Home | History | Annotate | Download | only in dfsan
      1 //===-- dfsan.cc ----------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of DataFlowSanitizer.
     11 //
     12 // DataFlowSanitizer runtime.  This file defines the public interface to
     13 // DataFlowSanitizer as well as the definition of certain runtime functions
     14 // called automatically by the compiler (specifically the instrumentation pass
     15 // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
     16 //
     17 // The public interface is defined in include/sanitizer/dfsan_interface.h whose
     18 // functions are prefixed dfsan_ while the compiler interface functions are
     19 // prefixed __dfsan_.
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "sanitizer_common/sanitizer_atomic.h"
     23 #include "sanitizer_common/sanitizer_common.h"
     24 #include "sanitizer_common/sanitizer_flags.h"
     25 #include "sanitizer_common/sanitizer_flag_parser.h"
     26 #include "sanitizer_common/sanitizer_libc.h"
     27 
     28 #include "dfsan/dfsan.h"
     29 
     30 using namespace __dfsan;
     31 
     32 typedef atomic_uint16_t atomic_dfsan_label;
     33 static const dfsan_label kInitializingLabel = -1;
     34 
     35 static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);
     36 
     37 static atomic_dfsan_label __dfsan_last_label;
     38 static dfsan_label_info __dfsan_label_info[kNumLabels];
     39 
     40 Flags __dfsan::flags_data;
     41 
     42 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
     43 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];
     44 
     45 SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask;
     46 
     47 // On Linux/x86_64, memory is laid out as follows:
     48 //
     49 // +--------------------+ 0x800000000000 (top of memory)
     50 // | application memory |
     51 // +--------------------+ 0x700000008000 (kAppAddr)
     52 // |                    |
     53 // |       unused       |
     54 // |                    |
     55 // +--------------------+ 0x200200000000 (kUnusedAddr)
     56 // |    union table     |
     57 // +--------------------+ 0x200000000000 (kUnionTableAddr)
     58 // |   shadow memory    |
     59 // +--------------------+ 0x000000010000 (kShadowAddr)
     60 // | reserved by kernel |
     61 // +--------------------+ 0x000000000000
     62 //
     63 // To derive a shadow memory address from an application memory address,
     64 // bits 44-46 are cleared to bring the address into the range
     65 // [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
     66 // account for the double byte representation of shadow labels and move the
     67 // address into the shadow memory range.  See the function shadow_for below.
     68 
     69 // On Linux/MIPS64, memory is laid out as follows:
     70 //
     71 // +--------------------+ 0x10000000000 (top of memory)
     72 // | application memory |
     73 // +--------------------+ 0xF000008000 (kAppAddr)
     74 // |                    |
     75 // |       unused       |
     76 // |                    |
     77 // +--------------------+ 0x2200000000 (kUnusedAddr)
     78 // |    union table     |
     79 // +--------------------+ 0x2000000000 (kUnionTableAddr)
     80 // |   shadow memory    |
     81 // +--------------------+ 0x0000010000 (kShadowAddr)
     82 // | reserved by kernel |
     83 // +--------------------+ 0x0000000000
     84 
     85 // On Linux/AArch64 (39-bit VMA), memory is laid out as follow:
     86 //
     87 // +--------------------+ 0x8000000000 (top of memory)
     88 // | application memory |
     89 // +--------------------+ 0x7000008000 (kAppAddr)
     90 // |                    |
     91 // |       unused       |
     92 // |                    |
     93 // +--------------------+ 0x1200000000 (kUnusedAddr)
     94 // |    union table     |
     95 // +--------------------+ 0x1000000000 (kUnionTableAddr)
     96 // |   shadow memory    |
     97 // +--------------------+ 0x0000010000 (kShadowAddr)
     98 // | reserved by kernel |
     99 // +--------------------+ 0x0000000000
    100 
    101 // On Linux/AArch64 (42-bit VMA), memory is laid out as follow:
    102 //
    103 // +--------------------+ 0x40000000000 (top of memory)
    104 // | application memory |
    105 // +--------------------+ 0x3ff00008000 (kAppAddr)
    106 // |                    |
    107 // |       unused       |
    108 // |                    |
    109 // +--------------------+ 0x1200000000 (kUnusedAddr)
    110 // |    union table     |
    111 // +--------------------+ 0x8000000000 (kUnionTableAddr)
    112 // |   shadow memory    |
    113 // +--------------------+ 0x0000010000 (kShadowAddr)
    114 // | reserved by kernel |
    115 // +--------------------+ 0x0000000000
    116 
    117 typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];
    118 
    119 #ifdef DFSAN_RUNTIME_VMA
    120 // Runtime detected VMA size.
    121 int __dfsan::vmaSize;
    122 #endif
    123 
    124 static uptr UnusedAddr() {
    125   return MappingArchImpl<MAPPING_UNION_TABLE_ADDR>()
    126          + sizeof(dfsan_union_table_t);
    127 }
    128 
    129 static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
    130   return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2];
    131 }
    132 
    133 // Checks we do not run out of labels.
    134 static void dfsan_check_label(dfsan_label label) {
    135   if (label == kInitializingLabel) {
    136     Report("FATAL: DataFlowSanitizer: out of labels\n");
    137     Die();
    138   }
    139 }
    140 
    141 // Resolves the union of two unequal labels.  Nonequality is a precondition for
    142 // this function (the instrumentation pass inlines the equality test).
    143 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    144 dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
    145   DCHECK_NE(l1, l2);
    146 
    147   if (l1 == 0)
    148     return l2;
    149   if (l2 == 0)
    150     return l1;
    151 
    152   if (l1 > l2)
    153     Swap(l1, l2);
    154 
    155   atomic_dfsan_label *table_ent = union_table(l1, l2);
    156   // We need to deal with the case where two threads concurrently request
    157   // a union of the same pair of labels.  If the table entry is uninitialized,
    158   // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
    159   // (i.e. -1) to mark that we are initializing it.
    160   dfsan_label label = 0;
    161   if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
    162                                      memory_order_acquire)) {
    163     // Check whether l2 subsumes l1.  We don't need to check whether l1
    164     // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
    165     // in the cases we are interested in) a label may only subsume labels
    166     // created earlier (i.e. with a lower numerical value).
    167     if (__dfsan_label_info[l2].l1 == l1 ||
    168         __dfsan_label_info[l2].l2 == l1) {
    169       label = l2;
    170     } else {
    171       label =
    172         atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
    173       dfsan_check_label(label);
    174       __dfsan_label_info[label].l1 = l1;
    175       __dfsan_label_info[label].l2 = l2;
    176     }
    177     atomic_store(table_ent, label, memory_order_release);
    178   } else if (label == kInitializingLabel) {
    179     // Another thread is initializing the entry.  Wait until it is finished.
    180     do {
    181       internal_sched_yield();
    182       label = atomic_load(table_ent, memory_order_acquire);
    183     } while (label == kInitializingLabel);
    184   }
    185   return label;
    186 }
    187 
    188 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    189 dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
    190   dfsan_label label = ls[0];
    191   for (uptr i = 1; i != n; ++i) {
    192     dfsan_label next_label = ls[i];
    193     if (label != next_label)
    194       label = __dfsan_union(label, next_label);
    195   }
    196   return label;
    197 }
    198 
    199 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    200 void __dfsan_unimplemented(char *fname) {
    201   if (flags().warn_unimplemented)
    202     Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
    203            fname);
    204 }
    205 
    206 // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
    207 // to try to figure out where labels are being introduced in a nominally
    208 // label-free program.
    209 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
    210   if (flags().warn_nonzero_labels)
    211     Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
    212 }
    213 
    214 // Indirect call to an uninstrumented vararg function. We don't have a way of
    215 // handling these at the moment.
    216 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
    217 __dfsan_vararg_wrapper(const char *fname) {
    218   Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
    219          "function %s\n", fname);
    220   Die();
    221 }
    222 
    223 // Like __dfsan_union, but for use from the client or custom functions.  Hence
    224 // the equality comparison is done here before calling __dfsan_union.
    225 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    226 dfsan_union(dfsan_label l1, dfsan_label l2) {
    227   if (l1 == l2)
    228     return l1;
    229   return __dfsan_union(l1, l2);
    230 }
    231 
    232 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    233 dfsan_label dfsan_create_label(const char *desc, void *userdata) {
    234   dfsan_label label =
    235     atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
    236   dfsan_check_label(label);
    237   __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
    238   __dfsan_label_info[label].desc = desc;
    239   __dfsan_label_info[label].userdata = userdata;
    240   return label;
    241 }
    242 
    243 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    244 void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
    245   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
    246     // Don't write the label if it is already the value we need it to be.
    247     // In a program where most addresses are not labeled, it is common that
    248     // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
    249     // implementation will share all of the zeroed pages, making a copy of a
    250     // page when any value is written.  The un-sharing will happen even if
    251     // the value written does not change the value in memory.  Avoiding the
    252     // write when both |label| and |*labelp| are zero dramatically reduces
    253     // the amount of real memory used by large programs.
    254     if (label == *labelp)
    255       continue;
    256 
    257     *labelp = label;
    258   }
    259 }
    260 
    261 SANITIZER_INTERFACE_ATTRIBUTE
    262 void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
    263   __dfsan_set_label(label, addr, size);
    264 }
    265 
    266 SANITIZER_INTERFACE_ATTRIBUTE
    267 void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
    268   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
    269     if (*labelp != label)
    270       *labelp = __dfsan_union(*labelp, label);
    271 }
    272 
    273 // Unlike the other dfsan interface functions the behavior of this function
    274 // depends on the label of one of its arguments.  Hence it is implemented as a
    275 // custom function.
    276 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    277 __dfsw_dfsan_get_label(long data, dfsan_label data_label,
    278                        dfsan_label *ret_label) {
    279   *ret_label = 0;
    280   return data_label;
    281 }
    282 
    283 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    284 dfsan_read_label(const void *addr, uptr size) {
    285   if (size == 0)
    286     return 0;
    287   return __dfsan_union_load(shadow_for(addr), size);
    288 }
    289 
    290 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    291 const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
    292   return &__dfsan_label_info[label];
    293 }
    294 
    295 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
    296 dfsan_has_label(dfsan_label label, dfsan_label elem) {
    297   if (label == elem)
    298     return true;
    299   const dfsan_label_info *info = dfsan_get_label_info(label);
    300   if (info->l1 != 0) {
    301     return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
    302   } else {
    303     return false;
    304   }
    305 }
    306 
    307 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
    308 dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
    309   const dfsan_label_info *info = dfsan_get_label_info(label);
    310   if (info->l1 != 0) {
    311     return dfsan_has_label_with_desc(info->l1, desc) ||
    312            dfsan_has_label_with_desc(info->l2, desc);
    313   } else {
    314     return internal_strcmp(desc, info->desc) == 0;
    315   }
    316 }
    317 
    318 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
    319 dfsan_get_label_count(void) {
    320   dfsan_label max_label_allocated =
    321       atomic_load(&__dfsan_last_label, memory_order_relaxed);
    322 
    323   return static_cast<uptr>(max_label_allocated);
    324 }
    325 
    326 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
    327 dfsan_dump_labels(int fd) {
    328   dfsan_label last_label =
    329       atomic_load(&__dfsan_last_label, memory_order_relaxed);
    330 
    331   for (uptr l = 1; l <= last_label; ++l) {
    332     char buf[64];
    333     internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
    334                       __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
    335     WriteToFile(fd, buf, internal_strlen(buf));
    336     if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
    337       WriteToFile(fd, __dfsan_label_info[l].desc,
    338                   internal_strlen(__dfsan_label_info[l].desc));
    339     }
    340     WriteToFile(fd, "\n", 1);
    341   }
    342 }
    343 
    344 void Flags::SetDefaults() {
    345 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
    346 #include "dfsan_flags.inc"
    347 #undef DFSAN_FLAG
    348 }
    349 
    350 static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
    351 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
    352   RegisterFlag(parser, #Name, Description, &f->Name);
    353 #include "dfsan_flags.inc"
    354 #undef DFSAN_FLAG
    355 }
    356 
    357 static void InitializeFlags() {
    358   SetCommonFlagsDefaults();
    359   flags().SetDefaults();
    360 
    361   FlagParser parser;
    362   RegisterCommonFlags(&parser);
    363   RegisterDfsanFlags(&parser, &flags());
    364   parser.ParseString(GetEnv("DFSAN_OPTIONS"));
    365   SetVerbosity(common_flags()->verbosity);
    366   if (Verbosity()) ReportUnrecognizedFlags();
    367   if (common_flags()->help) parser.PrintFlagDescriptions();
    368 }
    369 
    370 static void InitializePlatformEarly() {
    371 #ifdef DFSAN_RUNTIME_VMA
    372   __dfsan::vmaSize =
    373     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
    374   if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42) {
    375     __dfsan_shadow_ptr_mask = ShadowMask();
    376   } else {
    377     Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n");
    378     Printf("FATAL: Found %d - Supported 39 and 42\n", __dfsan::vmaSize);
    379     Die();
    380   }
    381 #endif
    382 }
    383 
    384 static void dfsan_fini() {
    385   if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
    386     fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
    387     if (fd == kInvalidFd) {
    388       Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
    389              flags().dump_labels_at_exit);
    390       return;
    391     }
    392 
    393     Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
    394            flags().dump_labels_at_exit);
    395     dfsan_dump_labels(fd);
    396     CloseFile(fd);
    397   }
    398 }
    399 
    400 static void dfsan_init(int argc, char **argv, char **envp) {
    401   InitializeFlags();
    402 
    403   InitializePlatformEarly();
    404 
    405   MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr());
    406 
    407   // Protect the region of memory we don't use, to preserve the one-to-one
    408   // mapping from application to shadow memory. But if ASLR is disabled, Linux
    409   // will load our executable in the middle of our unused region. This mostly
    410   // works so long as the program doesn't use too much memory. We support this
    411   // case by disabling memory protection when ASLR is disabled.
    412   uptr init_addr = (uptr)&dfsan_init;
    413   if (!(init_addr >= UnusedAddr() && init_addr < AppAddr()))
    414     MmapNoAccess(UnusedAddr(), AppAddr() - UnusedAddr());
    415 
    416   InitializeInterceptors();
    417 
    418   // Register the fini callback to run when the program terminates successfully
    419   // or it is killed by the runtime.
    420   Atexit(dfsan_fini);
    421   AddDieCallback(dfsan_fini);
    422 
    423   __dfsan_label_info[kInitializingLabel].desc = "<init label>";
    424 }
    425 
    426 #if SANITIZER_CAN_USE_PREINIT_ARRAY
    427 __attribute__((section(".preinit_array"), used))
    428 static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
    429 #endif
    430