1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.hardware; 18 19 import android.annotation.SystemApi; 20 import android.os.Build; 21 import android.os.Handler; 22 import android.util.Log; 23 import android.util.SparseArray; 24 25 import java.util.ArrayList; 26 import java.util.Collections; 27 import java.util.List; 28 29 /** 30 * <p> 31 * SensorManager lets you access the device's {@link android.hardware.Sensor 32 * sensors}. Get an instance of this class by calling 33 * {@link android.content.Context#getSystemService(java.lang.String) 34 * Context.getSystemService()} with the argument 35 * {@link android.content.Context#SENSOR_SERVICE}. 36 * </p> 37 * <p> 38 * Always make sure to disable sensors you don't need, especially when your 39 * activity is paused. Failing to do so can drain the battery in just a few 40 * hours. Note that the system will <i>not</i> disable sensors automatically when 41 * the screen turns off. 42 * </p> 43 * <p class="note"> 44 * Note: Don't use this mechanism with a Trigger Sensor, have a look 45 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION} 46 * is an example of a trigger sensor. 47 * </p> 48 * <pre class="prettyprint"> 49 * public class SensorActivity extends Activity implements SensorEventListener { 50 * private final SensorManager mSensorManager; 51 * private final Sensor mAccelerometer; 52 * 53 * public SensorActivity() { 54 * mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); 55 * mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 56 * } 57 * 58 * protected void onResume() { 59 * super.onResume(); 60 * mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL); 61 * } 62 * 63 * protected void onPause() { 64 * super.onPause(); 65 * mSensorManager.unregisterListener(this); 66 * } 67 * 68 * public void onAccuracyChanged(Sensor sensor, int accuracy) { 69 * } 70 * 71 * public void onSensorChanged(SensorEvent event) { 72 * } 73 * } 74 * </pre> 75 * 76 * @see SensorEventListener 77 * @see SensorEvent 78 * @see Sensor 79 * 80 */ 81 public abstract class SensorManager { 82 /** @hide */ 83 protected static final String TAG = "SensorManager"; 84 85 private static final float[] mTempMatrix = new float[16]; 86 87 // Cached lists of sensors by type. Guarded by mSensorListByType. 88 private final SparseArray<List<Sensor>> mSensorListByType = 89 new SparseArray<List<Sensor>>(); 90 91 // Legacy sensor manager implementation. Guarded by mSensorListByType during initialization. 92 private LegacySensorManager mLegacySensorManager; 93 94 /* NOTE: sensor IDs must be a power of 2 */ 95 96 /** 97 * A constant describing an orientation sensor. See 98 * {@link android.hardware.SensorListener SensorListener} for more details. 99 * 100 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 101 */ 102 @Deprecated 103 public static final int SENSOR_ORIENTATION = 1 << 0; 104 105 /** 106 * A constant describing an accelerometer. See 107 * {@link android.hardware.SensorListener SensorListener} for more details. 108 * 109 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 110 */ 111 @Deprecated 112 public static final int SENSOR_ACCELEROMETER = 1 << 1; 113 114 /** 115 * A constant describing a temperature sensor See 116 * {@link android.hardware.SensorListener SensorListener} for more details. 117 * 118 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 119 */ 120 @Deprecated 121 public static final int SENSOR_TEMPERATURE = 1 << 2; 122 123 /** 124 * A constant describing a magnetic sensor See 125 * {@link android.hardware.SensorListener SensorListener} for more details. 126 * 127 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 128 */ 129 @Deprecated 130 public static final int SENSOR_MAGNETIC_FIELD = 1 << 3; 131 132 /** 133 * A constant describing an ambient light sensor See 134 * {@link android.hardware.SensorListener SensorListener} for more details. 135 * 136 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 137 */ 138 @Deprecated 139 public static final int SENSOR_LIGHT = 1 << 4; 140 141 /** 142 * A constant describing a proximity sensor See 143 * {@link android.hardware.SensorListener SensorListener} for more details. 144 * 145 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 146 */ 147 @Deprecated 148 public static final int SENSOR_PROXIMITY = 1 << 5; 149 150 /** 151 * A constant describing a Tricorder See 152 * {@link android.hardware.SensorListener SensorListener} for more details. 153 * 154 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 155 */ 156 @Deprecated 157 public static final int SENSOR_TRICORDER = 1 << 6; 158 159 /** 160 * A constant describing an orientation sensor. See 161 * {@link android.hardware.SensorListener SensorListener} for more details. 162 * 163 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 164 */ 165 @Deprecated 166 public static final int SENSOR_ORIENTATION_RAW = 1 << 7; 167 168 /** 169 * A constant that includes all sensors 170 * 171 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 172 */ 173 @Deprecated 174 public static final int SENSOR_ALL = 0x7F; 175 176 /** 177 * Smallest sensor ID 178 * 179 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 180 */ 181 @Deprecated 182 public static final int SENSOR_MIN = SENSOR_ORIENTATION; 183 184 /** 185 * Largest sensor ID 186 * 187 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 188 */ 189 @Deprecated 190 public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1); 191 192 193 /** 194 * Index of the X value in the array returned by 195 * {@link android.hardware.SensorListener#onSensorChanged} 196 * 197 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 198 */ 199 @Deprecated 200 public static final int DATA_X = 0; 201 202 /** 203 * Index of the Y value in the array returned by 204 * {@link android.hardware.SensorListener#onSensorChanged} 205 * 206 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 207 */ 208 @Deprecated 209 public static final int DATA_Y = 1; 210 211 /** 212 * Index of the Z value in the array returned by 213 * {@link android.hardware.SensorListener#onSensorChanged} 214 * 215 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 216 */ 217 @Deprecated 218 public static final int DATA_Z = 2; 219 220 /** 221 * Offset to the untransformed values in the array returned by 222 * {@link android.hardware.SensorListener#onSensorChanged} 223 * 224 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 225 */ 226 @Deprecated 227 public static final int RAW_DATA_INDEX = 3; 228 229 /** 230 * Index of the untransformed X value in the array returned by 231 * {@link android.hardware.SensorListener#onSensorChanged} 232 * 233 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 234 */ 235 @Deprecated 236 public static final int RAW_DATA_X = 3; 237 238 /** 239 * Index of the untransformed Y value in the array returned by 240 * {@link android.hardware.SensorListener#onSensorChanged} 241 * 242 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 243 */ 244 @Deprecated 245 public static final int RAW_DATA_Y = 4; 246 247 /** 248 * Index of the untransformed Z value in the array returned by 249 * {@link android.hardware.SensorListener#onSensorChanged} 250 * 251 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 252 */ 253 @Deprecated 254 public static final int RAW_DATA_Z = 5; 255 256 /** Standard gravity (g) on Earth. This value is equivalent to 1G */ 257 public static final float STANDARD_GRAVITY = 9.80665f; 258 259 /** Sun's gravity in SI units (m/s^2) */ 260 public static final float GRAVITY_SUN = 275.0f; 261 /** Mercury's gravity in SI units (m/s^2) */ 262 public static final float GRAVITY_MERCURY = 3.70f; 263 /** Venus' gravity in SI units (m/s^2) */ 264 public static final float GRAVITY_VENUS = 8.87f; 265 /** Earth's gravity in SI units (m/s^2) */ 266 public static final float GRAVITY_EARTH = 9.80665f; 267 /** The Moon's gravity in SI units (m/s^2) */ 268 public static final float GRAVITY_MOON = 1.6f; 269 /** Mars' gravity in SI units (m/s^2) */ 270 public static final float GRAVITY_MARS = 3.71f; 271 /** Jupiter's gravity in SI units (m/s^2) */ 272 public static final float GRAVITY_JUPITER = 23.12f; 273 /** Saturn's gravity in SI units (m/s^2) */ 274 public static final float GRAVITY_SATURN = 8.96f; 275 /** Uranus' gravity in SI units (m/s^2) */ 276 public static final float GRAVITY_URANUS = 8.69f; 277 /** Neptune's gravity in SI units (m/s^2) */ 278 public static final float GRAVITY_NEPTUNE = 11.0f; 279 /** Pluto's gravity in SI units (m/s^2) */ 280 public static final float GRAVITY_PLUTO = 0.6f; 281 /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */ 282 public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f; 283 /** Gravity on the island */ 284 public static final float GRAVITY_THE_ISLAND = 4.815162342f; 285 286 287 /** Maximum magnetic field on Earth's surface */ 288 public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f; 289 /** Minimum magnetic field on Earth's surface */ 290 public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f; 291 292 293 /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */ 294 public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f; 295 296 297 /** Maximum luminance of sunlight in lux */ 298 public static final float LIGHT_SUNLIGHT_MAX = 120000.0f; 299 /** luminance of sunlight in lux */ 300 public static final float LIGHT_SUNLIGHT = 110000.0f; 301 /** luminance in shade in lux */ 302 public static final float LIGHT_SHADE = 20000.0f; 303 /** luminance under an overcast sky in lux */ 304 public static final float LIGHT_OVERCAST = 10000.0f; 305 /** luminance at sunrise in lux */ 306 public static final float LIGHT_SUNRISE = 400.0f; 307 /** luminance under a cloudy sky in lux */ 308 public static final float LIGHT_CLOUDY = 100.0f; 309 /** luminance at night with full moon in lux */ 310 public static final float LIGHT_FULLMOON = 0.25f; 311 /** luminance at night with no moon in lux*/ 312 public static final float LIGHT_NO_MOON = 0.001f; 313 314 315 /** get sensor data as fast as possible */ 316 public static final int SENSOR_DELAY_FASTEST = 0; 317 /** rate suitable for games */ 318 public static final int SENSOR_DELAY_GAME = 1; 319 /** rate suitable for the user interface */ 320 public static final int SENSOR_DELAY_UI = 2; 321 /** rate (default) suitable for screen orientation changes */ 322 public static final int SENSOR_DELAY_NORMAL = 3; 323 324 325 /** 326 * The values returned by this sensor cannot be trusted because the sensor 327 * had no contact with what it was measuring (for example, the heart rate 328 * monitor is not in contact with the user). 329 */ 330 public static final int SENSOR_STATUS_NO_CONTACT = -1; 331 332 /** 333 * The values returned by this sensor cannot be trusted, calibration is 334 * needed or the environment doesn't allow readings 335 */ 336 public static final int SENSOR_STATUS_UNRELIABLE = 0; 337 338 /** 339 * This sensor is reporting data with low accuracy, calibration with the 340 * environment is needed 341 */ 342 public static final int SENSOR_STATUS_ACCURACY_LOW = 1; 343 344 /** 345 * This sensor is reporting data with an average level of accuracy, 346 * calibration with the environment may improve the readings 347 */ 348 public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2; 349 350 /** This sensor is reporting data with maximum accuracy */ 351 public static final int SENSOR_STATUS_ACCURACY_HIGH = 3; 352 353 /** see {@link #remapCoordinateSystem} */ 354 public static final int AXIS_X = 1; 355 /** see {@link #remapCoordinateSystem} */ 356 public static final int AXIS_Y = 2; 357 /** see {@link #remapCoordinateSystem} */ 358 public static final int AXIS_Z = 3; 359 /** see {@link #remapCoordinateSystem} */ 360 public static final int AXIS_MINUS_X = AXIS_X | 0x80; 361 /** see {@link #remapCoordinateSystem} */ 362 public static final int AXIS_MINUS_Y = AXIS_Y | 0x80; 363 /** see {@link #remapCoordinateSystem} */ 364 public static final int AXIS_MINUS_Z = AXIS_Z | 0x80; 365 366 367 /** 368 * {@hide} 369 */ 370 public SensorManager() { 371 } 372 373 /** 374 * Gets the full list of sensors that are available. 375 * @hide 376 */ 377 protected abstract List<Sensor> getFullSensorList(); 378 379 /** 380 * Gets the full list of dynamic sensors that are available. 381 * @hide 382 */ 383 protected abstract List<Sensor> getFullDynamicSensorList(); 384 385 /** 386 * @return available sensors. 387 * @deprecated This method is deprecated, use 388 * {@link SensorManager#getSensorList(int)} instead 389 */ 390 @Deprecated 391 public int getSensors() { 392 return getLegacySensorManager().getSensors(); 393 } 394 395 /** 396 * Use this method to get the list of available sensors of a certain type. 397 * Make multiple calls to get sensors of different types or use 398 * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the 399 * sensors. 400 * 401 * <p class="note"> 402 * NOTE: Both wake-up and non wake-up sensors matching the given type are 403 * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties 404 * of the returned {@link Sensor}. 405 * </p> 406 * 407 * @param type 408 * of sensors requested 409 * 410 * @return a list of sensors matching the asked type. 411 * 412 * @see #getDefaultSensor(int) 413 * @see Sensor 414 */ 415 public List<Sensor> getSensorList(int type) { 416 // cache the returned lists the first time 417 List<Sensor> list; 418 final List<Sensor> fullList = getFullSensorList(); 419 synchronized (mSensorListByType) { 420 list = mSensorListByType.get(type); 421 if (list == null) { 422 if (type == Sensor.TYPE_ALL) { 423 list = fullList; 424 } else { 425 list = new ArrayList<Sensor>(); 426 for (Sensor i : fullList) { 427 if (i.getType() == type) 428 list.add(i); 429 } 430 } 431 list = Collections.unmodifiableList(list); 432 mSensorListByType.append(type, list); 433 } 434 } 435 return list; 436 } 437 438 /** 439 * Use this method to get a list of available dynamic sensors of a certain type. 440 * Make multiple calls to get sensors of different types or use 441 * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors. 442 * 443 * <p class="note"> 444 * NOTE: Both wake-up and non wake-up sensors matching the given type are 445 * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties 446 * of the returned {@link Sensor}. 447 * </p> 448 * 449 * @param type of sensors requested 450 * 451 * @return a list of dynamic sensors matching the requested type. 452 * 453 * @see Sensor 454 */ 455 public List<Sensor> getDynamicSensorList(int type) { 456 // cache the returned lists the first time 457 final List<Sensor> fullList = getFullDynamicSensorList(); 458 if (type == Sensor.TYPE_ALL) { 459 return Collections.unmodifiableList(fullList); 460 } else { 461 List<Sensor> list = new ArrayList(); 462 for (Sensor i : fullList) { 463 if (i.getType() == type) 464 list.add(i); 465 } 466 return Collections.unmodifiableList(list); 467 } 468 } 469 470 /** 471 * Use this method to get the default sensor for a given type. Note that the 472 * returned sensor could be a composite sensor, and its data could be 473 * averaged or filtered. If you need to access the raw sensors use 474 * {@link SensorManager#getSensorList(int) getSensorList}. 475 * 476 * @param type 477 * of sensors requested 478 * 479 * @return the default sensor matching the requested type if one exists and the application 480 * has the necessary permissions, or null otherwise. 481 * 482 * @see #getSensorList(int) 483 * @see Sensor 484 */ 485 public Sensor getDefaultSensor(int type) { 486 // TODO: need to be smarter, for now, just return the 1st sensor 487 List<Sensor> l = getSensorList(type); 488 boolean wakeUpSensor = false; 489 // For the following sensor types, return a wake-up sensor. These types are by default 490 // defined as wake-up sensors. For the rest of the SDK defined sensor types return a 491 // non_wake-up version. 492 if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION || 493 type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE || 494 type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE || 495 type == Sensor.TYPE_WRIST_TILT_GESTURE) { 496 wakeUpSensor = true; 497 } 498 499 for (Sensor sensor : l) { 500 if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor; 501 } 502 return null; 503 } 504 505 /** 506 * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this 507 * type exist, any one of them may be returned. 508 * <p> 509 * For example, 510 * <ul> 511 * <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up accelerometer 512 * sensor if it exists. </li> 513 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up proximity 514 * sensor if it exists. </li> 515 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity sensor 516 * which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li> 517 * </ul> 518 * </p> 519 * <p class="note"> 520 * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION} 521 * are declared as wake-up sensors by default. 522 * </p> 523 * @param type 524 * type of sensor requested 525 * @param wakeUp 526 * flag to indicate whether the Sensor is a wake-up or non wake-up sensor. 527 * @return the default sensor matching the requested type and wakeUp properties if one exists 528 * and the application has the necessary permissions, or null otherwise. 529 * @see Sensor#isWakeUpSensor() 530 */ 531 public Sensor getDefaultSensor(int type, boolean wakeUp) { 532 List<Sensor> l = getSensorList(type); 533 for (Sensor sensor : l) { 534 if (sensor.isWakeUpSensor() == wakeUp) 535 return sensor; 536 } 537 return null; 538 } 539 540 /** 541 * Registers a listener for given sensors. 542 * 543 * @deprecated This method is deprecated, use 544 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 545 * instead. 546 * 547 * @param listener 548 * sensor listener object 549 * 550 * @param sensors 551 * a bit masks of the sensors to register to 552 * 553 * @return <code>true</code> if the sensor is supported and successfully 554 * enabled 555 */ 556 @Deprecated 557 public boolean registerListener(SensorListener listener, int sensors) { 558 return registerListener(listener, sensors, SENSOR_DELAY_NORMAL); 559 } 560 561 /** 562 * Registers a SensorListener for given sensors. 563 * 564 * @deprecated This method is deprecated, use 565 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 566 * instead. 567 * 568 * @param listener 569 * sensor listener object 570 * 571 * @param sensors 572 * a bit masks of the sensors to register to 573 * 574 * @param rate 575 * rate of events. This is only a hint to the system. events may be 576 * received faster or slower than the specified rate. Usually events 577 * are received faster. The value must be one of 578 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 579 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. 580 * 581 * @return <code>true</code> if the sensor is supported and successfully 582 * enabled 583 */ 584 @Deprecated 585 public boolean registerListener(SensorListener listener, int sensors, int rate) { 586 return getLegacySensorManager().registerListener(listener, sensors, rate); 587 } 588 589 /** 590 * Unregisters a listener for all sensors. 591 * 592 * @deprecated This method is deprecated, use 593 * {@link SensorManager#unregisterListener(SensorEventListener)} 594 * instead. 595 * 596 * @param listener 597 * a SensorListener object 598 */ 599 @Deprecated 600 public void unregisterListener(SensorListener listener) { 601 unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW); 602 } 603 604 /** 605 * Unregisters a listener for the sensors with which it is registered. 606 * 607 * @deprecated This method is deprecated, use 608 * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)} 609 * instead. 610 * 611 * @param listener 612 * a SensorListener object 613 * 614 * @param sensors 615 * a bit masks of the sensors to unregister from 616 */ 617 @Deprecated 618 public void unregisterListener(SensorListener listener, int sensors) { 619 getLegacySensorManager().unregisterListener(listener, sensors); 620 } 621 622 /** 623 * Unregisters a listener for the sensors with which it is registered. 624 * 625 * <p class="note"></p> 626 * Note: Don't use this method with a one shot trigger sensor such as 627 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. 628 * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead. 629 * </p> 630 * 631 * @param listener 632 * a SensorEventListener object 633 * 634 * @param sensor 635 * the sensor to unregister from 636 * 637 * @see #unregisterListener(SensorEventListener) 638 * @see #registerListener(SensorEventListener, Sensor, int) 639 */ 640 public void unregisterListener(SensorEventListener listener, Sensor sensor) { 641 if (listener == null || sensor == null) { 642 return; 643 } 644 645 unregisterListenerImpl(listener, sensor); 646 } 647 648 /** 649 * Unregisters a listener for all sensors. 650 * 651 * @param listener 652 * a SensorListener object 653 * 654 * @see #unregisterListener(SensorEventListener, Sensor) 655 * @see #registerListener(SensorEventListener, Sensor, int) 656 * 657 */ 658 public void unregisterListener(SensorEventListener listener) { 659 if (listener == null) { 660 return; 661 } 662 663 unregisterListenerImpl(listener, null); 664 } 665 666 /** @hide */ 667 protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor); 668 669 /** 670 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 671 * sensor at the given sampling frequency. 672 * <p> 673 * The events will be delivered to the provided {@code SensorEventListener} as soon as they are 674 * available. To reduce the power consumption, applications can use 675 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 676 * positive non-zero maximum reporting latency. 677 * </p> 678 * <p> 679 * In the case of non-wake-up sensors, the events are only delivered while the Application 680 * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details. 681 * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the 682 * application registering to the sensor must hold a partial wake-lock to keep the AP awake, 683 * otherwise some events might be lost while the AP is asleep. Note that although events might 684 * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly 685 * deactivated by the application. Applications must unregister their {@code 686 * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power 687 * while the device is inactive. See {@link #registerListener(SensorEventListener, Sensor, int, 688 * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events 689 * might be lost. 690 * </p> 691 * <p> 692 * In the case of wake-up sensors, each event generated by the sensor will cause the AP to 693 * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up 694 * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check 695 * whether a sensor is a wake-up sensor. See 696 * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to 697 * reduce the power impact of registering to wake-up sensors. 698 * </p> 699 * <p class="note"> 700 * Note: Don't use this method with one-shot trigger sensors such as 701 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 702 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use 703 * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor. 704 * </p> 705 * 706 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 707 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 708 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 709 * delivered at. This is only a hint to the system. Events may be received faster or 710 * slower than the specified rate. Usually events are received faster. The value must 711 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 712 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay 713 * between events in microseconds. Specifying the delay in microseconds only works 714 * from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of 715 * the {@code SENSOR_DELAY_*} constants. 716 * @return <code>true</code> if the sensor is supported and successfully enabled. 717 * @see #registerListener(SensorEventListener, Sensor, int, Handler) 718 * @see #unregisterListener(SensorEventListener) 719 * @see #unregisterListener(SensorEventListener, Sensor) 720 */ 721 public boolean registerListener(SensorEventListener listener, Sensor sensor, 722 int samplingPeriodUs) { 723 return registerListener(listener, sensor, samplingPeriodUs, null); 724 } 725 726 /** 727 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 728 * sensor at the given sampling frequency and the given maximum reporting latency. 729 * <p> 730 * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but 731 * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The 732 * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once 733 * one of the events in the FIFO needs to be reported, all of the events in the FIFO are 734 * reported sequentially. This means that some events will be reported before the maximum 735 * reporting latency has elapsed. 736 * </p><p> 737 * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to 738 * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be 739 * delivered as soon as possible. 740 * </p><p> 741 * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call 742 * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}. 743 * </p><p> 744 * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of 745 * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the 746 * AP can switch to a lower power state while the sensor is capturing the data. This is 747 * especially important when registering to wake-up sensors, for which each interrupt causes the 748 * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more 749 * information on wake-up sensors. 750 * </p> 751 * <p class="note"> 752 * </p> 753 * Note: Don't use this method with one-shot trigger sensors such as 754 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 755 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 756 * 757 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 758 * that will receive the sensor events. If the application is interested in receiving 759 * flush complete notifications, it should register with 760 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 761 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 762 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 763 * This is only a hint to the system. Events may be received faster or slower than 764 * the specified rate. Usually events are received faster. Can be one of 765 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 766 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 767 * microseconds. 768 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 769 * being reported to the application. A large value allows reducing the power 770 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 771 * events are delivered as soon as they are available, which is equivalent to calling 772 * {@link #registerListener(SensorEventListener, Sensor, int)}. 773 * @return <code>true</code> if the sensor is supported and successfully enabled. 774 * @see #registerListener(SensorEventListener, Sensor, int) 775 * @see #unregisterListener(SensorEventListener) 776 * @see #flush(SensorEventListener) 777 */ 778 public boolean registerListener(SensorEventListener listener, Sensor sensor, 779 int samplingPeriodUs, int maxReportLatencyUs) { 780 int delay = getDelay(samplingPeriodUs); 781 return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0); 782 } 783 784 /** 785 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 786 * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the 787 * power consumption, applications can use 788 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 789 * positive non-zero maximum reporting latency. 790 * <p class="note"> 791 * </p> 792 * Note: Don't use this method with a one shot trigger sensor such as 793 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 794 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 795 * 796 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 797 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 798 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 799 * delivered at. This is only a hint to the system. Events may be received faster or 800 * slower than the specified rate. Usually events are received faster. The value must 801 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 802 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired 803 * delay between events in microseconds. Specifying the delay in microseconds only 804 * works from Android 2.3 (API level 9) onwards. For earlier releases, you must use 805 * one of the {@code SENSOR_DELAY_*} constants. 806 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 807 * sensor events} will be delivered to. 808 * @return <code>true</code> if the sensor is supported and successfully enabled. 809 * @see #registerListener(SensorEventListener, Sensor, int) 810 * @see #unregisterListener(SensorEventListener) 811 * @see #unregisterListener(SensorEventListener, Sensor) 812 */ 813 public boolean registerListener(SensorEventListener listener, Sensor sensor, 814 int samplingPeriodUs, Handler handler) { 815 int delay = getDelay(samplingPeriodUs); 816 return registerListenerImpl(listener, sensor, delay, handler, 0, 0); 817 } 818 819 /** 820 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 821 * sensor at the given sampling frequency and the given maximum reporting latency. 822 * 823 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 824 * that will receive the sensor events. If the application is interested in receiving 825 * flush complete notifications, it should register with 826 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 827 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 828 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 829 * This is only a hint to the system. Events may be received faster or slower than 830 * the specified rate. Usually events are received faster. Can be one of 831 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 832 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 833 * microseconds. 834 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 835 * being reported to the application. A large value allows reducing the power 836 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 837 * events are delivered as soon as they are available, which is equivalent to calling 838 * {@link #registerListener(SensorEventListener, Sensor, int)}. 839 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 840 * sensor events} will be delivered to. 841 * @return <code>true</code> if the sensor is supported and successfully enabled. 842 * @see #registerListener(SensorEventListener, Sensor, int, int) 843 */ 844 public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, 845 int maxReportLatencyUs, Handler handler) { 846 int delayUs = getDelay(samplingPeriodUs); 847 return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0); 848 } 849 850 /** @hide */ 851 protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor, 852 int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags); 853 854 855 /** 856 * Flushes the FIFO of all the sensors registered for this listener. If there are events 857 * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has 858 * expired. Events are returned in the usual way through the SensorEventListener. 859 * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and 860 * returns immediately. 861 * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called 862 * after all the events in the batch at the time of calling this method have been delivered 863 * successfully. If the hardware doesn't support flush, it still returns true and a trivial 864 * flush complete event is sent after the current event for all the clients registered for this 865 * sensor. 866 * 867 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 868 * which was previously used in a registerListener call. 869 * @return <code>true</code> if the flush is initiated successfully on all the sensors 870 * registered for this listener, false if no sensor is previously registered for this 871 * listener or flush on one of the sensors fails. 872 * @see #registerListener(SensorEventListener, Sensor, int, int) 873 * @throws IllegalArgumentException when listener is null. 874 */ 875 public boolean flush(SensorEventListener listener) { 876 return flushImpl(listener); 877 } 878 879 /** @hide */ 880 protected abstract boolean flushImpl(SensorEventListener listener); 881 882 883 /** 884 * Used for receiving notifications from the SensorManager when dynamic sensors are connected or 885 * disconnected. 886 */ 887 public static abstract class DynamicSensorCallback { 888 /** 889 * Called when there is a dynamic sensor being connected to the system. 890 * 891 * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}. 892 */ 893 public void onDynamicSensorConnected(Sensor sensor) {} 894 895 /** 896 * Called when there is a dynamic sensor being disconnected from the system. 897 * 898 * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}. 899 */ 900 public void onDynamicSensorDisconnected(Sensor sensor) {} 901 } 902 903 904 /** 905 * Add a {@link android.hardware.SensorManager.DynamicSensorCallback 906 * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat 907 * registration with the already registered callback object will have no additional effect. 908 * 909 * @param callback An object that implements the 910 * {@link android.hardware.SensorManager.DynamicSensorCallback 911 * DynamicSensorCallback} 912 * interface for receiving callbacks. 913 * @see #addDynamicSensorCallback(DynamicSensorCallback, Handler) 914 * 915 * @throws IllegalArgumentException when callback is null. 916 */ 917 public void registerDynamicSensorCallback(DynamicSensorCallback callback) { 918 registerDynamicSensorCallback(callback, null); 919 } 920 921 /** 922 * Add a {@link android.hardware.SensorManager.DynamicSensorCallback 923 * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat 924 * registration with the already registered callback object will have no additional effect. 925 * 926 * @param callback An object that implements the 927 * {@link android.hardware.SensorManager.DynamicSensorCallback 928 * DynamicSensorCallback} interface for receiving callbacks. 929 * @param handler The {@link android.os.Handler Handler} the {@link 930 * android.hardware.SensorManager.DynamicSensorCallback 931 * sensor connection events} will be delivered to. 932 * 933 * @throws IllegalArgumentException when callback is null. 934 */ 935 public void registerDynamicSensorCallback( 936 DynamicSensorCallback callback, Handler handler) { 937 registerDynamicSensorCallbackImpl(callback, handler); 938 } 939 940 /** 941 * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback 942 * DynamicSensorCallback} to stop sending dynamic sensor connection events to that 943 * callback. 944 * 945 * @param callback An object that implements the 946 * {@link android.hardware.SensorManager.DynamicSensorCallback 947 * DynamicSensorCallback} 948 * interface for receiving callbacks. 949 */ 950 public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) { 951 unregisterDynamicSensorCallbackImpl(callback); 952 } 953 954 /** 955 * Tell if dynamic sensor discovery feature is supported by system. 956 * 957 * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code> 958 * otherwise. 959 */ 960 public boolean isDynamicSensorDiscoverySupported() { 961 List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META); 962 return sensors.size() > 0; 963 } 964 965 /** @hide */ 966 protected abstract void registerDynamicSensorCallbackImpl( 967 DynamicSensorCallback callback, Handler handler); 968 969 /** @hide */ 970 protected abstract void unregisterDynamicSensorCallbackImpl( 971 DynamicSensorCallback callback); 972 973 /** 974 * <p> 975 * Computes the inclination matrix <b>I</b> as well as the rotation matrix 976 * <b>R</b> transforming a vector from the device coordinate system to the 977 * world's coordinate system which is defined as a direct orthonormal basis, 978 * where: 979 * </p> 980 * 981 * <ul> 982 * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to 983 * the ground at the device's current location and roughly points East).</li> 984 * <li>Y is tangential to the ground at the device's current location and 985 * points towards the magnetic North Pole.</li> 986 * <li>Z points towards the sky and is perpendicular to the ground.</li> 987 * </ul> 988 * 989 * <p> 990 * <center><img src="../../../images/axis_globe.png" 991 * alt="World coordinate-system diagram." border="0" /></center> 992 * </p> 993 * 994 * <p> 995 * <hr> 996 * <p> 997 * By definition: 998 * <p> 999 * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity) 1000 * <p> 1001 * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of 1002 * geomagnetic field) 1003 * <p> 1004 * <b>R</b> is the identity matrix when the device is aligned with the 1005 * world's coordinate system, that is, when the device's X axis points 1006 * toward East, the Y axis points to the North Pole and the device is facing 1007 * the sky. 1008 * 1009 * <p> 1010 * <b>I</b> is a rotation matrix transforming the geomagnetic vector into 1011 * the same coordinate space as gravity (the world's coordinate space). 1012 * <b>I</b> is a simple rotation around the X axis. The inclination angle in 1013 * radians can be computed with {@link #getInclination}. 1014 * <hr> 1015 * 1016 * <p> 1017 * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending 1018 * on the length of the passed array: 1019 * <p> 1020 * <u>If the array length is 16:</u> 1021 * 1022 * <pre> 1023 * / M[ 0] M[ 1] M[ 2] M[ 3] \ 1024 * | M[ 4] M[ 5] M[ 6] M[ 7] | 1025 * | M[ 8] M[ 9] M[10] M[11] | 1026 * \ M[12] M[13] M[14] M[15] / 1027 *</pre> 1028 * 1029 * This matrix is ready to be used by OpenGL ES's 1030 * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) 1031 * glLoadMatrixf(float[], int)}. 1032 * <p> 1033 * Note that because OpenGL matrices are column-major matrices you must 1034 * transpose the matrix before using it. However, since the matrix is a 1035 * rotation matrix, its transpose is also its inverse, conveniently, it is 1036 * often the inverse of the rotation that is needed for rendering; it can 1037 * therefore be used with OpenGL ES directly. 1038 * <p> 1039 * Also note that the returned matrices always have this form: 1040 * 1041 * <pre> 1042 * / M[ 0] M[ 1] M[ 2] 0 \ 1043 * | M[ 4] M[ 5] M[ 6] 0 | 1044 * | M[ 8] M[ 9] M[10] 0 | 1045 * \ 0 0 0 1 / 1046 *</pre> 1047 * 1048 * <p> 1049 * <u>If the array length is 9:</u> 1050 * 1051 * <pre> 1052 * / M[ 0] M[ 1] M[ 2] \ 1053 * | M[ 3] M[ 4] M[ 5] | 1054 * \ M[ 6] M[ 7] M[ 8] / 1055 *</pre> 1056 * 1057 * <hr> 1058 * <p> 1059 * The inverse of each matrix can be computed easily by taking its 1060 * transpose. 1061 * 1062 * <p> 1063 * The matrices returned by this function are meaningful only when the 1064 * device is not free-falling and it is not close to the magnetic north. If 1065 * the device is accelerating, or placed into a strong magnetic field, the 1066 * returned matrices may be inaccurate. 1067 * 1068 * @param R 1069 * is an array of 9 floats holding the rotation matrix <b>R</b> when 1070 * this function returns. R can be null. 1071 * <p> 1072 * 1073 * @param I 1074 * is an array of 9 floats holding the rotation matrix <b>I</b> when 1075 * this function returns. I can be null. 1076 * <p> 1077 * 1078 * @param gravity 1079 * is an array of 3 floats containing the gravity vector expressed in 1080 * the device's coordinate. You can simply use the 1081 * {@link android.hardware.SensorEvent#values values} returned by a 1082 * {@link android.hardware.SensorEvent SensorEvent} of a 1083 * {@link android.hardware.Sensor Sensor} of type 1084 * {@link android.hardware.Sensor#TYPE_ACCELEROMETER 1085 * TYPE_ACCELEROMETER}. 1086 * <p> 1087 * 1088 * @param geomagnetic 1089 * is an array of 3 floats containing the geomagnetic vector 1090 * expressed in the device's coordinate. You can simply use the 1091 * {@link android.hardware.SensorEvent#values values} returned by a 1092 * {@link android.hardware.SensorEvent SensorEvent} of a 1093 * {@link android.hardware.Sensor Sensor} of type 1094 * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD 1095 * TYPE_MAGNETIC_FIELD}. 1096 * 1097 * @return <code>true</code> on success, <code>false</code> on failure (for 1098 * instance, if the device is in free fall). Free fall is defined as 1099 * condition when the magnitude of the gravity is less than 1/10 of 1100 * the nominal value. On failure the output matrices are not modified. 1101 * 1102 * @see #getInclination(float[]) 1103 * @see #getOrientation(float[], float[]) 1104 * @see #remapCoordinateSystem(float[], int, int, float[]) 1105 */ 1106 1107 public static boolean getRotationMatrix(float[] R, float[] I, 1108 float[] gravity, float[] geomagnetic) { 1109 // TODO: move this to native code for efficiency 1110 float Ax = gravity[0]; 1111 float Ay = gravity[1]; 1112 float Az = gravity[2]; 1113 1114 final float normsqA = (Ax*Ax + Ay*Ay + Az*Az); 1115 final float g = 9.81f; 1116 final float freeFallGravitySquared = 0.01f * g * g; 1117 if (normsqA < freeFallGravitySquared) { 1118 // gravity less than 10% of normal value 1119 return false; 1120 } 1121 1122 final float Ex = geomagnetic[0]; 1123 final float Ey = geomagnetic[1]; 1124 final float Ez = geomagnetic[2]; 1125 float Hx = Ey*Az - Ez*Ay; 1126 float Hy = Ez*Ax - Ex*Az; 1127 float Hz = Ex*Ay - Ey*Ax; 1128 final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz); 1129 1130 if (normH < 0.1f) { 1131 // device is close to free fall (or in space?), or close to 1132 // magnetic north pole. Typical values are > 100. 1133 return false; 1134 } 1135 final float invH = 1.0f / normH; 1136 Hx *= invH; 1137 Hy *= invH; 1138 Hz *= invH; 1139 final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az); 1140 Ax *= invA; 1141 Ay *= invA; 1142 Az *= invA; 1143 final float Mx = Ay*Hz - Az*Hy; 1144 final float My = Az*Hx - Ax*Hz; 1145 final float Mz = Ax*Hy - Ay*Hx; 1146 if (R != null) { 1147 if (R.length == 9) { 1148 R[0] = Hx; R[1] = Hy; R[2] = Hz; 1149 R[3] = Mx; R[4] = My; R[5] = Mz; 1150 R[6] = Ax; R[7] = Ay; R[8] = Az; 1151 } else if (R.length == 16) { 1152 R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0; 1153 R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0; 1154 R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0; 1155 R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1; 1156 } 1157 } 1158 if (I != null) { 1159 // compute the inclination matrix by projecting the geomagnetic 1160 // vector onto the Z (gravity) and X (horizontal component 1161 // of geomagnetic vector) axes. 1162 final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez); 1163 final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE; 1164 final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE; 1165 if (I.length == 9) { 1166 I[0] = 1; I[1] = 0; I[2] = 0; 1167 I[3] = 0; I[4] = c; I[5] = s; 1168 I[6] = 0; I[7] =-s; I[8] = c; 1169 } else if (I.length == 16) { 1170 I[0] = 1; I[1] = 0; I[2] = 0; 1171 I[4] = 0; I[5] = c; I[6] = s; 1172 I[8] = 0; I[9] =-s; I[10]= c; 1173 I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0; 1174 I[15] = 1; 1175 } 1176 } 1177 return true; 1178 } 1179 1180 /** 1181 * Computes the geomagnetic inclination angle in radians from the 1182 * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}. 1183 * 1184 * @param I 1185 * inclination matrix see {@link #getRotationMatrix}. 1186 * 1187 * @return The geomagnetic inclination angle in radians. 1188 * 1189 * @see #getRotationMatrix(float[], float[], float[], float[]) 1190 * @see #getOrientation(float[], float[]) 1191 * @see GeomagneticField 1192 * 1193 */ 1194 public static float getInclination(float[] I) { 1195 if (I.length == 9) { 1196 return (float)Math.atan2(I[5], I[4]); 1197 } else { 1198 return (float)Math.atan2(I[6], I[5]); 1199 } 1200 } 1201 1202 /** 1203 * <p> 1204 * Rotates the supplied rotation matrix so it is expressed in a different 1205 * coordinate system. This is typically used when an application needs to 1206 * compute the three orientation angles of the device (see 1207 * {@link #getOrientation}) in a different coordinate system. 1208 * </p> 1209 * 1210 * <p> 1211 * When the rotation matrix is used for drawing (for instance with OpenGL 1212 * ES), it usually <b>doesn't need</b> to be transformed by this function, 1213 * unless the screen is physically rotated, in which case you can use 1214 * {@link android.view.Display#getRotation() Display.getRotation()} to 1215 * retrieve the current rotation of the screen. Note that because the user 1216 * is generally free to rotate their screen, you often should consider the 1217 * rotation in deciding the parameters to use here. 1218 * </p> 1219 * 1220 * <p> 1221 * <u>Examples:</u> 1222 * <p> 1223 * 1224 * <ul> 1225 * <li>Using the camera (Y axis along the camera's axis) for an augmented 1226 * reality application where the rotation angles are needed:</li> 1227 * 1228 * <p> 1229 * <ul> 1230 * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code> 1231 * </ul> 1232 * </p> 1233 * 1234 * <li>Using the device as a mechanical compass when rotation is 1235 * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li> 1236 * 1237 * <p> 1238 * <ul> 1239 * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code> 1240 * </ul> 1241 * </p> 1242 * 1243 * Beware of the above example. This call is needed only to account for a 1244 * rotation from its natural orientation when calculating the rotation 1245 * angles (see {@link #getOrientation}). If the rotation matrix is also used 1246 * for rendering, it may not need to be transformed, for instance if your 1247 * {@link android.app.Activity Activity} is running in landscape mode. 1248 * </ul> 1249 * 1250 * <p> 1251 * Since the resulting coordinate system is orthonormal, only two axes need 1252 * to be specified. 1253 * 1254 * @param inR 1255 * the rotation matrix to be transformed. Usually it is the matrix 1256 * returned by {@link #getRotationMatrix}. 1257 * 1258 * @param X 1259 * defines the axis of the new cooridinate system that coincide with the X axis of the 1260 * original coordinate system. 1261 * 1262 * @param Y 1263 * defines the axis of the new cooridinate system that coincide with the Y axis of the 1264 * original coordinate system. 1265 * 1266 * @param outR 1267 * the transformed rotation matrix. inR and outR should not be the same 1268 * array. 1269 * 1270 * @return <code>true</code> on success. <code>false</code> if the input 1271 * parameters are incorrect, for instance if X and Y define the same 1272 * axis. Or if inR and outR don't have the same length. 1273 * 1274 * @see #getRotationMatrix(float[], float[], float[], float[]) 1275 */ 1276 1277 public static boolean remapCoordinateSystem(float[] inR, int X, int Y, 1278 float[] outR) 1279 { 1280 if (inR == outR) { 1281 final float[] temp = mTempMatrix; 1282 synchronized(temp) { 1283 // we don't expect to have a lot of contention 1284 if (remapCoordinateSystemImpl(inR, X, Y, temp)) { 1285 final int size = outR.length; 1286 for (int i=0 ; i<size ; i++) 1287 outR[i] = temp[i]; 1288 return true; 1289 } 1290 } 1291 } 1292 return remapCoordinateSystemImpl(inR, X, Y, outR); 1293 } 1294 1295 private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, 1296 float[] outR) 1297 { 1298 /* 1299 * X and Y define a rotation matrix 'r': 1300 * 1301 * (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0 1302 * (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0 1303 * r[0] ^ r[1] 1304 * 1305 * where the 3rd line is the vector product of the first 2 lines 1306 * 1307 */ 1308 1309 final int length = outR.length; 1310 if (inR.length != length) 1311 return false; // invalid parameter 1312 if ((X & 0x7C)!=0 || (Y & 0x7C)!=0) 1313 return false; // invalid parameter 1314 if (((X & 0x3)==0) || ((Y & 0x3)==0)) 1315 return false; // no axis specified 1316 if ((X & 0x3) == (Y & 0x3)) 1317 return false; // same axis specified 1318 1319 // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y) 1320 // this can be calculated by exclusive-or'ing X and Y; except for 1321 // the sign inversion (+/-) which is calculated below. 1322 int Z = X ^ Y; 1323 1324 // extract the axis (remove the sign), offset in the range 0 to 2. 1325 final int x = (X & 0x3)-1; 1326 final int y = (Y & 0x3)-1; 1327 final int z = (Z & 0x3)-1; 1328 1329 // compute the sign of Z (whether it needs to be inverted) 1330 final int axis_y = (z+1)%3; 1331 final int axis_z = (z+2)%3; 1332 if (((x^axis_y)|(y^axis_z)) != 0) 1333 Z ^= 0x80; 1334 1335 final boolean sx = (X>=0x80); 1336 final boolean sy = (Y>=0x80); 1337 final boolean sz = (Z>=0x80); 1338 1339 // Perform R * r, in avoiding actual muls and adds. 1340 final int rowLength = ((length==16)?4:3); 1341 for (int j=0 ; j<3 ; j++) { 1342 final int offset = j*rowLength; 1343 for (int i=0 ; i<3 ; i++) { 1344 if (x==i) outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0]; 1345 if (y==i) outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1]; 1346 if (z==i) outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2]; 1347 } 1348 } 1349 if (length == 16) { 1350 outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0; 1351 outR[15] = 1; 1352 } 1353 return true; 1354 } 1355 1356 /** 1357 * Computes the device's orientation based on the rotation matrix. 1358 * <p> 1359 * When it returns, the array values are as follows: 1360 * <ul> 1361 * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis. 1362 * This value represents the angle between the device's y 1363 * axis and the magnetic north pole. When facing north, this 1364 * angle is 0, when facing south, this angle is π. 1365 * Likewise, when facing east, this angle is π/2, and 1366 * when facing west, this angle is -π/2. The range of 1367 * values is -π to π.</li> 1368 * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis. 1369 * This value represents the angle between a plane parallel 1370 * to the device's screen and a plane parallel to the ground. 1371 * Assuming that the bottom edge of the device faces the 1372 * user and that the screen is face-up, tilting the top edge 1373 * of the device toward the ground creates a positive pitch 1374 * angle. The range of values is -π to π.</li> 1375 * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This 1376 * value represents the angle between a plane perpendicular 1377 * to the device's screen and a plane perpendicular to the 1378 * ground. Assuming that the bottom edge of the device faces 1379 * the user and that the screen is face-up, tilting the left 1380 * edge of the device toward the ground creates a positive 1381 * roll angle. The range of values is -π/2 to π/2.</li> 1382 * </ul> 1383 * <p> 1384 * Applying these three rotations in the azimuth, pitch, roll order 1385 * transforms an identity matrix to the rotation matrix passed into this 1386 * method. Also, note that all three orientation angles are expressed in 1387 * <b>radians</b>. 1388 * 1389 * @param R 1390 * rotation matrix see {@link #getRotationMatrix}. 1391 * 1392 * @param values 1393 * an array of 3 floats to hold the result. 1394 * 1395 * @return The array values passed as argument. 1396 * 1397 * @see #getRotationMatrix(float[], float[], float[], float[]) 1398 * @see GeomagneticField 1399 */ 1400 public static float[] getOrientation(float[] R, float values[]) { 1401 /* 1402 * 4x4 (length=16) case: 1403 * / R[ 0] R[ 1] R[ 2] 0 \ 1404 * | R[ 4] R[ 5] R[ 6] 0 | 1405 * | R[ 8] R[ 9] R[10] 0 | 1406 * \ 0 0 0 1 / 1407 * 1408 * 3x3 (length=9) case: 1409 * / R[ 0] R[ 1] R[ 2] \ 1410 * | R[ 3] R[ 4] R[ 5] | 1411 * \ R[ 6] R[ 7] R[ 8] / 1412 * 1413 */ 1414 if (R.length == 9) { 1415 values[0] = (float)Math.atan2(R[1], R[4]); 1416 values[1] = (float)Math.asin(-R[7]); 1417 values[2] = (float)Math.atan2(-R[6], R[8]); 1418 } else { 1419 values[0] = (float)Math.atan2(R[1], R[5]); 1420 values[1] = (float)Math.asin(-R[9]); 1421 values[2] = (float)Math.atan2(-R[8], R[10]); 1422 } 1423 1424 return values; 1425 } 1426 1427 /** 1428 * Computes the Altitude in meters from the atmospheric pressure and the 1429 * pressure at sea level. 1430 * <p> 1431 * Typically the atmospheric pressure is read from a 1432 * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be 1433 * known, usually it can be retrieved from airport databases in the 1434 * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} 1435 * as an approximation, but absolute altitudes won't be accurate. 1436 * </p> 1437 * <p> 1438 * To calculate altitude differences, you must calculate the difference 1439 * between the altitudes at both points. If you don't know the altitude 1440 * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead, 1441 * which will give good results considering the range of pressure typically 1442 * involved. 1443 * </p> 1444 * <p> 1445 * <code><ul> 1446 * float altitude_difference = 1447 * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2) 1448 * - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1); 1449 * </ul></code> 1450 * </p> 1451 * 1452 * @param p0 pressure at sea level 1453 * @param p atmospheric pressure 1454 * @return Altitude in meters 1455 */ 1456 public static float getAltitude(float p0, float p) { 1457 final float coef = 1.0f / 5.255f; 1458 return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef)); 1459 } 1460 1461 /** Helper function to compute the angle change between two rotation matrices. 1462 * Given a current rotation matrix (R) and a previous rotation matrix 1463 * (prevR) computes the intrinsic rotation around the z, x, and y axes which 1464 * transforms prevR to R. 1465 * outputs a 3 element vector containing the z, x, and y angle 1466 * change at indexes 0, 1, and 2 respectively. 1467 * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix 1468 * depending on the length of the passed array: 1469 * <p>If the array length is 9, then the array elements represent this matrix 1470 * <pre> 1471 * / R[ 0] R[ 1] R[ 2] \ 1472 * | R[ 3] R[ 4] R[ 5] | 1473 * \ R[ 6] R[ 7] R[ 8] / 1474 *</pre> 1475 * <p>If the array length is 16, then the array elements represent this matrix 1476 * <pre> 1477 * / R[ 0] R[ 1] R[ 2] R[ 3] \ 1478 * | R[ 4] R[ 5] R[ 6] R[ 7] | 1479 * | R[ 8] R[ 9] R[10] R[11] | 1480 * \ R[12] R[13] R[14] R[15] / 1481 *</pre> 1482 * 1483 * See {@link #getOrientation} for more detailed definition of the output. 1484 * 1485 * @param R current rotation matrix 1486 * @param prevR previous rotation matrix 1487 * @param angleChange an an array of floats (z, x, and y) in which the angle change 1488 * (in radians) is stored 1489 */ 1490 1491 public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) { 1492 float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0; 1493 float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0; 1494 float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0; 1495 1496 if(R.length == 9) { 1497 ri0 = R[0]; 1498 ri1 = R[1]; 1499 ri2 = R[2]; 1500 ri3 = R[3]; 1501 ri4 = R[4]; 1502 ri5 = R[5]; 1503 ri6 = R[6]; 1504 ri7 = R[7]; 1505 ri8 = R[8]; 1506 } else if(R.length == 16) { 1507 ri0 = R[0]; 1508 ri1 = R[1]; 1509 ri2 = R[2]; 1510 ri3 = R[4]; 1511 ri4 = R[5]; 1512 ri5 = R[6]; 1513 ri6 = R[8]; 1514 ri7 = R[9]; 1515 ri8 = R[10]; 1516 } 1517 1518 if(prevR.length == 9) { 1519 pri0 = prevR[0]; 1520 pri1 = prevR[1]; 1521 pri2 = prevR[2]; 1522 pri3 = prevR[3]; 1523 pri4 = prevR[4]; 1524 pri5 = prevR[5]; 1525 pri6 = prevR[6]; 1526 pri7 = prevR[7]; 1527 pri8 = prevR[8]; 1528 } else if(prevR.length == 16) { 1529 pri0 = prevR[0]; 1530 pri1 = prevR[1]; 1531 pri2 = prevR[2]; 1532 pri3 = prevR[4]; 1533 pri4 = prevR[5]; 1534 pri5 = prevR[6]; 1535 pri6 = prevR[8]; 1536 pri7 = prevR[9]; 1537 pri8 = prevR[10]; 1538 } 1539 1540 // calculate the parts of the rotation difference matrix we need 1541 // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j]; 1542 1543 rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1] 1544 rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1] 1545 rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0] 1546 rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1] 1547 rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2] 1548 1549 angleChange[0] = (float)Math.atan2(rd1, rd4); 1550 angleChange[1] = (float)Math.asin(-rd7); 1551 angleChange[2] = (float)Math.atan2(-rd6, rd8); 1552 1553 } 1554 1555 /** Helper function to convert a rotation vector to a rotation matrix. 1556 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a 1557 * 9 or 16 element rotation matrix in the array R. R must have length 9 or 16. 1558 * If R.length == 9, the following matrix is returned: 1559 * <pre> 1560 * / R[ 0] R[ 1] R[ 2] \ 1561 * | R[ 3] R[ 4] R[ 5] | 1562 * \ R[ 6] R[ 7] R[ 8] / 1563 *</pre> 1564 * If R.length == 16, the following matrix is returned: 1565 * <pre> 1566 * / R[ 0] R[ 1] R[ 2] 0 \ 1567 * | R[ 4] R[ 5] R[ 6] 0 | 1568 * | R[ 8] R[ 9] R[10] 0 | 1569 * \ 0 0 0 1 / 1570 *</pre> 1571 * @param rotationVector the rotation vector to convert 1572 * @param R an array of floats in which to store the rotation matrix 1573 */ 1574 public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) { 1575 1576 float q0; 1577 float q1 = rotationVector[0]; 1578 float q2 = rotationVector[1]; 1579 float q3 = rotationVector[2]; 1580 1581 if (rotationVector.length >= 4) { 1582 q0 = rotationVector[3]; 1583 } else { 1584 q0 = 1 - q1*q1 - q2*q2 - q3*q3; 1585 q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0; 1586 } 1587 1588 float sq_q1 = 2 * q1 * q1; 1589 float sq_q2 = 2 * q2 * q2; 1590 float sq_q3 = 2 * q3 * q3; 1591 float q1_q2 = 2 * q1 * q2; 1592 float q3_q0 = 2 * q3 * q0; 1593 float q1_q3 = 2 * q1 * q3; 1594 float q2_q0 = 2 * q2 * q0; 1595 float q2_q3 = 2 * q2 * q3; 1596 float q1_q0 = 2 * q1 * q0; 1597 1598 if(R.length == 9) { 1599 R[0] = 1 - sq_q2 - sq_q3; 1600 R[1] = q1_q2 - q3_q0; 1601 R[2] = q1_q3 + q2_q0; 1602 1603 R[3] = q1_q2 + q3_q0; 1604 R[4] = 1 - sq_q1 - sq_q3; 1605 R[5] = q2_q3 - q1_q0; 1606 1607 R[6] = q1_q3 - q2_q0; 1608 R[7] = q2_q3 + q1_q0; 1609 R[8] = 1 - sq_q1 - sq_q2; 1610 } else if (R.length == 16) { 1611 R[0] = 1 - sq_q2 - sq_q3; 1612 R[1] = q1_q2 - q3_q0; 1613 R[2] = q1_q3 + q2_q0; 1614 R[3] = 0.0f; 1615 1616 R[4] = q1_q2 + q3_q0; 1617 R[5] = 1 - sq_q1 - sq_q3; 1618 R[6] = q2_q3 - q1_q0; 1619 R[7] = 0.0f; 1620 1621 R[8] = q1_q3 - q2_q0; 1622 R[9] = q2_q3 + q1_q0; 1623 R[10] = 1 - sq_q1 - sq_q2; 1624 R[11] = 0.0f; 1625 1626 R[12] = R[13] = R[14] = 0.0f; 1627 R[15] = 1.0f; 1628 } 1629 } 1630 1631 /** Helper function to convert a rotation vector to a normalized quaternion. 1632 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized 1633 * quaternion in the array Q. The quaternion is stored as [w, x, y, z] 1634 * @param rv the rotation vector to convert 1635 * @param Q an array of floats in which to store the computed quaternion 1636 */ 1637 public static void getQuaternionFromVector(float[] Q, float[] rv) { 1638 if (rv.length >= 4) { 1639 Q[0] = rv[3]; 1640 } else { 1641 Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]; 1642 Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0; 1643 } 1644 Q[1] = rv[0]; 1645 Q[2] = rv[1]; 1646 Q[3] = rv[2]; 1647 } 1648 1649 /** 1650 * Requests receiving trigger events for a trigger sensor. 1651 * 1652 * <p> 1653 * When the sensor detects a trigger event condition, such as significant motion in 1654 * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener 1655 * will be invoked once and then its request to receive trigger events will be canceled. 1656 * To continue receiving trigger events, the application must request to receive trigger 1657 * events again. 1658 * </p> 1659 * 1660 * @param listener The listener on which the 1661 * {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered. 1662 * @param sensor The sensor to be enabled. 1663 * 1664 * @return true if the sensor was successfully enabled. 1665 * 1666 * @throws IllegalArgumentException when sensor is null or not a trigger sensor. 1667 */ 1668 public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1669 return requestTriggerSensorImpl(listener, sensor); 1670 } 1671 1672 /** 1673 * @hide 1674 */ 1675 protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener, 1676 Sensor sensor); 1677 1678 /** 1679 * Cancels receiving trigger events for a trigger sensor. 1680 * 1681 * <p> 1682 * Note that a Trigger sensor will be auto disabled if 1683 * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered. 1684 * This method is provided in case the user wants to explicitly cancel the request 1685 * to receive trigger events. 1686 * </p> 1687 * 1688 * @param listener The listener on which the 1689 * {@link TriggerEventListener#onTrigger(TriggerEvent)} 1690 * is delivered.It should be the same as the one used 1691 * in {@link #requestTriggerSensor(TriggerEventListener, Sensor)} 1692 * @param sensor The sensor for which the trigger request should be canceled. 1693 * If null, it cancels receiving trigger for all sensors associated 1694 * with the listener. 1695 * 1696 * @return true if successfully canceled. 1697 * 1698 * @throws IllegalArgumentException when sensor is a trigger sensor. 1699 */ 1700 public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1701 return cancelTriggerSensorImpl(listener, sensor, true); 1702 } 1703 1704 /** 1705 * @hide 1706 */ 1707 protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener, 1708 Sensor sensor, boolean disable); 1709 1710 1711 /** 1712 * For testing purposes only. Not for third party applications. 1713 * 1714 * Initialize data injection mode and create a client for data injection. SensorService should 1715 * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into 1716 * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called 1717 * through adb. Typically this is done using a host side test. This mode is expected to be used 1718 * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input 1719 * from physical sensors and read sensor data that is injected from the test application. This 1720 * mode is used for testing vendor implementations for various algorithms like Rotation Vector, 1721 * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will 1722 * fail in those cases. Once this method succeeds, the test can call 1723 * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL. 1724 * 1725 * @param enable True to initialize a client in DATA_INJECTION mode. 1726 * False to clean up the native resources. 1727 * 1728 * @return true if the HAL supports data injection and false 1729 * otherwise. 1730 * @hide 1731 */ 1732 @SystemApi 1733 public boolean initDataInjection(boolean enable) { 1734 return initDataInjectionImpl(enable); 1735 } 1736 1737 /** 1738 * @hide 1739 */ 1740 protected abstract boolean initDataInjectionImpl(boolean enable); 1741 1742 /** 1743 * For testing purposes only. Not for third party applications. 1744 * 1745 * This method is used to inject raw sensor data into the HAL. Call {@link 1746 * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This 1747 * method should be called only if a previous call to initDataInjection has been successful and 1748 * the HAL and SensorService are already opreating in data injection mode. 1749 * 1750 * @param sensor The sensor to inject. 1751 * @param values Sensor values to inject. The length of this 1752 * array must be exactly equal to the number of 1753 * values reported by the sensor type. 1754 * @param accuracy Accuracy of the sensor. 1755 * @param timestamp Sensor timestamp associated with the event. 1756 * 1757 * @return boolean True if the data injection succeeds, false 1758 * otherwise. 1759 * @throws IllegalArgumentException when the sensor is null, 1760 * data injection is not supported by the sensor, values 1761 * are null, incorrect number of values for the sensor, 1762 * sensor accuracy is incorrect or timestamps are 1763 * invalid. 1764 * @hide 1765 */ 1766 @SystemApi 1767 public boolean injectSensorData(Sensor sensor, float[] values, int accuracy, 1768 long timestamp) { 1769 if (sensor == null) { 1770 throw new IllegalArgumentException("sensor cannot be null"); 1771 } 1772 if (!sensor.isDataInjectionSupported()) { 1773 throw new IllegalArgumentException("sensor does not support data injection"); 1774 } 1775 if (values == null) { 1776 throw new IllegalArgumentException("sensor data cannot be null"); 1777 } 1778 int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M); 1779 if (values.length != expectedNumValues) { 1780 throw new IllegalArgumentException ("Wrong number of values for sensor " + 1781 sensor.getName() + " actual=" + values.length + " expected=" + 1782 expectedNumValues); 1783 } 1784 if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) { 1785 throw new IllegalArgumentException("Invalid sensor accuracy"); 1786 } 1787 if (timestamp <= 0) { 1788 throw new IllegalArgumentException("Negative or zero sensor timestamp"); 1789 } 1790 return injectSensorDataImpl(sensor, values, accuracy, timestamp); 1791 } 1792 1793 /** 1794 * @hide 1795 */ 1796 protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, 1797 long timestamp); 1798 1799 private LegacySensorManager getLegacySensorManager() { 1800 synchronized (mSensorListByType) { 1801 if (mLegacySensorManager == null) { 1802 Log.i(TAG, "This application is using deprecated SensorManager API which will " 1803 + "be removed someday. Please consider switching to the new API."); 1804 mLegacySensorManager = new LegacySensorManager(this); 1805 } 1806 return mLegacySensorManager; 1807 } 1808 } 1809 1810 private static int getDelay(int rate) { 1811 int delay = -1; 1812 switch (rate) { 1813 case SENSOR_DELAY_FASTEST: 1814 delay = 0; 1815 break; 1816 case SENSOR_DELAY_GAME: 1817 delay = 20000; 1818 break; 1819 case SENSOR_DELAY_UI: 1820 delay = 66667; 1821 break; 1822 case SENSOR_DELAY_NORMAL: 1823 delay = 200000; 1824 break; 1825 default: 1826 delay = rate; 1827 break; 1828 } 1829 return delay; 1830 } 1831 } 1832