (!LocksetInitialized) { 2249 CurrBlockInfo->EntrySet = PrevLockset; 2250 LocksetInitialized = true; 2251 } else { 2252 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2253 CurrBlockInfo->EntryLoc, 2254 LEK_LockedSomePredecessors); 2255 } 2256 } 2257 2258 // Skip rest of block if it's not reachable. 2259 if (!CurrBlockInfo->Reachable) 2260 continue; 2261 2262 // Process continue and break blocks. Assume that the lockset for the 2263 // resulting block is unaffected by any discrepancies in them. 2264 for (const auto *PrevBlock : SpecialBlocks) { 2265 int PrevBlockID = PrevBlock->getBlockID(); 2266 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2267 2268 if (!LocksetInitialized) { 2269 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2270 LocksetInitialized = true; 2271 } else { 2272 // Determine whether this edge is a loop terminator for diagnostic 2273 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2274 // it might also be part of a switch. Also, a subsequent destructor 2275 // might add to the lockset, in which case the real issue might be a 2276 // double lock on the other path. 2277 const Stmt *Terminator = PrevBlock->getTerminator(); 2278 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2279 2280 FactSet PrevLockset; 2281 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2282 PrevBlock, CurrBlock); 2283 2284 // Do not update EntrySet. 2285 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2286 PrevBlockInfo->ExitLoc, 2287 IsLoop ? LEK_LockedSomeLoopIterations 2288 : LEK_LockedSomePredecessors, 2289 false); 2290 } 2291 } 2292 2293 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2294 2295 // Visit all the statements in the basic block. 2296 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 2297 BE = CurrBlock->end(); BI != BE; ++BI) { 2298 switch (BI->getKind()) { 2299 case CFGElement::Statement: { 2300 CFGStmt CS = BI->castAs<CFGStmt>(); 2301 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 2302 break; 2303 } 2304 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2305 case CFGElement::AutomaticObjectDtor: { 2306 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 2307 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 2308 AD.getDestructorDecl(AC.getASTContext())); 2309 if (!DD->hasAttrs()) 2310 break; 2311 2312 // Create a dummy expression, 2313 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 2314 DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), 2315 VK_LValue, AD.getTriggerStmt()->getLocEnd()); 2316 LocksetBuilder.handleCall(&DRE, DD); 2317 break; 2318 } 2319 default: 2320 break; 2321 } 2322 } 2323 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2324 2325 // For every back edge from CurrBlock (the end of the loop) to another block 2326 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2327 // the one held at the beginning of FirstLoopBlock. We can look up the 2328 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2329 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2330 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2331 2332 // if CurrBlock -> *SI is *not* a back edge 2333 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2334 continue; 2335 2336 CFGBlock *FirstLoopBlock = *SI; 2337 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2338 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2339 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2340 PreLoop->EntryLoc, 2341 LEK_LockedSomeLoopIterations, 2342 false); 2343 } 2344 } 2345 2346 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2347 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2348 2349 // Skip the final check if the exit block is unreachable. 2350 if (!Final->Reachable) 2351 return; 2352 2353 // By default, we expect all locks held on entry to be held on exit. 2354 FactSet ExpectedExitSet = Initial->EntrySet; 2355 2356 // Adjust the expected exit set by adding or removing locks, as declared 2357 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2358 // issue the appropriate warning. 2359 // FIXME: the location here is not quite right. 2360 for (const auto &Lock : ExclusiveLocksAcquired) 2361 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2362 Lock, LK_Exclusive, D->getLocation())); 2363 for (const auto &Lock : SharedLocksAcquired) 2364 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2365 Lock, LK_Shared, D->getLocation())); 2366 for (const auto &Lock : LocksReleased) 2367 ExpectedExitSet.removeLock(FactMan, Lock); 2368 2369 // FIXME: Should we call this function for all blocks which exit the function? 2370 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2371 Final->ExitLoc, 2372 LEK_LockedAtEndOfFunction, 2373 LEK_NotLockedAtEndOfFunction, 2374 false); 2375 2376 Handler.leaveFunction(CurrentFunction); 2377 } 2378 2379 2380 /// \brief Check a function's CFG for thread-safety violations. 2381 /// 2382 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2383 /// at the end of each block, and issue warnings for thread safety violations. 2384 /// Each block in the CFG is traversed exactly once. 2385 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2386 ThreadSafetyHandler &Handler, 2387 BeforeSet **BSet) { 2388 if (!*BSet) 2389 *BSet = new BeforeSet; 2390 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2391 Analyzer.runAnalysis(AC); 2392 } 2393 2394 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2395 2396 /// \brief Helper function that returns a LockKind required for the given level 2397 /// of access. 2398 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2399 switch (AK) { 2400 case AK_Read : 2401 return LK_Shared; 2402 case AK_Written : 2403 return LK_Exclusive; 2404 } 2405 llvm_unreachable("Unknown AccessKind"); 2406 } 2407