1 // Copyright 2014 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <stdarg.h> 6 #include <stdlib.h> 7 #include <cmath> 8 9 #if V8_TARGET_ARCH_PPC 10 11 #include "src/assembler.h" 12 #include "src/base/bits.h" 13 #include "src/codegen.h" 14 #include "src/disasm.h" 15 #include "src/ppc/constants-ppc.h" 16 #include "src/ppc/frames-ppc.h" 17 #include "src/ppc/simulator-ppc.h" 18 19 #if defined(USE_SIMULATOR) 20 21 // Only build the simulator if not compiling for real PPC hardware. 22 namespace v8 { 23 namespace internal { 24 25 // This macro provides a platform independent use of sscanf. The reason for 26 // SScanF not being implemented in a platform independent way through 27 // ::v8::internal::OS in the same way as SNPrintF is that the 28 // Windows C Run-Time Library does not provide vsscanf. 29 #define SScanF sscanf // NOLINT 30 31 // The PPCDebugger class is used by the simulator while debugging simulated 32 // PowerPC code. 33 class PPCDebugger { 34 public: 35 explicit PPCDebugger(Simulator* sim) : sim_(sim) {} 36 ~PPCDebugger(); 37 38 void Stop(Instruction* instr); 39 void Debug(); 40 41 private: 42 static const Instr kBreakpointInstr = (TWI | 0x1f * B21); 43 static const Instr kNopInstr = (ORI); // ori, 0,0,0 44 45 Simulator* sim_; 46 47 intptr_t GetRegisterValue(int regnum); 48 double GetRegisterPairDoubleValue(int regnum); 49 double GetFPDoubleRegisterValue(int regnum); 50 bool GetValue(const char* desc, intptr_t* value); 51 bool GetFPDoubleValue(const char* desc, double* value); 52 53 // Set or delete a breakpoint. Returns true if successful. 54 bool SetBreakpoint(Instruction* break_pc); 55 bool DeleteBreakpoint(Instruction* break_pc); 56 57 // Undo and redo all breakpoints. This is needed to bracket disassembly and 58 // execution to skip past breakpoints when run from the debugger. 59 void UndoBreakpoints(); 60 void RedoBreakpoints(); 61 }; 62 63 64 PPCDebugger::~PPCDebugger() {} 65 66 67 #ifdef GENERATED_CODE_COVERAGE 68 static FILE* coverage_log = NULL; 69 70 71 static void InitializeCoverage() { 72 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 73 if (file_name != NULL) { 74 coverage_log = fopen(file_name, "aw+"); 75 } 76 } 77 78 79 void PPCDebugger::Stop(Instruction* instr) { 80 // Get the stop code. 81 uint32_t code = instr->SvcValue() & kStopCodeMask; 82 // Retrieve the encoded address, which comes just after this stop. 83 char** msg_address = 84 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); 85 char* msg = *msg_address; 86 DCHECK(msg != NULL); 87 88 // Update this stop description. 89 if (isWatchedStop(code) && !watched_stops_[code].desc) { 90 watched_stops_[code].desc = msg; 91 } 92 93 if (strlen(msg) > 0) { 94 if (coverage_log != NULL) { 95 fprintf(coverage_log, "%s\n", msg); 96 fflush(coverage_log); 97 } 98 // Overwrite the instruction and address with nops. 99 instr->SetInstructionBits(kNopInstr); 100 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); 101 } 102 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); 103 } 104 105 #else // ndef GENERATED_CODE_COVERAGE 106 107 static void InitializeCoverage() {} 108 109 110 void PPCDebugger::Stop(Instruction* instr) { 111 // Get the stop code. 112 // use of kStopCodeMask not right on PowerPC 113 uint32_t code = instr->SvcValue() & kStopCodeMask; 114 // Retrieve the encoded address, which comes just after this stop. 115 char* msg = 116 *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); 117 // Update this stop description. 118 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { 119 sim_->watched_stops_[code].desc = msg; 120 } 121 // Print the stop message and code if it is not the default code. 122 if (code != kMaxStopCode) { 123 PrintF("Simulator hit stop %u: %s\n", code, msg); 124 } else { 125 PrintF("Simulator hit %s\n", msg); 126 } 127 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); 128 Debug(); 129 } 130 #endif 131 132 133 intptr_t PPCDebugger::GetRegisterValue(int regnum) { 134 return sim_->get_register(regnum); 135 } 136 137 138 double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { 139 return sim_->get_double_from_register_pair(regnum); 140 } 141 142 143 double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { 144 return sim_->get_double_from_d_register(regnum); 145 } 146 147 148 bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { 149 int regnum = Registers::Number(desc); 150 if (regnum != kNoRegister) { 151 *value = GetRegisterValue(regnum); 152 return true; 153 } else { 154 if (strncmp(desc, "0x", 2) == 0) { 155 return SScanF(desc + 2, "%" V8PRIxPTR, 156 reinterpret_cast<uintptr_t*>(value)) == 1; 157 } else { 158 return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == 159 1; 160 } 161 } 162 return false; 163 } 164 165 166 bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { 167 int regnum = DoubleRegisters::Number(desc); 168 if (regnum != kNoRegister) { 169 *value = sim_->get_double_from_d_register(regnum); 170 return true; 171 } 172 return false; 173 } 174 175 176 bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { 177 // Check if a breakpoint can be set. If not return without any side-effects. 178 if (sim_->break_pc_ != NULL) { 179 return false; 180 } 181 182 // Set the breakpoint. 183 sim_->break_pc_ = break_pc; 184 sim_->break_instr_ = break_pc->InstructionBits(); 185 // Not setting the breakpoint instruction in the code itself. It will be set 186 // when the debugger shell continues. 187 return true; 188 } 189 190 191 bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) { 192 if (sim_->break_pc_ != NULL) { 193 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 194 } 195 196 sim_->break_pc_ = NULL; 197 sim_->break_instr_ = 0; 198 return true; 199 } 200 201 202 void PPCDebugger::UndoBreakpoints() { 203 if (sim_->break_pc_ != NULL) { 204 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 205 } 206 } 207 208 209 void PPCDebugger::RedoBreakpoints() { 210 if (sim_->break_pc_ != NULL) { 211 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 212 } 213 } 214 215 216 void PPCDebugger::Debug() { 217 intptr_t last_pc = -1; 218 bool done = false; 219 220 #define COMMAND_SIZE 63 221 #define ARG_SIZE 255 222 223 #define STR(a) #a 224 #define XSTR(a) STR(a) 225 226 char cmd[COMMAND_SIZE + 1]; 227 char arg1[ARG_SIZE + 1]; 228 char arg2[ARG_SIZE + 1]; 229 char* argv[3] = {cmd, arg1, arg2}; 230 231 // make sure to have a proper terminating character if reaching the limit 232 cmd[COMMAND_SIZE] = 0; 233 arg1[ARG_SIZE] = 0; 234 arg2[ARG_SIZE] = 0; 235 236 // Undo all set breakpoints while running in the debugger shell. This will 237 // make them invisible to all commands. 238 UndoBreakpoints(); 239 // Disable tracing while simulating 240 bool trace = ::v8::internal::FLAG_trace_sim; 241 ::v8::internal::FLAG_trace_sim = false; 242 243 while (!done && !sim_->has_bad_pc()) { 244 if (last_pc != sim_->get_pc()) { 245 disasm::NameConverter converter; 246 disasm::Disassembler dasm(converter); 247 // use a reasonably large buffer 248 v8::internal::EmbeddedVector<char, 256> buffer; 249 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); 250 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); 251 last_pc = sim_->get_pc(); 252 } 253 char* line = ReadLine("sim> "); 254 if (line == NULL) { 255 break; 256 } else { 257 char* last_input = sim_->last_debugger_input(); 258 if (strcmp(line, "\n") == 0 && last_input != NULL) { 259 line = last_input; 260 } else { 261 // Ownership is transferred to sim_; 262 sim_->set_last_debugger_input(line); 263 } 264 // Use sscanf to parse the individual parts of the command line. At the 265 // moment no command expects more than two parameters. 266 int argc = SScanF(line, 267 "%" XSTR(COMMAND_SIZE) "s " 268 "%" XSTR(ARG_SIZE) "s " 269 "%" XSTR(ARG_SIZE) "s", 270 cmd, arg1, arg2); 271 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 272 intptr_t value; 273 274 // If at a breakpoint, proceed past it. 275 if ((reinterpret_cast<Instruction*>(sim_->get_pc())) 276 ->InstructionBits() == 0x7d821008) { 277 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); 278 } else { 279 sim_->ExecuteInstruction( 280 reinterpret_cast<Instruction*>(sim_->get_pc())); 281 } 282 283 if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { 284 for (int i = 1; i < value; i++) { 285 disasm::NameConverter converter; 286 disasm::Disassembler dasm(converter); 287 // use a reasonably large buffer 288 v8::internal::EmbeddedVector<char, 256> buffer; 289 dasm.InstructionDecode(buffer, 290 reinterpret_cast<byte*>(sim_->get_pc())); 291 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), 292 buffer.start()); 293 sim_->ExecuteInstruction( 294 reinterpret_cast<Instruction*>(sim_->get_pc())); 295 } 296 } 297 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 298 // If at a breakpoint, proceed past it. 299 if ((reinterpret_cast<Instruction*>(sim_->get_pc())) 300 ->InstructionBits() == 0x7d821008) { 301 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); 302 } else { 303 // Execute the one instruction we broke at with breakpoints disabled. 304 sim_->ExecuteInstruction( 305 reinterpret_cast<Instruction*>(sim_->get_pc())); 306 } 307 // Leave the debugger shell. 308 done = true; 309 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 310 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { 311 intptr_t value; 312 double dvalue; 313 if (strcmp(arg1, "all") == 0) { 314 for (int i = 0; i < kNumRegisters; i++) { 315 value = GetRegisterValue(i); 316 PrintF(" %3s: %08" V8PRIxPTR, 317 Register::from_code(i).ToString(), value); 318 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && 319 (i % 2) == 0) { 320 dvalue = GetRegisterPairDoubleValue(i); 321 PrintF(" (%f)\n", dvalue); 322 } else if (i != 0 && !((i + 1) & 3)) { 323 PrintF("\n"); 324 } 325 } 326 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR 327 " " 328 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", 329 sim_->special_reg_pc_, sim_->special_reg_lr_, 330 sim_->special_reg_ctr_, sim_->special_reg_xer_, 331 sim_->condition_reg_); 332 } else if (strcmp(arg1, "alld") == 0) { 333 for (int i = 0; i < kNumRegisters; i++) { 334 value = GetRegisterValue(i); 335 PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, 336 Register::from_code(i).ToString(), value, value); 337 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && 338 (i % 2) == 0) { 339 dvalue = GetRegisterPairDoubleValue(i); 340 PrintF(" (%f)\n", dvalue); 341 } else if (!((i + 1) % 2)) { 342 PrintF("\n"); 343 } 344 } 345 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR 346 " " 347 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", 348 sim_->special_reg_pc_, sim_->special_reg_lr_, 349 sim_->special_reg_ctr_, sim_->special_reg_xer_, 350 sim_->condition_reg_); 351 } else if (strcmp(arg1, "allf") == 0) { 352 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { 353 dvalue = GetFPDoubleRegisterValue(i); 354 uint64_t as_words = bit_cast<uint64_t>(dvalue); 355 PrintF("%3s: %f 0x%08x %08x\n", 356 DoubleRegister::from_code(i).ToString(), dvalue, 357 static_cast<uint32_t>(as_words >> 32), 358 static_cast<uint32_t>(as_words & 0xffffffff)); 359 } 360 } else if (arg1[0] == 'r' && 361 (arg1[1] >= '0' && arg1[1] <= '9' && 362 (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && 363 arg1[3] == '\0')))) { 364 int regnum = strtoul(&arg1[1], 0, 10); 365 if (regnum != kNoRegister) { 366 value = GetRegisterValue(regnum); 367 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, 368 value); 369 } else { 370 PrintF("%s unrecognized\n", arg1); 371 } 372 } else { 373 if (GetValue(arg1, &value)) { 374 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, 375 value); 376 } else if (GetFPDoubleValue(arg1, &dvalue)) { 377 uint64_t as_words = bit_cast<uint64_t>(dvalue); 378 PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, 379 static_cast<uint32_t>(as_words >> 32), 380 static_cast<uint32_t>(as_words & 0xffffffff)); 381 } else { 382 PrintF("%s unrecognized\n", arg1); 383 } 384 } 385 } else { 386 PrintF("print <register>\n"); 387 } 388 } else if ((strcmp(cmd, "po") == 0) || 389 (strcmp(cmd, "printobject") == 0)) { 390 if (argc == 2) { 391 intptr_t value; 392 OFStream os(stdout); 393 if (GetValue(arg1, &value)) { 394 Object* obj = reinterpret_cast<Object*>(value); 395 os << arg1 << ": \n"; 396 #ifdef DEBUG 397 obj->Print(os); 398 os << "\n"; 399 #else 400 os << Brief(obj) << "\n"; 401 #endif 402 } else { 403 os << arg1 << " unrecognized\n"; 404 } 405 } else { 406 PrintF("printobject <value>\n"); 407 } 408 } else if (strcmp(cmd, "setpc") == 0) { 409 intptr_t value; 410 411 if (!GetValue(arg1, &value)) { 412 PrintF("%s unrecognized\n", arg1); 413 continue; 414 } 415 sim_->set_pc(value); 416 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 417 intptr_t* cur = NULL; 418 intptr_t* end = NULL; 419 int next_arg = 1; 420 421 if (strcmp(cmd, "stack") == 0) { 422 cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); 423 } else { // "mem" 424 intptr_t value; 425 if (!GetValue(arg1, &value)) { 426 PrintF("%s unrecognized\n", arg1); 427 continue; 428 } 429 cur = reinterpret_cast<intptr_t*>(value); 430 next_arg++; 431 } 432 433 intptr_t words; // likely inaccurate variable name for 64bit 434 if (argc == next_arg) { 435 words = 10; 436 } else { 437 if (!GetValue(argv[next_arg], &words)) { 438 words = 10; 439 } 440 } 441 end = cur + words; 442 443 while (cur < end) { 444 PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, 445 reinterpret_cast<intptr_t>(cur), *cur, *cur); 446 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 447 intptr_t value = *cur; 448 Heap* current_heap = sim_->isolate_->heap(); 449 if (((value & 1) == 0) || current_heap->Contains(obj)) { 450 PrintF(" ("); 451 if ((value & 1) == 0) { 452 PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj)); 453 } else { 454 obj->ShortPrint(); 455 } 456 PrintF(")"); 457 } 458 PrintF("\n"); 459 cur++; 460 } 461 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { 462 disasm::NameConverter converter; 463 disasm::Disassembler dasm(converter); 464 // use a reasonably large buffer 465 v8::internal::EmbeddedVector<char, 256> buffer; 466 467 byte* prev = NULL; 468 byte* cur = NULL; 469 byte* end = NULL; 470 471 if (argc == 1) { 472 cur = reinterpret_cast<byte*>(sim_->get_pc()); 473 end = cur + (10 * Instruction::kInstrSize); 474 } else if (argc == 2) { 475 int regnum = Registers::Number(arg1); 476 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { 477 // The argument is an address or a register name. 478 intptr_t value; 479 if (GetValue(arg1, &value)) { 480 cur = reinterpret_cast<byte*>(value); 481 // Disassemble 10 instructions at <arg1>. 482 end = cur + (10 * Instruction::kInstrSize); 483 } 484 } else { 485 // The argument is the number of instructions. 486 intptr_t value; 487 if (GetValue(arg1, &value)) { 488 cur = reinterpret_cast<byte*>(sim_->get_pc()); 489 // Disassemble <arg1> instructions. 490 end = cur + (value * Instruction::kInstrSize); 491 } 492 } 493 } else { 494 intptr_t value1; 495 intptr_t value2; 496 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 497 cur = reinterpret_cast<byte*>(value1); 498 end = cur + (value2 * Instruction::kInstrSize); 499 } 500 } 501 502 while (cur < end) { 503 prev = cur; 504 cur += dasm.InstructionDecode(buffer, cur); 505 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), 506 buffer.start()); 507 } 508 } else if (strcmp(cmd, "gdb") == 0) { 509 PrintF("relinquishing control to gdb\n"); 510 v8::base::OS::DebugBreak(); 511 PrintF("regaining control from gdb\n"); 512 } else if (strcmp(cmd, "break") == 0) { 513 if (argc == 2) { 514 intptr_t value; 515 if (GetValue(arg1, &value)) { 516 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 517 PrintF("setting breakpoint failed\n"); 518 } 519 } else { 520 PrintF("%s unrecognized\n", arg1); 521 } 522 } else { 523 PrintF("break <address>\n"); 524 } 525 } else if (strcmp(cmd, "del") == 0) { 526 if (!DeleteBreakpoint(NULL)) { 527 PrintF("deleting breakpoint failed\n"); 528 } 529 } else if (strcmp(cmd, "cr") == 0) { 530 PrintF("Condition reg: %08x\n", sim_->condition_reg_); 531 } else if (strcmp(cmd, "lr") == 0) { 532 PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); 533 } else if (strcmp(cmd, "ctr") == 0) { 534 PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); 535 } else if (strcmp(cmd, "xer") == 0) { 536 PrintF("XER: %08x\n", sim_->special_reg_xer_); 537 } else if (strcmp(cmd, "fpscr") == 0) { 538 PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); 539 } else if (strcmp(cmd, "stop") == 0) { 540 intptr_t value; 541 intptr_t stop_pc = 542 sim_->get_pc() - (Instruction::kInstrSize + kPointerSize); 543 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 544 Instruction* msg_address = 545 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); 546 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 547 // Remove the current stop. 548 if (sim_->isStopInstruction(stop_instr)) { 549 stop_instr->SetInstructionBits(kNopInstr); 550 msg_address->SetInstructionBits(kNopInstr); 551 } else { 552 PrintF("Not at debugger stop.\n"); 553 } 554 } else if (argc == 3) { 555 // Print information about all/the specified breakpoint(s). 556 if (strcmp(arg1, "info") == 0) { 557 if (strcmp(arg2, "all") == 0) { 558 PrintF("Stop information:\n"); 559 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 560 sim_->PrintStopInfo(i); 561 } 562 } else if (GetValue(arg2, &value)) { 563 sim_->PrintStopInfo(value); 564 } else { 565 PrintF("Unrecognized argument.\n"); 566 } 567 } else if (strcmp(arg1, "enable") == 0) { 568 // Enable all/the specified breakpoint(s). 569 if (strcmp(arg2, "all") == 0) { 570 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 571 sim_->EnableStop(i); 572 } 573 } else if (GetValue(arg2, &value)) { 574 sim_->EnableStop(value); 575 } else { 576 PrintF("Unrecognized argument.\n"); 577 } 578 } else if (strcmp(arg1, "disable") == 0) { 579 // Disable all/the specified breakpoint(s). 580 if (strcmp(arg2, "all") == 0) { 581 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 582 sim_->DisableStop(i); 583 } 584 } else if (GetValue(arg2, &value)) { 585 sim_->DisableStop(value); 586 } else { 587 PrintF("Unrecognized argument.\n"); 588 } 589 } 590 } else { 591 PrintF("Wrong usage. Use help command for more information.\n"); 592 } 593 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { 594 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; 595 PrintF("Trace of executed instructions is %s\n", 596 ::v8::internal::FLAG_trace_sim ? "on" : "off"); 597 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 598 PrintF("cont\n"); 599 PrintF(" continue execution (alias 'c')\n"); 600 PrintF("stepi [num instructions]\n"); 601 PrintF(" step one/num instruction(s) (alias 'si')\n"); 602 PrintF("print <register>\n"); 603 PrintF(" print register content (alias 'p')\n"); 604 PrintF(" use register name 'all' to display all integer registers\n"); 605 PrintF( 606 " use register name 'alld' to display integer registers " 607 "with decimal values\n"); 608 PrintF(" use register name 'rN' to display register number 'N'\n"); 609 PrintF(" add argument 'fp' to print register pair double values\n"); 610 PrintF( 611 " use register name 'allf' to display floating-point " 612 "registers\n"); 613 PrintF("printobject <register>\n"); 614 PrintF(" print an object from a register (alias 'po')\n"); 615 PrintF("cr\n"); 616 PrintF(" print condition register\n"); 617 PrintF("lr\n"); 618 PrintF(" print link register\n"); 619 PrintF("ctr\n"); 620 PrintF(" print ctr register\n"); 621 PrintF("xer\n"); 622 PrintF(" print XER\n"); 623 PrintF("fpscr\n"); 624 PrintF(" print FPSCR\n"); 625 PrintF("stack [<num words>]\n"); 626 PrintF(" dump stack content, default dump 10 words)\n"); 627 PrintF("mem <address> [<num words>]\n"); 628 PrintF(" dump memory content, default dump 10 words)\n"); 629 PrintF("disasm [<instructions>]\n"); 630 PrintF("disasm [<address/register>]\n"); 631 PrintF("disasm [[<address/register>] <instructions>]\n"); 632 PrintF(" disassemble code, default is 10 instructions\n"); 633 PrintF(" from pc (alias 'di')\n"); 634 PrintF("gdb\n"); 635 PrintF(" enter gdb\n"); 636 PrintF("break <address>\n"); 637 PrintF(" set a break point on the address\n"); 638 PrintF("del\n"); 639 PrintF(" delete the breakpoint\n"); 640 PrintF("trace (alias 't')\n"); 641 PrintF(" toogle the tracing of all executed statements\n"); 642 PrintF("stop feature:\n"); 643 PrintF(" Description:\n"); 644 PrintF(" Stops are debug instructions inserted by\n"); 645 PrintF(" the Assembler::stop() function.\n"); 646 PrintF(" When hitting a stop, the Simulator will\n"); 647 PrintF(" stop and and give control to the PPCDebugger.\n"); 648 PrintF(" The first %d stop codes are watched:\n", 649 Simulator::kNumOfWatchedStops); 650 PrintF(" - They can be enabled / disabled: the Simulator\n"); 651 PrintF(" will / won't stop when hitting them.\n"); 652 PrintF(" - The Simulator keeps track of how many times they \n"); 653 PrintF(" are met. (See the info command.) Going over a\n"); 654 PrintF(" disabled stop still increases its counter. \n"); 655 PrintF(" Commands:\n"); 656 PrintF(" stop info all/<code> : print infos about number <code>\n"); 657 PrintF(" or all stop(s).\n"); 658 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 659 PrintF(" all or number <code> stop(s)\n"); 660 PrintF(" stop unstop\n"); 661 PrintF(" ignore the stop instruction at the current location\n"); 662 PrintF(" from now on\n"); 663 } else { 664 PrintF("Unknown command: %s\n", cmd); 665 } 666 } 667 } 668 669 // Add all the breakpoints back to stop execution and enter the debugger 670 // shell when hit. 671 RedoBreakpoints(); 672 // Restore tracing 673 ::v8::internal::FLAG_trace_sim = trace; 674 675 #undef COMMAND_SIZE 676 #undef ARG_SIZE 677 678 #undef STR 679 #undef XSTR 680 } 681 682 683 static bool ICacheMatch(void* one, void* two) { 684 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 685 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 686 return one == two; 687 } 688 689 690 static uint32_t ICacheHash(void* key) { 691 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 692 } 693 694 695 static bool AllOnOnePage(uintptr_t start, int size) { 696 intptr_t start_page = (start & ~CachePage::kPageMask); 697 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 698 return start_page == end_page; 699 } 700 701 702 void Simulator::set_last_debugger_input(char* input) { 703 DeleteArray(last_debugger_input_); 704 last_debugger_input_ = input; 705 } 706 707 708 void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr, 709 size_t size) { 710 intptr_t start = reinterpret_cast<intptr_t>(start_addr); 711 int intra_line = (start & CachePage::kLineMask); 712 start -= intra_line; 713 size += intra_line; 714 size = ((size - 1) | CachePage::kLineMask) + 1; 715 int offset = (start & CachePage::kPageMask); 716 while (!AllOnOnePage(start, size - 1)) { 717 int bytes_to_flush = CachePage::kPageSize - offset; 718 FlushOnePage(i_cache, start, bytes_to_flush); 719 start += bytes_to_flush; 720 size -= bytes_to_flush; 721 DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); 722 offset = 0; 723 } 724 if (size != 0) { 725 FlushOnePage(i_cache, start, size); 726 } 727 } 728 729 730 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { 731 v8::internal::HashMap::Entry* entry = 732 i_cache->LookupOrInsert(page, ICacheHash(page)); 733 if (entry->value == NULL) { 734 CachePage* new_page = new CachePage(); 735 entry->value = new_page; 736 } 737 return reinterpret_cast<CachePage*>(entry->value); 738 } 739 740 741 // Flush from start up to and not including start + size. 742 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, 743 int size) { 744 DCHECK(size <= CachePage::kPageSize); 745 DCHECK(AllOnOnePage(start, size - 1)); 746 DCHECK((start & CachePage::kLineMask) == 0); 747 DCHECK((size & CachePage::kLineMask) == 0); 748 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 749 int offset = (start & CachePage::kPageMask); 750 CachePage* cache_page = GetCachePage(i_cache, page); 751 char* valid_bytemap = cache_page->ValidityByte(offset); 752 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 753 } 754 755 756 void Simulator::CheckICache(v8::internal::HashMap* i_cache, 757 Instruction* instr) { 758 intptr_t address = reinterpret_cast<intptr_t>(instr); 759 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 760 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 761 int offset = (address & CachePage::kPageMask); 762 CachePage* cache_page = GetCachePage(i_cache, page); 763 char* cache_valid_byte = cache_page->ValidityByte(offset); 764 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 765 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 766 if (cache_hit) { 767 // Check that the data in memory matches the contents of the I-cache. 768 CHECK_EQ(0, 769 memcmp(reinterpret_cast<void*>(instr), 770 cache_page->CachedData(offset), Instruction::kInstrSize)); 771 } else { 772 // Cache miss. Load memory into the cache. 773 memcpy(cached_line, line, CachePage::kLineLength); 774 *cache_valid_byte = CachePage::LINE_VALID; 775 } 776 } 777 778 779 void Simulator::Initialize(Isolate* isolate) { 780 if (isolate->simulator_initialized()) return; 781 isolate->set_simulator_initialized(true); 782 ::v8::internal::ExternalReference::set_redirector(isolate, 783 &RedirectExternalReference); 784 } 785 786 787 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 788 i_cache_ = isolate_->simulator_i_cache(); 789 if (i_cache_ == NULL) { 790 i_cache_ = new v8::internal::HashMap(&ICacheMatch); 791 isolate_->set_simulator_i_cache(i_cache_); 792 } 793 Initialize(isolate); 794 // Set up simulator support first. Some of this information is needed to 795 // setup the architecture state. 796 #if V8_TARGET_ARCH_PPC64 797 size_t stack_size = FLAG_sim_stack_size * KB; 798 #else 799 size_t stack_size = MB; // allocate 1MB for stack 800 #endif 801 stack_size += 2 * stack_protection_size_; 802 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 803 pc_modified_ = false; 804 icount_ = 0; 805 break_pc_ = NULL; 806 break_instr_ = 0; 807 808 // Set up architecture state. 809 // All registers are initialized to zero to start with. 810 for (int i = 0; i < kNumGPRs; i++) { 811 registers_[i] = 0; 812 } 813 condition_reg_ = 0; 814 fp_condition_reg_ = 0; 815 special_reg_pc_ = 0; 816 special_reg_lr_ = 0; 817 special_reg_ctr_ = 0; 818 819 // Initializing FP registers. 820 for (int i = 0; i < kNumFPRs; i++) { 821 fp_registers_[i] = 0.0; 822 } 823 824 // The sp is initialized to point to the bottom (high address) of the 825 // allocated stack area. To be safe in potential stack underflows we leave 826 // some buffer below. 827 registers_[sp] = 828 reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_; 829 InitializeCoverage(); 830 831 last_debugger_input_ = NULL; 832 } 833 834 835 Simulator::~Simulator() { free(stack_); } 836 837 838 // When the generated code calls an external reference we need to catch that in 839 // the simulator. The external reference will be a function compiled for the 840 // host architecture. We need to call that function instead of trying to 841 // execute it with the simulator. We do that by redirecting the external 842 // reference to a svc (Supervisor Call) instruction that is handled by 843 // the simulator. We write the original destination of the jump just at a known 844 // offset from the svc instruction so the simulator knows what to call. 845 class Redirection { 846 public: 847 Redirection(Isolate* isolate, void* external_function, 848 ExternalReference::Type type) 849 : external_function_(external_function), 850 swi_instruction_(rtCallRedirInstr | kCallRtRedirected), 851 type_(type), 852 next_(NULL) { 853 next_ = isolate->simulator_redirection(); 854 Simulator::current(isolate)->FlushICache( 855 isolate->simulator_i_cache(), 856 reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize); 857 isolate->set_simulator_redirection(this); 858 } 859 860 void* address_of_swi_instruction() { 861 return reinterpret_cast<void*>(&swi_instruction_); 862 } 863 864 void* external_function() { return external_function_; } 865 ExternalReference::Type type() { return type_; } 866 867 static Redirection* Get(Isolate* isolate, void* external_function, 868 ExternalReference::Type type) { 869 Redirection* current = isolate->simulator_redirection(); 870 for (; current != NULL; current = current->next_) { 871 if (current->external_function_ == external_function) { 872 DCHECK_EQ(current->type(), type); 873 return current; 874 } 875 } 876 return new Redirection(isolate, external_function, type); 877 } 878 879 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 880 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 881 char* addr_of_redirection = 882 addr_of_swi - offsetof(Redirection, swi_instruction_); 883 return reinterpret_cast<Redirection*>(addr_of_redirection); 884 } 885 886 static void* ReverseRedirection(intptr_t reg) { 887 Redirection* redirection = FromSwiInstruction( 888 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 889 return redirection->external_function(); 890 } 891 892 static void DeleteChain(Redirection* redirection) { 893 while (redirection != nullptr) { 894 Redirection* next = redirection->next_; 895 delete redirection; 896 redirection = next; 897 } 898 } 899 900 private: 901 void* external_function_; 902 uint32_t swi_instruction_; 903 ExternalReference::Type type_; 904 Redirection* next_; 905 }; 906 907 908 // static 909 void Simulator::TearDown(HashMap* i_cache, Redirection* first) { 910 Redirection::DeleteChain(first); 911 if (i_cache != nullptr) { 912 for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr; 913 entry = i_cache->Next(entry)) { 914 delete static_cast<CachePage*>(entry->value); 915 } 916 delete i_cache; 917 } 918 } 919 920 921 void* Simulator::RedirectExternalReference(Isolate* isolate, 922 void* external_function, 923 ExternalReference::Type type) { 924 Redirection* redirection = Redirection::Get(isolate, external_function, type); 925 return redirection->address_of_swi_instruction(); 926 } 927 928 929 // Get the active Simulator for the current thread. 930 Simulator* Simulator::current(Isolate* isolate) { 931 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 932 isolate->FindOrAllocatePerThreadDataForThisThread(); 933 DCHECK(isolate_data != NULL); 934 935 Simulator* sim = isolate_data->simulator(); 936 if (sim == NULL) { 937 // TODO(146): delete the simulator object when a thread/isolate goes away. 938 sim = new Simulator(isolate); 939 isolate_data->set_simulator(sim); 940 } 941 return sim; 942 } 943 944 945 // Sets the register in the architecture state. 946 void Simulator::set_register(int reg, intptr_t value) { 947 DCHECK((reg >= 0) && (reg < kNumGPRs)); 948 registers_[reg] = value; 949 } 950 951 952 // Get the register from the architecture state. 953 intptr_t Simulator::get_register(int reg) const { 954 DCHECK((reg >= 0) && (reg < kNumGPRs)); 955 // Stupid code added to avoid bug in GCC. 956 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 957 if (reg >= kNumGPRs) return 0; 958 // End stupid code. 959 return registers_[reg]; 960 } 961 962 963 double Simulator::get_double_from_register_pair(int reg) { 964 DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); 965 966 double dm_val = 0.0; 967 #if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode 968 // Read the bits from the unsigned integer register_[] array 969 // into the double precision floating point value and return it. 970 char buffer[sizeof(fp_registers_[0])]; 971 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); 972 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); 973 #endif 974 return (dm_val); 975 } 976 977 978 // Raw access to the PC register. 979 void Simulator::set_pc(intptr_t value) { 980 pc_modified_ = true; 981 special_reg_pc_ = value; 982 } 983 984 985 bool Simulator::has_bad_pc() const { 986 return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); 987 } 988 989 990 // Raw access to the PC register without the special adjustment when reading. 991 intptr_t Simulator::get_pc() const { return special_reg_pc_; } 992 993 994 // Runtime FP routines take: 995 // - two double arguments 996 // - one double argument and zero or one integer arguments. 997 // All are consructed here from d1, d2 and r3. 998 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { 999 *x = get_double_from_d_register(1); 1000 *y = get_double_from_d_register(2); 1001 *z = get_register(3); 1002 } 1003 1004 1005 // The return value is in d1. 1006 void Simulator::SetFpResult(const double& result) { 1007 set_d_register_from_double(1, result); 1008 } 1009 1010 1011 void Simulator::TrashCallerSaveRegisters() { 1012 // We don't trash the registers with the return value. 1013 #if 0 // A good idea to trash volatile registers, needs to be done 1014 registers_[2] = 0x50Bad4U; 1015 registers_[3] = 0x50Bad4U; 1016 registers_[12] = 0x50Bad4U; 1017 #endif 1018 } 1019 1020 1021 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { 1022 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 1023 return *ptr; 1024 } 1025 1026 1027 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { 1028 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1029 return *ptr; 1030 } 1031 1032 1033 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { 1034 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 1035 *ptr = value; 1036 return; 1037 } 1038 1039 1040 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { 1041 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1042 *ptr = value; 1043 return; 1044 } 1045 1046 1047 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { 1048 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1049 return *ptr; 1050 } 1051 1052 1053 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { 1054 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1055 return *ptr; 1056 } 1057 1058 1059 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { 1060 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1061 *ptr = value; 1062 return; 1063 } 1064 1065 1066 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { 1067 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1068 *ptr = value; 1069 return; 1070 } 1071 1072 1073 uint8_t Simulator::ReadBU(intptr_t addr) { 1074 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1075 return *ptr; 1076 } 1077 1078 1079 int8_t Simulator::ReadB(intptr_t addr) { 1080 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1081 return *ptr; 1082 } 1083 1084 1085 void Simulator::WriteB(intptr_t addr, uint8_t value) { 1086 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1087 *ptr = value; 1088 } 1089 1090 1091 void Simulator::WriteB(intptr_t addr, int8_t value) { 1092 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1093 *ptr = value; 1094 } 1095 1096 1097 intptr_t* Simulator::ReadDW(intptr_t addr) { 1098 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1099 return ptr; 1100 } 1101 1102 1103 void Simulator::WriteDW(intptr_t addr, int64_t value) { 1104 int64_t* ptr = reinterpret_cast<int64_t*>(addr); 1105 *ptr = value; 1106 return; 1107 } 1108 1109 1110 // Returns the limit of the stack area to enable checking for stack overflows. 1111 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { 1112 // The simulator uses a separate JS stack. If we have exhausted the C stack, 1113 // we also drop down the JS limit to reflect the exhaustion on the JS stack. 1114 if (GetCurrentStackPosition() < c_limit) { 1115 return reinterpret_cast<uintptr_t>(get_sp()); 1116 } 1117 1118 // Otherwise the limit is the JS stack. Leave a safety margin to prevent 1119 // overrunning the stack when pushing values. 1120 return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_; 1121 } 1122 1123 1124 // Unsupported instructions use Format to print an error and stop execution. 1125 void Simulator::Format(Instruction* instr, const char* format) { 1126 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", 1127 reinterpret_cast<intptr_t>(instr), format); 1128 UNIMPLEMENTED(); 1129 } 1130 1131 1132 // Calculate C flag value for additions. 1133 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { 1134 uint32_t uleft = static_cast<uint32_t>(left); 1135 uint32_t uright = static_cast<uint32_t>(right); 1136 uint32_t urest = 0xffffffffU - uleft; 1137 1138 return (uright > urest) || 1139 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); 1140 } 1141 1142 1143 // Calculate C flag value for subtractions. 1144 bool Simulator::BorrowFrom(int32_t left, int32_t right) { 1145 uint32_t uleft = static_cast<uint32_t>(left); 1146 uint32_t uright = static_cast<uint32_t>(right); 1147 1148 return (uright > uleft); 1149 } 1150 1151 1152 // Calculate V flag value for additions and subtractions. 1153 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, 1154 bool addition) { 1155 bool overflow; 1156 if (addition) { 1157 // operands have the same sign 1158 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) 1159 // and operands and result have different sign 1160 && 1161 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1162 } else { 1163 // operands have different signs 1164 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) 1165 // and first operand and result have different signs 1166 && 1167 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1168 } 1169 return overflow; 1170 } 1171 1172 1173 #if V8_TARGET_ARCH_PPC64 1174 struct ObjectPair { 1175 intptr_t x; 1176 intptr_t y; 1177 }; 1178 1179 1180 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { 1181 *x = pair->x; 1182 *y = pair->y; 1183 } 1184 #else 1185 typedef uint64_t ObjectPair; 1186 1187 1188 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { 1189 #if V8_TARGET_BIG_ENDIAN 1190 *x = static_cast<int32_t>(*pair >> 32); 1191 *y = static_cast<int32_t>(*pair); 1192 #else 1193 *x = static_cast<int32_t>(*pair); 1194 *y = static_cast<int32_t>(*pair >> 32); 1195 #endif 1196 } 1197 #endif 1198 1199 // Calls into the V8 runtime are based on this very simple interface. 1200 // Note: To be able to return two values from some calls the code in 1201 // runtime.cc uses the ObjectPair which is essentially two pointer 1202 // values stuffed into a structure. With the code below we assume that 1203 // all runtime calls return this pair. If they don't, the r4 result 1204 // register contains a bogus value, which is fine because it is 1205 // caller-saved. 1206 typedef ObjectPair (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, 1207 intptr_t arg2, intptr_t arg3, 1208 intptr_t arg4, intptr_t arg5); 1209 1210 // These prototypes handle the four types of FP calls. 1211 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1212 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1213 typedef double (*SimulatorRuntimeFPCall)(double darg0); 1214 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); 1215 1216 // This signature supports direct call in to API function native callback 1217 // (refer to InvocationCallback in v8.h). 1218 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); 1219 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); 1220 1221 // This signature supports direct call to accessor getter callback. 1222 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); 1223 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, 1224 intptr_t arg1, void* arg2); 1225 1226 // Software interrupt instructions are used by the simulator to call into the 1227 // C-based V8 runtime. 1228 void Simulator::SoftwareInterrupt(Instruction* instr) { 1229 int svc = instr->SvcValue(); 1230 switch (svc) { 1231 case kCallRtRedirected: { 1232 // Check if stack is aligned. Error if not aligned is reported below to 1233 // include information on the function called. 1234 bool stack_aligned = 1235 (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 1236 0; 1237 Redirection* redirection = Redirection::FromSwiInstruction(instr); 1238 const int kArgCount = 6; 1239 int arg0_regnum = 3; 1240 #if !ABI_RETURNS_OBJECT_PAIRS_IN_REGS 1241 intptr_t result_buffer = 0; 1242 if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) { 1243 result_buffer = get_register(r3); 1244 arg0_regnum++; 1245 } 1246 #endif 1247 intptr_t arg[kArgCount]; 1248 for (int i = 0; i < kArgCount; i++) { 1249 arg[i] = get_register(arg0_regnum + i); 1250 } 1251 bool fp_call = 1252 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1253 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1254 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1255 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1256 // This is dodgy but it works because the C entry stubs are never moved. 1257 // See comment in codegen-arm.cc and bug 1242173. 1258 intptr_t saved_lr = special_reg_lr_; 1259 intptr_t external = 1260 reinterpret_cast<intptr_t>(redirection->external_function()); 1261 if (fp_call) { 1262 double dval0, dval1; // one or two double parameters 1263 intptr_t ival; // zero or one integer parameters 1264 int iresult = 0; // integer return value 1265 double dresult = 0; // double return value 1266 GetFpArgs(&dval0, &dval1, &ival); 1267 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1268 SimulatorRuntimeCall generic_target = 1269 reinterpret_cast<SimulatorRuntimeCall>(external); 1270 switch (redirection->type()) { 1271 case ExternalReference::BUILTIN_FP_FP_CALL: 1272 case ExternalReference::BUILTIN_COMPARE_CALL: 1273 PrintF("Call to host function at %p with args %f, %f", 1274 FUNCTION_ADDR(generic_target), dval0, dval1); 1275 break; 1276 case ExternalReference::BUILTIN_FP_CALL: 1277 PrintF("Call to host function at %p with arg %f", 1278 FUNCTION_ADDR(generic_target), dval0); 1279 break; 1280 case ExternalReference::BUILTIN_FP_INT_CALL: 1281 PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, 1282 FUNCTION_ADDR(generic_target), dval0, ival); 1283 break; 1284 default: 1285 UNREACHABLE(); 1286 break; 1287 } 1288 if (!stack_aligned) { 1289 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1290 get_register(sp)); 1291 } 1292 PrintF("\n"); 1293 } 1294 CHECK(stack_aligned); 1295 switch (redirection->type()) { 1296 case ExternalReference::BUILTIN_COMPARE_CALL: { 1297 SimulatorRuntimeCompareCall target = 1298 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 1299 iresult = target(dval0, dval1); 1300 set_register(r3, iresult); 1301 break; 1302 } 1303 case ExternalReference::BUILTIN_FP_FP_CALL: { 1304 SimulatorRuntimeFPFPCall target = 1305 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 1306 dresult = target(dval0, dval1); 1307 SetFpResult(dresult); 1308 break; 1309 } 1310 case ExternalReference::BUILTIN_FP_CALL: { 1311 SimulatorRuntimeFPCall target = 1312 reinterpret_cast<SimulatorRuntimeFPCall>(external); 1313 dresult = target(dval0); 1314 SetFpResult(dresult); 1315 break; 1316 } 1317 case ExternalReference::BUILTIN_FP_INT_CALL: { 1318 SimulatorRuntimeFPIntCall target = 1319 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 1320 dresult = target(dval0, ival); 1321 SetFpResult(dresult); 1322 break; 1323 } 1324 default: 1325 UNREACHABLE(); 1326 break; 1327 } 1328 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1329 switch (redirection->type()) { 1330 case ExternalReference::BUILTIN_COMPARE_CALL: 1331 PrintF("Returned %08x\n", iresult); 1332 break; 1333 case ExternalReference::BUILTIN_FP_FP_CALL: 1334 case ExternalReference::BUILTIN_FP_CALL: 1335 case ExternalReference::BUILTIN_FP_INT_CALL: 1336 PrintF("Returned %f\n", dresult); 1337 break; 1338 default: 1339 UNREACHABLE(); 1340 break; 1341 } 1342 } 1343 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 1344 // See callers of MacroAssembler::CallApiFunctionAndReturn for 1345 // explanation of register usage. 1346 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1347 PrintF("Call to host function at %p args %08" V8PRIxPTR, 1348 reinterpret_cast<void*>(external), arg[0]); 1349 if (!stack_aligned) { 1350 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1351 get_register(sp)); 1352 } 1353 PrintF("\n"); 1354 } 1355 CHECK(stack_aligned); 1356 SimulatorRuntimeDirectApiCall target = 1357 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 1358 target(arg[0]); 1359 } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { 1360 // See callers of MacroAssembler::CallApiFunctionAndReturn for 1361 // explanation of register usage. 1362 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1363 PrintF("Call to host function at %p args %08" V8PRIxPTR 1364 " %08" V8PRIxPTR, 1365 reinterpret_cast<void*>(external), arg[0], arg[1]); 1366 if (!stack_aligned) { 1367 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1368 get_register(sp)); 1369 } 1370 PrintF("\n"); 1371 } 1372 CHECK(stack_aligned); 1373 SimulatorRuntimeProfilingApiCall target = 1374 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 1375 target(arg[0], Redirection::ReverseRedirection(arg[1])); 1376 } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 1377 // See callers of MacroAssembler::CallApiFunctionAndReturn for 1378 // explanation of register usage. 1379 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1380 PrintF("Call to host function at %p args %08" V8PRIxPTR 1381 " %08" V8PRIxPTR, 1382 reinterpret_cast<void*>(external), arg[0], arg[1]); 1383 if (!stack_aligned) { 1384 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1385 get_register(sp)); 1386 } 1387 PrintF("\n"); 1388 } 1389 CHECK(stack_aligned); 1390 SimulatorRuntimeDirectGetterCall target = 1391 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 1392 #if !ABI_PASSES_HANDLES_IN_REGS 1393 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); 1394 #endif 1395 target(arg[0], arg[1]); 1396 } else if (redirection->type() == 1397 ExternalReference::PROFILING_GETTER_CALL) { 1398 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1399 PrintF("Call to host function at %p args %08" V8PRIxPTR 1400 " %08" V8PRIxPTR " %08" V8PRIxPTR, 1401 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]); 1402 if (!stack_aligned) { 1403 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1404 get_register(sp)); 1405 } 1406 PrintF("\n"); 1407 } 1408 CHECK(stack_aligned); 1409 SimulatorRuntimeProfilingGetterCall target = 1410 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); 1411 #if !ABI_PASSES_HANDLES_IN_REGS 1412 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); 1413 #endif 1414 target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); 1415 } else { 1416 // builtin call. 1417 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1418 SimulatorRuntimeCall target = 1419 reinterpret_cast<SimulatorRuntimeCall>(external); 1420 PrintF( 1421 "Call to host function at %p,\n" 1422 "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR 1423 ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, 1424 FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4], 1425 arg[5]); 1426 if (!stack_aligned) { 1427 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", 1428 get_register(sp)); 1429 } 1430 PrintF("\n"); 1431 } 1432 CHECK(stack_aligned); 1433 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); 1434 SimulatorRuntimeCall target = 1435 reinterpret_cast<SimulatorRuntimeCall>(external); 1436 ObjectPair result = 1437 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); 1438 intptr_t x; 1439 intptr_t y; 1440 decodeObjectPair(&result, &x, &y); 1441 if (::v8::internal::FLAG_trace_sim) { 1442 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y); 1443 } 1444 set_register(r3, x); 1445 set_register(r4, y); 1446 } 1447 set_pc(saved_lr); 1448 break; 1449 } 1450 case kBreakpoint: { 1451 PPCDebugger dbg(this); 1452 dbg.Debug(); 1453 break; 1454 } 1455 // stop uses all codes greater than 1 << 23. 1456 default: { 1457 if (svc >= (1 << 23)) { 1458 uint32_t code = svc & kStopCodeMask; 1459 if (isWatchedStop(code)) { 1460 IncreaseStopCounter(code); 1461 } 1462 // Stop if it is enabled, otherwise go on jumping over the stop 1463 // and the message address. 1464 if (isEnabledStop(code)) { 1465 PPCDebugger dbg(this); 1466 dbg.Stop(instr); 1467 } else { 1468 set_pc(get_pc() + Instruction::kInstrSize + kPointerSize); 1469 } 1470 } else { 1471 // This is not a valid svc code. 1472 UNREACHABLE(); 1473 break; 1474 } 1475 } 1476 } 1477 } 1478 1479 1480 // Stop helper functions. 1481 bool Simulator::isStopInstruction(Instruction* instr) { 1482 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); 1483 } 1484 1485 1486 bool Simulator::isWatchedStop(uint32_t code) { 1487 DCHECK(code <= kMaxStopCode); 1488 return code < kNumOfWatchedStops; 1489 } 1490 1491 1492 bool Simulator::isEnabledStop(uint32_t code) { 1493 DCHECK(code <= kMaxStopCode); 1494 // Unwatched stops are always enabled. 1495 return !isWatchedStop(code) || 1496 !(watched_stops_[code].count & kStopDisabledBit); 1497 } 1498 1499 1500 void Simulator::EnableStop(uint32_t code) { 1501 DCHECK(isWatchedStop(code)); 1502 if (!isEnabledStop(code)) { 1503 watched_stops_[code].count &= ~kStopDisabledBit; 1504 } 1505 } 1506 1507 1508 void Simulator::DisableStop(uint32_t code) { 1509 DCHECK(isWatchedStop(code)); 1510 if (isEnabledStop(code)) { 1511 watched_stops_[code].count |= kStopDisabledBit; 1512 } 1513 } 1514 1515 1516 void Simulator::IncreaseStopCounter(uint32_t code) { 1517 DCHECK(code <= kMaxStopCode); 1518 DCHECK(isWatchedStop(code)); 1519 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 1520 PrintF( 1521 "Stop counter for code %i has overflowed.\n" 1522 "Enabling this code and reseting the counter to 0.\n", 1523 code); 1524 watched_stops_[code].count = 0; 1525 EnableStop(code); 1526 } else { 1527 watched_stops_[code].count++; 1528 } 1529 } 1530 1531 1532 // Print a stop status. 1533 void Simulator::PrintStopInfo(uint32_t code) { 1534 DCHECK(code <= kMaxStopCode); 1535 if (!isWatchedStop(code)) { 1536 PrintF("Stop not watched."); 1537 } else { 1538 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; 1539 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 1540 // Don't print the state of unused breakpoints. 1541 if (count != 0) { 1542 if (watched_stops_[code].desc) { 1543 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, 1544 state, count, watched_stops_[code].desc); 1545 } else { 1546 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, 1547 count); 1548 } 1549 } 1550 } 1551 } 1552 1553 1554 void Simulator::SetCR0(intptr_t result, bool setSO) { 1555 int bf = 0; 1556 if (result < 0) { 1557 bf |= 0x80000000; 1558 } 1559 if (result > 0) { 1560 bf |= 0x40000000; 1561 } 1562 if (result == 0) { 1563 bf |= 0x20000000; 1564 } 1565 if (setSO) { 1566 bf |= 0x10000000; 1567 } 1568 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; 1569 } 1570 1571 1572 void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) { 1573 int bo = instr->Bits(25, 21) << 21; 1574 int condition_bit = instr->Bits(20, 16); 1575 int condition_mask = 0x80000000 >> condition_bit; 1576 switch (bo) { 1577 case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false 1578 case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false 1579 UNIMPLEMENTED(); 1580 case BF: { // Branch if condition false 1581 if (condition_reg_ & condition_mask) return; 1582 break; 1583 } 1584 case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true 1585 case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true 1586 UNIMPLEMENTED(); 1587 case BT: { // Branch if condition true 1588 if (!(condition_reg_ & condition_mask)) return; 1589 break; 1590 } 1591 case DCBNZ: // Decrement CTR; branch if CTR != 0 1592 case DCBEZ: // Decrement CTR; branch if CTR == 0 1593 special_reg_ctr_ -= 1; 1594 if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return; 1595 break; 1596 case BA: { // Branch always 1597 break; 1598 } 1599 default: 1600 UNIMPLEMENTED(); // Invalid encoding 1601 } 1602 1603 intptr_t old_pc = get_pc(); 1604 1605 switch (type) { 1606 case BC_OFFSET: { 1607 int offset = (instr->Bits(15, 2) << 18) >> 16; 1608 set_pc(old_pc + offset); 1609 break; 1610 } 1611 case BC_LINK_REG: 1612 set_pc(special_reg_lr_); 1613 break; 1614 case BC_CTR_REG: 1615 set_pc(special_reg_ctr_); 1616 break; 1617 } 1618 1619 if (instr->Bit(0) == 1) { // LK flag set 1620 special_reg_lr_ = old_pc + 4; 1621 } 1622 } 1623 1624 1625 // Handle execution based on instruction types. 1626 void Simulator::ExecuteExt1(Instruction* instr) { 1627 switch (instr->Bits(10, 1) << 1) { 1628 case MCRF: 1629 UNIMPLEMENTED(); // Not used by V8. 1630 case BCLRX: 1631 ExecuteBranchConditional(instr, BC_LINK_REG); 1632 break; 1633 case BCCTRX: 1634 ExecuteBranchConditional(instr, BC_CTR_REG); 1635 break; 1636 case CRNOR: 1637 case RFI: 1638 case CRANDC: 1639 UNIMPLEMENTED(); 1640 case ISYNC: { 1641 // todo - simulate isync 1642 break; 1643 } 1644 case CRXOR: { 1645 int bt = instr->Bits(25, 21); 1646 int ba = instr->Bits(20, 16); 1647 int bb = instr->Bits(15, 11); 1648 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; 1649 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; 1650 int bt_val = ba_val ^ bb_val; 1651 bt_val = bt_val << (31 - bt); // shift bit to correct destination 1652 condition_reg_ &= ~(0x80000000 >> bt); 1653 condition_reg_ |= bt_val; 1654 break; 1655 } 1656 case CREQV: { 1657 int bt = instr->Bits(25, 21); 1658 int ba = instr->Bits(20, 16); 1659 int bb = instr->Bits(15, 11); 1660 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; 1661 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; 1662 int bt_val = 1 - (ba_val ^ bb_val); 1663 bt_val = bt_val << (31 - bt); // shift bit to correct destination 1664 condition_reg_ &= ~(0x80000000 >> bt); 1665 condition_reg_ |= bt_val; 1666 break; 1667 } 1668 case CRNAND: 1669 case CRAND: 1670 case CRORC: 1671 case CROR: 1672 default: { 1673 UNIMPLEMENTED(); // Not used by V8. 1674 } 1675 } 1676 } 1677 1678 1679 bool Simulator::ExecuteExt2_10bit(Instruction* instr) { 1680 bool found = true; 1681 1682 int opcode = instr->Bits(10, 1) << 1; 1683 switch (opcode) { 1684 case SRWX: { 1685 int rs = instr->RSValue(); 1686 int ra = instr->RAValue(); 1687 int rb = instr->RBValue(); 1688 uint32_t rs_val = get_register(rs); 1689 uintptr_t rb_val = get_register(rb); 1690 intptr_t result = rs_val >> (rb_val & 0x3f); 1691 set_register(ra, result); 1692 if (instr->Bit(0)) { // RC bit set 1693 SetCR0(result); 1694 } 1695 break; 1696 } 1697 #if V8_TARGET_ARCH_PPC64 1698 case SRDX: { 1699 int rs = instr->RSValue(); 1700 int ra = instr->RAValue(); 1701 int rb = instr->RBValue(); 1702 uintptr_t rs_val = get_register(rs); 1703 uintptr_t rb_val = get_register(rb); 1704 intptr_t result = rs_val >> (rb_val & 0x7f); 1705 set_register(ra, result); 1706 if (instr->Bit(0)) { // RC bit set 1707 SetCR0(result); 1708 } 1709 break; 1710 } 1711 #endif 1712 case SRAW: { 1713 int rs = instr->RSValue(); 1714 int ra = instr->RAValue(); 1715 int rb = instr->RBValue(); 1716 int32_t rs_val = get_register(rs); 1717 intptr_t rb_val = get_register(rb); 1718 intptr_t result = rs_val >> (rb_val & 0x3f); 1719 set_register(ra, result); 1720 if (instr->Bit(0)) { // RC bit set 1721 SetCR0(result); 1722 } 1723 break; 1724 } 1725 #if V8_TARGET_ARCH_PPC64 1726 case SRAD: { 1727 int rs = instr->RSValue(); 1728 int ra = instr->RAValue(); 1729 int rb = instr->RBValue(); 1730 intptr_t rs_val = get_register(rs); 1731 intptr_t rb_val = get_register(rb); 1732 intptr_t result = rs_val >> (rb_val & 0x7f); 1733 set_register(ra, result); 1734 if (instr->Bit(0)) { // RC bit set 1735 SetCR0(result); 1736 } 1737 break; 1738 } 1739 #endif 1740 case SRAWIX: { 1741 int ra = instr->RAValue(); 1742 int rs = instr->RSValue(); 1743 int sh = instr->Bits(15, 11); 1744 int32_t rs_val = get_register(rs); 1745 intptr_t result = rs_val >> sh; 1746 set_register(ra, result); 1747 if (instr->Bit(0)) { // RC bit set 1748 SetCR0(result); 1749 } 1750 break; 1751 } 1752 #if V8_TARGET_ARCH_PPC64 1753 case EXTSW: { 1754 const int shift = kBitsPerPointer - 32; 1755 int ra = instr->RAValue(); 1756 int rs = instr->RSValue(); 1757 intptr_t rs_val = get_register(rs); 1758 intptr_t ra_val = (rs_val << shift) >> shift; 1759 set_register(ra, ra_val); 1760 if (instr->Bit(0)) { // RC bit set 1761 SetCR0(ra_val); 1762 } 1763 break; 1764 } 1765 #endif 1766 case EXTSH: { 1767 const int shift = kBitsPerPointer - 16; 1768 int ra = instr->RAValue(); 1769 int rs = instr->RSValue(); 1770 intptr_t rs_val = get_register(rs); 1771 intptr_t ra_val = (rs_val << shift) >> shift; 1772 set_register(ra, ra_val); 1773 if (instr->Bit(0)) { // RC bit set 1774 SetCR0(ra_val); 1775 } 1776 break; 1777 } 1778 case EXTSB: { 1779 const int shift = kBitsPerPointer - 8; 1780 int ra = instr->RAValue(); 1781 int rs = instr->RSValue(); 1782 intptr_t rs_val = get_register(rs); 1783 intptr_t ra_val = (rs_val << shift) >> shift; 1784 set_register(ra, ra_val); 1785 if (instr->Bit(0)) { // RC bit set 1786 SetCR0(ra_val); 1787 } 1788 break; 1789 } 1790 case LFSUX: 1791 case LFSX: { 1792 int frt = instr->RTValue(); 1793 int ra = instr->RAValue(); 1794 int rb = instr->RBValue(); 1795 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 1796 intptr_t rb_val = get_register(rb); 1797 int32_t val = ReadW(ra_val + rb_val, instr); 1798 float* fptr = reinterpret_cast<float*>(&val); 1799 set_d_register_from_double(frt, static_cast<double>(*fptr)); 1800 if (opcode == LFSUX) { 1801 DCHECK(ra != 0); 1802 set_register(ra, ra_val + rb_val); 1803 } 1804 break; 1805 } 1806 case LFDUX: 1807 case LFDX: { 1808 int frt = instr->RTValue(); 1809 int ra = instr->RAValue(); 1810 int rb = instr->RBValue(); 1811 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 1812 intptr_t rb_val = get_register(rb); 1813 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val)); 1814 set_d_register(frt, *dptr); 1815 if (opcode == LFDUX) { 1816 DCHECK(ra != 0); 1817 set_register(ra, ra_val + rb_val); 1818 } 1819 break; 1820 } 1821 case STFSUX: { 1822 case STFSX: 1823 int frs = instr->RSValue(); 1824 int ra = instr->RAValue(); 1825 int rb = instr->RBValue(); 1826 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 1827 intptr_t rb_val = get_register(rb); 1828 float frs_val = static_cast<float>(get_double_from_d_register(frs)); 1829 int32_t* p = reinterpret_cast<int32_t*>(&frs_val); 1830 WriteW(ra_val + rb_val, *p, instr); 1831 if (opcode == STFSUX) { 1832 DCHECK(ra != 0); 1833 set_register(ra, ra_val + rb_val); 1834 } 1835 break; 1836 } 1837 case STFDUX: { 1838 case STFDX: 1839 int frs = instr->RSValue(); 1840 int ra = instr->RAValue(); 1841 int rb = instr->RBValue(); 1842 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 1843 intptr_t rb_val = get_register(rb); 1844 int64_t frs_val = get_d_register(frs); 1845 WriteDW(ra_val + rb_val, frs_val); 1846 if (opcode == STFDUX) { 1847 DCHECK(ra != 0); 1848 set_register(ra, ra_val + rb_val); 1849 } 1850 break; 1851 } 1852 case POPCNTW: { 1853 int rs = instr->RSValue(); 1854 int ra = instr->RAValue(); 1855 uintptr_t rs_val = get_register(rs); 1856 uintptr_t count = 0; 1857 int n = 0; 1858 uintptr_t bit = 0x80000000; 1859 for (; n < 32; n++) { 1860 if (bit & rs_val) count++; 1861 bit >>= 1; 1862 } 1863 set_register(ra, count); 1864 break; 1865 } 1866 #if V8_TARGET_ARCH_PPC64 1867 case POPCNTD: { 1868 int rs = instr->RSValue(); 1869 int ra = instr->RAValue(); 1870 uintptr_t rs_val = get_register(rs); 1871 uintptr_t count = 0; 1872 int n = 0; 1873 uintptr_t bit = 0x8000000000000000UL; 1874 for (; n < 64; n++) { 1875 if (bit & rs_val) count++; 1876 bit >>= 1; 1877 } 1878 set_register(ra, count); 1879 break; 1880 } 1881 #endif 1882 case SYNC: { 1883 // todo - simulate sync 1884 break; 1885 } 1886 case ICBI: { 1887 // todo - simulate icbi 1888 break; 1889 } 1890 default: { 1891 found = false; 1892 break; 1893 } 1894 } 1895 1896 if (found) return found; 1897 1898 found = true; 1899 opcode = instr->Bits(10, 2) << 2; 1900 switch (opcode) { 1901 case SRADIX: { 1902 int ra = instr->RAValue(); 1903 int rs = instr->RSValue(); 1904 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); 1905 intptr_t rs_val = get_register(rs); 1906 intptr_t result = rs_val >> sh; 1907 set_register(ra, result); 1908 if (instr->Bit(0)) { // RC bit set 1909 SetCR0(result); 1910 } 1911 break; 1912 } 1913 default: { 1914 found = false; 1915 break; 1916 } 1917 } 1918 1919 return found; 1920 } 1921 1922 1923 bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) { 1924 bool found = true; 1925 1926 int opcode = instr->Bits(9, 1) << 1; 1927 switch (opcode) { 1928 case TW: { 1929 // used for call redirection in simulation mode 1930 SoftwareInterrupt(instr); 1931 break; 1932 } 1933 case CMP: { 1934 int ra = instr->RAValue(); 1935 int rb = instr->RBValue(); 1936 int cr = instr->Bits(25, 23); 1937 uint32_t bf = 0; 1938 #if V8_TARGET_ARCH_PPC64 1939 int L = instr->Bit(21); 1940 if (L) { 1941 #endif 1942 intptr_t ra_val = get_register(ra); 1943 intptr_t rb_val = get_register(rb); 1944 if (ra_val < rb_val) { 1945 bf |= 0x80000000; 1946 } 1947 if (ra_val > rb_val) { 1948 bf |= 0x40000000; 1949 } 1950 if (ra_val == rb_val) { 1951 bf |= 0x20000000; 1952 } 1953 #if V8_TARGET_ARCH_PPC64 1954 } else { 1955 int32_t ra_val = get_register(ra); 1956 int32_t rb_val = get_register(rb); 1957 if (ra_val < rb_val) { 1958 bf |= 0x80000000; 1959 } 1960 if (ra_val > rb_val) { 1961 bf |= 0x40000000; 1962 } 1963 if (ra_val == rb_val) { 1964 bf |= 0x20000000; 1965 } 1966 } 1967 #endif 1968 uint32_t condition_mask = 0xF0000000U >> (cr * 4); 1969 uint32_t condition = bf >> (cr * 4); 1970 condition_reg_ = (condition_reg_ & ~condition_mask) | condition; 1971 break; 1972 } 1973 case SUBFCX: { 1974 int rt = instr->RTValue(); 1975 int ra = instr->RAValue(); 1976 int rb = instr->RBValue(); 1977 // int oe = instr->Bit(10); 1978 uintptr_t ra_val = get_register(ra); 1979 uintptr_t rb_val = get_register(rb); 1980 uintptr_t alu_out = ~ra_val + rb_val + 1; 1981 set_register(rt, alu_out); 1982 // If the sign of rb and alu_out don't match, carry = 0 1983 if ((alu_out ^ rb_val) & 0x80000000) { 1984 special_reg_xer_ &= ~0xF0000000; 1985 } else { 1986 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; 1987 } 1988 if (instr->Bit(0)) { // RC bit set 1989 SetCR0(alu_out); 1990 } 1991 // todo - handle OE bit 1992 break; 1993 } 1994 case ADDCX: { 1995 int rt = instr->RTValue(); 1996 int ra = instr->RAValue(); 1997 int rb = instr->RBValue(); 1998 // int oe = instr->Bit(10); 1999 uintptr_t ra_val = get_register(ra); 2000 uintptr_t rb_val = get_register(rb); 2001 uintptr_t alu_out = ra_val + rb_val; 2002 // Check overflow 2003 if (~ra_val < rb_val) { 2004 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; 2005 } else { 2006 special_reg_xer_ &= ~0xF0000000; 2007 } 2008 set_register(rt, alu_out); 2009 if (instr->Bit(0)) { // RC bit set 2010 SetCR0(static_cast<intptr_t>(alu_out)); 2011 } 2012 // todo - handle OE bit 2013 break; 2014 } 2015 case MULHWX: { 2016 int rt = instr->RTValue(); 2017 int ra = instr->RAValue(); 2018 int rb = instr->RBValue(); 2019 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); 2020 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); 2021 int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; 2022 alu_out >>= 32; 2023 set_register(rt, alu_out); 2024 if (instr->Bit(0)) { // RC bit set 2025 SetCR0(static_cast<intptr_t>(alu_out)); 2026 } 2027 break; 2028 } 2029 case MULHWUX: { 2030 int rt = instr->RTValue(); 2031 int ra = instr->RAValue(); 2032 int rb = instr->RBValue(); 2033 uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF); 2034 uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF); 2035 uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val; 2036 alu_out >>= 32; 2037 set_register(rt, alu_out); 2038 if (instr->Bit(0)) { // RC bit set 2039 SetCR0(static_cast<intptr_t>(alu_out)); 2040 } 2041 break; 2042 } 2043 case NEGX: { 2044 int rt = instr->RTValue(); 2045 int ra = instr->RAValue(); 2046 intptr_t ra_val = get_register(ra); 2047 intptr_t alu_out = 1 + ~ra_val; 2048 #if V8_TARGET_ARCH_PPC64 2049 intptr_t one = 1; // work-around gcc 2050 intptr_t kOverflowVal = (one << 63); 2051 #else 2052 intptr_t kOverflowVal = kMinInt; 2053 #endif 2054 set_register(rt, alu_out); 2055 if (instr->Bit(10)) { // OE bit set 2056 if (ra_val == kOverflowVal) { 2057 special_reg_xer_ |= 0xC0000000; // set SO,OV 2058 } else { 2059 special_reg_xer_ &= ~0x40000000; // clear OV 2060 } 2061 } 2062 if (instr->Bit(0)) { // RC bit set 2063 bool setSO = (special_reg_xer_ & 0x80000000); 2064 SetCR0(alu_out, setSO); 2065 } 2066 break; 2067 } 2068 case SLWX: { 2069 int rs = instr->RSValue(); 2070 int ra = instr->RAValue(); 2071 int rb = instr->RBValue(); 2072 uint32_t rs_val = get_register(rs); 2073 uintptr_t rb_val = get_register(rb); 2074 uint32_t result = rs_val << (rb_val & 0x3f); 2075 set_register(ra, result); 2076 if (instr->Bit(0)) { // RC bit set 2077 SetCR0(result); 2078 } 2079 break; 2080 } 2081 #if V8_TARGET_ARCH_PPC64 2082 case SLDX: { 2083 int rs = instr->RSValue(); 2084 int ra = instr->RAValue(); 2085 int rb = instr->RBValue(); 2086 uintptr_t rs_val = get_register(rs); 2087 uintptr_t rb_val = get_register(rb); 2088 uintptr_t result = rs_val << (rb_val & 0x7f); 2089 set_register(ra, result); 2090 if (instr->Bit(0)) { // RC bit set 2091 SetCR0(result); 2092 } 2093 break; 2094 } 2095 case MFVSRD: { 2096 DCHECK(!instr->Bit(0)); 2097 int frt = instr->RTValue(); 2098 int ra = instr->RAValue(); 2099 int64_t frt_val = get_d_register(frt); 2100 set_register(ra, frt_val); 2101 break; 2102 } 2103 case MFVSRWZ: { 2104 DCHECK(!instr->Bit(0)); 2105 int frt = instr->RTValue(); 2106 int ra = instr->RAValue(); 2107 int64_t frt_val = get_d_register(frt); 2108 set_register(ra, static_cast<uint32_t>(frt_val)); 2109 break; 2110 } 2111 case MTVSRD: { 2112 DCHECK(!instr->Bit(0)); 2113 int frt = instr->RTValue(); 2114 int ra = instr->RAValue(); 2115 int64_t ra_val = get_register(ra); 2116 set_d_register(frt, ra_val); 2117 break; 2118 } 2119 case MTVSRWA: { 2120 DCHECK(!instr->Bit(0)); 2121 int frt = instr->RTValue(); 2122 int ra = instr->RAValue(); 2123 int64_t ra_val = static_cast<int32_t>(get_register(ra)); 2124 set_d_register(frt, ra_val); 2125 break; 2126 } 2127 case MTVSRWZ: { 2128 DCHECK(!instr->Bit(0)); 2129 int frt = instr->RTValue(); 2130 int ra = instr->RAValue(); 2131 uint64_t ra_val = static_cast<uint32_t>(get_register(ra)); 2132 set_d_register(frt, ra_val); 2133 break; 2134 } 2135 #endif 2136 default: { 2137 found = false; 2138 break; 2139 } 2140 } 2141 2142 return found; 2143 } 2144 2145 2146 bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) { 2147 bool found = true; 2148 int opcode = instr->Bits(9, 1) << 1; 2149 switch (opcode) { 2150 case CNTLZWX: { 2151 int rs = instr->RSValue(); 2152 int ra = instr->RAValue(); 2153 uintptr_t rs_val = get_register(rs); 2154 uintptr_t count = 0; 2155 int n = 0; 2156 uintptr_t bit = 0x80000000; 2157 for (; n < 32; n++) { 2158 if (bit & rs_val) break; 2159 count++; 2160 bit >>= 1; 2161 } 2162 set_register(ra, count); 2163 if (instr->Bit(0)) { // RC Bit set 2164 int bf = 0; 2165 if (count > 0) { 2166 bf |= 0x40000000; 2167 } 2168 if (count == 0) { 2169 bf |= 0x20000000; 2170 } 2171 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; 2172 } 2173 break; 2174 } 2175 #if V8_TARGET_ARCH_PPC64 2176 case CNTLZDX: { 2177 int rs = instr->RSValue(); 2178 int ra = instr->RAValue(); 2179 uintptr_t rs_val = get_register(rs); 2180 uintptr_t count = 0; 2181 int n = 0; 2182 uintptr_t bit = 0x8000000000000000UL; 2183 for (; n < 64; n++) { 2184 if (bit & rs_val) break; 2185 count++; 2186 bit >>= 1; 2187 } 2188 set_register(ra, count); 2189 if (instr->Bit(0)) { // RC Bit set 2190 int bf = 0; 2191 if (count > 0) { 2192 bf |= 0x40000000; 2193 } 2194 if (count == 0) { 2195 bf |= 0x20000000; 2196 } 2197 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; 2198 } 2199 break; 2200 } 2201 #endif 2202 case ANDX: { 2203 int rs = instr->RSValue(); 2204 int ra = instr->RAValue(); 2205 int rb = instr->RBValue(); 2206 intptr_t rs_val = get_register(rs); 2207 intptr_t rb_val = get_register(rb); 2208 intptr_t alu_out = rs_val & rb_val; 2209 set_register(ra, alu_out); 2210 if (instr->Bit(0)) { // RC Bit set 2211 SetCR0(alu_out); 2212 } 2213 break; 2214 } 2215 case ANDCX: { 2216 int rs = instr->RSValue(); 2217 int ra = instr->RAValue(); 2218 int rb = instr->RBValue(); 2219 intptr_t rs_val = get_register(rs); 2220 intptr_t rb_val = get_register(rb); 2221 intptr_t alu_out = rs_val & ~rb_val; 2222 set_register(ra, alu_out); 2223 if (instr->Bit(0)) { // RC Bit set 2224 SetCR0(alu_out); 2225 } 2226 break; 2227 } 2228 case CMPL: { 2229 int ra = instr->RAValue(); 2230 int rb = instr->RBValue(); 2231 int cr = instr->Bits(25, 23); 2232 uint32_t bf = 0; 2233 #if V8_TARGET_ARCH_PPC64 2234 int L = instr->Bit(21); 2235 if (L) { 2236 #endif 2237 uintptr_t ra_val = get_register(ra); 2238 uintptr_t rb_val = get_register(rb); 2239 if (ra_val < rb_val) { 2240 bf |= 0x80000000; 2241 } 2242 if (ra_val > rb_val) { 2243 bf |= 0x40000000; 2244 } 2245 if (ra_val == rb_val) { 2246 bf |= 0x20000000; 2247 } 2248 #if V8_TARGET_ARCH_PPC64 2249 } else { 2250 uint32_t ra_val = get_register(ra); 2251 uint32_t rb_val = get_register(rb); 2252 if (ra_val < rb_val) { 2253 bf |= 0x80000000; 2254 } 2255 if (ra_val > rb_val) { 2256 bf |= 0x40000000; 2257 } 2258 if (ra_val == rb_val) { 2259 bf |= 0x20000000; 2260 } 2261 } 2262 #endif 2263 uint32_t condition_mask = 0xF0000000U >> (cr * 4); 2264 uint32_t condition = bf >> (cr * 4); 2265 condition_reg_ = (condition_reg_ & ~condition_mask) | condition; 2266 break; 2267 } 2268 case SUBFX: { 2269 int rt = instr->RTValue(); 2270 int ra = instr->RAValue(); 2271 int rb = instr->RBValue(); 2272 // int oe = instr->Bit(10); 2273 intptr_t ra_val = get_register(ra); 2274 intptr_t rb_val = get_register(rb); 2275 intptr_t alu_out = rb_val - ra_val; 2276 // todo - figure out underflow 2277 set_register(rt, alu_out); 2278 if (instr->Bit(0)) { // RC Bit set 2279 SetCR0(alu_out); 2280 } 2281 // todo - handle OE bit 2282 break; 2283 } 2284 case ADDZEX: { 2285 int rt = instr->RTValue(); 2286 int ra = instr->RAValue(); 2287 intptr_t ra_val = get_register(ra); 2288 if (special_reg_xer_ & 0x20000000) { 2289 ra_val += 1; 2290 } 2291 set_register(rt, ra_val); 2292 if (instr->Bit(0)) { // RC bit set 2293 SetCR0(ra_val); 2294 } 2295 // todo - handle OE bit 2296 break; 2297 } 2298 case NORX: { 2299 int rs = instr->RSValue(); 2300 int ra = instr->RAValue(); 2301 int rb = instr->RBValue(); 2302 intptr_t rs_val = get_register(rs); 2303 intptr_t rb_val = get_register(rb); 2304 intptr_t alu_out = ~(rs_val | rb_val); 2305 set_register(ra, alu_out); 2306 if (instr->Bit(0)) { // RC bit set 2307 SetCR0(alu_out); 2308 } 2309 break; 2310 } 2311 case MULLW: { 2312 int rt = instr->RTValue(); 2313 int ra = instr->RAValue(); 2314 int rb = instr->RBValue(); 2315 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); 2316 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); 2317 int32_t alu_out = ra_val * rb_val; 2318 set_register(rt, alu_out); 2319 if (instr->Bit(0)) { // RC bit set 2320 SetCR0(alu_out); 2321 } 2322 // todo - handle OE bit 2323 break; 2324 } 2325 #if V8_TARGET_ARCH_PPC64 2326 case MULLD: { 2327 int rt = instr->RTValue(); 2328 int ra = instr->RAValue(); 2329 int rb = instr->RBValue(); 2330 int64_t ra_val = get_register(ra); 2331 int64_t rb_val = get_register(rb); 2332 int64_t alu_out = ra_val * rb_val; 2333 set_register(rt, alu_out); 2334 if (instr->Bit(0)) { // RC bit set 2335 SetCR0(alu_out); 2336 } 2337 // todo - handle OE bit 2338 break; 2339 } 2340 #endif 2341 case DIVW: { 2342 int rt = instr->RTValue(); 2343 int ra = instr->RAValue(); 2344 int rb = instr->RBValue(); 2345 int32_t ra_val = get_register(ra); 2346 int32_t rb_val = get_register(rb); 2347 bool overflow = (ra_val == kMinInt && rb_val == -1); 2348 // result is undefined if divisor is zero or if operation 2349 // is 0x80000000 / -1. 2350 int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val; 2351 set_register(rt, alu_out); 2352 if (instr->Bit(10)) { // OE bit set 2353 if (overflow) { 2354 special_reg_xer_ |= 0xC0000000; // set SO,OV 2355 } else { 2356 special_reg_xer_ &= ~0x40000000; // clear OV 2357 } 2358 } 2359 if (instr->Bit(0)) { // RC bit set 2360 bool setSO = (special_reg_xer_ & 0x80000000); 2361 SetCR0(alu_out, setSO); 2362 } 2363 break; 2364 } 2365 case DIVWU: { 2366 int rt = instr->RTValue(); 2367 int ra = instr->RAValue(); 2368 int rb = instr->RBValue(); 2369 uint32_t ra_val = get_register(ra); 2370 uint32_t rb_val = get_register(rb); 2371 bool overflow = (rb_val == 0); 2372 // result is undefined if divisor is zero 2373 uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val; 2374 set_register(rt, alu_out); 2375 if (instr->Bit(10)) { // OE bit set 2376 if (overflow) { 2377 special_reg_xer_ |= 0xC0000000; // set SO,OV 2378 } else { 2379 special_reg_xer_ &= ~0x40000000; // clear OV 2380 } 2381 } 2382 if (instr->Bit(0)) { // RC bit set 2383 bool setSO = (special_reg_xer_ & 0x80000000); 2384 SetCR0(alu_out, setSO); 2385 } 2386 break; 2387 } 2388 #if V8_TARGET_ARCH_PPC64 2389 case DIVD: { 2390 int rt = instr->RTValue(); 2391 int ra = instr->RAValue(); 2392 int rb = instr->RBValue(); 2393 int64_t ra_val = get_register(ra); 2394 int64_t rb_val = get_register(rb); 2395 int64_t one = 1; // work-around gcc 2396 int64_t kMinLongLong = (one << 63); 2397 // result is undefined if divisor is zero or if operation 2398 // is 0x80000000_00000000 / -1. 2399 int64_t alu_out = 2400 (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) 2401 ? -1 2402 : ra_val / rb_val; 2403 set_register(rt, alu_out); 2404 if (instr->Bit(0)) { // RC bit set 2405 SetCR0(alu_out); 2406 } 2407 // todo - handle OE bit 2408 break; 2409 } 2410 case DIVDU: { 2411 int rt = instr->RTValue(); 2412 int ra = instr->RAValue(); 2413 int rb = instr->RBValue(); 2414 uint64_t ra_val = get_register(ra); 2415 uint64_t rb_val = get_register(rb); 2416 // result is undefined if divisor is zero 2417 uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val; 2418 set_register(rt, alu_out); 2419 if (instr->Bit(0)) { // RC bit set 2420 SetCR0(alu_out); 2421 } 2422 // todo - handle OE bit 2423 break; 2424 } 2425 #endif 2426 case ADDX: { 2427 int rt = instr->RTValue(); 2428 int ra = instr->RAValue(); 2429 int rb = instr->RBValue(); 2430 // int oe = instr->Bit(10); 2431 intptr_t ra_val = get_register(ra); 2432 intptr_t rb_val = get_register(rb); 2433 intptr_t alu_out = ra_val + rb_val; 2434 set_register(rt, alu_out); 2435 if (instr->Bit(0)) { // RC bit set 2436 SetCR0(alu_out); 2437 } 2438 // todo - handle OE bit 2439 break; 2440 } 2441 case XORX: { 2442 int rs = instr->RSValue(); 2443 int ra = instr->RAValue(); 2444 int rb = instr->RBValue(); 2445 intptr_t rs_val = get_register(rs); 2446 intptr_t rb_val = get_register(rb); 2447 intptr_t alu_out = rs_val ^ rb_val; 2448 set_register(ra, alu_out); 2449 if (instr->Bit(0)) { // RC bit set 2450 SetCR0(alu_out); 2451 } 2452 break; 2453 } 2454 case ORX: { 2455 int rs = instr->RSValue(); 2456 int ra = instr->RAValue(); 2457 int rb = instr->RBValue(); 2458 intptr_t rs_val = get_register(rs); 2459 intptr_t rb_val = get_register(rb); 2460 intptr_t alu_out = rs_val | rb_val; 2461 set_register(ra, alu_out); 2462 if (instr->Bit(0)) { // RC bit set 2463 SetCR0(alu_out); 2464 } 2465 break; 2466 } 2467 case ORC: { 2468 int rs = instr->RSValue(); 2469 int ra = instr->RAValue(); 2470 int rb = instr->RBValue(); 2471 intptr_t rs_val = get_register(rs); 2472 intptr_t rb_val = get_register(rb); 2473 intptr_t alu_out = rs_val | ~rb_val; 2474 set_register(ra, alu_out); 2475 if (instr->Bit(0)) { // RC bit set 2476 SetCR0(alu_out); 2477 } 2478 break; 2479 } 2480 case MFSPR: { 2481 int rt = instr->RTValue(); 2482 int spr = instr->Bits(20, 11); 2483 if (spr != 256) { 2484 UNIMPLEMENTED(); // Only LRLR supported 2485 } 2486 set_register(rt, special_reg_lr_); 2487 break; 2488 } 2489 case MTSPR: { 2490 int rt = instr->RTValue(); 2491 intptr_t rt_val = get_register(rt); 2492 int spr = instr->Bits(20, 11); 2493 if (spr == 256) { 2494 special_reg_lr_ = rt_val; 2495 } else if (spr == 288) { 2496 special_reg_ctr_ = rt_val; 2497 } else if (spr == 32) { 2498 special_reg_xer_ = rt_val; 2499 } else { 2500 UNIMPLEMENTED(); // Only LR supported 2501 } 2502 break; 2503 } 2504 case MFCR: { 2505 int rt = instr->RTValue(); 2506 set_register(rt, condition_reg_); 2507 break; 2508 } 2509 case STWUX: 2510 case STWX: { 2511 int rs = instr->RSValue(); 2512 int ra = instr->RAValue(); 2513 int rb = instr->RBValue(); 2514 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2515 int32_t rs_val = get_register(rs); 2516 intptr_t rb_val = get_register(rb); 2517 WriteW(ra_val + rb_val, rs_val, instr); 2518 if (opcode == STWUX) { 2519 DCHECK(ra != 0); 2520 set_register(ra, ra_val + rb_val); 2521 } 2522 break; 2523 } 2524 case STBUX: 2525 case STBX: { 2526 int rs = instr->RSValue(); 2527 int ra = instr->RAValue(); 2528 int rb = instr->RBValue(); 2529 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2530 int8_t rs_val = get_register(rs); 2531 intptr_t rb_val = get_register(rb); 2532 WriteB(ra_val + rb_val, rs_val); 2533 if (opcode == STBUX) { 2534 DCHECK(ra != 0); 2535 set_register(ra, ra_val + rb_val); 2536 } 2537 break; 2538 } 2539 case STHUX: 2540 case STHX: { 2541 int rs = instr->RSValue(); 2542 int ra = instr->RAValue(); 2543 int rb = instr->RBValue(); 2544 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2545 int16_t rs_val = get_register(rs); 2546 intptr_t rb_val = get_register(rb); 2547 WriteH(ra_val + rb_val, rs_val, instr); 2548 if (opcode == STHUX) { 2549 DCHECK(ra != 0); 2550 set_register(ra, ra_val + rb_val); 2551 } 2552 break; 2553 } 2554 case LWZX: 2555 case LWZUX: { 2556 int rt = instr->RTValue(); 2557 int ra = instr->RAValue(); 2558 int rb = instr->RBValue(); 2559 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2560 intptr_t rb_val = get_register(rb); 2561 set_register(rt, ReadWU(ra_val + rb_val, instr)); 2562 if (opcode == LWZUX) { 2563 DCHECK(ra != 0 && ra != rt); 2564 set_register(ra, ra_val + rb_val); 2565 } 2566 break; 2567 } 2568 #if V8_TARGET_ARCH_PPC64 2569 case LWAX: { 2570 int rt = instr->RTValue(); 2571 int ra = instr->RAValue(); 2572 int rb = instr->RBValue(); 2573 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2574 intptr_t rb_val = get_register(rb); 2575 set_register(rt, ReadW(ra_val + rb_val, instr)); 2576 break; 2577 } 2578 case LDX: 2579 case LDUX: { 2580 int rt = instr->RTValue(); 2581 int ra = instr->RAValue(); 2582 int rb = instr->RBValue(); 2583 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2584 intptr_t rb_val = get_register(rb); 2585 intptr_t* result = ReadDW(ra_val + rb_val); 2586 set_register(rt, *result); 2587 if (opcode == LDUX) { 2588 DCHECK(ra != 0 && ra != rt); 2589 set_register(ra, ra_val + rb_val); 2590 } 2591 break; 2592 } 2593 case STDX: 2594 case STDUX: { 2595 int rs = instr->RSValue(); 2596 int ra = instr->RAValue(); 2597 int rb = instr->RBValue(); 2598 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2599 intptr_t rs_val = get_register(rs); 2600 intptr_t rb_val = get_register(rb); 2601 WriteDW(ra_val + rb_val, rs_val); 2602 if (opcode == STDUX) { 2603 DCHECK(ra != 0); 2604 set_register(ra, ra_val + rb_val); 2605 } 2606 break; 2607 } 2608 #endif 2609 case LBZX: 2610 case LBZUX: { 2611 int rt = instr->RTValue(); 2612 int ra = instr->RAValue(); 2613 int rb = instr->RBValue(); 2614 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2615 intptr_t rb_val = get_register(rb); 2616 set_register(rt, ReadBU(ra_val + rb_val) & 0xFF); 2617 if (opcode == LBZUX) { 2618 DCHECK(ra != 0 && ra != rt); 2619 set_register(ra, ra_val + rb_val); 2620 } 2621 break; 2622 } 2623 case LHZX: 2624 case LHZUX: { 2625 int rt = instr->RTValue(); 2626 int ra = instr->RAValue(); 2627 int rb = instr->RBValue(); 2628 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2629 intptr_t rb_val = get_register(rb); 2630 set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF); 2631 if (opcode == LHZUX) { 2632 DCHECK(ra != 0 && ra != rt); 2633 set_register(ra, ra_val + rb_val); 2634 } 2635 break; 2636 } 2637 case LHAX: 2638 case LHAUX: { 2639 int rt = instr->RTValue(); 2640 int ra = instr->RAValue(); 2641 int rb = instr->RBValue(); 2642 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 2643 intptr_t rb_val = get_register(rb); 2644 set_register(rt, ReadH(ra_val + rb_val, instr)); 2645 if (opcode == LHAUX) { 2646 DCHECK(ra != 0 && ra != rt); 2647 set_register(ra, ra_val + rb_val); 2648 } 2649 break; 2650 } 2651 case DCBF: { 2652 // todo - simulate dcbf 2653 break; 2654 } 2655 default: { 2656 found = false; 2657 break; 2658 } 2659 } 2660 2661 return found; 2662 } 2663 2664 2665 void Simulator::ExecuteExt2_5bit(Instruction* instr) { 2666 int opcode = instr->Bits(5, 1) << 1; 2667 switch (opcode) { 2668 case ISEL: { 2669 int rt = instr->RTValue(); 2670 int ra = instr->RAValue(); 2671 int rb = instr->RBValue(); 2672 int condition_bit = instr->RCValue(); 2673 int condition_mask = 0x80000000 >> condition_bit; 2674 intptr_t ra_val = (ra == 0) ? 0 : get_register(ra); 2675 intptr_t rb_val = get_register(rb); 2676 intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val; 2677 set_register(rt, value); 2678 break; 2679 } 2680 default: { 2681 PrintF("Unimplemented: %08x\n", instr->InstructionBits()); 2682 UNIMPLEMENTED(); // Not used by V8. 2683 } 2684 } 2685 } 2686 2687 2688 void Simulator::ExecuteExt2(Instruction* instr) { 2689 // Check first the 10-1 bit versions 2690 if (ExecuteExt2_10bit(instr)) return; 2691 // Now look at the lesser encodings 2692 if (ExecuteExt2_9bit_part1(instr)) return; 2693 if (ExecuteExt2_9bit_part2(instr)) return; 2694 ExecuteExt2_5bit(instr); 2695 } 2696 2697 2698 void Simulator::ExecuteExt3(Instruction* instr) { 2699 int opcode = instr->Bits(10, 1) << 1; 2700 switch (opcode) { 2701 case FCFID: { 2702 // fcfids 2703 int frt = instr->RTValue(); 2704 int frb = instr->RBValue(); 2705 int64_t frb_val = get_d_register(frb); 2706 double frt_val = static_cast<float>(frb_val); 2707 set_d_register_from_double(frt, frt_val); 2708 return; 2709 } 2710 case FCFIDU: { 2711 // fcfidus 2712 int frt = instr->RTValue(); 2713 int frb = instr->RBValue(); 2714 uint64_t frb_val = get_d_register(frb); 2715 double frt_val = static_cast<float>(frb_val); 2716 set_d_register_from_double(frt, frt_val); 2717 return; 2718 } 2719 } 2720 UNIMPLEMENTED(); // Not used by V8. 2721 } 2722 2723 2724 void Simulator::ExecuteExt4(Instruction* instr) { 2725 switch (instr->Bits(5, 1) << 1) { 2726 case FDIV: { 2727 int frt = instr->RTValue(); 2728 int fra = instr->RAValue(); 2729 int frb = instr->RBValue(); 2730 double fra_val = get_double_from_d_register(fra); 2731 double frb_val = get_double_from_d_register(frb); 2732 double frt_val = fra_val / frb_val; 2733 set_d_register_from_double(frt, frt_val); 2734 return; 2735 } 2736 case FSUB: { 2737 int frt = instr->RTValue(); 2738 int fra = instr->RAValue(); 2739 int frb = instr->RBValue(); 2740 double fra_val = get_double_from_d_register(fra); 2741 double frb_val = get_double_from_d_register(frb); 2742 double frt_val = fra_val - frb_val; 2743 set_d_register_from_double(frt, frt_val); 2744 return; 2745 } 2746 case FADD: { 2747 int frt = instr->RTValue(); 2748 int fra = instr->RAValue(); 2749 int frb = instr->RBValue(); 2750 double fra_val = get_double_from_d_register(fra); 2751 double frb_val = get_double_from_d_register(frb); 2752 double frt_val = fra_val + frb_val; 2753 set_d_register_from_double(frt, frt_val); 2754 return; 2755 } 2756 case FSQRT: { 2757 lazily_initialize_fast_sqrt(isolate_); 2758 int frt = instr->RTValue(); 2759 int frb = instr->RBValue(); 2760 double frb_val = get_double_from_d_register(frb); 2761 double frt_val = fast_sqrt(frb_val, isolate_); 2762 set_d_register_from_double(frt, frt_val); 2763 return; 2764 } 2765 case FSEL: { 2766 int frt = instr->RTValue(); 2767 int fra = instr->RAValue(); 2768 int frb = instr->RBValue(); 2769 int frc = instr->RCValue(); 2770 double fra_val = get_double_from_d_register(fra); 2771 double frb_val = get_double_from_d_register(frb); 2772 double frc_val = get_double_from_d_register(frc); 2773 double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val); 2774 set_d_register_from_double(frt, frt_val); 2775 return; 2776 } 2777 case FMUL: { 2778 int frt = instr->RTValue(); 2779 int fra = instr->RAValue(); 2780 int frc = instr->RCValue(); 2781 double fra_val = get_double_from_d_register(fra); 2782 double frc_val = get_double_from_d_register(frc); 2783 double frt_val = fra_val * frc_val; 2784 set_d_register_from_double(frt, frt_val); 2785 return; 2786 } 2787 case FMSUB: { 2788 int frt = instr->RTValue(); 2789 int fra = instr->RAValue(); 2790 int frb = instr->RBValue(); 2791 int frc = instr->RCValue(); 2792 double fra_val = get_double_from_d_register(fra); 2793 double frb_val = get_double_from_d_register(frb); 2794 double frc_val = get_double_from_d_register(frc); 2795 double frt_val = (fra_val * frc_val) - frb_val; 2796 set_d_register_from_double(frt, frt_val); 2797 return; 2798 } 2799 case FMADD: { 2800 int frt = instr->RTValue(); 2801 int fra = instr->RAValue(); 2802 int frb = instr->RBValue(); 2803 int frc = instr->RCValue(); 2804 double fra_val = get_double_from_d_register(fra); 2805 double frb_val = get_double_from_d_register(frb); 2806 double frc_val = get_double_from_d_register(frc); 2807 double frt_val = (fra_val * frc_val) + frb_val; 2808 set_d_register_from_double(frt, frt_val); 2809 return; 2810 } 2811 } 2812 int opcode = instr->Bits(10, 1) << 1; 2813 switch (opcode) { 2814 case FCMPU: { 2815 int fra = instr->RAValue(); 2816 int frb = instr->RBValue(); 2817 double fra_val = get_double_from_d_register(fra); 2818 double frb_val = get_double_from_d_register(frb); 2819 int cr = instr->Bits(25, 23); 2820 int bf = 0; 2821 if (fra_val < frb_val) { 2822 bf |= 0x80000000; 2823 } 2824 if (fra_val > frb_val) { 2825 bf |= 0x40000000; 2826 } 2827 if (fra_val == frb_val) { 2828 bf |= 0x20000000; 2829 } 2830 if (std::isunordered(fra_val, frb_val)) { 2831 bf |= 0x10000000; 2832 } 2833 int condition_mask = 0xF0000000 >> (cr * 4); 2834 int condition = bf >> (cr * 4); 2835 condition_reg_ = (condition_reg_ & ~condition_mask) | condition; 2836 return; 2837 } 2838 case FRIN: { 2839 int frt = instr->RTValue(); 2840 int frb = instr->RBValue(); 2841 double frb_val = get_double_from_d_register(frb); 2842 double frt_val = std::round(frb_val); 2843 set_d_register_from_double(frt, frt_val); 2844 if (instr->Bit(0)) { // RC bit set 2845 // UNIMPLEMENTED(); 2846 } 2847 return; 2848 } 2849 case FRIZ: { 2850 int frt = instr->RTValue(); 2851 int frb = instr->RBValue(); 2852 double frb_val = get_double_from_d_register(frb); 2853 double frt_val = std::trunc(frb_val); 2854 set_d_register_from_double(frt, frt_val); 2855 if (instr->Bit(0)) { // RC bit set 2856 // UNIMPLEMENTED(); 2857 } 2858 return; 2859 } 2860 case FRIP: { 2861 int frt = instr->RTValue(); 2862 int frb = instr->RBValue(); 2863 double frb_val = get_double_from_d_register(frb); 2864 double frt_val = std::ceil(frb_val); 2865 set_d_register_from_double(frt, frt_val); 2866 if (instr->Bit(0)) { // RC bit set 2867 // UNIMPLEMENTED(); 2868 } 2869 return; 2870 } 2871 case FRIM: { 2872 int frt = instr->RTValue(); 2873 int frb = instr->RBValue(); 2874 double frb_val = get_double_from_d_register(frb); 2875 double frt_val = std::floor(frb_val); 2876 set_d_register_from_double(frt, frt_val); 2877 if (instr->Bit(0)) { // RC bit set 2878 // UNIMPLEMENTED(); 2879 } 2880 return; 2881 } 2882 case FRSP: { 2883 int frt = instr->RTValue(); 2884 int frb = instr->RBValue(); 2885 // frsp round 8-byte double-precision value to 2886 // single-precision value 2887 double frb_val = get_double_from_d_register(frb); 2888 double frt_val = static_cast<float>(frb_val); 2889 set_d_register_from_double(frt, frt_val); 2890 if (instr->Bit(0)) { // RC bit set 2891 // UNIMPLEMENTED(); 2892 } 2893 return; 2894 } 2895 case FCFID: { 2896 int frt = instr->RTValue(); 2897 int frb = instr->RBValue(); 2898 int64_t frb_val = get_d_register(frb); 2899 double frt_val = static_cast<double>(frb_val); 2900 set_d_register_from_double(frt, frt_val); 2901 return; 2902 } 2903 case FCFIDU: { 2904 int frt = instr->RTValue(); 2905 int frb = instr->RBValue(); 2906 uint64_t frb_val = get_d_register(frb); 2907 double frt_val = static_cast<double>(frb_val); 2908 set_d_register_from_double(frt, frt_val); 2909 return; 2910 } 2911 case FCTID: 2912 case FCTIDZ: { 2913 int frt = instr->RTValue(); 2914 int frb = instr->RBValue(); 2915 double frb_val = get_double_from_d_register(frb); 2916 int mode = (opcode == FCTIDZ) ? kRoundToZero 2917 : (fp_condition_reg_ & kFPRoundingModeMask); 2918 int64_t frt_val; 2919 int64_t one = 1; // work-around gcc 2920 int64_t kMinVal = (one << 63); 2921 int64_t kMaxVal = kMinVal - 1; 2922 bool invalid_convert = false; 2923 2924 if (std::isnan(frb_val)) { 2925 frt_val = kMinVal; 2926 invalid_convert = true; 2927 } else { 2928 switch (mode) { 2929 case kRoundToZero: 2930 frb_val = std::trunc(frb_val); 2931 break; 2932 case kRoundToPlusInf: 2933 frb_val = std::ceil(frb_val); 2934 break; 2935 case kRoundToMinusInf: 2936 frb_val = std::floor(frb_val); 2937 break; 2938 default: 2939 UNIMPLEMENTED(); // Not used by V8. 2940 break; 2941 } 2942 if (frb_val < static_cast<double>(kMinVal)) { 2943 frt_val = kMinVal; 2944 invalid_convert = true; 2945 } else if (frb_val >= static_cast<double>(kMaxVal)) { 2946 frt_val = kMaxVal; 2947 invalid_convert = true; 2948 } else { 2949 frt_val = (int64_t)frb_val; 2950 } 2951 } 2952 set_d_register(frt, frt_val); 2953 if (invalid_convert) SetFPSCR(VXCVI); 2954 return; 2955 } 2956 case FCTIDU: 2957 case FCTIDUZ: { 2958 int frt = instr->RTValue(); 2959 int frb = instr->RBValue(); 2960 double frb_val = get_double_from_d_register(frb); 2961 int mode = (opcode == FCTIDUZ) 2962 ? kRoundToZero 2963 : (fp_condition_reg_ & kFPRoundingModeMask); 2964 uint64_t frt_val; 2965 uint64_t kMinVal = 0; 2966 uint64_t kMaxVal = kMinVal - 1; 2967 bool invalid_convert = false; 2968 2969 if (std::isnan(frb_val)) { 2970 frt_val = kMinVal; 2971 invalid_convert = true; 2972 } else { 2973 switch (mode) { 2974 case kRoundToZero: 2975 frb_val = std::trunc(frb_val); 2976 break; 2977 case kRoundToPlusInf: 2978 frb_val = std::ceil(frb_val); 2979 break; 2980 case kRoundToMinusInf: 2981 frb_val = std::floor(frb_val); 2982 break; 2983 default: 2984 UNIMPLEMENTED(); // Not used by V8. 2985 break; 2986 } 2987 if (frb_val < static_cast<double>(kMinVal)) { 2988 frt_val = kMinVal; 2989 invalid_convert = true; 2990 } else if (frb_val >= static_cast<double>(kMaxVal)) { 2991 frt_val = kMaxVal; 2992 invalid_convert = true; 2993 } else { 2994 frt_val = (uint64_t)frb_val; 2995 } 2996 } 2997 set_d_register(frt, frt_val); 2998 if (invalid_convert) SetFPSCR(VXCVI); 2999 return; 3000 } 3001 case FCTIW: 3002 case FCTIWZ: { 3003 int frt = instr->RTValue(); 3004 int frb = instr->RBValue(); 3005 double frb_val = get_double_from_d_register(frb); 3006 int mode = (opcode == FCTIWZ) ? kRoundToZero 3007 : (fp_condition_reg_ & kFPRoundingModeMask); 3008 int64_t frt_val; 3009 int64_t kMinVal = kMinInt; 3010 int64_t kMaxVal = kMaxInt; 3011 3012 if (std::isnan(frb_val)) { 3013 frt_val = kMinVal; 3014 } else { 3015 switch (mode) { 3016 case kRoundToZero: 3017 frb_val = std::trunc(frb_val); 3018 break; 3019 case kRoundToPlusInf: 3020 frb_val = std::ceil(frb_val); 3021 break; 3022 case kRoundToMinusInf: 3023 frb_val = std::floor(frb_val); 3024 break; 3025 case kRoundToNearest: { 3026 double orig = frb_val; 3027 frb_val = lround(frb_val); 3028 // Round to even if exactly halfway. (lround rounds up) 3029 if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) { 3030 frb_val += ((frb_val > 0) ? -1.0 : 1.0); 3031 } 3032 break; 3033 } 3034 default: 3035 UNIMPLEMENTED(); // Not used by V8. 3036 break; 3037 } 3038 if (frb_val < kMinVal) { 3039 frt_val = kMinVal; 3040 } else if (frb_val > kMaxVal) { 3041 frt_val = kMaxVal; 3042 } else { 3043 frt_val = (int64_t)frb_val; 3044 } 3045 } 3046 set_d_register(frt, frt_val); 3047 return; 3048 } 3049 case FNEG: { 3050 int frt = instr->RTValue(); 3051 int frb = instr->RBValue(); 3052 double frb_val = get_double_from_d_register(frb); 3053 double frt_val = -frb_val; 3054 set_d_register_from_double(frt, frt_val); 3055 return; 3056 } 3057 case FMR: { 3058 int frt = instr->RTValue(); 3059 int frb = instr->RBValue(); 3060 int64_t frb_val = get_d_register(frb); 3061 set_d_register(frt, frb_val); 3062 return; 3063 } 3064 case MTFSFI: { 3065 int bf = instr->Bits(25, 23); 3066 int imm = instr->Bits(15, 12); 3067 int fp_condition_mask = 0xF0000000 >> (bf * 4); 3068 fp_condition_reg_ &= ~fp_condition_mask; 3069 fp_condition_reg_ |= (imm << (28 - (bf * 4))); 3070 if (instr->Bit(0)) { // RC bit set 3071 condition_reg_ &= 0xF0FFFFFF; 3072 condition_reg_ |= (imm << 23); 3073 } 3074 return; 3075 } 3076 case MTFSF: { 3077 int frb = instr->RBValue(); 3078 int64_t frb_dval = get_d_register(frb); 3079 int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff); 3080 int l = instr->Bits(25, 25); 3081 if (l == 1) { 3082 fp_condition_reg_ = frb_ival; 3083 } else { 3084 UNIMPLEMENTED(); 3085 } 3086 if (instr->Bit(0)) { // RC bit set 3087 UNIMPLEMENTED(); 3088 // int w = instr->Bits(16, 16); 3089 // int flm = instr->Bits(24, 17); 3090 } 3091 return; 3092 } 3093 case MFFS: { 3094 int frt = instr->RTValue(); 3095 int64_t lval = static_cast<int64_t>(fp_condition_reg_); 3096 set_d_register(frt, lval); 3097 return; 3098 } 3099 case MCRFS: { 3100 int bf = instr->Bits(25, 23); 3101 int bfa = instr->Bits(20, 18); 3102 int cr_shift = (7 - bf) * CRWIDTH; 3103 int fp_shift = (7 - bfa) * CRWIDTH; 3104 int field_val = (fp_condition_reg_ >> fp_shift) & 0xf; 3105 condition_reg_ &= ~(0x0f << cr_shift); 3106 condition_reg_ |= (field_val << cr_shift); 3107 // Clear copied exception bits 3108 switch (bfa) { 3109 case 5: 3110 ClearFPSCR(VXSOFT); 3111 ClearFPSCR(VXSQRT); 3112 ClearFPSCR(VXCVI); 3113 break; 3114 default: 3115 UNIMPLEMENTED(); 3116 break; 3117 } 3118 return; 3119 } 3120 case MTFSB0: { 3121 int bt = instr->Bits(25, 21); 3122 ClearFPSCR(bt); 3123 if (instr->Bit(0)) { // RC bit set 3124 UNIMPLEMENTED(); 3125 } 3126 return; 3127 } 3128 case MTFSB1: { 3129 int bt = instr->Bits(25, 21); 3130 SetFPSCR(bt); 3131 if (instr->Bit(0)) { // RC bit set 3132 UNIMPLEMENTED(); 3133 } 3134 return; 3135 } 3136 case FABS: { 3137 int frt = instr->RTValue(); 3138 int frb = instr->RBValue(); 3139 double frb_val = get_double_from_d_register(frb); 3140 double frt_val = std::fabs(frb_val); 3141 set_d_register_from_double(frt, frt_val); 3142 return; 3143 } 3144 } 3145 UNIMPLEMENTED(); // Not used by V8. 3146 } 3147 3148 #if V8_TARGET_ARCH_PPC64 3149 void Simulator::ExecuteExt5(Instruction* instr) { 3150 switch (instr->Bits(4, 2) << 2) { 3151 case RLDICL: { 3152 int ra = instr->RAValue(); 3153 int rs = instr->RSValue(); 3154 uintptr_t rs_val = get_register(rs); 3155 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); 3156 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); 3157 DCHECK(sh >= 0 && sh <= 63); 3158 DCHECK(mb >= 0 && mb <= 63); 3159 uintptr_t result = base::bits::RotateLeft64(rs_val, sh); 3160 uintptr_t mask = 0xffffffffffffffff >> mb; 3161 result &= mask; 3162 set_register(ra, result); 3163 if (instr->Bit(0)) { // RC bit set 3164 SetCR0(result); 3165 } 3166 return; 3167 } 3168 case RLDICR: { 3169 int ra = instr->RAValue(); 3170 int rs = instr->RSValue(); 3171 uintptr_t rs_val = get_register(rs); 3172 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); 3173 int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); 3174 DCHECK(sh >= 0 && sh <= 63); 3175 DCHECK(me >= 0 && me <= 63); 3176 uintptr_t result = base::bits::RotateLeft64(rs_val, sh); 3177 uintptr_t mask = 0xffffffffffffffff << (63 - me); 3178 result &= mask; 3179 set_register(ra, result); 3180 if (instr->Bit(0)) { // RC bit set 3181 SetCR0(result); 3182 } 3183 return; 3184 } 3185 case RLDIC: { 3186 int ra = instr->RAValue(); 3187 int rs = instr->RSValue(); 3188 uintptr_t rs_val = get_register(rs); 3189 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); 3190 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); 3191 DCHECK(sh >= 0 && sh <= 63); 3192 DCHECK(mb >= 0 && mb <= 63); 3193 uintptr_t result = base::bits::RotateLeft64(rs_val, sh); 3194 uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh); 3195 result &= mask; 3196 set_register(ra, result); 3197 if (instr->Bit(0)) { // RC bit set 3198 SetCR0(result); 3199 } 3200 return; 3201 } 3202 case RLDIMI: { 3203 int ra = instr->RAValue(); 3204 int rs = instr->RSValue(); 3205 uintptr_t rs_val = get_register(rs); 3206 intptr_t ra_val = get_register(ra); 3207 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); 3208 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); 3209 int me = 63 - sh; 3210 uintptr_t result = base::bits::RotateLeft64(rs_val, sh); 3211 uintptr_t mask = 0; 3212 if (mb < me + 1) { 3213 uintptr_t bit = 0x8000000000000000 >> mb; 3214 for (; mb <= me; mb++) { 3215 mask |= bit; 3216 bit >>= 1; 3217 } 3218 } else if (mb == me + 1) { 3219 mask = 0xffffffffffffffff; 3220 } else { // mb > me+1 3221 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested 3222 mask = 0xffffffffffffffff; 3223 for (; me < mb; me++) { 3224 mask ^= bit; 3225 bit >>= 1; 3226 } 3227 } 3228 result &= mask; 3229 ra_val &= ~mask; 3230 result |= ra_val; 3231 set_register(ra, result); 3232 if (instr->Bit(0)) { // RC bit set 3233 SetCR0(result); 3234 } 3235 return; 3236 } 3237 } 3238 switch (instr->Bits(4, 1) << 1) { 3239 case RLDCL: { 3240 int ra = instr->RAValue(); 3241 int rs = instr->RSValue(); 3242 int rb = instr->RBValue(); 3243 uintptr_t rs_val = get_register(rs); 3244 uintptr_t rb_val = get_register(rb); 3245 int sh = (rb_val & 0x3f); 3246 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); 3247 DCHECK(sh >= 0 && sh <= 63); 3248 DCHECK(mb >= 0 && mb <= 63); 3249 uintptr_t result = base::bits::RotateLeft64(rs_val, sh); 3250 uintptr_t mask = 0xffffffffffffffff >> mb; 3251 result &= mask; 3252 set_register(ra, result); 3253 if (instr->Bit(0)) { // RC bit set 3254 SetCR0(result); 3255 } 3256 return; 3257 } 3258 } 3259 UNIMPLEMENTED(); // Not used by V8. 3260 } 3261 #endif 3262 3263 3264 void Simulator::ExecuteGeneric(Instruction* instr) { 3265 int opcode = instr->OpcodeValue() << 26; 3266 switch (opcode) { 3267 case SUBFIC: { 3268 int rt = instr->RTValue(); 3269 int ra = instr->RAValue(); 3270 intptr_t ra_val = get_register(ra); 3271 int32_t im_val = instr->Bits(15, 0); 3272 im_val = SIGN_EXT_IMM16(im_val); 3273 intptr_t alu_out = im_val - ra_val; 3274 set_register(rt, alu_out); 3275 // todo - handle RC bit 3276 break; 3277 } 3278 case CMPLI: { 3279 int ra = instr->RAValue(); 3280 uint32_t im_val = instr->Bits(15, 0); 3281 int cr = instr->Bits(25, 23); 3282 uint32_t bf = 0; 3283 #if V8_TARGET_ARCH_PPC64 3284 int L = instr->Bit(21); 3285 if (L) { 3286 #endif 3287 uintptr_t ra_val = get_register(ra); 3288 if (ra_val < im_val) { 3289 bf |= 0x80000000; 3290 } 3291 if (ra_val > im_val) { 3292 bf |= 0x40000000; 3293 } 3294 if (ra_val == im_val) { 3295 bf |= 0x20000000; 3296 } 3297 #if V8_TARGET_ARCH_PPC64 3298 } else { 3299 uint32_t ra_val = get_register(ra); 3300 if (ra_val < im_val) { 3301 bf |= 0x80000000; 3302 } 3303 if (ra_val > im_val) { 3304 bf |= 0x40000000; 3305 } 3306 if (ra_val == im_val) { 3307 bf |= 0x20000000; 3308 } 3309 } 3310 #endif 3311 uint32_t condition_mask = 0xF0000000U >> (cr * 4); 3312 uint32_t condition = bf >> (cr * 4); 3313 condition_reg_ = (condition_reg_ & ~condition_mask) | condition; 3314 break; 3315 } 3316 case CMPI: { 3317 int ra = instr->RAValue(); 3318 int32_t im_val = instr->Bits(15, 0); 3319 im_val = SIGN_EXT_IMM16(im_val); 3320 int cr = instr->Bits(25, 23); 3321 uint32_t bf = 0; 3322 #if V8_TARGET_ARCH_PPC64 3323 int L = instr->Bit(21); 3324 if (L) { 3325 #endif 3326 intptr_t ra_val = get_register(ra); 3327 if (ra_val < im_val) { 3328 bf |= 0x80000000; 3329 } 3330 if (ra_val > im_val) { 3331 bf |= 0x40000000; 3332 } 3333 if (ra_val == im_val) { 3334 bf |= 0x20000000; 3335 } 3336 #if V8_TARGET_ARCH_PPC64 3337 } else { 3338 int32_t ra_val = get_register(ra); 3339 if (ra_val < im_val) { 3340 bf |= 0x80000000; 3341 } 3342 if (ra_val > im_val) { 3343 bf |= 0x40000000; 3344 } 3345 if (ra_val == im_val) { 3346 bf |= 0x20000000; 3347 } 3348 } 3349 #endif 3350 uint32_t condition_mask = 0xF0000000U >> (cr * 4); 3351 uint32_t condition = bf >> (cr * 4); 3352 condition_reg_ = (condition_reg_ & ~condition_mask) | condition; 3353 break; 3354 } 3355 case ADDIC: { 3356 int rt = instr->RTValue(); 3357 int ra = instr->RAValue(); 3358 uintptr_t ra_val = get_register(ra); 3359 uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3360 uintptr_t alu_out = ra_val + im_val; 3361 // Check overflow 3362 if (~ra_val < im_val) { 3363 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; 3364 } else { 3365 special_reg_xer_ &= ~0xF0000000; 3366 } 3367 set_register(rt, alu_out); 3368 break; 3369 } 3370 case ADDI: { 3371 int rt = instr->RTValue(); 3372 int ra = instr->RAValue(); 3373 int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3374 intptr_t alu_out; 3375 if (ra == 0) { 3376 alu_out = im_val; 3377 } else { 3378 intptr_t ra_val = get_register(ra); 3379 alu_out = ra_val + im_val; 3380 } 3381 set_register(rt, alu_out); 3382 // todo - handle RC bit 3383 break; 3384 } 3385 case ADDIS: { 3386 int rt = instr->RTValue(); 3387 int ra = instr->RAValue(); 3388 int32_t im_val = (instr->Bits(15, 0) << 16); 3389 intptr_t alu_out; 3390 if (ra == 0) { // treat r0 as zero 3391 alu_out = im_val; 3392 } else { 3393 intptr_t ra_val = get_register(ra); 3394 alu_out = ra_val + im_val; 3395 } 3396 set_register(rt, alu_out); 3397 break; 3398 } 3399 case BCX: { 3400 ExecuteBranchConditional(instr, BC_OFFSET); 3401 break; 3402 } 3403 case BX: { 3404 int offset = (instr->Bits(25, 2) << 8) >> 6; 3405 if (instr->Bit(0) == 1) { // LK flag set 3406 special_reg_lr_ = get_pc() + 4; 3407 } 3408 set_pc(get_pc() + offset); 3409 // todo - AA flag 3410 break; 3411 } 3412 case EXT1: { 3413 ExecuteExt1(instr); 3414 break; 3415 } 3416 case RLWIMIX: { 3417 int ra = instr->RAValue(); 3418 int rs = instr->RSValue(); 3419 uint32_t rs_val = get_register(rs); 3420 int32_t ra_val = get_register(ra); 3421 int sh = instr->Bits(15, 11); 3422 int mb = instr->Bits(10, 6); 3423 int me = instr->Bits(5, 1); 3424 uint32_t result = base::bits::RotateLeft32(rs_val, sh); 3425 int mask = 0; 3426 if (mb < me + 1) { 3427 int bit = 0x80000000 >> mb; 3428 for (; mb <= me; mb++) { 3429 mask |= bit; 3430 bit >>= 1; 3431 } 3432 } else if (mb == me + 1) { 3433 mask = 0xffffffff; 3434 } else { // mb > me+1 3435 int bit = 0x80000000 >> (me + 1); // needs to be tested 3436 mask = 0xffffffff; 3437 for (; me < mb; me++) { 3438 mask ^= bit; 3439 bit >>= 1; 3440 } 3441 } 3442 result &= mask; 3443 ra_val &= ~mask; 3444 result |= ra_val; 3445 set_register(ra, result); 3446 if (instr->Bit(0)) { // RC bit set 3447 SetCR0(result); 3448 } 3449 break; 3450 } 3451 case RLWINMX: 3452 case RLWNMX: { 3453 int ra = instr->RAValue(); 3454 int rs = instr->RSValue(); 3455 uint32_t rs_val = get_register(rs); 3456 int sh = 0; 3457 if (opcode == RLWINMX) { 3458 sh = instr->Bits(15, 11); 3459 } else { 3460 int rb = instr->RBValue(); 3461 uint32_t rb_val = get_register(rb); 3462 sh = (rb_val & 0x1f); 3463 } 3464 int mb = instr->Bits(10, 6); 3465 int me = instr->Bits(5, 1); 3466 uint32_t result = base::bits::RotateLeft32(rs_val, sh); 3467 int mask = 0; 3468 if (mb < me + 1) { 3469 int bit = 0x80000000 >> mb; 3470 for (; mb <= me; mb++) { 3471 mask |= bit; 3472 bit >>= 1; 3473 } 3474 } else if (mb == me + 1) { 3475 mask = 0xffffffff; 3476 } else { // mb > me+1 3477 int bit = 0x80000000 >> (me + 1); // needs to be tested 3478 mask = 0xffffffff; 3479 for (; me < mb; me++) { 3480 mask ^= bit; 3481 bit >>= 1; 3482 } 3483 } 3484 result &= mask; 3485 set_register(ra, result); 3486 if (instr->Bit(0)) { // RC bit set 3487 SetCR0(result); 3488 } 3489 break; 3490 } 3491 case ORI: { 3492 int rs = instr->RSValue(); 3493 int ra = instr->RAValue(); 3494 intptr_t rs_val = get_register(rs); 3495 uint32_t im_val = instr->Bits(15, 0); 3496 intptr_t alu_out = rs_val | im_val; 3497 set_register(ra, alu_out); 3498 break; 3499 } 3500 case ORIS: { 3501 int rs = instr->RSValue(); 3502 int ra = instr->RAValue(); 3503 intptr_t rs_val = get_register(rs); 3504 uint32_t im_val = instr->Bits(15, 0); 3505 intptr_t alu_out = rs_val | (im_val << 16); 3506 set_register(ra, alu_out); 3507 break; 3508 } 3509 case XORI: { 3510 int rs = instr->RSValue(); 3511 int ra = instr->RAValue(); 3512 intptr_t rs_val = get_register(rs); 3513 uint32_t im_val = instr->Bits(15, 0); 3514 intptr_t alu_out = rs_val ^ im_val; 3515 set_register(ra, alu_out); 3516 // todo - set condition based SO bit 3517 break; 3518 } 3519 case XORIS: { 3520 int rs = instr->RSValue(); 3521 int ra = instr->RAValue(); 3522 intptr_t rs_val = get_register(rs); 3523 uint32_t im_val = instr->Bits(15, 0); 3524 intptr_t alu_out = rs_val ^ (im_val << 16); 3525 set_register(ra, alu_out); 3526 break; 3527 } 3528 case ANDIx: { 3529 int rs = instr->RSValue(); 3530 int ra = instr->RAValue(); 3531 intptr_t rs_val = get_register(rs); 3532 uint32_t im_val = instr->Bits(15, 0); 3533 intptr_t alu_out = rs_val & im_val; 3534 set_register(ra, alu_out); 3535 SetCR0(alu_out); 3536 break; 3537 } 3538 case ANDISx: { 3539 int rs = instr->RSValue(); 3540 int ra = instr->RAValue(); 3541 intptr_t rs_val = get_register(rs); 3542 uint32_t im_val = instr->Bits(15, 0); 3543 intptr_t alu_out = rs_val & (im_val << 16); 3544 set_register(ra, alu_out); 3545 SetCR0(alu_out); 3546 break; 3547 } 3548 case EXT2: { 3549 ExecuteExt2(instr); 3550 break; 3551 } 3552 3553 case LWZU: 3554 case LWZ: { 3555 int ra = instr->RAValue(); 3556 int rt = instr->RTValue(); 3557 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3558 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3559 set_register(rt, ReadWU(ra_val + offset, instr)); 3560 if (opcode == LWZU) { 3561 DCHECK(ra != 0); 3562 set_register(ra, ra_val + offset); 3563 } 3564 break; 3565 } 3566 3567 case LBZU: 3568 case LBZ: { 3569 int ra = instr->RAValue(); 3570 int rt = instr->RTValue(); 3571 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3572 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3573 set_register(rt, ReadB(ra_val + offset) & 0xFF); 3574 if (opcode == LBZU) { 3575 DCHECK(ra != 0); 3576 set_register(ra, ra_val + offset); 3577 } 3578 break; 3579 } 3580 3581 case STWU: 3582 case STW: { 3583 int ra = instr->RAValue(); 3584 int rs = instr->RSValue(); 3585 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3586 int32_t rs_val = get_register(rs); 3587 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3588 WriteW(ra_val + offset, rs_val, instr); 3589 if (opcode == STWU) { 3590 DCHECK(ra != 0); 3591 set_register(ra, ra_val + offset); 3592 } 3593 // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead 3594 break; 3595 } 3596 3597 case STBU: 3598 case STB: { 3599 int ra = instr->RAValue(); 3600 int rs = instr->RSValue(); 3601 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3602 int8_t rs_val = get_register(rs); 3603 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3604 WriteB(ra_val + offset, rs_val); 3605 if (opcode == STBU) { 3606 DCHECK(ra != 0); 3607 set_register(ra, ra_val + offset); 3608 } 3609 break; 3610 } 3611 3612 case LHZU: 3613 case LHZ: { 3614 int ra = instr->RAValue(); 3615 int rt = instr->RTValue(); 3616 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3617 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3618 uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff; 3619 set_register(rt, result); 3620 if (opcode == LHZU) { 3621 set_register(ra, ra_val + offset); 3622 } 3623 break; 3624 } 3625 3626 case LHA: 3627 case LHAU: { 3628 int ra = instr->RAValue(); 3629 int rt = instr->RTValue(); 3630 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3631 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3632 intptr_t result = ReadH(ra_val + offset, instr); 3633 set_register(rt, result); 3634 if (opcode == LHAU) { 3635 set_register(ra, ra_val + offset); 3636 } 3637 break; 3638 } 3639 3640 case STHU: 3641 case STH: { 3642 int ra = instr->RAValue(); 3643 int rs = instr->RSValue(); 3644 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3645 int16_t rs_val = get_register(rs); 3646 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3647 WriteH(ra_val + offset, rs_val, instr); 3648 if (opcode == STHU) { 3649 DCHECK(ra != 0); 3650 set_register(ra, ra_val + offset); 3651 } 3652 break; 3653 } 3654 3655 case LMW: 3656 case STMW: { 3657 UNIMPLEMENTED(); 3658 break; 3659 } 3660 3661 case LFSU: 3662 case LFS: { 3663 int frt = instr->RTValue(); 3664 int ra = instr->RAValue(); 3665 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3666 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3667 int32_t val = ReadW(ra_val + offset, instr); 3668 float* fptr = reinterpret_cast<float*>(&val); 3669 set_d_register_from_double(frt, static_cast<double>(*fptr)); 3670 if (opcode == LFSU) { 3671 DCHECK(ra != 0); 3672 set_register(ra, ra_val + offset); 3673 } 3674 break; 3675 } 3676 3677 case LFDU: 3678 case LFD: { 3679 int frt = instr->RTValue(); 3680 int ra = instr->RAValue(); 3681 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3682 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3683 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset)); 3684 set_d_register(frt, *dptr); 3685 if (opcode == LFDU) { 3686 DCHECK(ra != 0); 3687 set_register(ra, ra_val + offset); 3688 } 3689 break; 3690 } 3691 3692 case STFSU: { 3693 case STFS: 3694 int frs = instr->RSValue(); 3695 int ra = instr->RAValue(); 3696 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3697 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3698 float frs_val = static_cast<float>(get_double_from_d_register(frs)); 3699 int32_t* p = reinterpret_cast<int32_t*>(&frs_val); 3700 WriteW(ra_val + offset, *p, instr); 3701 if (opcode == STFSU) { 3702 DCHECK(ra != 0); 3703 set_register(ra, ra_val + offset); 3704 } 3705 break; 3706 } 3707 3708 case STFDU: 3709 case STFD: { 3710 int frs = instr->RSValue(); 3711 int ra = instr->RAValue(); 3712 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); 3713 intptr_t ra_val = ra == 0 ? 0 : get_register(ra); 3714 int64_t frs_val = get_d_register(frs); 3715 WriteDW(ra_val + offset, frs_val); 3716 if (opcode == STFDU) { 3717 DCHECK(ra != 0); 3718 set_register(ra, ra_val + offset); 3719 } 3720 break; 3721 } 3722 3723 case EXT3: { 3724 ExecuteExt3(instr); 3725 break; 3726 } 3727 case EXT4: { 3728 ExecuteExt4(instr); 3729 break; 3730 } 3731 3732 #if V8_TARGET_ARCH_PPC64 3733 case EXT5: { 3734 ExecuteExt5(instr); 3735 break; 3736 } 3737 case LD: { 3738 int ra = instr->RAValue(); 3739 int rt = instr->RTValue(); 3740 int64_t ra_val = ra == 0 ? 0 : get_register(ra); 3741 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); 3742 switch (instr->Bits(1, 0)) { 3743 case 0: { // ld 3744 intptr_t* result = ReadDW(ra_val + offset); 3745 set_register(rt, *result); 3746 break; 3747 } 3748 case 1: { // ldu 3749 intptr_t* result = ReadDW(ra_val + offset); 3750 set_register(rt, *result); 3751 DCHECK(ra != 0); 3752 set_register(ra, ra_val + offset); 3753 break; 3754 } 3755 case 2: { // lwa 3756 intptr_t result = ReadW(ra_val + offset, instr); 3757 set_register(rt, result); 3758 break; 3759 } 3760 } 3761 break; 3762 } 3763 3764 case STD: { 3765 int ra = instr->RAValue(); 3766 int rs = instr->RSValue(); 3767 int64_t ra_val = ra == 0 ? 0 : get_register(ra); 3768 int64_t rs_val = get_register(rs); 3769 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); 3770 WriteDW(ra_val + offset, rs_val); 3771 if (instr->Bit(0) == 1) { // This is the STDU form 3772 DCHECK(ra != 0); 3773 set_register(ra, ra_val + offset); 3774 } 3775 break; 3776 } 3777 #endif 3778 3779 default: { 3780 UNIMPLEMENTED(); 3781 break; 3782 } 3783 } 3784 } // NOLINT 3785 3786 3787 void Simulator::Trace(Instruction* instr) { 3788 disasm::NameConverter converter; 3789 disasm::Disassembler dasm(converter); 3790 // use a reasonably large buffer 3791 v8::internal::EmbeddedVector<char, 256> buffer; 3792 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); 3793 PrintF("%05d %08" V8PRIxPTR " %s\n", icount_, 3794 reinterpret_cast<intptr_t>(instr), buffer.start()); 3795 } 3796 3797 3798 // Executes the current instruction. 3799 void Simulator::ExecuteInstruction(Instruction* instr) { 3800 if (v8::internal::FLAG_check_icache) { 3801 CheckICache(isolate_->simulator_i_cache(), instr); 3802 } 3803 pc_modified_ = false; 3804 if (::v8::internal::FLAG_trace_sim) { 3805 Trace(instr); 3806 } 3807 int opcode = instr->OpcodeValue() << 26; 3808 if (opcode == TWI) { 3809 SoftwareInterrupt(instr); 3810 } else { 3811 ExecuteGeneric(instr); 3812 } 3813 if (!pc_modified_) { 3814 set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize); 3815 } 3816 } 3817 3818 3819 void Simulator::Execute() { 3820 // Get the PC to simulate. Cannot use the accessor here as we need the 3821 // raw PC value and not the one used as input to arithmetic instructions. 3822 intptr_t program_counter = get_pc(); 3823 3824 if (::v8::internal::FLAG_stop_sim_at == 0) { 3825 // Fast version of the dispatch loop without checking whether the simulator 3826 // should be stopping at a particular executed instruction. 3827 while (program_counter != end_sim_pc) { 3828 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3829 icount_++; 3830 ExecuteInstruction(instr); 3831 program_counter = get_pc(); 3832 } 3833 } else { 3834 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 3835 // we reach the particular instuction count. 3836 while (program_counter != end_sim_pc) { 3837 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3838 icount_++; 3839 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 3840 PPCDebugger dbg(this); 3841 dbg.Debug(); 3842 } else { 3843 ExecuteInstruction(instr); 3844 } 3845 program_counter = get_pc(); 3846 } 3847 } 3848 } 3849 3850 3851 void Simulator::CallInternal(byte* entry) { 3852 // Adjust JS-based stack limit to C-based stack limit. 3853 isolate_->stack_guard()->AdjustStackLimitForSimulator(); 3854 3855 // Prepare to execute the code at entry 3856 #if ABI_USES_FUNCTION_DESCRIPTORS 3857 // entry is the function descriptor 3858 set_pc(*(reinterpret_cast<intptr_t*>(entry))); 3859 #else 3860 // entry is the instruction address 3861 set_pc(reinterpret_cast<intptr_t>(entry)); 3862 #endif 3863 3864 // Put target address in ip (for JS prologue). 3865 set_register(r12, get_pc()); 3866 3867 // Put down marker for end of simulation. The simulator will stop simulation 3868 // when the PC reaches this value. By saving the "end simulation" value into 3869 // the LR the simulation stops when returning to this call point. 3870 special_reg_lr_ = end_sim_pc; 3871 3872 // Remember the values of non-volatile registers. 3873 intptr_t r2_val = get_register(r2); 3874 intptr_t r13_val = get_register(r13); 3875 intptr_t r14_val = get_register(r14); 3876 intptr_t r15_val = get_register(r15); 3877 intptr_t r16_val = get_register(r16); 3878 intptr_t r17_val = get_register(r17); 3879 intptr_t r18_val = get_register(r18); 3880 intptr_t r19_val = get_register(r19); 3881 intptr_t r20_val = get_register(r20); 3882 intptr_t r21_val = get_register(r21); 3883 intptr_t r22_val = get_register(r22); 3884 intptr_t r23_val = get_register(r23); 3885 intptr_t r24_val = get_register(r24); 3886 intptr_t r25_val = get_register(r25); 3887 intptr_t r26_val = get_register(r26); 3888 intptr_t r27_val = get_register(r27); 3889 intptr_t r28_val = get_register(r28); 3890 intptr_t r29_val = get_register(r29); 3891 intptr_t r30_val = get_register(r30); 3892 intptr_t r31_val = get_register(fp); 3893 3894 // Set up the non-volatile registers with a known value. To be able to check 3895 // that they are preserved properly across JS execution. 3896 intptr_t callee_saved_value = icount_; 3897 set_register(r2, callee_saved_value); 3898 set_register(r13, callee_saved_value); 3899 set_register(r14, callee_saved_value); 3900 set_register(r15, callee_saved_value); 3901 set_register(r16, callee_saved_value); 3902 set_register(r17, callee_saved_value); 3903 set_register(r18, callee_saved_value); 3904 set_register(r19, callee_saved_value); 3905 set_register(r20, callee_saved_value); 3906 set_register(r21, callee_saved_value); 3907 set_register(r22, callee_saved_value); 3908 set_register(r23, callee_saved_value); 3909 set_register(r24, callee_saved_value); 3910 set_register(r25, callee_saved_value); 3911 set_register(r26, callee_saved_value); 3912 set_register(r27, callee_saved_value); 3913 set_register(r28, callee_saved_value); 3914 set_register(r29, callee_saved_value); 3915 set_register(r30, callee_saved_value); 3916 set_register(fp, callee_saved_value); 3917 3918 // Start the simulation 3919 Execute(); 3920 3921 // Check that the non-volatile registers have been preserved. 3922 CHECK_EQ(callee_saved_value, get_register(r2)); 3923 CHECK_EQ(callee_saved_value, get_register(r13)); 3924 CHECK_EQ(callee_saved_value, get_register(r14)); 3925 CHECK_EQ(callee_saved_value, get_register(r15)); 3926 CHECK_EQ(callee_saved_value, get_register(r16)); 3927 CHECK_EQ(callee_saved_value, get_register(r17)); 3928 CHECK_EQ(callee_saved_value, get_register(r18)); 3929 CHECK_EQ(callee_saved_value, get_register(r19)); 3930 CHECK_EQ(callee_saved_value, get_register(r20)); 3931 CHECK_EQ(callee_saved_value, get_register(r21)); 3932 CHECK_EQ(callee_saved_value, get_register(r22)); 3933 CHECK_EQ(callee_saved_value, get_register(r23)); 3934 CHECK_EQ(callee_saved_value, get_register(r24)); 3935 CHECK_EQ(callee_saved_value, get_register(r25)); 3936 CHECK_EQ(callee_saved_value, get_register(r26)); 3937 CHECK_EQ(callee_saved_value, get_register(r27)); 3938 CHECK_EQ(callee_saved_value, get_register(r28)); 3939 CHECK_EQ(callee_saved_value, get_register(r29)); 3940 CHECK_EQ(callee_saved_value, get_register(r30)); 3941 CHECK_EQ(callee_saved_value, get_register(fp)); 3942 3943 // Restore non-volatile registers with the original value. 3944 set_register(r2, r2_val); 3945 set_register(r13, r13_val); 3946 set_register(r14, r14_val); 3947 set_register(r15, r15_val); 3948 set_register(r16, r16_val); 3949 set_register(r17, r17_val); 3950 set_register(r18, r18_val); 3951 set_register(r19, r19_val); 3952 set_register(r20, r20_val); 3953 set_register(r21, r21_val); 3954 set_register(r22, r22_val); 3955 set_register(r23, r23_val); 3956 set_register(r24, r24_val); 3957 set_register(r25, r25_val); 3958 set_register(r26, r26_val); 3959 set_register(r27, r27_val); 3960 set_register(r28, r28_val); 3961 set_register(r29, r29_val); 3962 set_register(r30, r30_val); 3963 set_register(fp, r31_val); 3964 } 3965 3966 3967 intptr_t Simulator::Call(byte* entry, int argument_count, ...) { 3968 va_list parameters; 3969 va_start(parameters, argument_count); 3970 // Set up arguments 3971 3972 // First eight arguments passed in registers r3-r10. 3973 int reg_arg_count = (argument_count > 8) ? 8 : argument_count; 3974 int stack_arg_count = argument_count - reg_arg_count; 3975 for (int i = 0; i < reg_arg_count; i++) { 3976 set_register(i + 3, va_arg(parameters, intptr_t)); 3977 } 3978 3979 // Remaining arguments passed on stack. 3980 intptr_t original_stack = get_register(sp); 3981 // Compute position of stack on entry to generated code. 3982 intptr_t entry_stack = 3983 (original_stack - 3984 (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t)); 3985 if (base::OS::ActivationFrameAlignment() != 0) { 3986 entry_stack &= -base::OS::ActivationFrameAlignment(); 3987 } 3988 // Store remaining arguments on stack, from low to high memory. 3989 // +2 is a hack for the LR slot + old SP on PPC 3990 intptr_t* stack_argument = 3991 reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot; 3992 for (int i = 0; i < stack_arg_count; i++) { 3993 stack_argument[i] = va_arg(parameters, intptr_t); 3994 } 3995 va_end(parameters); 3996 set_register(sp, entry_stack); 3997 3998 CallInternal(entry); 3999 4000 // Pop stack passed arguments. 4001 CHECK_EQ(entry_stack, get_register(sp)); 4002 set_register(sp, original_stack); 4003 4004 intptr_t result = get_register(r3); 4005 return result; 4006 } 4007 4008 4009 void Simulator::CallFP(byte* entry, double d0, double d1) { 4010 set_d_register_from_double(1, d0); 4011 set_d_register_from_double(2, d1); 4012 CallInternal(entry); 4013 } 4014 4015 4016 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { 4017 CallFP(entry, d0, d1); 4018 int32_t result = get_register(r3); 4019 return result; 4020 } 4021 4022 4023 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { 4024 CallFP(entry, d0, d1); 4025 return get_double_from_d_register(1); 4026 } 4027 4028 4029 uintptr_t Simulator::PushAddress(uintptr_t address) { 4030 uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); 4031 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 4032 *stack_slot = address; 4033 set_register(sp, new_sp); 4034 return new_sp; 4035 } 4036 4037 4038 uintptr_t Simulator::PopAddress() { 4039 uintptr_t current_sp = get_register(sp); 4040 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 4041 uintptr_t address = *stack_slot; 4042 set_register(sp, current_sp + sizeof(uintptr_t)); 4043 return address; 4044 } 4045 } // namespace internal 4046 } // namespace v8 4047 4048 #endif // USE_SIMULATOR 4049 #endif // V8_TARGET_ARCH_PPC 4050