1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Utility functions for Hexagon specific MCInst queries 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H 15 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H 16 17 #include "HexagonMCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 20 namespace llvm { 21 class HexagonMCChecker; 22 class MCContext; 23 class MCInstrDesc; 24 class MCInstrInfo; 25 class MCInst; 26 class MCOperand; 27 class MCSubtargetInfo; 28 namespace HexagonII { 29 enum class MemAccessSize; 30 } 31 class DuplexCandidate { 32 public: 33 unsigned packetIndexI, packetIndexJ, iClass; 34 DuplexCandidate(unsigned i, unsigned j, unsigned iClass) 35 : packetIndexI(i), packetIndexJ(j), iClass(iClass) {} 36 }; 37 namespace HexagonMCInstrInfo { 38 size_t const innerLoopOffset = 0; 39 int64_t const innerLoopMask = 1 << innerLoopOffset; 40 41 size_t const outerLoopOffset = 1; 42 int64_t const outerLoopMask = 1 << outerLoopOffset; 43 44 // do not reorder memory load/stores by default load/stores are re-ordered 45 // and by default loads can be re-ordered 46 size_t const memReorderDisabledOffset = 2; 47 int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset; 48 49 // allow re-ordering of memory stores by default stores cannot be re-ordered 50 size_t const memStoreReorderEnabledOffset = 3; 51 int64_t const memStoreReorderEnabledMask = 1 << memStoreReorderEnabledOffset; 52 53 size_t const bundleInstructionsOffset = 1; 54 55 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context); 56 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, 57 MCInst const &MCI); 58 59 // Returns a iterator range of instructions in this bundle 60 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI); 61 62 // Returns the number of instructions in the bundle 63 size_t bundleSize(MCInst const &MCI); 64 65 // Put the packet in to canonical form, compound, duplex, pad, and shuffle 66 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, 67 MCContext &Context, MCInst &MCB, 68 HexagonMCChecker *Checker); 69 70 // Clamp off upper 26 bits of extendable operand for emission 71 void clampExtended(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI); 72 73 MCInst createBundle(); 74 75 // Return the extender for instruction at Index or nullptr if none 76 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index); 77 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, 78 MCInst const &MCI, bool MustExtend); 79 80 // Create a duplex instruction given the two subinsts 81 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0, 82 MCInst const &inst1); 83 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst, 84 MCOperand const &MO); 85 86 // Convert this instruction in to a duplex subinst 87 MCInst deriveSubInst(MCInst const &Inst); 88 89 // Return the extender for instruction at Index or nullptr if none 90 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index); 91 92 // Return memory access size 93 HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII, 94 MCInst const &MCI); 95 96 // Return number of bits in the constant extended operand. 97 unsigned getBitCount(MCInstrInfo const &MCII, MCInst const &MCI); 98 99 // Return constant extended operand number. 100 unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI); 101 102 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI); 103 104 // Return which duplex group this instruction belongs to 105 unsigned getDuplexCandidateGroup(MCInst const &MI); 106 107 // Return a list of all possible instruction duplex combinations 108 SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII, 109 MCInst const &MCB); 110 111 // Return the index of the extendable operand 112 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI); 113 114 // Return a reference to the extendable operand 115 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII, 116 MCInst const &MCI); 117 118 // Return the implicit alignment of the extendable operand 119 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI); 120 121 // Return the number of logical bits of the extendable operand 122 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI); 123 124 // Return the max value that a constant extendable operand can have 125 // without being extended. 126 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI); 127 128 // Return the min value that a constant extendable operand can have 129 // without being extended. 130 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI); 131 132 // Return instruction name 133 char const *getName(MCInstrInfo const &MCII, MCInst const &MCI); 134 135 // Return the operand index for the new value. 136 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI); 137 138 // Return the operand that consumes or produces a new value. 139 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI); 140 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI); 141 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII, 142 MCInst const &MCI); 143 144 int getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI); 145 146 // Return the Hexagon ISA class for the insn. 147 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI); 148 149 /// Return the slots used by the insn. 150 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, 151 MCInst const &MCI); 152 153 // Does the packet have an extender for the instruction at Index 154 bool hasExtenderForIndex(MCInst const &MCB, size_t Index); 155 156 bool hasImmExt(MCInst const &MCI); 157 158 // Return whether the instruction is a legal new-value producer. 159 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI); 160 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI); 161 162 // Return the instruction at Index 163 MCInst const &instruction(MCInst const &MCB, size_t Index); 164 165 // Returns whether this MCInst is a wellformed bundle 166 bool isBundle(MCInst const &MCI); 167 168 // Return whether the insn is an actual insn. 169 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI); 170 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI); 171 172 // Return the duplex iclass given the two duplex classes 173 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb); 174 175 int64_t minConstant(MCInst const &MCI, size_t Index); 176 template <unsigned N, unsigned S> 177 bool inRange(MCInst const &MCI, size_t Index) { 178 return isShiftedUInt<N, S>(minConstant(MCI, Index)); 179 } 180 template <unsigned N, unsigned S> 181 bool inSRange(MCInst const &MCI, size_t Index) { 182 return isShiftedInt<N, S>(minConstant(MCI, Index)); 183 } 184 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) { 185 return isUInt<N>(minConstant(MCI, Index)); 186 } 187 188 // Return whether the instruction needs to be constant extended. 189 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI); 190 191 // Is this double register suitable for use in a duplex subinst 192 bool isDblRegForSubInst(unsigned Reg); 193 194 // Is this a duplex instruction 195 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI); 196 197 // Can these instructions be duplexed 198 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb); 199 200 // Can these duplex classes be combine in to a duplex instruction 201 bool isDuplexPairMatch(unsigned Ga, unsigned Gb); 202 203 // Return true if the insn may be extended based on the operand value. 204 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI); 205 206 // Return whether the instruction must be always extended. 207 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI); 208 209 /// Return whether it is a floating-point insn. 210 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI); 211 212 // Returns whether this instruction is an immediate extender 213 bool isImmext(MCInst const &MCI); 214 215 // Returns whether this bundle is an endloop0 216 bool isInnerLoop(MCInst const &MCI); 217 218 // Is this an integer register 219 bool isIntReg(unsigned Reg); 220 221 // Is this register suitable for use in a duplex subinst 222 bool isIntRegForSubInst(unsigned Reg); 223 bool isMemReorderDisabled(MCInst const &MCI); 224 bool isMemStoreReorderEnabled(MCInst const &MCI); 225 226 // Return whether the insn is a new-value consumer. 227 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI); 228 229 // Return true if the operand can be constant extended. 230 bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI, 231 unsigned short OperandNum); 232 233 // Can these two instructions be duplexed 234 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa, 235 bool ExtendedA, MCInst const &MIb, bool ExtendedB, 236 bool bisReversable); 237 238 // Returns whether this bundle is an endloop1 239 bool isOuterLoop(MCInst const &MCI); 240 241 // Return whether this instruction is predicated 242 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI); 243 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI); 244 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI); 245 246 // Return whether the predicate sense is true 247 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI); 248 249 // Is this a predicate register 250 bool isPredReg(unsigned Reg); 251 252 // Return whether the insn is a prefix. 253 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI); 254 255 // Return whether the insn is solo, i.e., cannot be in a packet. 256 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI); 257 258 /// Return whether the insn can be packaged only with A and X-type insns. 259 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI); 260 261 /// Return whether the insn can be packaged only with an A-type insn in slot #1. 262 bool isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI); 263 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI); 264 265 // Pad the bundle with nops to satisfy endloop requirements 266 void padEndloop(MCContext &Context, MCInst &MCI); 267 268 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI); 269 270 // Replace the instructions inside MCB, represented by Candidate 271 void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate); 272 273 // Marks a bundle as endloop0 274 void setInnerLoop(MCInst &MCI); 275 void setMemReorderDisabled(MCInst &MCI); 276 void setMemStoreReorderEnabled(MCInst &MCI); 277 278 // Marks a bundle as endloop1 279 void setOuterLoop(MCInst &MCI); 280 281 // Would duplexing this instruction create a requirement to extend 282 bool subInstWouldBeExtended(MCInst const &potentialDuplex); 283 284 // Attempt to find and replace compound pairs 285 void tryCompound(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI); 286 } 287 } 288 289 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H 290