Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename MatrixType> void product_extra(const MatrixType& m)
     13 {
     14   typedef typename MatrixType::Index Index;
     15   typedef typename MatrixType::Scalar Scalar;
     16   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
     17   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
     18   typedef Matrix<Scalar, Dynamic, Dynamic,
     19                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
     20 
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   MatrixType m1 = MatrixType::Random(rows, cols),
     25              m2 = MatrixType::Random(rows, cols),
     26              m3(rows, cols),
     27              mzero = MatrixType::Zero(rows, cols),
     28              identity = MatrixType::Identity(rows, rows),
     29              square = MatrixType::Random(rows, rows),
     30              res = MatrixType::Random(rows, rows),
     31              square2 = MatrixType::Random(cols, cols),
     32              res2 = MatrixType::Random(cols, cols);
     33   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
     34   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
     35   OtherMajorMatrixType tm1 = m1;
     36 
     37   Scalar s1 = internal::random<Scalar>(),
     38          s2 = internal::random<Scalar>(),
     39          s3 = internal::random<Scalar>();
     40 
     41   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
     42   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
     43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
     44   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
     45   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
     46   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
     47   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
     48   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
     49 
     50   // a very tricky case where a scale factor has to be automatically conjugated:
     51   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
     52 
     53 
     54   // test all possible conjugate combinations for the four matrix-vector product cases:
     55 
     56   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
     57                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
     58   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
     59                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
     60   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
     61                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
     62 
     63   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
     64                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
     65   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
     66                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
     67   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
     68                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
     69 
     70   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
     71                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
     72   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
     73                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
     74   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     75                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     76 
     77   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
     78                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
     79   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
     80                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
     81   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
     82                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
     83 
     84   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     85                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     86 
     87   // test the vector-matrix product with non aligned starts
     88   Index i = internal::random<Index>(0,m1.rows()-2);
     89   Index j = internal::random<Index>(0,m1.cols()-2);
     90   Index r = internal::random<Index>(1,m1.rows()-i);
     91   Index c = internal::random<Index>(1,m1.cols()-j);
     92   Index i2 = internal::random<Index>(0,m1.rows()-1);
     93   Index j2 = internal::random<Index>(0,m1.cols()-1);
     94 
     95   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
     96   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
     97 
     98   // regression test
     99   MatrixType tmp = m1 * m1.adjoint() * s1;
    100   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
    101 }
    102 
    103 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
    104 void mat_mat_scalar_scalar_product()
    105 {
    106   Eigen::Matrix2Xd dNdxy(2, 3);
    107   dNdxy << -0.5, 0.5, 0,
    108            -0.3, 0, 0.3;
    109   double det = 6.0, wt = 0.5;
    110   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
    111 }
    112 
    113 template <typename MatrixType>
    114 void zero_sized_objects(const MatrixType& m)
    115 {
    116   typedef typename MatrixType::Scalar Scalar;
    117   const int PacketSize  = internal::packet_traits<Scalar>::size;
    118   const int PacketSize1 = PacketSize>1 ?  PacketSize-1 : 1;
    119   DenseIndex rows = m.rows();
    120   DenseIndex cols = m.cols();
    121 
    122   {
    123     MatrixType res, a(rows,0), b(0,cols);
    124     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) );
    125     VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) );
    126     VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) );
    127     VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) );
    128   }
    129 
    130   {
    131     MatrixType res, a(rows,cols), b(cols,0);
    132     res = a*b;
    133     VERIFY(res.rows()==rows && res.cols()==0);
    134     b.resize(0,rows);
    135     res = b*a;
    136     VERIFY(res.rows()==0 && res.cols()==cols);
    137   }
    138 
    139   {
    140     Matrix<Scalar,PacketSize,0> a;
    141     Matrix<Scalar,0,1> b;
    142     Matrix<Scalar,PacketSize,1> res;
    143     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
    144     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
    145   }
    146 
    147   {
    148     Matrix<Scalar,PacketSize1,0> a;
    149     Matrix<Scalar,0,1> b;
    150     Matrix<Scalar,PacketSize1,1> res;
    151     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
    152     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
    153   }
    154 
    155   {
    156     Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0);
    157     Matrix<Scalar,Dynamic,1> b(0,1);
    158     Matrix<Scalar,PacketSize,1> res;
    159     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
    160     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
    161   }
    162 
    163   {
    164     Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0);
    165     Matrix<Scalar,Dynamic,1> b(0,1);
    166     Matrix<Scalar,PacketSize1,1> res;
    167     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
    168     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
    169   }
    170 }
    171 
    172 void bug_127()
    173 {
    174   // Bug 127
    175   //
    176   // a product of the form lhs*rhs with
    177   //
    178   // lhs:
    179   // rows = 1, cols = 4
    180   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
    181   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
    182   //
    183   // rhs:
    184   // rows = 4, cols = 0
    185   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
    186   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
    187   //
    188   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
    189   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
    190 
    191   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
    192   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
    193   a*b;
    194 }
    195 
    196 void unaligned_objects()
    197 {
    198   // Regression test for the bug reported here:
    199   // http://forum.kde.org/viewtopic.php?f=74&t=107541
    200   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
    201   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
    202   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
    203   for(int m=450;m<460;++m)
    204   {
    205     for(int n=8;n<12;++n)
    206     {
    207       MatrixXf M(m, n);
    208       VectorXf v1(n), r1(500);
    209       RowVectorXf v2(m), r2(16);
    210 
    211       M.setRandom();
    212       v1.setRandom();
    213       v2.setRandom();
    214       for(int o=0; o<4; ++o)
    215       {
    216         r1.segment(o,m).noalias() = M * v1;
    217         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
    218         r2.segment(o,n).noalias() = v2 * M;
    219         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
    220       }
    221     }
    222   }
    223 }
    224 
    225 void test_product_extra()
    226 {
    227   for(int i = 0; i < g_repeat; i++) {
    228     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    229     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    230     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
    231     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    232     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    233     CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    234   }
    235   CALL_SUBTEST_5( bug_127() );
    236   CALL_SUBTEST_6( unaligned_objects() );
    237 }
    238